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Abstract: The COVID-19 pandemic has increased the need for developing disinfectant surfaces
as well as reducing the spread of infections on contaminated surfaces and the contamination risk
from the fomite route. The present work reports on the antiviral activity of coatings containing
ZnO particles obtained by two simple synthesis routes using Aloe vera (ZnO-aloe) or cassava starch
(ZnO-starch) as reaction fuel. After detailed characterization using XRD and NEXAFS, the obtained
ZnO particles were dispersed in a proportion of 10% with two different waterborne acrylic coatings
(binder and commercial white paint) and brushed on the surface of polycarbonates (PC). The cured
ZnO/coatings were characterized by scanning electron microscopes (SEM) and energy-dispersive X-
ray spectroscopy (EDS). Wettability tests were performed. The virucidal activity of the ZnO particles
dispersed in the waterborne acrylic coating was compared to a reference control sample (PC plates).
According to RT-PCR results, the ZnO-aloe/coating displays the highest outcome for antiviral activity
against SARS-CoV-2 using the acrylic binder, inactivating >99% of the virus after 24 h of contact
relative to reference control.

Keywords: zinc oxide; eco-friendly synthesis; coating; SARS-CoV-2; coronavirus; antiviral surface

1. Introduction

Since 2019, the coronavirus disease (COVID-19) has been a burden on healthcare
systems and economies around the Globe, with more than 590 million reported cases and
nearly 6 million deaths [1]. The severe accurate respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a single-stranded positive-strand RNA virus with an envelope and belongs to the
family of beta coronaviruses [2]. These respiratory RNA viruses are highly contagious, and
the primary transmission mode is through exposure to respiratory droplets [3]. Another
route of SARS-CoV-2 transmission may also be the deposition of droplets on surfaces, form-
ing fomites, subsequently assimilated by a person via touch [4]. However, the infectivity of
a given droplet-nucleus/fomite is related to the initial viral load and its stability in different
environments [5]. Previous work [6] reported that SARS-CoV-2 is viable for up to 72 h on
plastic, 48 h on stainless steel, and 4 h on copper foil.

Since touching joint surfaces, i.e., door handles, toilets, taps, and work surfaces, is
considered a potential transmission route, the World Health Organization (WHO) recom-
mends surface disinfection to reduce the risk of contamination from the fomite route [7].
This is the most recommended method to reduce the risk of transmission of viruses, in-
cluding COVID-19 [3]. Chemical-based surface disinfectants such as hydrogen peroxide,
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sodium hypochlorite, and alcohol are used worldwide for disinfection [8]; however, after
disinfection using these products, the surface can be contaminated again by an infected
person. As a result, methods for ensuring continuous antiviral protection of surfaces are
needed to eliminate viruses shortly after contamination [3]. The study of nanostructured
semiconductor-based composites aims to increase biological applications [9–12]. In this
context, an alternative approach is to use nanostructured semiconductor-based coatings
designed to provide a self-disinfection, inactivating or killing microbes long after the coating
is applied [13]; CuO [5,7], TiO2 [2,7,14], and ZnO [7,13] have been reported to inactivate
SARS-CoV-2. The virucidal activity using acrylic paint containing galvanic microcells has
also been reported [3]. The present study evaluates the virucidal activity of acrylic paint
surfaces painted with nanostructured ZnO pigments. Zinc oxide has been reported as an-
tibacterial material, being active against Gram-positive and Gram-negative bacteria [15–17],
as well as an antiviral material [13,18], which has potential application in different systems
such as food packaging [19] and antipathogenic surfaces [20]. ZnO composites have been
incorporated into polymers and tested as antiviral/antibacterial surfaces [7,13,20]. Antiviral
mechanisms associated with ZnO include preventing viral entry, replication, and spreading
to organs, leading to oxidative injury and viral death via reactive oxygen species. The zinc-
containing compounds displayed antiviral activity through physical processes, including
attachment to the virus, the inhibition of virus infection, and uncoating the virus. These
compounds also inhibit viral polymerases and proteases via biological mechanisms [21].
Herein, ZnO particles obtained by eco-friendly routes and applied in an acrylic waterborne
coating against SAR-CoV-2 are reported. Firstly, two eco-friendly routes were utilized to
obtain the ZnO particles, using two different polysaccharides extracted from Aloe vera and
cassava starch as high combustion power to reduce the calcination temperature. Secondly,
ZnO particles were blended with an acrylic binder and a commercial white paint. Finally,
the mixtures painted on polycarbonate surfaces were evaluated for their antiviral properties
against SARS-CoV-2 in a control sample, i.e., a polycarbonate surface with no coating.

