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a b s t r a c t

Transmission congestion management plays a key role in deregulated energy markets. To correctly model
and solve this problem, power system voltage and transient stability limits should be considered to avoid
obtaining a vulnerable power system with low stability margins. Congestion management is modeled as
a multi-objective optimization problem in this paper. The proposed scheme includes the cost of conges-
tion management, voltage stability margin and transient stability margin as its multiple competing objec-
tives. Moreover, a new effective Multi-objective Mathematical Programming (MMP) solution approach
based on normalized normal constraint (NNC) method is presented to solve the multi-objective optimiza-
tion problem of the congestion management, which can generate a well-distributed and efficient Pareto
frontier. The proposed congestion management model and MMP solution approach are implemented on
the New-England’s test system and the obtained results are compared with the results of several other
congestion management methods. These comparisons verify the superiority of the proposed approach.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In a competitive energy market, the market participants offer
their bids to independent System Operator (ISO). The ISO is respon-
sible for market clearing and providing an acceptable security level
for power system [1]. Moreover, ISO is accountable for prediction
of load level using a load forecasting procedure [2]. In other side,
the generation companies (GENCOs) anticipate their future gener-
ation independently to offer to the market [3]. The market partic-
ipants try to maximize their own profit using efficient bidding
strategies [4]. The transition from cost-based pricing to bid-based
pricing in a deregulated energy market has been modeled in [5].
The new conditions of open energy markets create a competitive
situation where transmission networks are loaded up to their sta-
bility margin to gain more economical operating point. Transmis-
sion congestion appears in power system when the amount of
electric power, which should be transmitted on the network to
meet the total demand, surpasses the capacity of the transmission
facilities. Congestion management refers to the activities per-
formed to eliminate the congestion in the network. It can also be
considered as an organized mechanism used to dispatch, schedule
and adjust the generation units and demands in order to handle
congestion in the power grid.

Traditional congestion management schemes only consider
thermal overloads, while the recent incidents in North America
and Europe that caused major blackouts [6] show that security
requirements are an important factor that should be considered
in the congestion management problem. Congestion management
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is inherently an optimization problem with numerous constraints.
Therefore, after mitigating the congestion, some constraints may
reach their upper or lower limits. Although the constraints have
not been violated, it is likely that the system goes to an unstable
condition by even a small disturbance. In other words, the stability
margin of the system may be low after relieving congestion and so
voltage and transient stability margins should be considered in the
congestion management framework in addition to congestion
management cost.

A survey of congestion management methods can be found in
[7,8]. Additionally, some recent congestion management
approaches are briefly reviewed in the following.

A congestion management method based on optimal power
flow (OPF) is presented in [9] that relieves congestion using load
shedding and generation rescheduling. In [10], the authors employ
the concept of transmission congestion penalty factor to control
power flows in transmission lines for congestion management. A
combination of demand response and flexible alternating current
transmission system (FACTS) devices for congestion management
is presented in [11]. In [12], a congestion alleviation method ensur-
ing voltage stability, using loadability limits in pool electricity mar-
kets, is proposed. In [13], modal analysis and modal participation
factors are used for saving voltage stability within a congestion
management framework. The research work of [14] introduces a
new measure for transient stability margin (TSM) and incorporates
it into a congestion management framework to mitigate conges-
tion while enhancing the transient stability of the power system.
Particle swarm optimization (PSO) has been used in [15] to deter-
mine the minimum-cost generation-redispatch strategy for con-
gestion management. In [16], a congestion alleviation method
considering dynamic voltage stability boundary of power system
is proposed. A two-stage strategy based on modified Benders
decomposition approach is presented in [17] to solve the conges-
tion management problem in a hybrid power market. In [18], a
congestion management approach considering congestion man-
agement cost and power system emission is proposed, which is
based on stochastic augmented e-constraint method. In [19], a
probabilistic strategy incorporating demand response in distribu-
tion energy market is proposed. Their method allows cost saving
for the end-user consumer and also mitigates the network’s con-
gestion. In [20], a mixed integer linear programming scheme is
developed to coordinate applications of distributed energy storage
systems, which maximizes their net profit and supports distribu-
tion’s network congestion management. In [21], a hybrid approach
using bacterial foraging algorithm and Nelder–Mead method is
proposed to solve TCSC (Thyristor-Controlled Series Compensator)
placement problem of congestion management. A congestion man-
agement strategy based on rescheduling of hydro and thermal
units in a hybrid electricity market is presented and formulated
as mixed integer nonlinear programming problem in [22]. The
objective function of their model solely minimizes the congestion
management cost considering units’ up and down generation bids.
In [23], a multi-objective group search optimizer with adaptive
covariance and Lévy flights, considering economic and reliability
objectives, is proposed to optimize the power dispatch in a large-
scale integrated energy system. However, the methods reviewed
above either do not consider voltage and transient stabilities or
only model one of them.

To remedy this problem, some congestion management frame-
works based on multi-objective models have recently been pre-
sented including both voltage and transient stability margins in
addition to congestion management cost to enhance power system
security. In [24], a multi-objective congestion management frame-
work based on e-constraint approach is presented for this purpose.
An improved version of [24], called modified augmented
e-constraint method, is proposed in [25], to enhance the quality
of solutions of the multi-objective problem by generating efficient
Pareto frontier. In line with [24,25], this paper proposes a multi-
objective congestion management model incorporating transient
and voltage stability margins in addition to congestion manage-
ment cost as the objective functions. Additionally, AC power flow,
system security and prevailing generator limits are considered as
the constraints of this model.

