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Abstract. Sketch-based image retrieval (SBIR) is the task of retriev-
ing natural images (photos) that match the semantics and the spatial
configuration of hand-drawn sketch queries. The universality of sketches
extends the scope of possible applications and increases the demand for
efficient SBIR solutions. In this paper, we study classic triplet based
SBIR solutions and show that a persistent invariance to horizontal flip
(even after model finetuning) is harming performance. To overcome this
limitation, we propose several approaches and evaluate in depth each of
them to check their effectiveness. Our main contributions are twofold:
We propose and evaluate several intuitive modifications to build SBIR
solutions with better flip equivariance. We show that vision transformers
are more suited for the SBIR task, and that they outperform CNNs with
a large margin. We carried out numerous experiments and introduce the
first models to outperform human performance on a large scale SBIR
benchmark (Sketchy). Our best model achieves a recall of 62.25% (at
k = 1) on the sketchy benchmark compared to previous state-of-the-art
methods 46.2%.

Keywords: Sketch-based image retrieval, Triplet Networks, Vision Trans-
formers

1 Introduction

The possible applications for SBIR solutions are multiple and especially with
the large availability of touchscreens everywhere. In addition, the universality
of sketches and the efficiency of modern SBIR solutions that are able to deal
with badly drawn sketches make the use of such solutions less burdensome. For
example, a SBIR solution may be integrated in an e-commerce system, where
the user draws a sketch to find a specific product. Sketching will offer a powerful
solution to communicate details that goes beyond the category of the object.
These details could go from the global product design to detailed patterns present
on the product and with respect to their actual spatial configuration. It would
be difficult to reach such level of details using a query-by-text paradigm.

In order to build SBIR solutions, researchers have conducted extensive stud-
ies and proposed several solutions to manage the abstract nature of sketches and
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extract cross-domain features. In this work, we use the classic triplet training
pipeline to train our models on the Sketchy database. Then, we conduct a qual-
itative inspection of the model’s errors and show that the model struggles with
horizontal flipping. In multiple cases, when the photo matching the sketch query
comes at the second position, the retrieved photos holding first, and second place
share the same semantics and even spatial configuration if mirrored. Which in-
dicates that the models keep preserving in somehow flip invariance even after
finetuning. Despite the value of such property for classification problems, in the
particular case of SBIR where we seek for a fine-grained matching, such property
represents a major weakness because object pose is not represented well enough.
To overcome this limitation, we propose several methods (custom mini-batch
sampling, adapting pooling layer, using a vision transformer) and conduct for
each an additional finetuning to assess if it is beneficial. During the whole study
process, we use intermediate assumptions and experiments to draw conclusions
and build step-by-step our final end-to-end enhanced SBIR solution. Through
this study, we show that a simple modification to a triplet CNN based SBIR
solution at the last pooling layer is enough to bring a significant improvement.
In addition, we also show that a vision transformer does not share the limitation
observed with CNNs, which makes it more suited for SBIR.

The rest of the paper is organized as follows: we start with a brief review
of different approaches used in the field of SBIR. Next, we present the method
that we selected as a baseline, and we proceed to the study and the evaluation
of the different approaches that propose to enhance existing solutions.

