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Voltage variation in a 2-bus system with Distributed Generation 

 

( ) ( )12 1 2 1 1L DG L DGV V V r P P x Q Q = − = − + 

Due to load demand changes 

and DG active power variations,

both voltage rise and drop violations can occur. 

𝑃𝑏𝑟1 𝑄𝑏𝑟1
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Voltage control measures

( ) ( )12 1 2 1 1L DG L DGV V V r P P x Q Q = − = + + 

Voltage violations can be managed by:

1. On load tap changer (OLTC) =>

2. Reactive power control of DG =>

3. Curtailment of DG active power =>

4. Load (demand side) management =>

5. Network reconfiguration or reinforcement =>

𝑉1

𝑄DG

𝑃DG

𝑃L

𝑟1, 𝑥1
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Model uncertainty in distribution systems

Due to uncertainty, unobservability and complexity of

distribution networks, simplified models are generally used

in the distribution systems:

1.  Loads are voltage independent

2.  Power factors of loads are known

3.  Line parameters remain constant 

4.  Network lines are series impedances 

5.  Transformers are pure reactances, …
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Model uncertainty quantification  

The classical simplified network models can mislead analyses 

and lead to unsafe voltage control decisions [1] 

The boxplots show the possible deviations of 

nodal voltages considering the model uncertainty 

associated with the loads, lines and transformer  
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1- Based on an Optimal Power Flow (OPF), e.g. [2]

❑ OPF can be used as the central decision maker to define the

optimal set-point of control variables that minimizes an

objective function while maintaining operational constraints.

❑ OPF is formulated as a constrained optimization problem:

❑ OPF is a non-linear non-convex problem => difficult to solve.

❑ It relies on a simplified deterministic network model.

❑ => it cannot take into account the uncertainty associated with

the network model and its operating point.

 ,( )f u x

, ) 0

, ) 0

(

(

g u x

h u x

=



Min:

Subject to:

Review of voltage control methods 
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2- Based on a linearized formulation, e.g. [3-4]

❑ Sensitivity analysis linearizes the relationships between control

variables and node voltages (and branch currents).

❑ Linearized voltage control problem can be formulated as:

• : coefficients reflecting costs of control actions,

• x : vector of control variables to remove voltage violations,

• A : sensitivity matrix, b : vector of required voltage changes,

• : bounds on control variables.

❑ It relies on linearized equations => entails simplification errors.

❑ It cannot handle the uncertainty impacts.

Review of voltage control methods 
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3- Based on Robust Optimization (RO), e.g. [5]

❑ The robust optimization can be adopted to deal with the

voltage control problem subject to uncertainty.

❑ RO considers that the entries of matrix A are subject to

uncertainty, defined by

❑ It finds a solution that is robust against the worst realization

of uncertainty => could be too conservative and costly.
 

Nominal parameters1 1−  

ij ijij ija a a= +

Review of voltage control methods 
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4- Based on Chance-Constrained Optimization (CCO), e.g., [6] 

❑ CCO aims to immunize the constraint i subject to uncertainty with

a confidence level (1 − 𝜖𝑖):

P 

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ ෨𝑏𝑖 ≥ 1 − 𝜖𝑖

❑ It permits to adjust the desired level of conservatism against

uncertainty by changing 𝜖𝑖 .

❑ The complexity of CCO formulation increases when there are

several coupled constraints subject to uncertainty.

❑ Difficult to be applied to large-scale distribution networks.

Review of voltage control methods 
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• RL principles consist in an agent interacting with an
environment over a number of discrete time steps until the
agent reaches a terminal state.

• At each time step, the agent observes a state from the state
space, and selects an action according to its policy.

• The agent ends up in the next state while receiving a reward
based on its taken action.

• During the training, the goal of the agent is to learn the best
policy i.e., to select actions that maximize the future reward.

• An agent generally starts from an initial (poor) policy.

• It progressively learns through many experiences/interactions
with the environment how to maximize its rewards.

• The performance of the trained agent is evaluated in the test
phase on the unseen new observations.

Reinforcement Learning (RL) principles
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In the context of voltage control problem:

• Agent is the central control algorithm that manages the voltage
limits;

• Environment is the distribution network (subject to the
different sources of uncertainty);

• Action space includes the control decisions (DG power set-
points & OLTC action) to manage the voltage limits;

• State space contains the monitored voltages, DG powers and
OLTC set-point;

• Reward function consists of the voltage violation costs as
well as the control decision costs:

Reinforcement Learning for voltage control problem [7]  

Tunning the coefficients of reward function  
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Training of the proposed DRL-based voltage control technique 

Deep Reinforcement Learning (DRL) for voltage control [7] 

• To boost the learning capabilities of the RL agent, it is

complemented by the actor-critic architecture.

• The goal of the actor is to learn a deterministic policy which

selects the action a based on the state s.

• The quality of the action is estimated by the critic.

• Actor and critic functions are estimated using deep neural

networks.
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Studied distribution network and simulation parameters 

➢ The proposed DRL-based voltage control approach is tested on a

real MV distribution system in Benin [8].

➢ Vèdoko HV/MV substation alongside 5 representative MV

feeders connected to it has been modelled.

➢ It consists of 100 buses and feeds an overall demand equal to

26.3 MW and 12.7 Mvar.

➢ 10 DG units (of 4 MW) are considered (two DGs per feeder).

➢ The DRL-based agent is trained on 10000 different working

states of nodal load demands and DG powers.

➢ The DRL-based agent is tested on 2000 unseen new samples.

➢ The environment/simulator is changing in each sample to

consider the distribution network model uncertainty impacts.

➢ A random error is added to take into account the uncertainty

in DG power forecasts.
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Case 1: Uncertainty sources are disregarded in both training and test phases;

Case 2: Uncertainty sources are disregarded during the training, but

considered in test phase;

Case 3: Uncertainty sources are considered in both training and test phases.

Studied test cases and obtained results 
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Initial and corrected voltages during test phase (in case 3)

Initial voltage violations are effectively removed 

while addressing the considered uncertainty sources 

Initial voltages Corrected voltages
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➢ A centralized approach for voltage constraints management in
distribution networks based on deep reinforcement learning is
proposed.

➢ It considers the uncertainties relating to the network
parameters/models as well as the network operating points
while taking its corrective control decisions.

➢ The proposed method is tested on a real MV distribution
feeders in Benin.

✓ Simulation results demonstrate that the proposed DRL-based
method can effectively manage the voltage constraints
subject to different sources of uncertainty.

✓ The DRL agent trained in off-line mode can take control
decisions in real time.

✓ The DRL-agent progressively learns the optimal control
policy through interactions with the environment in a model-
free fashion: without relying on the analytical network models.

Conclusion
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