The new contributions of this paper can be summarized as
follows:

(1) An important contribution of this paper with respect to the
previous research works in the area, such as [24,25], is pre-
senting a new multi-objective mathematical programming
approach, based on normalized normal constraint (NNC)
method, for solving multi-objective congestion management
problem. Even distribution of Pareto points on the Pareto
surface and systematic approach for reducing the feasible
objective space are among the important advantages of the
proposed NNC-based multi-objective optimization
approach.

(2) A novel optimality-based decision maker is proposed to effi-
ciently select the most preferred solution for the MMP prob-
lem within the Pareto optimal set. This decision maker
considers both optimality degree and importance of differ-
ent objectives.

To the best of the authors’ knowledge, the above contributions
are specific to this paper and have not been presented in the pre-
vious research works in the area.

The remaining parts of the paper are organized as follows. In
Section 2, the multi-objective congestion management model
including the objective functions and constraints is presented.
The proposed NNC-based MMP solution approach and
optimality-based decision maker are introduced in Section 3.
Numerical results obtained from the proposed solution approach
for the multi-objective congestion management problem are pre-
sented in Section 4 and compared with the results obtained from
several other MMP solution methods. Section 5 concludes the
paper.

2. Formulation of the multi-objective congestion management
problem

The objective functions of the multi-objective congestion man-
agement model are as follows:

Congestion management cost ðf 1Þ:

f 1 ¼
X
j2SG

Bup
Gj � DPup

Gj þ Bdown
Gj � DPdown

Gj

� �

þ
X
k2SD

Bup
Dk � DPup

Dk þ Bdown
Dk � DPdown

Dk

� �
þ

X
k2SD

VOLLDk � DPI
Dk

� �
ð1Þ

where Bup
Gj and Bdown

Gj are bid prices of jth generator to change its out-

put power; DPup
Gj and DPdown

Gj are up and down generation shifts of
unit j, respectively, which are determined by the congestion man-

agement method. Similarly, Bup
Dk;B

down
Dk ;DPup

Dk and DPdown
Dk are analo-

gous parameters of demand side bidding. Also, DPI
Dk and VOLLDk

are the amount of involuntary load shedding and value of lost load
(VOLL), respectively [25]. In (1), SG and SD indicate set of participat-
ing generators and demands in the congestion management,
respectively. From (1), it is seen that the congestion management
cost f 1 includes three parts in which the first two parts are the pay-
ments of the ISO to GENCOs and demands respectively, for changing
their powers as their offered bids. The third part represents the
payment of ISO for involuntary load shedding employed in severe
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conditions, in addition to generation shifts and voluntary load
changes, to relieve congestion.

f 2 = Voltage stability margin (VSM): VSM in the load domain,
which measures the loading margin of the power system between
the current operating point and maximum loadability limit in
terms of voltage stability, is used. Mathematical details of the
VSM can be found in [24,25].

f 3 = Corrected transient energy margin (CTEM): CTEM is
employed in the proposed approach to assess the transient stabil-
ity margin of power system. This measure is considered a common
and reliable index to study transient stability, since it exploits time
domain simulations along the corrected transient energy function.
Moreover, CTEM linearly changes with respect to the magnitude of
the disturbances in a wide range. Accordingly, CTEM provides a lin-
ear and suitable index to assess transient stability of power system.
Details of CTEM can be found in [24,25].

The constraints of the congestion management model are as
follows:

Pmin
Gj 6 PGj 6 Pmax

Gj j 2 SG ð2Þ

Qmin
Gj 6 QGj 6 Qmax

Gj j 2 SG ð3Þ

Pmin
Dk 6 PDk 6 Pmax

Dk k 2 SD ð4Þ

QDk ¼ PDktanðuDkÞ k 2 SD ð5Þ

PGn � PDn ¼ Vnj j
X
m2SN

Yn;m

�� �� Vmj jcosðDn � Dm � hn;mÞ n 2 SN ð6Þ

QGn � QDn ¼ Vnj j
X
m2SN

Yn;m

�� �� Vmj jsinðDn � Dm � hn;mÞ n 2 SN ð7Þ

PGn ¼
X
j2SGn

PGj n 2 SN ð8Þ

QGn ¼
X
j2SGn

QGj n 2 SN ð9Þ

PDn ¼
X
k2SDn

PDk n 2 SN ð10Þ

QDn ¼
X
k2SDn

QDk n 2 SN ð11Þ

Vmin
n

��� ��� 6 Vnj j 6 Vmax
n

�� �� n 2 SN ð12Þ

SbðV ; dÞj j 6 Smax
b b 2 SB ð13Þ

PGj ¼ Pe
Gj þ DPup

Gj � DPdown
Gj j 2 SG ð14Þ

PDk ¼ Pe
Dk þ DPup

Dk � DPdown
Dk � DPI

Dk k 2 SD ð15Þ

DPup
Gj ; DPdown

Gj ; DPup
Dk; DPdown

Dk ; DPI
Dk P 0 j 2 SG k 2 SD ð16Þ

where PGj and QGj represent active and reactive power outputs of jth
generator, which are limited in (2) and (3), respectively. PDk indi-
cates active power demand of kth load, which is limited in (4) for
the congestion management market. The reactive powers of loads,
denoted by QDk, are determined based on their power factor angles
uDk as shown in (5). Eqs. (6) and (7) present AC power flow con-
straints in which Vnj j and Dn represent magnitude and angle of
nth bus voltage, respectively. Also, Yn;m