2 Related Work

In computer vision, it has been a few years since supervised learning with CNN
achieves state-of-the-art results [12,31,9]. CNNs are known for their ability to
learn to extract relevant features directly from pixels without requiring classic
feature extraction approaches. This feature makes them a convenient and power-
ful tool for multiple computer vision tasks. In addition, compared to hand crafted
features (shallow features), CNN features reach higher performance [7,33,28]
when it comes to generating representations for tasks like content-based image
retrieval (CBIR). Sketch recognition and SBIR have also benefited from the
power of CNN and outperformed previous solutions based on hand crafted fea-
tures (e.g. [13,17,3,14,36]). In several CNN based works [18,30,19,25], the authors
use a CNN trained for sketch recognition to extract features and build a sketch-
edge map matching solution (under the assumption that photos edge maps are
visually closer to sketches). In [18], Qi et al. used a Siamese CNN architecture,
for category-level SBIR (which means that the result is considered as correct if
the retrieved photo belongs to the same category as the sketch query). In such
architecture, two branches are used, one for the sketches and the other for the
edge maps. During training, sketch-edge map pairs are passed to the model and
a binary label indicates if the sketch and the edge map share the same category.
Then the loss is computed and the model parameters are updated to extract bet-
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ter representations in the future. In a more general fashion, pair losses are used
with the objective to learn to project inputs in a feature space where the distance
between positive pairs (similar inputs) is smaller than a margin mp, while the
distance for negative pairs is larger than a second margin mn. Using the same
margin for all pairs constitutes a major disadvantage since it does not consider
the variance of (dis)similarity between different pairs. This limitation is avoided
when a Triplet CNN is used. A similar approach where inputs are presented as
triplets. In each triplet we have a reference sample, a positive sample (similar to
the reference) and a negative sample (dissimilar to the reference). During train-
ing, the model learns to project inputs into a space where a positive example
is closer to the reference than a negative one. This approach based on relative
distance measure gives the model the ability to manage arbitrary feature space
distortions. This property makes Triplet CNN more suited for CBIR/SBIR ap-
plications and attracted a lot of attention [2,15,38,34,29,5,4,27] in the last recent
years. In [2], Bui et al. made several experiments with triplet CNN to explore
weight sharing strategies and analyze its ability to generalize. In [38], the authors
added a deformable CNN layer (changeable receptive field) to deal with sketch
changes. In [15], in addition to the triplet loss, the authors experimented with a
combination three loss functions (SoftMax loss, Spherical loss, and Center loss).
In [29,5,4,27], the authors added attention modules to enhance fine information
capture. In [1], Bhunia et al. addressed the problem related to the lack of anno-
tated sketches. They proposed an approach where a photo-to-sketch generator
(a sort of GAN) is used to automatically generate sketches for unlabeled photos.
The generated synthetic sketch-photo pairs are then used as additional data to
train a triplet CNN. In [26], the authors introduced the quadruplet networks, a
new architecture for SBIR. It uses an additional branch compared to a triplet
architecture to ensure that for each reference, there are two negatives. The first
one belongs to the same object category, while the other is from a different
category. The goal of such architectures is to encode semantic information in a
similar fashion as what triplet does for local information. In [34], Wang et al. pro-
posed a sophisticated SBIR solution where textual descriptions (collected from
MSCOCO and Flickr30k databases) are used as additional input to the pipeline
to reduce the gap between sketches and images. They propose a three-stage so-
lution, where a deep multimodal embedding model is used to extract features
for the three modalities. Then, a candidate selection based on the extracted em-
beddings is applied. In the final stage, a triplet is used for ranking optimization.
In [23], a cross-modal variational autoencoder is proposed to disentangle sketch
into semantic content (an information shared with the corresponding photo) and
sketcher style to build a style-agnostic model.

All these works have brought various adaptations and new solutions for SBIR.
In this work, we take a closer look to the errors that occurs when using a triplet
CNN approach and how we can overcome its limitations.
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3 Methodology and Experiments

In order to build an efficient SBIR system, we need a solution able to analyze
in depth both sketches and images to generate representations that seize the
semantics and spatial configurations. Before we proceed to the core of this study,
let introduce how a triplet network works and what makes it suitable for the
SBIR task.

3.1 Triplet Network

In this kind of architecture, we generally have three copies of the same net-
work with shared parameters. The input is in the form of Anchor, Positive and
Negative. In the context of SBIR, if we use photos as anchors, the goal will be
minimizing the distance between an anchor (a photo) and a positive (a sketch
corresponding to the anchor), while maximizing the distance between this an-
chor and a negative (a sketch not corresponding to the anchor). In order to do
that, we train our triplet network with the following loss function:

N∑
i

[∥f(xa
i )− f(xp

i )∥
2
2 − ∥f(xa

i )− f(xn
i )∥

2
2 + α]+ (1)

where :
xa
i : the feature vector of the anchor photo.

xp
i : the feature vector of the positive sketch.

xn
i : the feature vector of the negative sketch.

