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Abstract: The derivation of minimal bioreaction models is of primary importance to develop moni-
toring and control strategies of cell/microorganism culture production. These minimal bioreaction
models can be obtained based on the selection of a basis of elementary flux modes (EFMs) using
an algorithm starting from a relatively large set of EFMs and progressively reducing their numbers
based on geometric and least-squares residual criteria. The reaction rates associated with the selected
EFMs usually have complex features resulting from the combination of different activation, inhibition
and saturation effects from several culture species. Multilayer perceptrons (MLPs) are used in order
to undertake the representation of these rates, resulting in a hybrid dynamic model combining the
mass-balance equations provided by the EFMs to the rate equations described by the MLPs. To
further reduce the number of kinetic parameters of the model, pruning algorithms for the MLPs
are also considered. The whole procedure ends up with reduced-order macroscopic models that
show promising prediction results, as illustrated with data of perfusion cultures of hybridoma cell
line HB-58.

Keywords: hybrid modeling; model reduction; dynamic models; metabolic network; elementary
flux modes; identification; neural networks; multilayer perceptron; pruning; biotechnology; reaction
systems

1. Introduction

Mammalian cell cultures are now widely established to produce therapeutic products
of interest such as monoclonal antibodies, viral vaccines and proteins used in the treatment
of genetic diseases. Following the current trends of Process Analytical Technologies (PAT)
and Industry 4.0, the development of dynamic mathematical models and predictors or
estimators is receiving ever-increasing attention in view of establishing digital twins of
the bioprocesses.

The models can usually be classified into structured and unstructured models, where
the first group considers the cellular metabolism, while the second neglects the intracellular
activity and focuses on the evolution of extracellular species. Over the years, connections
have been established between the two approaches, and intra- and extracellular information
can be combined to develop reduced-order macroscopic models [1–4]. A central concept in
the development of minimal bioreaction models is the notion of elementary flux modes
(EFMs) [5], which can be seen as the simplest metabolic pathways linking extracellular
substrates to products. The EFMs form a convex basis of the flux space, whose dimension
unfortunately grows very quickly with the size of the metabolic network. Tackling this
combinatorial explosion has been a major research concern in the last decades.

To alleviate this issue, a first approach is to consider metabolic networks of modest
sizes, which can be obtained on the basis of detailed networks through metabolic flux anal-
ysis [6], for instance, by discarding insignificant fluxes [7]. In this way, elementary vectors
can all be computed and enumerated using specific software tools such as METATOOL [8]
and EFMTOOL [9].
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Alternatively, when the number of EFMs is prohibitively large [10], methods to select
EFM subsets are required. To this extent, Figueiredo et al. [11] identified the shortest ele-
mentary modes, Kaleta and his group [12] proceeded with subsystem analysis, Jungers [13]
decomposed the flux distribution into a minimal number of elementary vectors, Machado
and Tabe [14,15] developed random sampling, Soons [16,17] used ranking or controlled
random search to select a subset of modes based on an optimization criterion and Oddsdot-
tir [18,19] employed column generation techniques to identify a small number of modes.
Most of the previous methods account for constraints related to cell-specific uptake or
secretion rates to further constrict the flux space, as studied in [20,21].

Another strategy consists in reducing the number of elementary vectors from a larger
initial pool so as to keep only a small set of representative modes. In connection with this,
Hebing et al. [22] used an EFM reduction procedure based on a geometrical collinearity
criterion. More recently, several procedures of EFM reduction have been developed by our
research group, i.e., Abbate [23] selected the best EFM candidates based on the formulation
of a linear optimization problem and Maton [24] developed a reduction methodology
based on a combination of several criteria based on collinearity and a series of constrained
least-square problems.

What makes the use of elementary flux modes attractive in bioprocess modeling is the
possibility to derive minimal bioreaction schemes. Henceforth, it remains to model the ki-
netics using specific functions (such as Monod or Haldane laws or more complex nonlinear
functions of the extracellular species) and parameter identification to establish a functional
model from sets of experimental data. In the last decades, many studies addressed the issue
of kinetic identification. However, the determination of kinetic structures is often based on
arbitrary choices. Indeed, specific kinetic phenomena such as activation, saturation and
inhibition can sometimes be described by different mathematical expressions with similar
evolutions with respect to the culture species. Attempts have been made and achieved to
propose general kinetic formalisms, as in [25,26], where power-law equations were used
to represent overall reaction rates of complex biological systems [27–32]. Nevertheless,
although these methods are effective and have the merit of being systematic, they do not
capture a double component effect. More recently, generalized Monod equations were
proposed in [20,33–35]; a systematic procedure to select the most likely kinetic structures
using decision graphs, nested models and likelihood ratio tests was developed in [36]; and
another systematic procedure to model the kinetics using generalized-kinetic functions and
a three-step parameter identification procedure was detailed in [37,38].