�� �� and hn;m are magnitude
and phase of the admittance between buses n and m. In (6) and
(7), PGn;QGn; PDn and QDn are active and reactive generations and
loads of bus n, respectively, and SN is the set of power system buses.
In (8)–(11), PGn;QGn; PDn and QDn are represented in terms of sum-
mation of active and reactive powers of individual generators and
loads located in bus n. In (8)–(11), SGn and SDn indicate set of gen-
erators and set of loads located at bus n, respectively. Constraint
(12) limits voltage magnitude of every bus within its allowable lim-
its. Constraint (13) limits apparent power flow of branches where SB
is the set of branches of the power system. In (14), PGj is final active
power of jth generating bus after congestion management, which
consists of three parts. The first part of PGj is Pe

Gj indicating the
scheduled power in the energy market for jth generating bus before
congestion management. The second and third parts, denoted by

DPup
Gj and DPdown

Gj , represent generation shifts of the PGj in up and
down directions, respectively, determined by the congestion man-

agement procedure. In (15), PDk; P
e
Dk;DP

up
Dk and DPdown

Dk are analogous
parameters for demand side. If the down load shifts of congestion

management, i.e. DPdown
Dk , are not sufficient in a severe condition to

bring a secure operating point for the power system, further invo-
luntary load shed DPI

Dk can be used to further decrease PDK as shown

in (15). However, involuntary load shed DPI
Dk is only used in emer-

gency conditions as its cost VOLL, shown in (1), is usually very
expensive. In (16), all generation and load shifts as well as involun-
tary load sheds are confined to positive values.

All objective functions of the proposed multi-objective conges-
tion management model, i.e. f 1; f 2 and f 3, are functions of active
and reactive powers of generators and loads and so are functions

of DPup
Gj ;DP

down
Gj j 2 SG and DPup

Dk;DP
down
Dk ;DPI

Dkk 2 SD, which are con-
sidered as the decision variables of this optimization problem.
Thus, the multi-objective optimization approach should so change
these decision variables that the best compromise among the com-
peting objective functions f 1; f 2 and f 3 is found, while the con-
straints (2)–(18) are satisfied. Such an approach is presented in
the next section.
3. The proposed MMP solution approach

In MMP problems, usually there is no single global optimum
solution, and it is often necessary to determine a set of points that
fit a predetermined definition for optimality. The predominant
concept in defining an optimal solution is Pareto optimality [26].
In MMP problems, Pareto optimal refers to the solution that its per-
formance in any objective function cannot be enhanced without
worsening its results for the other objective functions. MMP solu-
tion approaches usually try to find a set of well-behaved Pareto
optimal solutions. Afterward, a decision maker can be employed
to find the most preferred solution for the MMP problem among
the generated Pareto optimal set.

Without loss of generality, assume the MMP problem can be
represented as:

Min
x2X

f 1ðxÞ; f 2ðxÞ; . . . ; f NðxÞf g ðN > 1Þ ð17Þ

where x is the vector of decision variables; X is the feasible solution
space of the MMP problem; f i(�) represents ith objective function; N
indicates number of objective functions.

To present the proposed multi-objective optimization approach,
at first, some basic concepts are introduced.

Objective Space is a vector space including objective functions of
the MMP problem as its dimensions. It is different from solution
space, which is a vector space with decision variables of the
MMP problem as the dimensions. Objective space for a MMP prob-
lem including two objective functions of f 1(�) and f 2(�), that should
be minimized, is shown in Fig. 1.
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Anchor Point is a feasible solution in which one of the objective
functions of the MMP problem is individually optimized. Thus, the
number of anchor points of the MMP problem of (17) is N. In the
objective space, anchor points indicate the end points of the Pareto
frontier as shown in Fig. 1, where f �1 and f �2 represent the two
anchor points.

Payoff matrix. Suppose that the optimum value of the ith objec-
tive function is obtained for the value x�i of the decision vector, i.e.
f iðx�i Þ indicates the optimum value of the ith objective function.
Compute the value of the other N � 1 objective functions for x�i .
The vector f 1 x�i

� �
; . . . ; f i x�i

� �
; . . . ; f N x�i

� �� �
constitutes the ith row of

the payoff matrix for the MMP problem of (17). In this way, all
rows of the N � N payoff matrix, denoted by W, can be constructed
as follows:

W ¼

f 1 x�1
� �

; . . . ; f i x
�
1

� �
; . . . ; f N x�1

� �
..
.

f 1 x�i
� �

; . . . ; f i x
�
i

� �
; . . . ; f N x�i

� �
..
.

f 1 x�N
� �

; . . . ; f i x
�
N

� �
; . . . ; f N x�N

� �

2
6666666664

3
7777777775

ð18Þ

Utopia Point is a point in the objective space where all objective
functions of the MMP problem simultaneously reach their optimal

values, i.e. f i x�i
� �

; i ¼ 1; . . . ;N. The utopia point is shown by f U in
Fig. 1. It is noted that utopia point cannot usually be found in the
feasible solution space as there may not be a single feasible solu-
tion for which all objective functions are simultaneously at their
best possible values. Thus, utopia point is only defined in the objec-
tive space with the following coordinates:

f U ¼ f 1 x�1
� �

; f 2 x�2
� �

; . . . ; f N x�N
� �� �T ð19Þ

Utopia hyper-plane is the minimum subspace of the objective
space, which includes all anchor points of the MMP problem. It
becomes a line for bi-objective cases, a plane for tri-objective cases,
and a hyper-plane for MMP problems with N > 3 and so is gener-
ally called utopia hyper-plane [27]. It should be noted that, utopia
hyper-plane, may not include utopia point as utopia hyper-plane
includes anchor points defined in the feasible solution space, while
the utopia point is usually outside this space. For instance, from

Fig. 1, it is seen that f U is outside the utopia line.