α: by using this margin we try to ensure a minimal margin between the negative
pair and positive pair distances.

3.2 The Sketchy Dataset

Fig. 1. Samples from the sketchy database [13].

For the whole study, we will use the Sketchy benchmark [24]. It is a large-
scale collection for SBIR. It contains 125 categories and 75,471 sketches of 12,500
objects (some samples are shown in Figure 1). The crowd workers are asked to
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sketch particular photographic objects in order to give a fine-grained association
between sketches and photos. For each category we have 100 images and at least
5 sketches per image. We followed the guidelines of the authors [24] and used
the provided testset list to split data into training and testset. 90% of the data
are used for the training and the rest are used for test.

3.3 Baseline Models and Practical Details

We began our study by training triplet CNNs with three different architec-
tures [10] (ResNet18, ResNet34, ResNet50) on the Sketchy dataset. We use the
pre-trained (pre-trained on ImageNet [6]) versions provided by the torchvision li-
brary. We select the last pooling layer (adaptive average pooling layer) to extract
features (in this work, we do not normalize the extracted embeddings and we use
the Euclidean distance), and we keep the classification branch (we change the
number of neurons of the fc layer to correspond to the 125 categories of Sketchy)
to build a multi-task triplet network. During training, we use two different mod-
els, one for sketches and the other for photos. We train each architecture for
100 epochs using the Adam optimizer [11] and we set the initial learning rate
to lr = 10−4. The learning rate is changed to lr = 10−5 after 30 epochs. The
batch-size (bs) and the triplet margin (m) remain the same for the whole study
(bs = 128 and m = 3). The best baseline models’ performances are reported on
the first line of Table 1. We can notice that replacing a ResNet18 with a ResNet34
improves significantly the results. But the opposite happens when replacing a
ResNet34 with a ResNet50. This may come from the fact that in ResNet50 the
basic blocks are replaced with bottleneck blocks to reduce memory usage. In
these blocks, pointwise convolution is used to reduce the number of channels
before 3× 3 convolutions. And the loss of performance might be a side effect of
this form of compression.

Table 1. The top results (recall@1) achieved on the Sketchy benchmark using different
architectures and methods.

Method ResNet18 ResNet34 ResNet50

Baseline 52.98 56.10 54.89
Finetuning: Continue 52.98 56.10 55.08
Finetuning: Flip sampling 53.78 57.19 55.91
Finetuning: Category sampling 53.83 56.92 56.24
Finetuning: Flip + Category sampling 53.61 57.43 56.29
Finetuning: Pooling 2× 2 55.10 58.23 58.37
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Fig. 2. Some examples showing that ResNet18 baseline still struggle in some cases with
horizontal flip.

3.4 Qualitative Inspection

When using the Sketchy benchmark, the recall metric, and especially the recall@1
is used to evaluate and compare different solutions. Since our models have
reached an exceptionally high level of performance (human performance recall@1
is 54.27% as reported in [24]) and in order to see if there is much room for im-
provement, we did also compute the recall@2 (the results are reported in Table
2). The fact that the chances to retrieve the wanted photo increase significantly
when we retrieve more than one image, motivated us to look closer to the er-
rors made by the models, hoping to find a way to push recall@1 to get closer
to recall@2. During this qualitative inspection, we noticed that in many cases,
both, the first and second retrieved images exhibit an obvious similarity, but
the models seem to struggle with the orientation as shown in figure 2. Which
indicates that the models keep preserving in somehow flip invariance even after
finetuning. Despite the value of such property for classification problems, in the
particular case of SBIR where we seek for a fine-grained matching, such property
represent a major weakness because object pose is not represented well enough.
In order to overcome this limitation, in the next subsections, we explore several
approaches and show which of them bring a significant improvement.