All the previous approaches are based on kinetic functions incorporating factors
representing various phenomena of activation, inhibition and saturation, and providing
some biological interpretation. When the reaction rates are difficult to describe as they
include influences from several culture species, an alternative approach is to resort to purely
data-driven techniques such as neural networks [39–41]. Although these models present a
high flexibility to capture nonlinear kinetic phenomena, they lack biological interpretation.

This latter situation corresponds to the starting point of this study. Indeed, the ap-
plication of our EFM reduction algorithm [24,42] yields, on the one hand, a candidate
stoichiometric matrix and, on the other hand, the time-evolution of the metabolic fluxes
corresponding to the selected EFMs. These fluxes may have a complex time evolution
resulting from the combination of several phenomena triggered by different culture species.
Therefore, the objective of the present study is to explore the potential of recurrent neural
networks, and particularly multilayer perceptrons (MLPs), to describe these fluxes. The
main reason for this choice is their simplicity and the existence of efficient toolboxes such
as the Deep Learning toolbox in Matlab. A disadvantage of MLPs, however, is that they
have a fully connected structure with a quick increase in the number of parameters with
the number of neurons in the hidden layer. In this study, it is desired to keep the number of
parameters at the minimum and the use of a pruning algorithm is also explored. To support
our findings, experimental data of perfusion cultures of hybridoma cell line HB-58 are used
to derive a dynamic hybrid bioreaction model. This latter model is corroborated with the
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mechanistic model of [43], in particular, in order to interpret how overflow metabolism is
represented by the neural structure.

The paper is organized as follows. The next section presents the concept of hybrid
modeling using elementary flux vectors for the derivation of minimal bioreaction models
and neural networks for the description of the kinetics. In Section 3, information is given
about cultures of hybridoma cell line HB-58, which are used as a representative case study.
Numerical results are discussed and interpreted in Section 4. Finally, conclusions are drawn
in Section 5.

2. Hybrid Modeling

The hybrid modeling methodology is sketched in Figure 1. Starting from the definition
of a metabolic network with stoichiometric matrix N, the measurement configuration Ne
and experimental uptake and excretion rates νm, this method first exploits mechanistic
information based on the concept of elementary flux modes and an EFM reduction proce-
dure to infer a minimal bioreaction model and its corresponding stoichiometric matrix K.
Second, the procedure exploits the time evolution of the reaction rates Φnum, which are
provided by the EFM reduction algorithm, and applies a data-driven modeling of these
rates using MLPs with the concentration of extracellular measurements ξ as inputs. The
model components K and Φ can then be used in a predictive model. The full methodology
is described in detail in the sequel.

Figure 1. Hybrid modeling using an elementary flux mode reduction procedure and neural networks.
N is the stoichiometric matrix, Ne is the stoichiometric matrix of extracellular measurements, νm is the
vector of experimental uptake and excretion rates, K describes the stoichiometry of the bioreactions,
φ

num
is the vector of reaction rates obtained numerically from the reduction procedure, φ is the vector

of reaction rates modeled using NN and ξ is the vector of concentrations of culture species.

2.1. EFM Selection
2.1.1. Metabolic Network Analysis

Cellular metabolism is defined as a set of chemical reactions, possibly catalyzed by
enzymes, taking place within the cell and forming metabolic pathways. These intracellular
reactions may be translated into a matrix representation defining a metabolic network as
a m × n stoichiometric matrix, denoted N. In this formalism, m is the number of internal
metabolites and n represents the number of reactions. Considering the pseudo-steady state
assumption, the following homogeneous system of linear equations is obtained:

N v = 0 (1)

where v ∈ Rn gathers the fluxes of the network. Moreover, to express that the reactions
have a net direction, the following constraint may be stated:

v ≥ 0 (2)
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Henceforth, the set of possible flux distributions v defines a pointed polyhedral
cone S in the positive orthant. The edges of S represent elementary flux vectors—the
simplest metabolic pathways connecting extracellular substrates to final products without
accumulation of metabolites.