Nadir Point is a point in the objective space, denoted by f N ,
where all objective functions of the MMP problem concurrently
reach their worst values. For the MMP problem of (17), the Nadir
point becomes:

f N ¼ Max
x2X

f 1ðxÞ;Max
x2X

f 2ðxÞ; . . . ;Max
x2X

f NðxÞ
	 
T

ð20Þ

Since some of f N elements may become unbounded, a close con-
cept to Nadir point, called pseudo-nadir in which all objective
functions have bounded values, is defined. To determine pseudo-

nadir point, denoted by f SN , for the MMP problem of (17), consider
the ith column of the payoff matrix W, shown in (18). This column
includes the results obtained for f i through individual optimization

of f 1,. . .,f N . The ith coordinate of the pseudo-nadir point f SN , i.e. f SNi ,
is obtained as below:

f SNi ¼ Max f i x
�
1

� �
; . . . ; f i x

�
i

� �
; . . . ; f i x

�
N

� �� � ð21Þ

In other words, f SNi is the worst result of f i in the payoff matrix.

Accordingly, f SN is constructed as follows:

f SN ¼ f SN1 ; . . . f SNi ; . . . f SNN
n o

T ð22Þ

Even Distribution is a set of points evenly distributed over a
region if no part of that region is over or under represented by that
set of points, compared to the other parts.

Using the above concepts, the normalized normal constraint
(NNC) method for the solution of the MMP problem of (17) can
be formulated as the following step-by-step algorithm:

Step (1) Determine the Anchor Points: Individually optimize
each of the objective functions subject to x 2 X to obtain
the anchor points.

Step (2) Normalize the objective Functions: As different objec-
tive functions may have different ranges, they should
be normalized to avoid the masking effect. In NNC
method, the objective functions of the MMP problem
are normalized based on the utopia and pseudo-nadir
points as follows:
�f iðxÞ ¼
f iðxÞ � f i x

�
i

� �
f SNi � f i x�i

� � i ¼ 1;2; . . . ;N ð23Þ

where f SNi and f i x
�
i

� �
represent ith element of the vectors

f SN and f U , respectively; the superscript�indicates normal-
ized value. The main difference between NNC method and
other MMP solution techniques is the strategy adopted for
reducing the feasible objective space. The next steps 3–6
detail this strategy.
Step (3) Calculate Utopia Hyper-Plane Vectors: In the
N-dimensional utopia hyper-plane, the vector connecting
two normalized anchor points �f �i ð1 6 i 6 N � 1Þ and �f �N ,

denoted by �f �iN , is defined as follows:
�f �iN ¼ �f �N � �f �i ð24Þ

where the elements of the vectors �f �i and �f �N are normal-
ized according to the procedure given in the previous step.
Step (4) Determine Normalized Increment: The normalized
increment for each utopia hyper-plane vector �f �iN ,
denoted by LiN , is determined as:
LiN ¼
�f �iN

 
SPiN � 1

1 6 i 6 N � 1 ð25Þ

where �f �iN
  represents the Euclidean norm of its vector

argument �f �iN; SPiN is a pre-specified set-point for utopia

hyper-plane vector �f �iN indicating number of division



Fig. 3. Illustration of the utopia hyper-plane points for a three-objective MMP
problem in the normalized objective space.
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points for �f �iN . To evenly distribute the division points
along every utopia hyper-plane vector, the set-points
should be related to each other as follows:

SPiN ¼ SP1N � �f �iN
 

�f �1N
  ð26Þ

Based on (26), the number of division points assigned to
each utopia hyper-plane vector is proportional to its
length. In this way, only the first set-point SP1N should
be specified and the NNC method automatically adjusts
the other set-points SPiN ð2 6 i 6 N � 1Þ based on SP1N

using (26). An important advantage of the NNC method
compared to the other multi-objective solution
approaches, such as e-constraint [24], augmented
e-constraint [28] and modified augmented e-constraint
[25], is that we can easily control the density of the gener-
ated Pareto set for any number of objective functions by
tuning only one set-point. Higher values of SP1N lead to
more dense representation of the Pareto set, but with
the cost of higher computation burden.
Step (5) Generate Utopia Hyper-Plane Points: Utopia hyper-
plane points are generated based on linear combination
of normalized anchor points as shown below:
�Hj ¼
XN
i¼1

cji�f �i ð27Þ

where

0 6 cji 6 1 ð28Þ

XN
i¼1

cji ¼ 1 ð29Þ

To generate each Hj, its cji values in the range of
1 6 i 6 N � 1 vary (i.e., increments or decrements) in the
step of LiN computed in (25). The last cji value is computed

through (29), i.e. cjN ¼ 1�PN�1
i¼1 cji. To better illustrate the

performance of the generation mechanism of utopia
hyper-plane points, the cji values produced by this mech-
anism for a three-objective MMP problem (i.e., N ¼ 3) are
shown in Fig. 2. In this figure, Li1 ¼ Li2 ¼ 0:25 is assumed.
In this case, 15 utopia hyper-plane points with the follow-
ing cji values are generated:

ðcj1; cj2; cj3Þ ¼ fð0;0;1Þ; ð0; 0:25; 0:75Þ; ð0;0:5;0:5Þ;
ð0;0:75; 0:25Þ; ð0;1; 0Þ; ð0:25;0; 0:75Þ;
ð0:25;0:25;0:5Þ; ð0:25;0:5;0:25Þ;
ð0:25;0:75;0Þ; ð0:5;0; 0:5Þ; ð0:5;0:25;0:25Þ;
ð0:5; 0:5; 0Þ; ð0:75;0; 0:25Þ; ð0:75; 0:25;0Þ;
ð1;0;0Þg ð30Þ

Fig. 3 shows these 15 utopia hyper-plane points in the
normalized objective space. As seen, the coordinates of
0

1
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Fig. 2. Generated cji values for a three-obj
the space are normalized objective functions �f 1;�f 2, and
�f 3. Also, the three anchor points �f �1;

�f �2, and
�f �3 as well as

two utopia hyper-plane vectors �f �13 and �f �23 are shown in
the figure. Fig. 3 shows uniform distribution of the utopia
hyper-plane points within the normalized objective space.
Step (6) Generation of the Pareto Solutions: For each �Hj, gener-
ated in the previous step, one Pareto solution is produced
by solving the following problem:
Min
x2X

f NðxÞ ð31Þ
Subject to

� �
0.7

0

ecti
�f � Hj;
�f �iN 6 0; i ¼ 1; . . . ;N � 1 ð32Þ
where :; :h i indicates inner product between the two

vectors and �f ¼ �f 1ðxÞ; . . . ;�f NðxÞ

� �
is a point in the

N-dimensional normalized objective space. In the above
optimization problem, the constraints (32) in the objec-
tive space are added to the original constraints of the
problem in the solution space, i.e. x 2 X. The constraints
(32) limit the feasible part of the objective space to a sub-
space surrounded by the normal hyper-planes such that
each normal hyper-plane is perpendicular to a utopia
hyper-plane vector �f �iN . To better describe this matter, con-
sider Fig. 3 in the three-dimensional objective space,
where the normal hyper-planes become normal planes
and can be graphically illustrated. In this figure,
N � 1 = 2 normal planes of Hj, which are perpendicular
to the utopia hyper-plane vectors �f �13 and �f �23, are
5 0 0.25 0.5 0

0.5 0.25 0

0

00

10.750.5

0.25

0.25
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illustrated by dotted lines. For any point �f in the dotted
area above Hj in Fig. 3, the two inner products of the vec-

tor �f � Hj and vectors �f �iN (i.e., �f �13 and
�f �23) become negative

and outside this area, at least one of the two inner prod-
ucts becomes positive. Thus, considering (32), the feasible
area of the objective space for the optimization problem
of Hj is the dotted area of Fig. 3. Similarly the feasible area
of the objective space for the optimization problem of H0

j

is the hatched dotted area of Fig. 3, which is surrounded
by the corresponding normal planes indicated by dashed
lines. Thus, the NNC method converts a MMP problem
with N objective functions into a set of single-objective
optimization problems in the form of (31) and (32), reduc-
ing the feasible objective space step-by-step (e.g., com-
pare the feasible space of Hj and H0

jÞ. By solving each of
these single-objective optimization problems one Pareto
solution is obtained. In this solution, f NðxÞ is directly opti-
mized as given in (31), while a certain degree of optimal-
ity is retained for each of the N � 1 remaining objective
functions through the N � 1 constraints of (32). Note that
by limiting the feasible space around one anchor point
(e.g., �f �1), the degree of optimality of the associated objec-
tive function (e.g., f 1ðxÞ) in the Pareto solution increases
and vice versa. The reason is that the anchor point indi-
cates the best feasible result of the associated objective
function and the Pareto solution cannot be outside the
area surrounded by the normal planes. At the same time,
by limiting/expanding the feasible space, the optimality of
f NðxÞ in the Pareto solution can be decreased/increased.
Thus, every Pareto solution generated by the NNC method
implements a specific compromise between the compet-
ing objective functions of the MMP problem in which
some objectives are more optimized and some others
are less optimized. As the Pareto solutions are evenly dis-
tributed in the search space (as shown, for instance, in
Fig. 3), the best covering of the space for a specific amount
of search effort, i.e. for a specific number of Pareto solu-
tions, can be obtained by the NNCmethod. The search res-
olution of the NNC can be tuned by only one set-point, i.e.
SP1N , as discussed in step 4. The systematic approach of
NNC for reducing the feasible objective space and generat-
ing the associated Pareto solutions, also known as judi-
ciously reducing the feasible design space [27], as well
as the uniform distribution of the Pareto solutions in the
search space are two important characteristics of the
NNC method.
The above formulation presented for the NNC method assumes
that all objective functions of the MMP problem should be mini-
mized as given in (17). If an objective function should be maxi-
mized, i.e. we have Max f iðxÞ, it can be replaced by Min 1=f iðxÞ,
provided that f iðxÞ never becomes zero, or Min �f iðxÞ.

After generating Pareto solutions by the NNC method, the most
preferred solution among them is selected by a decision maker
based on the relative importance of the objective functions. Differ-
ent decision making approaches, such as TOPSIS [29], have been
presented for this purpose in the literature. It is worthwhile to note
that decision maker is separate from the MMP solution method,
such as NNC, which typically generates Pareto solutions. In other
words, different MMP solution approaches might be combined
with different decision makers. Here, an optimality-based decision
maker is proposed, which can easily be implemented.