In addition to the flip invariance problem, we have also noticed during the
aforementioned qualitative inspection that in some cases (in 18.5% of the cases
for the ResNet18 baseline model) the category of the image retrieved at the first
position does not match the query’s category. This is another aspect of the model
that we thought that we should be able to improve through a better mini-batch
sampling during the training phase. More details about the approach that we
propose will be presented in the subsection 3.6.
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Table 2. The top results (recall@2) achieved on the Sketchy benchmark using different
architectures and methods.

Method ResNet18 ResNet34 ResNet50

Baseline 69.24 73.75 71.88

3.5 Flip Sampling

Before moving forward to the evaluation of the different approaches we have
considered in this work, we have begun with finetuning the baseline models for an
additional 100 epochs on the same task. For each architecture (e.g., ResNet18),
we reload the model achieving the best performance, we set the learning rate
to lr = 10−6 and we continue the training following the same procedure. This
provides us a fair ground for future comparisons and improvements analysis. The
results are shown in the second line 1 of Table 1.

Flipping the inputs, simultaneously the sketch and the photo, is the only data
augmentation technique used during the classic training procedure adopted in
this work. For the flip invariance problem, the first intuitive approach that we
came out with was the adaptation of the mini-batch sampler. We modify the
latter to include both, the flipped and non-flipped versions of some samples
in the same mini-batch. With this modification, we expect the model to focus
beyond the global semantics and pay more attention to the spatial configuration
systematically within each mini-batch. As reported in the third line of Table 1,
we can notice that the proposed approach brings a substantial improvement.

3.6 Category Sampling

Like the solution described in the previous subsection, here we modify the mini-
batch sampler to make sure that inside the same mini-batch, multiple samples
with the same category appears a random number of times (a random number
is selected between 2 and 5). The aim of this modification is to build harder
training samples (it is defensible to think that it is harder to differentiate two
objects from the same category compared to objects from different categories)
and strengthen the model’s ability to manage intra-categorical information. In
order to evaluate the improvement brought with our approach, we compare the
evolution of the number of times that the first retrieved photo is from a category
not matching the one of the query (while the second photo is the wanted image).
In Table 3 we report the percentage with which this number drops for each
architecture when using the proposed approach. For example, if the number of
errors for the baseline model is 100, and this number drops to 90 after using
category sampling, the reported percentage will be 10%.

1 If the value at the second line is the same as the corresponding one from the first
line, this means that the additional 100 epochs finetuning did not brought any im-
provement.
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Table 3. The percentage of improvement noticed when using our category sampling
approach.

Method ResNet18 ResNet34 ResNet50

Baseline 8.95 6.47 5.49

3.7 Task Specific Pooling

Here, we present an approach that differs fundamentally from the previous ones.
We propose to introduce a tiny modification to the model’s architecture in order
to extract richer embeddings preserving more information about spatial config-
uration. We keep using the output of the original average pooling layer for the
classification branch of our models. And we add an additional 2 × 2 adaptive
average pooling for the embedding branch to replace the previous one. The mo-
tivation behind such modification, is that with the original 1×1 average pooling,
the only option left to the model to encode spatial information is through chan-
nels. So, we continue to use it for the classification branch, since we think that
it is enough for this task. But for the other branch, we pass the outputs fea-
ture maps of the last convolutional layer through a new 2× 2 adaptive average
pooling (which produces 4 times longer vectors than before) to form our new
embeddings. The rest of the training follows the same procedure. In the last line
of Table 1, we show how this tiny modification brings a significant improvement
to the different architectures compared to the baseline models.