As depicted in Figure 2, it is possible to further reduce the solution space by adding a
set of linear constraints making use of experimental uptake and excretion rates νm:(

N
Ne

)
v =

(
0

νm

)
(3)

Figure 2. Cones of flux distributions.

Subject to the constraint in Equation (2), the set of solutions is included in the polytope
F (F ⊂ S) and only specific combinations of modes provide a solution. In Equation (3),
Ne is the stoichiometric matrix of extracellular measurements, a me × n matrix where me
stands for the number of measured extracellular species. The vector νm is inferred from the
measurement of the time evolution of the extracellular concentrations, for instance, using
regression based on the smoothed derivative of the concentration signals.

2.1.2. EFM Reduction Procedure

The EFM reduction method has been originally developed in [24,42], and only a brief
overview is provided in this section. The 4-step method, illustrated in Figure 3, is divided
into (i) the initial generation of the modes, (ii) the biological interpretation of the reaction
scheme, (iii) a preliminary reduction up to Ω modes and (iv) the selection of a minimal set
of Λ EFMs.

• Generation of the initial EFM set: The first step concerns the generation of elementary
flux vectors. If the size of the metabolic network is not too big, the whole set of
modes can be computed and enumerated using software tools such as EFMTOOL.
Otherwise, if the number of EFMs becomes prohibitive, alternative methods to identify
only subsets are required. A fast generation algorithm [13] can be used that requires
also the knowledge of experimental measurements of uptake and excretion rates.
Nevertheless, regardless the EFMs generation method, a matrix of elementary flux
modes E can be obtained.

• Biological interpretation: The second step consists in ensuring a biological interpretation
of the matrix K, which is defined by

K = Ne E (4)

and is a me × nEFM matrix whose columns provide the stoichiometry of each biore-
action. All the modes conducting to a macroreaction with no reactant or no product
should be removed, yielding a reduced matrix of modes, denoted E∗. Note that
reactions corresponding to maintenance are kept.

• Main EFM reduction: This step allows reducing the number of modes up to a target Ω.
This value is generally set close to, and sometimes slightly greater than, me to avoid
computational issues during the final step of the procedure. First, collinearity between
vectors is evaluated and the collinear modes are discarded. Second, an optimization-
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based reduction is achieved where a randomly selected vector is removed if the
following inequality is satisfied:

|Ξ∗ − Ξ| < tol (5)

where Ξ∗ is the performance index for the candidate elimination, Ξ is the prior value of
the indicator and tol is a tolerance value defined by the user. The selected performance
index is a weighted constrained least-squares problem:

Ξ =
M

∑
k=1

(
Ke φ

k
− νm,k

)
W−1

(
Ke φ

k
− νm,k

)T

min
φ

k

Ξ s.t. φ
k
≥ 0 (6)

where νm,k is the vector of uptake and excretion rates at every time step k, φ
k

corre-
sponds to a time-varying decomposition of the flux νm,k into a reduced set of vectors
stored in Ke, and W is a weighting diagonal matrix whose diagonal elements are max

k
ν2

m,k,i where νm,k,i is the ith element of the vector νm,k (i ∈ [1, nEFM]). This criterion
represents how well the positivity constraints can be satisfied while reproducing the
evolution of the extracellular fluxes. Note that Ke = NeEe, where Ee denotes a reduced
matrix of EFMs.

• Selection of a minimal bioreaction model: For this final step, an even smaller number of
EFMs is selected among the previous set of Ω modes (Λ < Ω). This target Λ is chosen
below the number of extracellular measured species me in order to derive macroscopic
models with less reactions than components. This step is no longer based on random
successive eliminations of modes but is a selection step of the best combination of Λ
EFMs among the previous Ω modes. Hence, the performance index Ξ of all possible
EFM combinations is computed and the final set of modes is the one with the smallest
value of the indicator, which represents the distance to the experimental data. Note
that the number of possible combinations is given by

ncomb =
Ω!

Λ! (Ω−Λ)!
(7)

As a consequence, Ω has to be chosen small enough to avoid an unmanageable number
of EFM combinations and, at the same time, large enough to have more flexibility in
the selection, i.e., to have a sufficient pool of EFMs for the selection of the best EFM
combination.