2. Materials and Methods
2.1. Materials

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 98%, NEON, Suzano, Brazil) was used.
All solutions were prepared with deionized water. Natural cassava starch from colloidal
suspension and Aloe vera extract were used as fuels [22,23]. The process of obtaining the
Aloe vera extract was reported elsewhere [24].

2.2. Synthesis of ZnO Using Polysaccharides

The ZnO particles were synthesized using polysaccharides extracted from cassava
starch and Aloe vera as fuels for the reaction, as described elsewhere [25] (Figure 1). The
samples were labeled regarding the fuel utilized, ZnO-aloe and ZnO-starch.

2.3. Waterborne Acrylic Coatings

A colorless commercial waterborne acrylic binder with no solids content (Acrylic
Binder Amsterdam 005, prod. Royal Talens, Apeldoorn, The Netherlands), and white
waterborne paint, with a solid content by weight of 50.5–52.5%, a VOC (volatile organic
compounds) < 30 g/dm3, and a pH of 8–9 (Paracem® deco matt, prod. Martin Mathys N.
V., Zelem, Belgium) were used for the dispersion of ZnO. The coatings were labeled in
this work as binder-A and paint-W, respectively. In a proportion of 10 wt.%, ZnO particles
were dispersed in the coatings (binder-A and paint-W) and mixed to obtain a uniform
dispersion for 30 min in a magnetic stirring. Next, the well-dispersed mixtures were painted
on polycarbonate surfaces (PC) using a brush (Figure 1).
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surface against the SARS-CoV-2 virus.

2.4. Characterization Techniques

The X-ray diffraction (XRD) performed on a D2 Phaser (Bruker, Karlsruhe, Germany)
with Cu Kα radiation (λ = 1.5418 Å) was used to identify the crystalline structure of the
synthesized ZnO. In addition, the local structure (or the local bonding environment) of the
ZnO particles synthesized using the two different routes was investigated by near-edge
X-ray absorption fine structure (NEXAFS) recorded at the PEEM/XAS beamline (photon en-
ergy range of 200–2000 eV) of the SOLARIS Synchrotron (Krakow—Poland) [26]. NEXAFS
measurements were carried out in partial fluorescence yield (PFY) at room temperature
for the samples in powder form, and the obtained spectra were normalized using PyMCA
software, version 5.7.5 [27].

The morphology of the particulate samples and the ZnO coatings were examined with
a field emission scanning electron microscope (FE-SEM, Verios G4, Thermo Fisher, Waltham,
MA, USA). For the SEM analysis, the particulate samples were dispersed in water, and a drop
of dispersion was deposited on a polished Al sample holder; for investigations of the ZnO
coatings, coated silicon plates were mounted to Al sample holders using silver paint. Before
the SEM investigation, a ~5-nm-thick carbon layer was deposited on the specimens’ surfaces.

The wettability properties of the surfaces were evaluated by contact angle (CQ) using
an optical tensiometer (Attension Theta, Biolin Scientific, Gothenburg, Sweden) and a water
droplet with a volume of ~5 µL under ambient conditions (25 ◦C). In addition, different
regions of the surface were analyzed to verify the uniformity.

2.5. SARS-CoV-2 Inactivation Test

The inactivation of the SAR-CoV2 virus was measured using the RT-PCR protocol
of the national COVID-19 detection service in a procedure for viral inactivation detection
described previously [28–30]. SARS-CoV2 viral particles were isolated into Hank’s balanced
salt solution from nasopharyngeal swabs of confirmed COVID-19 patients and stored at
-80◦C until application. The samples were residuals from the initial COVID-19 testing
platform of UMONS (University of Mons, Belgium) and came to the testing platform
from all over the Hainault region in Belgium. To evaluate the antiviral properties of the
ZnO-based coatings, PC plates (25 × 25 mm) were coated with the water-acrylic coatings
(control samples), and the exposure phase of the surfaces containing the ZnO synthesized
against SARS-CoV-2 was done according to the adapted ISO 22196:2011 [31]. The samples
were placed in individual discs in quadruplicate.