3.8 Vision Transformer

Since a few years now, CNNs have been singled out for their lack of relative
position encoding for different features because of the use of pooling layers [22].
Vision Transformers (VT) on the other hand, are known for their ability to
track long-range dependencies within an image. Thanks to self-attention layers,
VT models are able to efficiently aggregate global information. This property
drew our attention to VT models and their usage for the SBIR task. We have
looked for other works on the field of SBIR using VT models, and we were
surprised to find out that only three works [8,21,32] have used VT. In addition,
in two of them [8,32], the proposed solutions are for Zero-shot SBIR. While in
the other [21], no one of the common SBIR benchmarks is used to evaluate the
performance. Therefore, we have followed the same approach as previously, we
start with training a baseline VT model. To this end, we use the Hugging face
library [35] and the pre-trained VT model under the name “openai/clip-vit-base-
patch32” based on the work of Radford et al. [20]. The initial learning rate we
used to train the baseline VT model is lr = 10−5. We have also finetuned the
baseline VT model for an additional 100 epochs (with lr = 10−6) for each of
the proposed approaches (except for the pooling-based one). The outcomes of
the different experiments with the VT model are listed in Table 4 (side by side
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with those of ResNet for ease of comparison). We can see that the VT model
outperforms by a large margin ResNets even when the pooling approach is used.
We can also notice that in the case of VT models, the proposed approaches do
not bring a significant improvement 2. Which may suggest that as expected,
VT models do not share the same limitations as ResNets and makes them more
suited for the SBIR task. In Table 5, we compare our best models results with
others from different papers and show that this study enabled us to outperform
existing approaches with a huge margin, and even exceed for the first-time human
performance on a large-scale SBIR benchmark.

Table 4. The top results (recall@1) achieved on the Sketchy benchmark using different
architectures, including the VT model.

Method ResNet18 ResNet34 ResNet50 VT

Baseline 52.98 56.10 54.89 56.24
Finetuning: Continue 52.98 56.10 55.08 61.78
Finetuning: Flip sampling 53.78 57.19 55.91 60.56
Finetuning: Category sampling 53.83 56.92 56.24 62.08
Finetuning: Flip + Category sampling 53.61 57.43 56.29 62.25
Finetuning: Pooling 2× 2 55.10 58.23 58.37 -

4 Conclusions

In this work, we have selected a classic pipeline for building SBIR solutions. We
started with training multiple architectures in a classic fashion to serve as a base-
line for future comparisons. Then, we have conducted a qualitative inspection
of the errors made by the model on the testset. Based on the observations, we
identified a few limitations that we can address in an effort to improve existing
solutions. To this aim, we proposed and motivated several approaches that we
explored and evaluated on a large-scale SBIR benchmark. We have been able to
show that the different approaches proposed implying the use of adapted mini
batch sampling bring a substantial improvement. Furthermore, we demonstrate
that with a tiny modification to the architecture at the pooling layer results on
significant improvements. In addition, we did also show that VT models rep-
resent better candidates than CNNs for tasks with SBIR needs and how they
surpassed remarkably the latter, and even human performance on the Sketchy
benchmark.

2 In Table 4, we show that finetuning the VT model just with setting the learning
rate to lr = 10−6 is enough to reach a recall@1 of 61.74%. Adding the approaches
that we proposed and validated previously for ResNets, does not seem to provide
additional benefit.
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Table 5. Comparison with some SBIR solutions on Sketchy [24].

Methods Recall@1

Chance [24] 0.01%
Sketch me that shoe [37] 25.87%
Siamese Network [24] 27.36%
Triplet Network [24] 37.10%
Quadruplet MT [26] 38.21%
DCCRM(S+I) [34] 40.16%
DeepTCNet [16] 40.81%
Triplet attention [27] 41.66%
Quadruplet MT v2 [26] 42.16%
DCCRM(S+I+D) [34] 46.20%
Human [24] 54.27%
Ours (ResNet18 3.7) 55.10%
Ours (ResNet34 3.7) 58.23%
Ours (ResNet50 3.7) 58.37%
Ours (VT 3.8) 62.25%
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