2.2. Dynamic Mass Balance Model

From the reduction procedure presented in the previous section, a stoichiometric
matrix K, as well as the time evolution of the vector of reaction rates Φ(t) have been
obtained. The product of these two quantities defines the biological uptake and excretion
rates of the culture species ξ in the following mass balance equation system:

dξ

dt
= KΦ + D(ξ in − ξ) (8)

In this equation, D is a diagonal dilution matrix and ξ in denotes the inflow concentrations.
To develop a predictive model, it is now necessary to represent the flux vector Φ by a

parametric model describing the influence of the extracellular culture species. In this study,
MLPs will be used to describe the kinetic laws.
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Figure 3. The modular EFM selection procedure. N is the stoichiometric matrix, Ne is the stoichiometric
matrix of extracellular measurements, νm is the vector of experimental uptake and excretion rates, E is
the matrix of EFMs and K describes the stoichiometry of the bioreactions. Ω is a first target number for
the reduced set of EFMs, close to the number of measured extracellular species me, and Λ is a second
target number for the reduced set of EFMs, smaller than me.

NN Kinetic Modeling

A perceptron, as illustrated in Figure 4, involves a set of input signals xi weighted
with synaptic coefficients wi plus a bias b:

z = b +
n

∑
i=1

xi.wi (9)

Figure 4. The structure of a perceptron: xi represent the input signals, wi denote synaptic coefficients,
b is a bias, f is an activation function and y is the output signal.

This weighted sum enters an activation function f to predict the output signal y = f (z).
There exist many activation functions, with sigmoid functions being a popular choice.
To represent complex nonlinear functions, the use of multilayer perceptrons (MLPs) is
recommended, which are organized as follows:

• one input layer, which distributes the input values to the first hidden layer;
• one or several hidden layers of perceptrons;
• one output layer, which recovers the output of each perceptron of the last hidden

layer.
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Figure 5 shows a typical multilayer perceptron with one hidden-layer in the context of
the present study, i.e., the input signals are the species concentrations ξi and the outputs
are the elements of the flux vector Φ. It is worth noting that the number of hidden
layers constitutes the true computational engine of the MLP and the more hidden layers,
the more powerful the artificial neural network but at the expense of a large number of
parameters and the risk of overparametrization. Nevertheless, even one hidden-layer MLP
can approximate the mapping of any continuous function [44].

Figure 5. A multilayer perceptron with one hidden layer with 3 neurons; 6 input signals in the input
layer, which are the concentrations of culture species; and 5 output signals in the output layer, which
are the reaction rates of each bioreaction. The biases are denoted by bi and activation functions in the
hidden layer are sigmoids while activation functions in the output layer are identity functions.

The multilayer perceptron is known as a feedforward network as data flows in the
forward direction from the input to the output layer. The neurons can be trained with a
backpropagation learning algorithm computing the gradient of a loss function. Basically,
the perceptron learning consists in adjusting the weights and the biases of the network
in order to minimize the deviations between the outputs predicted by the network and
the expected ones. For the training of MLPs, backpropagation is an efficient algorithm to
estimate the gradients, which can be exploited in various methods, such as gradient descent
or stochastic gradient descent, updating the parameters of the structure to minimize the
loss function. More information on the learning algorithms can be found, for instance,
in [45].

Before training the neural network, it is common practice to perform pre- and post-
processing steps on the network inputs and outputs in order to make the training process
more efficient. Depending on the magnitude of the input values, sigmoid activation
functions may become saturated leading to small gradients and slow convergence of
the training procedure. To tackle this issue, a normalization step is applied to input
signals in the data set during a pre-processing step and the output signals can be reversely
transformed back into the original range in a post-processing step.

MLPs are fully interconnected and the number of parameters rapidly increases with
the number of hidden layers and neurons in these layers. Pruning algorithms discard
redundant and unnecessary connections [46–50]. By removing synaptic connections with
little influence, a sparsely connected network with multiple zero weights can be obtained.
Methods to perform pruning of MLPs are proposed in [51]. Figure 6 illustrates the architec-
ture of a network before and after different techniques of pruning. In this study, a simplified
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version of the magnitude pruning algorithm proposed in [48] is developed. The idea is
to assign a score to each parameter of the network (weights and biases) corresponding
to its absolute value. Due to the pre- and post-processing, the score of each parameter is
assumed to represent its relative importance to the accuracy of the trained network. Hence,
a synaptic connection or a bias may be removed if its score is smaller than a threshold value
defined by the user.

Figure 6. Architecture of an MLP before and after pruning—synapses and neurons pruning.