The coated PC samples were placed in sterile Petri dishes. A liquid volume of 100 µL
in a virus concentration corresponding to a Ct value in RT-qPCR of approximately 22 was
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added to each surface, and a polyethylene film cover of 20 × 20 mm was placed on top of
the liquid. The inoculated specimens were then incubated at room temperature for 24 h
under humid conditions. After the incubation, intact viral particles were recovered in 200 µL
of a viral recovery solution containing 5 M guanidinium thiocyanate, 40 mM dithiothreitol,
20 µg/mL glycogen, and 1% Triton X-100, buffered with 25 mM sodium citrate to pH 8 [32].
The viral RNA was extracted using the manufacturer’s extraction protocol with AMPure XP
magnetic beads (Beckman Coulter, Villepinte, France).

SARS-CoV-2 viral suspensions were tested using the RT-PCR kit (ViroReal Kit, Ingenetix
GmbH, Wien, Austria). As viral load indicators, the Ct values and the number of cycles
necessary to spot the virus were generated via the RT-PCR test. The amplification reactions
were performed using TaqMan RT-PCR on a StepOne Plus real-time PCR system (Applied
Biosystems, Thermo Fisher, Waltham, MA, USA). The primers used were SARS E_Sarbeco-P1
(FAM-ACACTAGCCATCCTTACTGCGCTTCGBBQ), SARS E_Sarbeco-F1 (ACAGGTACGT-
TAATAGTTAATAGCGT), and SARS E_Sarbeco-R2 (ATATTGCAGCAGTACGCACACA)
for the E gene using the Eurogentec (Belgium) Mastermix containing ROX as the internal
reference. The PCR conditions were as follows: the initial denaturation step, 48 ◦C for 10 min
for reverse transcription, followed by 95 ◦C for 3 min, and then 45 cycles of 95 ◦C for 15 s,
58 ◦C for 30 s. Applied Biosystems ViiA7 instruments (Applied Biosystems, Hong Kong,
China) were used.

3. Results and Discussion
3.1. Characterization of ZnO Powder

First, the crystallographic structure and morphology of the synthesized ZnO particles
were investigated. The XRD patterns of the ZnO-aloe and ZnO-starch powder samples,
shown in Figure 2, follow the ICDD card 01-075-9742 of the hexagonal phase with the
Wurtzite structure [25]. The high peak intensities indicate the formation of crystalline ZnO,
irrespective of the synthetic route used. The shape and size of the particles in the ZnO-
starch and ZnO-aloe powder samples were examined by SEM (Figure 2b,c). SEM revealed
that using different fuels (starch and aloe vera) in the synthesis significantly impacted
the shape and size of formed particles. In the SEM images of ZnO-starch, particle size
ranges from 100 to 350 nm, while ZnO-aloe particles are massive (up to a few µm), with
undefined morphology.
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Figure 2. Characterization images of as-prepared ZnO-aloe and ZnO-starch powders: (a) X-ray
diffraction pattern (showing the hexagonal wurtzite crystal structure of ZnO); (b) SEM images
of ZnO-aloe at low magnification (inset: SEM images at high magnification); (c) SEM images of
ZnO-starch at low magnification (inset: SEM images at high magnification).

Materials obtained using green synthetic routes like the ones in this work are prone to
impurities from the plants, which may affect the local electronic structure of the ZnO. To
better understand the ZnO particles’ local electronic structure and investigate the presence of
defects, NEXAFS analysis of the ZnO-aloe and ZnO-starch powder samples were performed.
The normalized O K-edge and Zn L-edge spectra of ZnO are shown in Figure 3. The O
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K-edge spectra of both ZnO powder samples show broad, asymmetric spectral features
denoted by A, B, C, D, E, and F. The overall spectral features in ~530–539 eV were assigned
to the transition of O 1s electrons to the hybridized orbitals of O 2p and Zn 4s states [33,34].
The region of ~539–550 eV (labeled by D–E) is associated with transitions to the states
formed by the hybridization between the O 2p states with the Zn 4p states [33], and above
550 eV (indicated by F); the contribution mainly comes from O 2p–Zn 4d [35]. The sharp
peak (indicated by C) near 537 eV is due to the transition of O 1s electrons to more localized
O 2pz and 2px + y states [33,34].
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Figure 3. Normalized spectra of (a) O K-edge and (b) Zn L3-edge NEXAFS spectra of ZnO-aloe and
ZnO-starch samples.

There are some systematic changes in the features of the O K-edge spectra depending
on the synthetic route used: for the ZnO-starch sample, a feature can be observed at
532.3 eV (indicated by A). This pre-edge feature was associated with O vacancies and other
defects [33,34,36]. Therefore, ZnO-starch has higher O vacancies, which may be introduced
during the combustion synthesis.

