
Memory Requirements of Omega-Regular Objectives:
the Regular Case

Pierre Vandenhove1,2

Joint work with Patricia Bouyer2, Nathanaël Fijalkow3, Mickael
Randour1

1F.R.S.-FNRS & UMONS – Université de Mons, Belgium
2Université Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, France

3LaBRI, Université de Bordeaux, France

December 16, 2022 – UMONS FM Reading Group

Outline

Synthesis problem
Synthesizing controllers for reactive systems with an objective.
Systems and their environment modeled with zero-sum games.

Strategy complexity
Given an objective, what are the smallest optimal controllers?
 What is the smallest automatic structure that remembers sufficient
information to make optimal decisions?

Results
Characterization of automatic structures for regular objectives;
computational complexity of finding small structures.

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)

generate an infinite word
w = babbc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)
generate an infinite word
w = b

abbc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)
generate an infinite word
w = ba

bbc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)
generate an infinite word
w = bab

bc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)
generate an infinite word
w = babb

c . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)
generate an infinite word
w = babbc . . . ∈ Cω.

• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Games

Zero-sum turn-based games on graphs

c

bba

a

• C = {a, b, c}, A = (V1,V2,E).
• Two players P1 (©) and P2 (�)
generate an infinite word
w = babbc . . . ∈ Cω.
• Objective of P1 is a set W ⊆ Cω.
• Zero-sum: objective of P2 is Cω \W .

Strategies
A strategy of P1 is a function σ : E ∗ → E .
A strategy σ is winning for W from v ∈ V if all infinite paths from v
consistent with σ induce an infinite word in W .

Memory Requirements: the Regular Case Pierre Vandenhove

Representations of a strategy

In general, a strategy σ : E ∗ → E has an infinite representation.
For synthesis, we like when winning strategies admit a finite representation
with a computable size. Usual finite representation:

Memory structure
Memory structure (M,minit, αupd): finite set of states M, initial state minit,
update function αupd : M × C → M.

Ex.: remember whether a or b was last played (not yet a strategy!):

a b

a

b

m1 m2

Given an arena A = (V1,V2,E): next-action function αnxt : Vi ×M → E .

Memory Requirements: the Regular Case Pierre Vandenhove

Finite memory ≈ no memory in the product

MemoryM in A ≈ no memory in arena AnM.

If C = {a, b, c},
W = {w ∈ Cω | a is seen ∞ly often and b is seen ∞ly often}:

a b
v1 v2

c

c
a, c

b, c

ab

m1

m2

n

M

 a b

(v1,m1) (v2,m1)

(v1,m2) (v2,m2)

a

b

c

c
c

cAnM

Memory Requirements: the Regular Case Pierre Vandenhove

ω-regular objectives

The ω-regular objectives are the ones that can be expressed with ω-regular
expressions, or equivalently, the ones that can be expressed by
deterministic Muller automata.
Examples with C = {a, b}:
• W = b∗ab∗aCω;
• W = (b∗a)ω;
• W = ((ab) | (ba))Cω.

Theorem (Büchi, Landweber, 1969)1

All ω-regular objectives admit finite-memory winning strategies in all
arenas.

1Büchi and Landweber, “Definability in the Monadic Second-Order Theory of Successor”, 1969.
Memory Requirements: the Regular Case Pierre Vandenhove

Well-studied case: Muller conditions

For F ⊆ 2C , objective Muller(F) is the set of words whose set of colors
seen infinitely often is in F .
Examples with C = {a, b}:
• Muller({{a}, {a, b}}) = (b∗a)ω,
• Muller({{a, b}}) = (b∗a)ω ∩ (a∗b)ω.

Memory requirements of Muller conditions

• First upper bound of size O(|C |!) in 1982 (later appearance record);2

• Followed by many works about specific cases;3, 4

• Characterization of precise memory requirements and algorithm to
compute them in 1997 ([DJW97]5).

2Gurevich and Harrington, “Trees, Automata, and Games”, 1982.
3Emerson and Jutla, “Tree Automata, Mu-Calculus and Determinacy (Extended Abstract)”, 1991.
4Klarlund, “Progress Measures, Immediate Determinacy, and a Subset Construction for Tree Automata”, 1994.
5Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.