3. Case Study: Perfusion Cultures of Hybridoma Cell Line HB-58

Data used in this study come from the hybridoma cell line HB-58 enabling the pro-
duction of IgG1 monoclonal antibodies, specific for mouse kappa light chain. Serum-free
medium—prepared from DMEM/F12 (1:1) and completed with glutamine, 500 µmol
of ethanolamine, 10 mg of bovin insulin, cholesterol, Pluronic F-68, HEPES and other
additives—was used. The cells were kept as suspension cultures in the medium in shake
flasks at 37 °C in a 5% CO2 incubator. Experiments were conducted at the State Key Labora-
tory of Bioreactor Engineering, East China University of Science and Technology (ECUST),
in Shanghai [52].

Perfusion cultures were performed in a 2 L stirred bioreactor and were settled in a
working volume of 1.8 L during the whole duration of the culture. Cultures were carried
out in a controlled environment (36.8 °C, 40% DO, pH = 7.0 ± 0.2). The perfusion phase
started after 44–56 h of batch culture with a constant dilution rate of 0.0197 h−1. Cells
were retained by a spin-filter (20 µm) and the stirring speed was fixed at 200 rpm. Data
acquisition and process control were performed using the supervisory software MFCS/Win
3.0. Table 1 summarizes the operating conditions of the cultures.

Table 1. Summary of culture conditions for experiments in perfusion.

Experiment X0 (109 cells/L) t f ed (h) Feed Stream (mM)

Glcin Glnin

1 0.19 54 11 5
2 0.23 56 15 11.5
3 0.36 48 28 4
4 0.36 44 28 9.5

3.1. Metabolic Network

Depending on the level of description required, networks of different sizes might
be considered. Henceforth, a metabolic network of hybridoma cells with 70 biochemical
reactions and 44 internal metabolites is considered. The details of this metabolic network
can be found in [53]; it includes the major reactions of central metabolism such as the
pathways of glycolysis, the tricarboxylic acid cycle, amino acids metabolism, and the
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synthesis of biomass and antibodies. The pentose phosphate pathway is not taken into
account in the network definition because, in most tissues, 80 to 90% of glucose oxidation
is achieved by glycolysis. The stoichiometric coefficients of the biomass and antibody
synthesis are taken from literature [52]. Note that considering a metabolic reaction for the
formation of biomass allows its prediction when deriving dynamical models.

3.2. Measurement Configuration

Only 6 extracellular measurements are accounted for—namely, glucose, lactate, glu-
tamine, ammonia, alanine and biomass—gathered in vector ξ. This leads to the stoichio-
metric matrix of extracellular measured species Ne. Furthermore, the experimental uptake
and excretion rates νm(t) may be computed using smoothing splines and differentiation
methods.

4. Numerical Results
4.1. EFM Selection

The first step of the reduction procedure consists in computing an initial set of elemen-
tary flux vectors. As stated in Section 2.1.2, different approaches exist depending on the size
of the metabolic network. In this case, using EFMTOOL as the EFM generator, an initial set
of 22,563 modes is obtained. Alternative methods such as the one proposed in [13] identify
only representative subsets of EFMs and allow getting a few hundred modes as a starting
point. However, in order to prove the effectiveness of the reduction procedure, the whole
set of elementary vectors is considered in this study since their number remains manageable.
Then, for the purpose of ensuring a biological interpretation of the reaction scheme, any
vector leading to a macroreaction with no biological meaning is discarded and the reduced
matrix of modes E∗ is made up of 21,874 vectors. The power of the methodology lies in
the main reduction algorithm. With a collinearity indicator of 99% between the vectors,
a drastic reduction to 214 modes is achieved. Next, an optimization-based reduction is
performed with a target number Ω equal to 10. The last step is the selection of a few modes
from the previous set to derive models with fewer reactions than components. In this study,
only five elementary flux modes are finally selected (Λ = 5). Note that the target Λ could
have been set to an even smaller value. However, because overflow metabolism is noticed
in hybridoma cells, a further reduction may cause a loss of essential biological information.

