

<u>Study Day SRBE-KBVE – 10.06.2022</u>

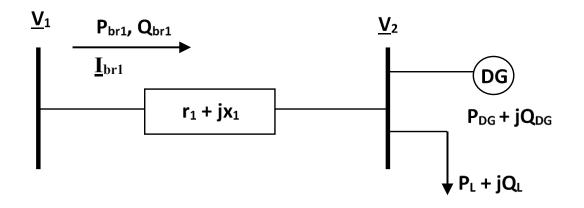
Power Network Digitalization – Impacts on Protection, Automation and Control

Voltage control in distribution systems using deep reinforcement learning in presence of uncertainty

Bashir Bakhshideh Zad Postdoctoral Researcher Power Systems and Markets Research group University of Mons

- **1. Voltage variation problem in distribution systems**
- 2. Uncertainty in distribution system analyses
- 3. Literature review of voltage control methods
- 4. Proposed reinforcement learning-based voltage control technique
- 5. Studied distribution network, test cases and obtained results
- 6. Conclusion

Voltage variation in a 2-bus system with Distributed Generation



$$\Delta V_{12} = V_1 - V_2 = r_1 \left(P_L - P_{DG} \right) + x_1 \left(Q_L \pm Q_{DG} \right)$$

$$P_{br1} \qquad Q_{br1}$$

Due to load demand changes

and DG active power variations,

<u>both</u> voltage <u>rise</u> and <u>drop</u> violations can occur.

Voltage violations can be managed by:

$$\Delta V_{12} = V_1 - V_2 = r_1 \left(P_L + P_{DG} \right) + x_1 \left(Q_L \pm Q_{DG} \right)$$

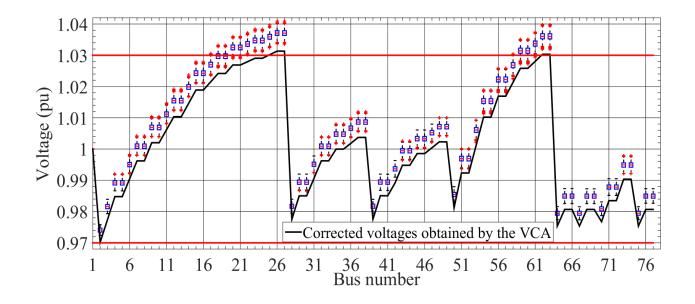
- **1. On load tap changer (OLTC) =>** V_1
- **2. Reactive power control of DG =>** Q_{DG}
- **3.** Curtailment of DG active power => P_{DG}
- 4. Load (demand side) management $\Rightarrow P_L$
- **5.** Network reconfiguration or reinforcement => r_1 , x_1

Due to <u>uncertainty</u>, <u>unobservability</u> and <u>complexity</u> of distribution networks, <u>simplified models</u> are generally used in the distribution systems:

- 1. Loads are voltage independent
- 2. Power factors of loads are known
- 3. Line parameters remain constant
- 4. Network lines are series impedances
- 5. Transformers are pure reactances, ...

Model uncertainty quantification

The classical simplified network models can mislead analyses and lead to unsafe voltage control decisions [1]



The boxplots show the possible deviations of nodal voltages considering the model uncertainty associated with the loads, lines and transformer

6

- 1- Based on an Optimal Power Flow (OPF), e.g. [2]
- □ OPF can be used as the <u>central decision maker</u> to define the optimal set-point of control variables that minimizes an objective function while maintaining operational constraints.
- **OPF** is formulated as a **constrained optimization** problem:

Min: f(u, x)Subject to: g(u, x) = 0 $h(u, x) \le 0$

OPF is a <u>non-linear non-convex</u> problem => <u>difficult to solve.</u>

- □ It relies on a simplified deterministic network model.
- \Box => it cannot take into account the uncertainty associated with the network model and its operating point.