Memory Requirements: the Regular Case Pierre Vandenhove

Is that it?

We have:
1 that all ω-regular objectives can be represented by a deterministic
automaton using a Muller acceptance condition;

2 a complete understanding of the memory requirements of Muller
conditions.

Does this settle the question of the memory requirements
of all ω-regular objectives?

Sometimes quoted as such,6 but not the case (it is only an upper bound)!

6In Handbook of Model Checking (Bloem, Chatterjee, and Jobstmann, “Graph Games and Reactive Synthesis”, 2018):
“The results of Dziembowski et al. [80] give precise memory requirements for strategies in 2-player games with ω-regular
objectives”.

Memory Requirements: the Regular Case Pierre Vandenhove

Why only an upper bound?

Let C = {a, b}, W = b∗ab∗aCω (≈ seeing a two or more times).
Express it as a Muller condition?
Not directly a Muller condition Muller(F) with F ⊆ 2C

 needs an automaton structure.

q1 q2 q3

b b

Ca a

 W = Muller({F ⊆ {q1, q2, q3} | q3 ∈ F}).

Using [DJW97],7 we need 1 memory state. . .
. . . after augmenting the game graph with the automaton,

so upper bound of 3 states of memory.

But 1 memory state suffices for winning strategies!
7Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.

Memory Requirements: the Regular Case Pierre Vandenhove

Orthogonal quest: regular objectives

How to go further?
Study the memory requirements of ω-regular objectives with non-trivial
automaton structures.

We consider “the simplest ones”.

Regular objectives

• A regular reachability objective is a set LCω with L ⊆ C∗ regular.
• A regular safety objective is a set Cω \ LCω.

• A player wants to realize a word in L, the other wants to prevent it.
• Expressible as standard deterministic finite automata.
• Special cases of open and closed sets, at the first level of the Borel
hierarchy.

Memory Requirements: the Regular Case Pierre Vandenhove

Comparing words

Let W ⊆ Cω be an objective.

Winning continuations
For x ∈ C∗, x−1W = {w ∈ Cω | xw ∈W }.

For x , y ∈ C∗,
• x ∼W y if x−1W = y−1W (≈ Myhill-Nerode equivalence relation),
• x �W y if x−1W ⊆ y−1W (called prefix preorder).

Blackboard example for a regular safety objective.

Memory Requirements: the Regular Case Pierre Vandenhove

Necessary condition for the memory

Let W be an objective.

Lemma
The memory structureM = (M,minit, αupd) needs to distinguish
incomparable words (for �W), i.e.,

if x , y ∈ C∗ are incomparable for �W ,
then α∗

upd(minit, x) 6= α∗
upd(minit, y).

Why?

Blackboard example.

In other words, the memory structure needs to be able to know a chain for
�W in which we are, but it is OK not to remember the precise automaton
state.

Memory Requirements: the Regular Case Pierre Vandenhove

Characterization: safety

Let W be a regular safety objective.

Theorem
A memory structure suffices to win in all arenas for W if and only if it
distinguishes incomparable words.

Question
How to find the smallest such memory structure?

Memory Requirements: the Regular Case Pierre Vandenhove

A more involved example

Blackboard example.
Two constructions that always work for upper bounds:

1 just take the whole automaton as a memory structure;
2 build a memory state for each maximal chain.

Possible to do better? Yes!

qinit

qa

qb

qab

a

b

b

a

c, d

a, c, d

b, c, d

qc

qd

qcd

c

d

d

c

a, b

a, b, c

a, b, d

a, b, c, dΓm1

Γm2

Γm3

m1 m2 m3
b

a, c, d a, b, d
c

a, b, c

d

Memory Requirements: the Regular Case Pierre Vandenhove

Reformulation using chain coverings

Let W be the regular safety objective derived from automaton
D = (Q,C , qinit, δ,F).

Lemma
There is a memory structureM with k states that suffices for W if and
only if there are k sets Γ1, . . . , Γk ⊆ Q such that

1 Q =
⋃k

i=1 Γi ,
2 for all i ∈ {1, . . . , k}, Γi is a chain for �W , and
3 for all i ∈ {1, . . . , k}, for all c ∈ C , there is j ∈ {1, . . . , k} such that
δ(Γi , c) ⊆ Γj .