A first direct validation of the reduced model can be achieved by comparing the
experimental uptake and excretion rates νm(t) to the product KeΦ(t) computed in the
optimization problem. This validation can be pursued by analyzing the prediction of
the measured concentrations by integration of the computed fluxes and identification of
the most likely initial conditions of the measured species. These results are shown in
Figures 7 and 8, respectively. Almost no loss of information is noticed and the prediction
of the concentrations is very satisfactory, highlighting the merits of the modular EFM
selection procedure.
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Figure 7. Time evolution of the experimental uptake and excretion rates (in mM·h−1) in dataset #
2—numerical results (black curves); KeΦ for nEFM = 10 (red crosses); KeΦ for nEFM = 5 (blue bullets).
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(red bullets); concentration profiles on the basis of nEFM = Ω = 10 (red curves) and selecting nEFM =
Λ = 5 (blue curves).
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Besides the previous validations, it might be interesting to examine the final set of
macroreactions obtained from the reduction algorithm:

K =



0 −α2 0 −α4 −α5
β1 0 0 0 β5
−γ1 −γ2 −γ3 −γ4 0

δ1 0 0 0 0
0 0 ε3 0 0
0 0 0 σ4 0

 (10)

where αi, βi, γi, δi, εi and σi are stoichiometric coefficients, listed in Table 2. K is a me × Λ
matrix with me = 6 and Λ = 5. Equivalently, a macroreaction scheme can be drawn:

γ1 Gln
φ1−→ β1 Lac + δ1 N (11)

α2 Glc + γ2 Gln + X
φ2−→ X (12)

γ3 Gln
φ3−→ ε3 Ala (13)

α4 Glc + γ4 Gln
φ4−→ σ4 X (14)

α5 Glc
φ5−→ β5 Lac (15)

This reaction scheme makes sense and is validated by the study conducted in [43].
Indeed, glucose and glutamine are consumed with biomass growth and metabolites produc-
tion defining the so-called respiratory metabolism. Moreover, the phenomenon of overflow
metabolism is pointed out with lactate production from glucose excess and production of
ammonia, lactate and alanine from glutamine excess. This point will be further discussed
in Section 4.3.

Table 2. The stoichiometric coefficients of the reaction network.

Parameters Value Parameters Value Parameters Value

α2 0.0150 β5 0.1459 γ4 0.0194

α4 0.0258 γ1 0.2425 δ1 0.4851

α5 0.0729 γ2 0.0092 ε3 0.2408

β1 0.2425 γ3 0.1204 σ4 0.7925

4.2. Kinetic Modeling

For the derivation of a dynamic model, it remains to describe the numerical signals Φ
coming from the reduction algorithm by neural networks. As illustrated in Figures 1 and 5,
a multilayer perceptron will use as input signals the concentration of extracellular species ξ
and as target values the reaction rates Φ computed numerically in the reduction procedure.
Therefore, there are six input signals, namely, the concentrations ξi (i ∈ [1, 6]) of the
measured species and five output signals Φi (i ∈ [1, 5]), which are the specific rates of each
reaction. Only one hidden layer is considered to limit the number of parameters (weights
and biases), and the nonlinear activation functions in the hidden layer are hyperbolic
tangent sigmoid functions while the activation functions in the output layer are identity
functions. In summary, the following equations can be written:

zi = b1i + f

(
6

∑
j=1

w1ij ξ j

)
, i ∈ [1, Z], (16)
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Φi = b2i +
Z

∑
j=1

w2ij zj, i ∈ [1, 5], (17)

with
f (x) =

2
1 + e−2x − 1. (18)

This function has the same shape as the classical sigmoid function but horizontal
asymptotes are in −1 and 1 so that the output values are squeezed into [−1, 1]. In the
previous equations, Z is the number of neurons in the hidden layer. Hence, the number of
parameters is 5 + 12Z. Depending on the complexity of the problem, the number of neurons
in the hidden layer can be increased at the expense of a significant increase in the number
of parameters to identify. Table 3 summarizes the number of parameters of the network
according to the number of neurons in the hidden layer. The rapid increase in the number
of parameters with the number of neurons justifies the use of pruning algorithms.

Table 3. Number of network parameters for six input signals and five output signals.

# Neurons # Parameters

10 125
5 65
4 53
3 41
2 29
1 17

As a direct validation, Figure 9 shows the time evolution of the specific reaction rates
Φ produced by the reduction procedure (and used as target values) and the prediction with
MLPs with different numbers of neurons in the hidden layer. As expected, the more neurons,
the better the fitting to numerical results. Figure 10 depicts the corresponding concentration
profiles. Although significant deviations appear in the reaction rates, they have a limited
impact on the prediction of the time evolution of the concentrations. Hence, an MLP with
only three neurons in the hidden layer is an acceptable compromise between the fitting to
experimental data and the number of network parameters. Note that experimental data
has been partitioned to avoid overfitting, i.e., 70% for training, 15% for validation and 15%
for testing.