Suppose f k ¼ �f k;1ðxÞ; . . . ;�f k;NðxÞ
� �

is the kth Pareto solution gen-
erated by the NNC method. Its preference, denoted by Pk, is evalu-
ated by the optimality-based decision maker as follows:
Pk ¼
X
i2SMax

ICi � �f k;iðxÞ þ
X
j2SMin

ICj � 1� �f k;jðxÞ
� � ð33Þ

where SMax and SMin are two subsets of the N objective functions
including the objectives that should be maximized and minimized,
respectively; ICi and ICj indicate the importance coefficients of ith
and jth objective functions, respectively, such that

P
i2SMax

ICiþP
j2SMin

ICj ¼ 1. As the preference Pk should be maximized, the one’s

complement of the normalized objectives of SMin, i.e. 1� �f k;jðxÞ, is
included in (33). Note that each normalized objective is in the range

of [0, 1]. Thus, if the Pareto solution f k maximizes more the objec-
tives of SMax and minimizes more the objectives of SMin, i.e. optimizes
more different objectives, the optimality-based decision maker

returns a higher preference value Pk for it. This means that f k is a
more preferred solution for the MMP problem. The most preferred
Pareto solution with the highest preference value is selected as
the final solution of the MMP problem. An advantage of the pro-
posed decision maker is that its output, i.e. the preference value, lin-
early changes with respect to the optimality degree of different
objectives while considers their relative importance.

To apply the proposed NNC method and optimality-based deci-
sion maker for solving the multi-objective congestion management
problem, the objective functions f 1; f 2 and f 3 as well as the decision
variables x are as described in the previous section. Also, the con-
straints (2)–(16) shape the feasible solution space X of this MMP
problem (feasible objective space of each Pareto solution is shaped
within the NNC method as described in the step 6).
4. Numerical results

The proposed NNC-based MMP solution approach and
optimality-based decision maker are applied for multi-objective
congestion management on the New-England test system. This test
system consists of 39 buses, 34 lines, 2 shunt capacitors, 12 trans-
formers, 19 constant power loads and 10 synchronous generators.
Static and dynamic data of this test system, depicted in Fig. 4, can
be found in [30]. Additionally the rating of the branches 3–18, 7–8,
9–39, 16–19, 16–21 and 23–24 are assumed to be 100, 300, 200,
300, 200 and 320 MVA, respectively [25]. By means of the static
and dynamic data, the second and third objectives, i.e. f 2 = VSM
and f 3 = CTEM, for the New-England test system can be easily cal-
culated. The energy market data of the test system (e.g., the bid
data of the generators and demands and VOLL) are obtained from
[25]. The MMP solution method and decision maker are imple-
mented within MATLAB 8.3 software package [31]. Moreover,
dynamic simulation of the test system is performed using PSS/E
30 software package [32] with the integration time step of
0.1 ms. Furthermore, PSAT software package [33] is also employed
to obtain VSM factor by means of bifurcation analysis.

In the following, at first, the results obtained from energymarket
clearing before congestion management are presented and dis-
cussed. These results show that the operating point of the power
system without congestion management violates security limits
and therefore it is not feasible. This justifies the necessity of conges-
tion management in a real environment. Afterward, the perfor-
mance of single-objective and multi-objective congestion
managements are compared. It is shown that the single-objective
approachmay lead to vulnerable power system from stability view-
point or very high congestionmanagement cost, while the proposed
multi-objective approach implements an appropriate compromise
among the competing objective functions. This confirms the validity
of the proposed multi-objective congestion management model for
real-world applications. Subsequently, higher effectiveness of the
proposed NNC-based multi-objective optimization approach is
extensively illustrated compared to other recently published MMP
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Fig. 4. Single-line diagram of the New-England test system.
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solution methods for solving multi-objective congestion manage-
ment problem. Finally, the performance of the proposed
optimality-based decisionmaker for different case studies is shown
and discussed. This decisionmaker plays a key role in the real appli-
cations, since with the aid of it the ISO can make the optimal deci-
sion based on the importance coefficients of the objective
functions and obtained Pareto solutions.

Before applying the congestion management, VSM and CTEM of
the test system are calculated as 23.40% and 0.136 pu, respectively,
which are relatively low stability margins. Moreover, there are
some overloaded branches in the system prior to running the con-
gestion management such that four lines 7–8, 16–19, 16–21 and
23–24 are overloaded to 116.8%, 161.8%, 170.3% and 113.0% of
their rating, respectively. Also, the voltages of two buses 7 and 8
are 0.87 pu and 0.88 pu before congestion management, respec-

tively, which are out of the acceptable range Vmin
n

��� ���; Vmax
n

�� ��h i
¼

0:9;1:1½ �. Thus, the operating conditions obtained from the energy
market clearing are not feasible and congestion management
should be performed to make feasible the operating point and
improve the stability margins. After the congestion management,
the voltages return to the acceptable range and overloads are
relieved due to the constraints (12) and (13) enforced by the con-
gestion management model. However, the operating point may be
Table 1
Payoff matrix for the MMP problem of congestion management on the New England
test system.