The Zn L3-edge spectra recorded on the ZnO-aloe and ZnO-starch powder samples are
shown in Figure 3b. The Zn L3-edge is composed of four peaks at 1022.4, 1026.3, 1028, and
1032.4 eV, which are assigned as A, B, C, and D; according to the dipole-transition selection
rules, the Zn L3-edge XAS spectra reflect the unoccupied Zn s- and d-derived states [37,38].
Since Zn 3d is occupied, Zn 4s is the lowest unoccupied orbital, followed by Zn 4p and
4d [37]. The pre-edge peak at 1022.4 corresponds to the Zn–4 s derived state [34]. In contrast,
the other peaks (B and C) are mainly related to the transition of 2p electrons to the Zn 4p
levels [39]. These results confirm that both synthetic routes led to the synthesis of crystalline
ZnO once L-edge gives the fingerprint of the ZnO crystallographic phase. Furthermore, both
NEXAFS spectra are similar to those reported in the literature for ZnO hexagonal phase
with Wurtzite structure, in agreement with the XRD analysis [38,40].

3.2. Surface Characterization of ZnO Coatings

According to the United States Food and Drug Administration (FDA), zinc oxide
(ZnO) is classified as “Generally Regarded as Safe” (GRAS) for various biological applica-
tions [41,42]; nevertheless, further toxicological studies considering aspects such as particle
morphology, size, and concentration are necessary to test the biocompatibility of ZnO-based
nanomaterials for biomedical applications such as drug delivery antibacterial materials,
wound healing, tissue engineering, etc. [43–48]. In addition to antipathogenic properties
when used as pigments, nanostructured ZnO does not cause color variations when added to
paints and coatings [49]. In addition, when embedded as particles within polymer matrices,
such as polyethylene glycol, its cytotoxicity was reported to decrease, as the release of
Zn2+ ions and reactive oxygen species are prevented without reducing the antipathogenic
properties [18]. In the case of this present research, the zinc oxide particles were enforced in
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an acrylic-based binder, and white acrylic paint was evaluated as a virucidal coating. The
synthesized ZnO powders were mixed with the commercial paints (binder-A and paint-W)
in 10 wt.% and brushed on polycarbonate (PC) plates.

The acrylic-based binder coating (binder-A) used to disperse the synthesized ZnO
particles exhibits non-ordered wrinkles on the cured surface (Figure 4a); it has been reported
that wrinkles appear during the drying process of double coatings when the elapsed time
between the first and second coatings is too short [50]. The distribution of ZnO particles
(ZnO-aloe and ZnO-starch) in binder-A was estimated from SEM images captured with
SE and BSE detectors (Figures 5 and S1). This showed a homogeneous dispersion of the
particles without agglomerates for the surface loaded with ZnO-starch (Figures 3b and S3b).
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As shown in Figure 5, the surface morphology of the cured coatings containing ZnO
particles depends on the synthesis route used to obtain the particles. The ZnO particles
agglomerate on the coating loaded with ZnO-aloe during the curing process, forming a
few tenths of micrometer clumps on the coating’s surface (Figure 5a), suggesting that the
ZnO particles obtained using Aloe vera extract are not well-dispersed in binder-A due to
poor interaction between the pigment and the acrylic binder, as no dispersing additives
are used. These additives prevent flocculates from forming during dispersion, preventing
agglomeration during the film-forming process [51]. Therefore, the examination of coating
surfaces was undertaken with the BSE detector system to analyze the composition of the
sample surface (Figure S1). BSE-SEM images with bright contrast reveal the presence of
ZnO particles (bright white) on both surfaces (ZnO-aloe/binder-A and ZnO-starch/binder-
A). However, the dispersion of ZnO-aloe particles in binder-A is much less homogeneous
than the ZnO-starch dispersion.

Compared to the simple chemical composition of binder-A, the commercial white paint,
paint-W, is composed of different components, such as solvents, pigments, binders, fillers,
plasticizers, and additives, which control critical properties of the paint, i.e., durability,
brushability, and drying time [52]. Different functional paints, such as protective, decorative,
and signal-generation paints, are formulated and mixed from these common ingredients
in paint [49]. These factors affect the distribution of added ZnO particles in the paint. The
SEM images for the non-loaded paint-W are shown in Figure S2, where TiO2 particles, the
majority component as a white pigment of the commercial white paint used in this work, are
well distributed over the surface, with particles size ranging from 140 to 460 nm. SEM-SE
and BSE mode images indicate the composition and distribution of ZnO particles in the
paint-W (Figure S3). The ZnO particles in bright contrast in BSE-SEM images show a better
distribution for ZnO particles obtained using starch as a fuel (Figure S3b′); the same result
was observed for the coatings using binder-A, where the ZnO particles are well-dispersed
with the other components present in paint-W, indicating that the ZnO-starch particles have
a good interaction with the polymer matrices for coating formulation.