In order to improve the MLP prediction, instead of backpropagation, a global nonlinear
identification of the weights and biases of the network can be performed using the Nelder–
Mead simplex optimization algorithm in order to minimize a weighted nonlinear least-
squares criterion:

min
Θ̂

J(Θ̂) =
n

∑
j=1

Nj

∑
i=1

(
Φij(Θ̂) − Φnum

ij

)
Σ−1

(
Φij(Θ̂) − Φnum

ij

)T

(19)

where Θ̂ is the vector of parameters to be re-identified containing the weights and biases
of the neural network, Φij gives the network prediction at the ith time instant in the jth
experiment, Φnum

ij is the vector of the corresponding numerical signals coming from the
EFM reduction procedure and Σ is a normalization matrix in which diagonal elements are
chosen as the squares of the maximum rate of each reaction.
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Figure 9. Time evolution of the specific reaction rates (in mM·h−1) in dataset # 2—target values (black
curves); prediction with an MLP with ten neurons (red curves), five neurons (magenta curves) and
three neurons (blue curves) in the hidden layer.
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Figure 10. Prediction of the time evolution of the extracellular measured species in dataset # 2—
numerical results from the optimization problem (black curves) using MLP with ten neurons (red
curves), five neurons (magenta curves) and three neurons (blue curves) in the hidden layer.
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To improve convergence, the optimization algorithm can be run several times using
the parameters found in the previous round as initialization. The confidence intervals and
variation coefficients of the estimated parameters can be obtained from the inverse Fisher
information matrix [54]. The variation coefficients of the estimated parameters are given in
Table 4.

Next, the magnitude pruning algorithm is exploited to reduce the number of parame-
ters. The results of the pruning algorithm are shown in Table 5. W1 is a matrix collecting the
synaptic connections between the input layer and the hidden layer, b1 represents the biases
of the neurons in the hidden layer, W2 contains the weights between the hidden layer and
the output layer and b2 are the biases of the neurons in the output layer. In this way, the
number of parameters is reduced by 17% (41→ 34 parameters).

Table 4. Coefficients of variation (in %) of the estimated weights and biases—colored boxes are
removed synaptic connections or biases.

W1 b1 W2 b2
5.8 15.5 33.5 20 7.1 77 6.6 47.1 26.5 105.3 58.7
7.1 4.5 10.4 14.5 8.6 8.3 & 125.7 1 1 1.6 13.4
7.3 31.7 40.4 11.5 5.8 9.5 4.7 73.3 38.2 41.1 710.7

32.8 50.9 82 169.6
3.5 2.1 7.7 11.3

Table 5. Results of the magnitude pruning algorithm—colored boxes are removed synaptic connec-
tions or biases.

W1 b1 W2 b2

The time evolution of the reaction rates and the prediction of the measured concentra-
tions using a pruned multilayer perceptron are illustrated in Figures 11 and 12, respectively.
Figure 11 shows the added value of a global nonlinear re-identification of the parameters.
Small deviations may be observed when using the pruned MLP for kinetic identification
but the results remain very satisfactory, highlighting the merit of the simplified pruning
method. Figure 12 validates the whole procedure providing good results for the prediction
of the measured concentrations.

Furthermore, a pruning of the neural network can also be achieved on the basis of the
coefficients of variation of the estimated parameters. Indeed, weights and biases identified
with a coefficient of variation greater than 30% can be discarded without affecting the fitting
of the experimental data. However, the elimination of the weights in W2 must be exercised
with more care and only parameters identified with a coefficient of variation greater than ∼=
50% are neglected. Figure 13 shows the prediction of the time evolution of the extracellular
measured species using this pruning strategy. It yields fewer parameters in the neural
structure (41→ 30 parameters) at the expense of larger deviations from experimental data.
However, the results remain acceptable for deriving a macroscopic model for control and
optimization purposes. Furthermore, the pruning strategy using the value of variation
coefficients covers up most of the parameters defined as nonessential when using the
magnitude pruning algorithm, validating the two pruning approaches.
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Figure 11. Time evolution of the specific reaction rates (in mM·h−1) in dataset # 2—target values
(black curves); prediction with MLP with three neurons in the hidden layer (red curves), and with
three neurons and nonlinear re-identification of weights and biases (magenta curves); pruned MLP
with three neurons (blue curves).
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Figure 12. Prediction of the time evolution of the extracellular measured species in dataset # 2—
numerical results from the reduction procedure before kinetic identification (black curves); MLP
with three neurons in the hidden layer and nonlinear re-identification of the parameters (red curves);
pruned MLP with three neurons (blue curves).
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Figure 13. Prediction of the time evolution of the extracellular measured species in dataset # 2—
pruned MLP with three neurons using magnitude pruning algorithm (blue curves); pruned MLP
with three neurons using a CV pruning strategy (red curves).