Applied optimization f 1: cost
($/h)

f 2:
VSM
(%)

f 3:
CTEM
(pu)

Single objective optimization of f 1 (Cost) 14714.31 28.81 0.14
Single objective optimization of f 2 (VSM) 141392.06 40.2 38.26
Single objective optimization of f 3 (CTEM) 261285.54 31.28 101.01
still vulnerable due to its low stability margins, which is not
acceptable for a real-world application. Another important issue
is the congestion management cost. To better illustrate these
aspects, consider the payoff matrix for the MMP problem of con-
gestion management, shown in Table 1. As described in Section 3,
the first, second and third rows of this matrix are obtained from
the single objective optimization of f 1; f 2, and f 3, respectively.
The solution illustrated in the first row, i.e. ½f 1; f 2; f 3� ¼
½14714:31;28:81;0:14�, has a low congestion management cost as
the solution approach only focuses on optimizing f 1 in this case.
However, the results obtained for f 2, and f 3, i.e. the stability mar-
gins, may not be acceptable. For instance, CTEM has only been
increased from 0.136 to 0.140, which shows a negligible improve-
ment. On the other hand, the solutions obtained from the single
objective optimization of f 2, and f 3, illustrated in the second and
third rows of the payoff matrix, bring high stability margins at
the expense of very high congestion management costs, i.e. about
10–20 times more congestion management cost than the first
row. Additionally, the high stability margins of the second and
third rows may not be necessary. For instance, CTEM is increased
from 0.136 to 101.01 (i.e. about 743 times higher CTEM) in the
third row as the solution approach only focuses on maximizing
CTEM in this case. However, such a high CTEMmay not be required
and lead to overdesign of the system. These results indicate that
single-objective optimizations may not be efficient for solving
the congestion management problem. Another option is enforcing
the stability margins as constraints instead of objective functions,
e.g. in the form of VSM > VSMmin and CTEM > CTEMmin. However,
determining the thresholds of VSMmin and CTEMmin, which
depends on the static and dynamic characteristics of the system,
may not be an easy task. In other words, while the low thresholds
may lead to operating the system in vulnerable conditions, exces-
sively high thresholds can result in high and even unreasonable
congestion management costs. Moreover, by enforcing the stability



Table 3
The results obtained for case 2 of the MMP congestion management problem on the
New England test system.

Method f 1 f 2 f 3 Preference ðPK Þ
Single objective 1.000 0.000 0.000 0.500
Weighting MMP 0.768 0.605 0.590 0.685
Ordinary e-constraint 0.989 0.500 0.000 0.695
Augmented e-constraint 0.731 0.752 0.586 0.725
Modified Augmented e-constraint 0.859 0.764 0.129 0.748

Proposed 0.789 0.776 0.452 0.750

Table 4
The results obtained for case 3 of the MMP congestion management problem on the
New England test system.

Method f 1 f 2 f 3 Preference ðPK Þ
Single objective 1.000 0.000 0.000 0.500
Weighting MMP 0.350 0.836 0.939 0.635
Ordinary e-constraint 0.588 0.750 0.750 0.669
Augmented e-constraint 0.730 0.752 0.587 0.675
Modified Augmented e-constraint 0.765 0.614 0.591 0.681

Proposed 0.758 0.593 0.695 0.716
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margins as constraints, only one solution can be produced for the
problem, while there is no guarantee that the generated solution
is non-dominated from MMP viewpoint. On the other hand, by
modeling the stability margins as objective functions, a set of Par-
eto solutions, instead of one solution, are generated and the best
solution among them can be selected considering the relative
importance of different objective functions. In other words, the
multi-objective congestion management provides more flexibility
for ISO in real environments. Using the multi-objective congestion
management, ISO can better manage its competing objective func-
tions including the congestion management cost and stability
margins.

The performance of the proposed approach and some other
MMP solution methods for solving the multi-objective congestion
management problem is evaluated in the following. For the pro-
posed approach, 15 utopia hyper-plane points with the cji values
shown in (30) and Fig. 2 are considered.

Three different case studies based on the importance coeffi-
cients of the objective functions are constructed for the MMP prob-
lem of the congestion management as:

Case 1: IC1 ¼ 0:5, IC2 ¼ 0:25, IC3 ¼ 0:25
Case 2: IC1 ¼ 0:5, IC2 ¼ 0:4, IC3 ¼ 0:1
Case 3: IC1 ¼ 0:5, IC2 ¼ 0:1, IC3 ¼ 0:4

In practice, these importance coefficients can be selected by ISO
based on the system technical and economic conditions. In the
above three cases, equal importance has been considered for the
congestion management cost and the stability margins together
(i.e. 0.5 versus 0.5). In the first case, voltage and transient stabilities
have the same importance. However, in the second and third cases
higher importance is given to VSM and CTEM, respectively, since in
real-world applications, a power system may be more vulnerable
against voltage stability or transient stability. The results obtained
from the proposed NNC-based MMP solution approach and five
other well-known solution methods for these three cases are pre-
sented in the following Tables 2–4. The five benchmark methods of
these tables include single objective optimization, weighting MMP,
Ordinary e-constraint, augmented e-constraint, and modified aug-
mented e-constraint. For details of these methods, the interested
reader can refer to [19,20,25]. The normalized objective function
values obtained from each method for the MMP problem are
shown in Tables 2–4. The results of the five comparative methods
are taken from [25]. Based on the normalized objective function
values, the preference or Pk for every solution is determined
through (33), which is shown in the last column of Tables 2–4.
The same optimality-based decision maker is used for all solution
methods of Tables 2–4. As described in the previous section, the
concept of optimality in single-objective optimization is replaced
by the concept of preference in MMP, which measures how much
a solution optimizes different objectives instead of one objective.
Tables 2–4 show that the proposed NNC-based MMP solution
approach outperforms all five other methods in all three cases as
the proposed approach attains the highest preference value in all
Table 2
The results obtained for case 1 of the MMP congestion management problem on the
New England test system.