Electron dispersive X-ray spectra confirmed the particle distribution in binder-A and
paint-W observed by SEM images (Figures 6 and S4). They indicate the presence of ZnO
particles in the binder-A (S, Zn, and O) and the paint-W (Ti, Mg, Si, Zn, and O). The elements
(Ti, Mg, and Si) are present in the paint formulation (paint-W) (Figure S2c), while the S is
present in the binder-A composition (Figure 4c).
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The virus inactivation is reported to occur when the contact of the virus is in a droplet
suspension with a distinct surface. The virus inactivation performance of the surface is,
therefore, highly dependent upon wetting and imbibition. Due to the presence of hydroxyl
groups on the surface of ZnO, particles are intrinsically hydrophilic [53]. Thus, adding
ZnO in acrylic-based paint can change the surface wettability properties of the coating,
modifying the contact area between the surface and the droplet. The contact angle (CA)
measurements were done on coatings loaded and non-loaded with ZnO particles. The water
droplet CA on the non-loaded binder-A surface was 24.3◦ ± 2.6◦, as shown in Figure 7a.
As expected, the ZnO loaded on binder-A affected its wetting behavior. According to
Figure 7b,c, the average contact angle of the water droplet on the surface loaded with ZnO-
aloe and ZnO-starch in binder-A was 7.7◦ ± 1.4◦ and 78.7◦ ± 1.7◦, respectively, indicating
that the addition of ZnO-aloe particles renders the surface superhydrophilic. However,
the ZnO-starch/binder-A surface tends to be hydrophobic compared to the pure binder-A
surface (Figure 7a). For the surfaces coated with ZnO particles in paint-W (Figure 7d–f),
the addition of ZnO-aloe particles made the surface less hydrophobic than the commercial
paint-W (94.7◦ ± 2.3◦), showing an average contact angle of 89.7◦ ± 3.3◦. Moreover, adding
ZnO-starch particles caused a minor change in the surface wettability of pure paint-W, with
a contact angle of 93.3◦ ± 1.7◦. Based on the microscopy results, it can be suggested that
ZnO-aloe particles enhance the roughness of the surface compared to ZnO-starch particles
since the ZnO-aloe particles are present on the very near surface region (Figure S1, see
Supplementary Materials). Therefore, the particles near the surface can increase wettability
and facilitate droplet spreading, increasing evaporation rate, reducing virus travel distance
to the surface, and speeding up the virus interaction with the surface [54].
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3.3. ZnO Coating Reduces Infectivity of SARS-CoV-2

The detection of SARS-CoV-2 RNA on surface samples indicates that the virus (viable or
nonviable) was previously present on that surface. In RT-PCR assays, lower cycle thresholds
(CTs) indicate higher target RNA copy numbers. To further verify the direct inhibitory
effect of ZnO particles on SARS-CoV-2 of the surfaces, virus replication was detected using
RT-qPCR. The virucidal exposure phase using ZnO coatings was evaluated according to
the adapted ISO 22196:2011 [31]. The viral titer was significantly reduced in SARS-CoV-2
infected cells treated for 24 h with ZnO-aloe and ZnO-starch coated in two waterborne
acrylic paints (binder-A; and paint-W), compared with the level in infected cells on non-
loaded coating (Figure 5, inset the control in black color). Our results show that SARS-CoV-2
infectivity was inactivated at 99.8% and 98.7% by 24 h of exposure to the ZnO-aloe and
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ZnO-starch, respectively when the ZnO particles were coated in binder-A (Figure 8a). When
coated in paint-W, the infectivity values decreased, showing a reduction in the viral load
of the surfaces after the exposure of 94.6% and 67.3% to the ZnO-aloe and ZnO-starch,
respectively (Figure 8b). The results indicate that commercial white paint (paint-W), even
with TiO2 in its formulation, has low antiviral activity against the SARS-CoV-2 virus but
increased activity with ZnO synthesized in this work. The virus infectivity of a surface
has been reported to be related to the surface wettability of the samples [55,56]. In this
context, the cured ZnO-aloe in binder-A shows a lower contact angle; in other words,
higher wettability for effective contact promoting immediate and intimate contact with
viral contaminants. The high Ct values shown in Table 1 for the pure binder-A may be
associated with tests conducted on incompletely cured surfaces, as no additives are present
in the chemical composition of binders. Their curing process is longer than paints; therefore,
their surface chemistry may interact with the medium virus solution. The antiviral test was
performed for the best surface result, ZnO-aloe/binder-A, to verify these results after one
month of curing (Figure S5). Upon exposure to the surface containing ZnO-aloe particles,
the percentage of viral load reduction after 24 h was 80.9%. At the same time, pure binder-A
showed a low viral load reduction (Table S1), thus denoting the efficiency of ZnO-aloe as an
antiviral pigment.
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Table 1. Decrease of viral load of samples and controls after 24 h of exposure determined by RT-qPCR.