Memory Requirements: the Regular Case Pierre Vandenhove

Computational complexity: safety

Decision problem
MemorySafe
Input: An automaton D inducing the regular safety objective W and an
integer k ∈ N.
Question: Does there exist a memory structureM with at most k states
which suffices to play optimally for W ?

Thanks to the reformulation, we get that MemorySafe is in NP. We also
showed NP-hardness thanks to a reduction from HamiltonianCycle.
Theorem
MemorySafe is NP-complete.

Memory Requirements: the Regular Case Pierre Vandenhove

Regular reachability
Let W be a regular reachability objective.
Memory structures still need to distinguish incomparable words.
But not sufficient!
W = b∗aa∗bCω:

a bqabqaqinit
a b

b a a, b

Main idea: seeing a is necessary and makes progress. However, we cannot
just play a to win. Word a is an insufficient progress.
This memory structure distinguishes this insufficient progress.

m1 m2
a

b a, b

Memory Requirements: the Regular Case Pierre Vandenhove

Condition necessary for reachability

Let W ⊆ Cω be an objective.

Necessary property
LetM = (M,minit, αupd) be a memory structure.
Memory structureM distinguishes insufficient progress if for all
w1 ∈ C∗ with m = α∗

upd(minit,w1), for all w2 ∈ C∗, if w1(w2)ω /∈W and
w1 ≺ w1w2, then α∗

upd(m,w2) 6= m.

Necessary forM to be optimal. Why?

Blackboard proof.

Memory Requirements: the Regular Case Pierre Vandenhove

Characterization: reachability

Let W be a regular reachability objective.

Theorem
Memory structureM suffices to win in all arenas if and only ifM
distinguishes incomparable words andM distinguishes insufficient progress.

Remark
Distinguishing insufficient progress is necessary for all objectives, even for
regular safety ones. . .
. . . but there is no insufficient progress for regular safety objectives!

Memory Requirements: the Regular Case Pierre Vandenhove

Computational complexity: reachability

Decision problem
MemoryReach
Input: An automaton D inducing the regular reachability objective W and
an integer k ∈ N.
Question: Does there exist a memory structureM with at most k states
which suffices to play optimally for W ?

Theorem
MemoryReach is NP-complete.

Needed to show that “M distinguishes insufficient progress” is in NP, but
the same hardness proof as for MemorySafe.

Memory Requirements: the Regular Case Pierre Vandenhove

Implementation
We have implemented algorithms that automatically find minimal memory
structures for regular objectives. Simple ideas: binary search on the
minimal size, encoding properties as SAT instances and use of a SAT solver.

D =

M = memReq.smallest_memory_safety(D)

\Gamma_0 = [’1’, ’3’, ’4’, ’6’, ’8’, ’9’]
\Gamma_1 = [’0’, ’2’, ’7’, ’9’]
\Gamma_2 = [’1’, ’3’, ’5’, ’6’, ’8’, ’9’]
\Gamma_3 = [’1’, ’3’, ’4’, ’6’, ’7’, ’9’]
\Gamma_4 = [’1’, ’3’, ’5’, ’6’, ’7’, ’9’]

Memory Requirements: the Regular Case Pierre Vandenhove

Conclusion

Summary

• Characterization of the memory structures for regular objectives.
• NP-completeness of finding small memory structures.
• Implementation using a SAT solver.

Future work
• Two orthogonal directions are understood: Muller conditions8 and

regular objectives.9
 What about objectives recognized by deterministic Muller automata,
i.e., ω-regular objectives?
• Partial recent results for objectives recognized by deterministic Büchi
automata and memoryless strategies.10

8Dziembowski, Jurdziński, and Walukiewicz, “How Much Memory is Needed to Win Infinite Games?”, 1997.
9Bouyer, Fijalkow, et al., “How to Play Optimally for Regular Objectives?”, 2022.
10Bouyer, Casares, et al., “Half-Positional Objectives Recognized by Deterministic Büchi Automata”, 2022.

Memory Requirements: the Regular Case Pierre Vandenhove