2- Based on a linearized formulation, e.g. [3-4]

- □ Sensitivity analysis linearizes the relationships between control variables and node voltages (and branch currents).
- □ Linearized voltage control problem can be formulated as:

Min: $C^T x$

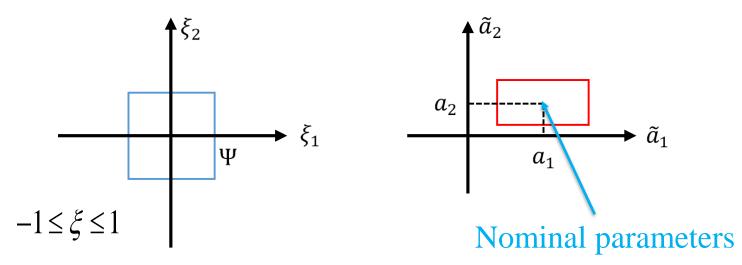
$\mathbf{A}\mathbf{x} \leq \mathbf{b}$

$\boldsymbol{l}_{b} \leq \boldsymbol{x} \leq \boldsymbol{u}_{b}$

- **C**^T: coefficients reflecting costs of control actions,
- **x** : vector of control variables to remove voltage violations,
- A : sensitivity matrix, b : vector of required voltage changes,
- $\mathbf{l}_{\mathbf{b}}, \mathbf{u}_{\mathbf{b}}$: bounds on control variables.
- □ It relies on linearized equations => entails simplification errors.
- □ It cannot handle the uncertainty impacts.

3- Based on Robust Optimization (RO), e.g. [5]

- □ The robust optimization can be adopted to deal with the voltage control problem **subject to uncertainty**.
- **Q** RO considers that the entries of matrix A are subject to uncertainty, defined by $a_{ij} = a_{ij} + \xi_{ij} a_{ij}$
- □ It finds a solution that is robust against the **worst realization** of uncertainty => could be **too conservative and costly.**



4- Based on Chance-Constrained Optimization (CCO), e.g., [6]

□ CCO aims to immunize the constraint *i* subject to uncertainty with a confidence level $(1 - \epsilon_i)$:

$$\mathbf{P}\left(\sum_{j=1}^{n} \tilde{a}_{ij} x_j \leq \tilde{b}_i\right) \geq 1 - \epsilon_i$$

- ☐ It permits to adjust the desired level of conservatism against uncertainty by changing ϵ_i .
- □ The complexity of CCO formulation increases when there are several coupled constraints subject to uncertainty.
- **Difficult** to be applied to **large-scale** distribution networks.

Reinforcement Learning (RL) principles

- RL principles consist in **an agent interacting with an environment** over a number of discrete time steps until the agent reaches a terminal state.
- At each time step, the **agent observes a state from the state space**, and **selects an action** according to its policy.
- The agent ends up in the next state while **receiving a reward** based on its taken action.
- During the training, **the goal of the agent is to learn the best policy** i.e., to select actions that **maximize the future reward**.
- An agent generally starts from an initial (poor) policy.
- It **progressively learns** through many experiences/interactions with the environment **how to maximize its rewards**.
- The performance of the trained agent is evaluated in the test phase on the **unseen new observations**.

Reinforcement Learning for voltage control problem [7]

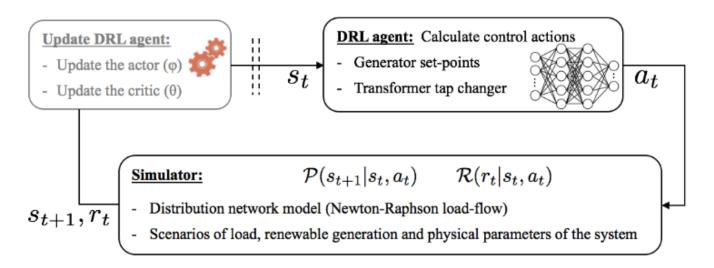
In the context of voltage control problem:

- Agent is the central control algorithm that manages the voltage limits;
- **Environment** is the distribution network (subject to the different sources of uncertainty);
- Action space includes the control decisions (DG power setpoints & OLTC action) to manage the voltage limits;
- State space contains the monitored voltages, DG powers and OLTC set-point;
- **Reward function** consists of the voltage violation **costs** as well as the **control decision costs**:

$$r_{t} = -\sum_{g \in \mathcal{G}} \left(C_{Q} |\Delta Q_{g,t}| + C_{P} |\Delta P_{g,t}| \right) - C_{TR} |\Delta Tap_{t}| + \begin{cases} +R_{pos}, \forall V_{n,t} \in [\underline{V}, \overline{V}] \\ -R_{neg}(\underline{V} - V_{n,t}), \forall V_{n,t} < \underline{V} \\ -R_{neg}(V_{n,t} - \overline{V}), \forall V_{n,t} > \overline{V} \end{cases}$$

Deep Reinforcement Learning (DRL) for voltage control [7]

- To **boost the learning capabilities** of the RL agent, it is complemented by the **actor-critic architecture**.
- The goal of the actor is **to learn a deterministic policy** which selects the action *a* based on the state *s*.
- The quality of **the action is estimated by the critic**.
- Actor and critic functions are estimated using **deep neural networks**.



Training of the proposed DRL-based voltage control technique

13

Studied distribution network and simulation parameters

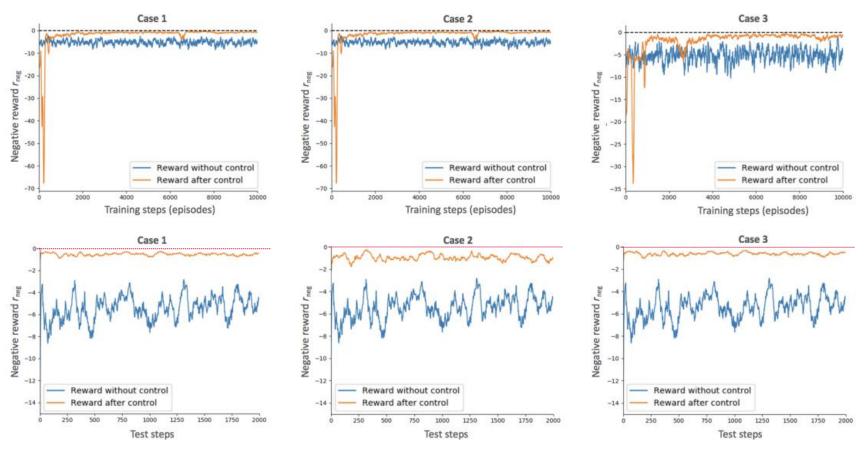
- The proposed DRL-based voltage control approach is tested on a real MV distribution system in Benin [8].
- Vèdoko HV/MV substation alongside 5 representative MV feeders connected to it has been modelled.
- It consists of 100 buses and feeds an overall demand equal to 26.3 MW and 12.7 Mvar.
- > 10 DG units (of 4 MW) are considered (two DGs per feeder).
- The DRL-based agent is trained on 10000 different working states of nodal load demands and DG powers.
- > The DRL-based agent is **tested on 2000 unseen new samples**.
- > The environment/simulator is changing in each sample to consider the distribution network model uncertainty impacts.
- A random error is added to take into account the uncertainty in DG power forecasts.