Sample % Reduction

Copper (Control) 99.9

Binder-A 85.6

ZnO-aloe (binder-A) 99.8

ZnO-starch (binder-A) 98.7

Paint-W 44.9

ZnO-aloe (paint-W) 94.6

ZnO-starch (paint-W) 67.3
Note: The exposure phase of the tests was done in a BSL2 lab under conditions identical to COVID-19 screening
conditions. No virus amplification or experimental steps other than those for COVID-19 screening was performed.

The number of copies of the genes of SARS-CoV-2 in the ZnO-treated infected cells
decreased significantly compared with the control sample levels, indicating that ZnO-
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aloe/binder-A significantly inhibited the better replication of SARS-CoV-2 in the studied
coated surfaces. Furthermore, it was found that the virus titer decreased further with the
application of ZnO particles in binder-A.

4. Conclusions

The reported synthesis routes to obtain ZnO particles and their dispersion in paint are
low-cost and suitable for large-scale manufacturing. An acrylic binder and a commercial
white paint were used to obtain the ZnO-based coatings to evaluate their efficiency against
SARS-CoV-2. Morphological characterization shows particles uniformly distributed on the
sample surface coated with ZnO-starch particles in binder-A and paint-W, indicating that
ZnO particles obtained using starch interact well with acrylic-based coatings, independent
of additives. On the contrary, for both coatings, ZnO-aloe exhibited massive aggregation.

The ZnO particles dispersed in both coatings display virucidal activity according to RT-
PCR results evaluated within 24 h, with the effective result coming from ZnO-aloe added
to binder-A (prod. Amsterdam). The results also showed that the RT-PCR method could
be used to determine the presence of SARS-CoV-2 on surfaces. Moreover, ZnO particles
have the potential application as a pigment in acrylic-based coatings, which may reduce
infection and limit the spread of SARS-CoV-2 via the fomite route. Because acrylic-based
coatings are widely used outdoors and indoors, these coatings with added ZnO particles
are promising materials to be applied in civil constructions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12234345/s1, Figure S1: SEM images of ZnO particles
dispersed in binder-A captured with a backscattered electron (BSE) detector at low magnification: (a)
ZnO-aloe; and (b) ZnO-starch. Figure S2: SEM images of commercial white paint surface (paint-W)
(a) captured with a secondary electron detector (SE), (b) captured with a backscattered electron (BSE)
detector, and (c) SEM image of paint-W with EDXS elemental maps of C, Ti, Si, and O. Scale bar
on the elemental maps is 25 µm. The red frame in the SEM image indicates the area of analysis;
Figure S3: SEM images of coating surfaces of paint-W loaded with ZnO-aloe and ZnO-starch particles:
(a) (ZnO-aloe) and (b) (ZnO-starch) were captured with a secondary electron detector. In contrast,
images (a′) (ZnO-aloe) and (b′) (ZnO-starch) were captured with a back-scattered electron detector;
Figure S4: SEM image of paint-W loaded with (a) ZnO-aloe and (b) ZnO-starch with EDXS elemental
maps of Zn, O, Ti and Si. The scale bar on the elemental maps is 25 µm. The red frames in the SEM
images indicate the area of analysis; Figure S5: Displays amplification plots showing normalized
reporter values (∆Rn, linear scale) as a function of the qPCR cycle for the surfaces loaded with
ZnO-aloe particles after 30 days of the curing process. The amplification plot displays the product
accumulation over the real-time PCR experiment based on the fluorescent signal from each sample
and the cycle number; Table S1: Decrease of viral load of samples and controls after 24 hours of
exposure determined by RT-qPCR.
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