4.3. Interpretation of Overflow Metabolism

Overflow metabolism is a phenomenon in which cells achieve incomplete oxidation of
an abundantly supplied energy source, commonly glucose and glutamine, despite aerobic
conditions. It results in the excretion of organic end-products that are often inhibitory.
Overflow of glucose leads to the formation of lactate while overflow of glutamine results in
the formation of ammonia. As mentioned in [55], glutamine is mainly excreted as alanine,
proline and aspartate.

This phenomenon is essentially described by the reaction scheme deduced from the
modular EFM selection procedure in Section 4.1. Indeed, in mammalian cell cultures, two
main metabolic states can be pointed out: (i) the state of respiratory metabolism at low
substrate uptake rates and (ii) the state of overflow metabolism at high substrate uptake
rates. During respiratory metabolism, the consumption of glucose and glutamine leads
to biomass growth and metabolite production such as lactate and ammonia. Respiratory
growth is captured by reaction (14) for the substrate consumption and biomass growth,
together with Equations (11), (13) and (15) for the metabolite production. Overflow of
glucose leads to the production of lactate, as denoted by the sole reaction (15) (i.e., not
coupled with reaction (14)), and excess of glutamine ends in the production of ammonia
and lactate but also of other amino acids such as alanine among others as described by
reactions (11) and (13). Lastly, the reaction (12) translates the consumption of glucose and
glutamine for cell maintenance. The latter are two energy sources for the production of ATP
and reduced pyridine nucleotides, essential for cell life. In that respect, all the chemical
reactions deduced from the reduced matrix of EFMs have a biological meaning, as expected,
consolidating the usefulness of the proposed reduction procedure.

The overflow metabolism phenomenon can be observed in the values of Φi for i ∈ [1, 5]
in Figure 11. Indeed, Φ5 exhibits large values until about 100 h, before a significant decrease.
This highlights a potential overflow metabolism on glucose during that first period of time,
which vanishes at 100 h when glucose is almost completely depleted. This can be seen in
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the glucose concentration–time profile in Figure 12. A similar decrease does not appear at
the levels of Φ1 and Φ3. This can be interpreted as an overflow metabolism on glutamine
that takes place during the whole duration of the culture as the glutamine concentration
remains above a value that must be greater than the critical level (see Figure 12).

5. Conclusions

This study establishes a complete procedure to derive a small macroscopic bioreaction
model from metabolic networks using the concept of elementary flux vectors to infer
a reaction scheme and neural networks to describe the reaction rates in terms of the
culture species.

When the size of the metabolic network increases, depending on the level of de-
scription required, the number of elementary modes explodes and it is important to use
systematic procedures to reduce and select the most informative modes in view of estab-
lishing the corresponding minimal bioreaction scheme. For this purpose, the modular
reduction procedure includes several steps: (i) the initial generation of the modes (the
whole set or only a representative subset), (ii) the biological interpretation of the reaction
scheme, (iii) a reduction up to Ω modes using collinearity between vectors, followed by a
random elimination and (iv) the selection of a minimal set of Λ EFMs (Λ < me) leading to
models with fewer reactions than components.

Once such a minimal model has been derived, artificial neural networks can be
exploited to model the specific rates of each chemical reaction. In this study, a multilayer
perceptron with one hidden layer and a small number of neurons is successfully applied
to this modeling task. To further reduce the number of parameters, two simple pruning
algorithms are also applied with success. Pruning algorithms appear particularly useful
because of the fully connected architecture of MLPs. Further investigation of a suitable
compromise between the complexity of the neural network architecture and the use of
more efficient pruning algorithms could be interesting research directions.

The hybrid physical–neural models show good predictive capability in a case study
related to perfusion cultures of hybridoma cells. The hybrid model is biologically inter-
pretable in terms of reaction schemes and the reproduction of important mechanisms such
as overflow metabolism.

The main advantage of the proposed procedure is the rapid development of the hybrid
dynamic models (once the experimental data have been collected) whose stoichiometry
and kinetics can be obtained in a systematic way. The resulting dynamic models could be
exploited for process monitoring (i.e., the development of software sensors) and model-
based control, such as model predictive control. Further case studies are required to explore
and consolidate these perspectives.
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