Studied test cases and obtained results

Case 1: Uncertainty sources are disregarded in both training and test phases;

Case 2: Uncertainty sources are **disregarded during the training**, but **considered in test phase**;

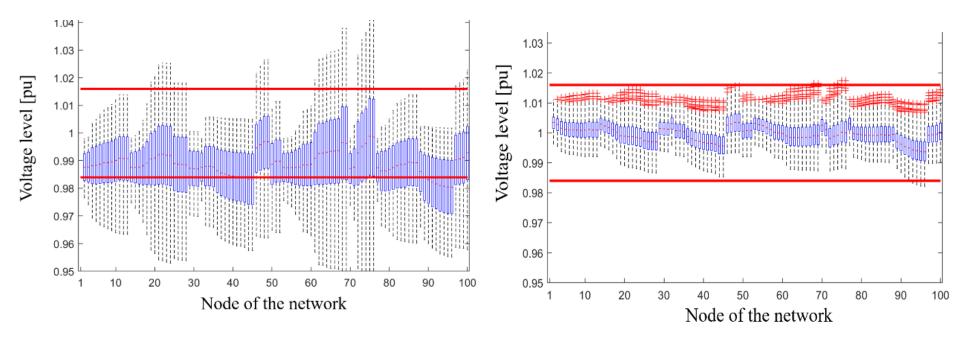
Case 3: Uncertainty sources are considered in both training and test phases.



Initial and corrected voltages during test phase (in case 3)

Initial voltages

Corrected voltages



Initial voltage violations are effectively removed while addressing the considered uncertainty sources

- A centralized approach for voltage constraints management in distribution networks based on deep reinforcement learning is proposed.
- It considers the uncertainties relating to the network parameters/models as well as the network operating points while taking its corrective control decisions.
- ➤ The proposed method is tested on a real MV distribution feeders in Benin.
- ✓ Simulation results demonstrate that the proposed DRL-based method can effectively manage the voltage constraints subject to different sources of uncertainty.
- ✓ The DRL agent trained in off-line mode can take control decisions in real time.
- ✓ The DRL-agent progressively learns the optimal control policy through interactions with the environment in a model-free fashion: without relying on the analytical network models.

References

[1] Bakhshideh Zad, B.; Lobry, J.; Vallée, F.; "Impacts of the model uncertainty on the voltage regulation problem of medium-voltage distribution systems". IET Generation Transmission & Distribution, vol. 12, no. 10, pp. 2359-2368, 2018.

[2] Capitanescu, F.; Bilibin, I.; Ramos, E. R. "A comprehensive centralized approach for voltage constraints management in active distribution grid, IEEE Trans. Power Syst. 2013, 29, 933–942.

[3] Bakhshideh Zad, B.; Hasanvand, H.; Lobry, J.; Vallée, F. "Optimal reactive power control of DGs for voltage regulation of MV distribution systems using sensitivity analysis method and PSO algorithm", Int. J. Electr. Power Energy Syst. 2015, 68, 52–60.

[4] Valverde, G.; Van Cutsem, T. "Model predictive control of voltages in active distribution networks", IEEE Trans. Smart Grid 2013, 4, 2152–2161.

[5] Bakhshideh Zad, B.; Toubeau, J.-F.; Lobry, J.; Vallée, F. "Robust voltage control algorithm incorporating model uncertainty impacts", IET Gener. Transm. Distrib. 2019, 13, 3921–3931.

References

[6] Bakhshideh Zad, B.; Toubeau, J.-F.; Vallée, F. "Chance-constrained based voltage control framework to deal with model uncertainties in MV distribution systems", Energies 2021, 14.

[7] Toubeau, J.-F.; Bakhshideh Zad, B.; Hupez, M.; De Grève, Z.; Vallée, F. "Deep reinforcement learning-based voltage control to deal with model uncertainties in distribution networks", Energies 2020, 13.

[8] Bakhshideh Zad, B.; Toubeau, J.-F.; Acclassato, O.; Durieux, O.; Vallée, F. "An innovative centralized voltage control method for MV distribution systems based on deep reinforcement learning: application on a real test case in Benin", CIRED 2021.

Bashir Bakhshideh Zad Postdoctoral Researcher Power Systems and Markets Research group University of Mons

bashir.bakhshidehzad@umons.ac.be

https://be.linkedin.com/company/power-systems-and-market-research-group-psmr-umons

https://www.epeu-umons.be/