Method f 1 f 2 f 3 Preference ðPK Þ
Single objective 1.000 0.000 0.000 0.500
Weighting MMP 0.504 0.461 0.862 0.583
Ordinary e-constraint 0.810 0.500 0.500 0.655
Augmented e-constraint 0.618 0.876 0.644 0.689
Modified Augmented e-constraint 0.731 0.752 0.586 0.700

Proposed 0.624 0.843 0.784 0.719
Tables 2–4. The first benchmark method of these tables, i.e. single
objective optimization, shows the poorest performance with the
lowest preference value among all methods, since this method only
considers one objective function. Here, the most important objec-
tive function, i.e. f 1, is taken into account as the single objective
of this method. The single objective optimization fully optimizes
f 1 without optimizing f 2 and f 3. Thus, the normalized values of 1,
0 and 0 are obtained for f 1; f 2 and f 3, respectively, leading to
ðIC1 ¼ 0:5Þ � 1þ IC2 � 0þ IC3 � 0 ¼ 0:5 as the preference PK of this
solution in all three Tables 2–4.

Weighting MMP shows a better performance than single objec-
tive optimization as this method considers all objective functions
through a weighted sum approach with the weights of the sum
are chosen as the importance coefficients of the objectives. How-
ever, weighting MMP can generate only one solution for the MMP
problem, while the e-constraint methods can generate a set of solu-
tions and select the best one among them. Thus, it is seen that the
next three e-constraint basedmethods reach higher preference val-
ues than the weighting MMP. Compared to ordinary e-constraint,
augmented e-constraint can generate more efficient Pareto solu-
tions and so attain higher preference results. Modified augmented
e-constraint further improves the performance by considering the
relative importance of the objective functions in its efficient solu-
tion generation process. However, the proposed NNC-based MMP
solution approach, based on the judiciously reducing the feasible
design space and the uniform distribution of the Pareto solutions,
can effectively cover the objective space and find more preferred
solutions for the MMP problem as shown in Tables 2–4.

Detailed results of the 15 Pareto solutions obtained by the pro-
posed approach are shown in Fig. 5(a)–(f). Among them, Pareto
solutions 4, 9, and 8 are selected for the cases 1, 2, and 3 by the
optimality-based decision maker, respectively. The values obtained
for the decision variables of the MMP congestion management
problem including up generation shifts of units, down generation
shifts of units, demand increments of loads, demand decrements
of loads, and involuntary load sheds are illustrated in Fig. 5(a),
(b), (c), (d), and (e), respectively. It is observed that the Pareto solu-
tions more focuses on down generation shifts compared to up gen-
eration shifts (Fig. 5(b) versus (a)) and demand decrements
compared to demand increments (Fig. 5(d) versus (c)) to relieve
the congestion. Fig. 5(e) shows that very low involuntary load
shedding is employed by the Pareto solutions due to its high cost,
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Fig. 5. Detailed results of the Pareto solutions obtained by the proposed approach for the MMP congestion management problem of the New England test system: (a) up
generation shifts of units, (b) down generation shifts of units, (c) demand increments of loads, (d) demand decrements of loads, (e) involuntary load shedding, and (f)
objective function values.
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i.e. VOLL. The values obtained for the objective functions of the
MMP congestion management problem are demonstrated in
Fig. 5(f). Fig. 5(f) shows distribution of the Pareto solutions in the
three-dimensional objective space of this MMP problem. The three
anchor points of the MMP problem are shown by the circles filled
by ‘+’ in Fig. 5(f). Even distribution of the Pareto solutions obtained
by the proposed method can be seen from this figure. The Pareto
solutions 4, 9, and 8 selected by the optimality-based decision
maker for the three cases 1, 2 and 3 are represented by the circles
filled by ‘D’ in Fig. 5(f). The coordinates of these Pareto solutions in
Fig. 5(f) indicate the objective function values attained by these
solutions.

The computation time of the proposed method for the three
cases of theMMP congestionmanagement problemof theNewEng-
land test system is about 18 s. This run time, measured on a simple
hardware set of a laptop computer with Intel Core i7 CPU-1.6 GHz
and 4 GB RAM, is completely reasonablewithin the decisionmaking
framework of congestion management, e.g. one hour. As a compar-
ison, the computation time of themodified augmented e-constraint
method (which has the closest performance to the proposed
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approach in Tables 2–4) is 20.2 s for cases 1 and 3 and 35.7 s for case
2,measured on a similar hardware set in [25]. This comparison illus-
trates higher computational efficiency of the proposed method
compared to modified augmented e-constraint.

5. Conclusion

Congestion management is an important operation function of
power markets as the operating conditions obtained from the mar-
ket clearing may not be feasible in terms of security limits and sta-
bility margins of the power system. The congestion management
problem involves different competing objective functions consist-
ing congestion management cost and stability margins. While a
straightforward way for tackling with this problem is formulating
it as a single objective optimization model including the stability
margins enforced through the constraints, this approach may not
be able to implement an efficient compromise among different
objectives and lead to a vulnerable power system or unreasonable
congestion management cost. Thus, in this paper, following some
recent research works in the area, congestion management is mod-
eled as a MMP problem. The main contribution of this paper is to
propose a new MMP solution method for solving multi-objective
congestion management problem. The main advantages of the
proposed NNC-based MMP solution method are its systematic
approach for reducing the feasible design space and effective cov-
ering of the objective space through a uniform distribution of the
Pareto solutions. These capabilities enable the proposed approach
to find more preferred multi-objective solutions compared to the
other MMP methods, such as weighting MMP, ordinary
e-constraint, augmented e-constraint and modified augmented
e-constraint, which have been recently presented in the other
research works for solving multi-objective congestion manage-
ment problem. Additionally, an optimality-based decision maker
has also been proposed to select the most preferred solution,
among the generated Pareto set for the MMP problem, considering
the relative importance of the objective functions.
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