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Abstract—Smiles and laughs detection systems have attracted
a lot of attention in the past decade contributing to the im-
provement of human-agent interaction systems. But very few
considered these expressions as distinct, although no prior work
clearly proves them to belong to the same category or not. In
this work, we present a deep learning-based multimodal smile
and laugh classification system, considering them as two different
entities. We compare the use of audio and vision-based models as
well as a fusion approach. We show that, as expected, the fusion
leads to a better generalization on unseen data. We also present
an in-depth analysis of the behavior of these models on the smiles
and laughs intensity levels. The analyses on the intensity levels
show that the relationship between smiles and laughs might not
be as simple as a binary one or even grouping them in a single
category, and so, a more complex approach should be taken
when dealing with them. We also tackle the problem of limited
resources by showing that transfer learning allows the models to
improve the detection of confusing intensity levels.

Index Terms—laugh, smile, multimodal, transfer learning,
laughter detection, smiles detection, intensity levels, arousal levels

I. INTRODUCTION

With the growth of virtual agents and other human-centric
applications, detection systems for nonverbal expressions have
been attracted the attention of the research community in the
past decade, especially concerning smiles and laughter (S&L).
This is due to the importance of these expressions in human
communications. Indeed they not only have emotional but
also social functionalities: according to [1], S&L tend to
happen during interactions with others rather than alone. They
can control the flow of a conversations: change the current
topic [2], [3] or encourage a person to carry on speaking
[4]. Laughter can be contagious to listeners and can lighten
the mood of the conversation [5]. S&L are also expressions
used frequently in human-human interactions. Indeed the ICSI
corpus [6] counts about 10% of its total verbalizing time as
being laughter [7], [8] and Chovil in [9] reports not even
considering smiles in the study due to its high frequency of
occurrence in the data compared to other expressions.

It is therefore not surprising that the detection of laughs
or smiles became an attractive field rising alongside the deep
learning technologies and AI-backed human-agent interaction
systems.

§Equal contribution

A plethora of work can be found on smile detection. We
estimate that the vast majority of them are based on the visual
cue as we could find very few work based on other modalities
[10]–[12], notably the audio cue was rather absent from the
state-of-the-art although smiles were proven to be recognizable
audible [13]–[15]

Fewer work can be found on laughter detection. They focus
on the audio and the visual modalities individually but also in
multimodal approaches. Kantharaju et. al. in [16] present an
automatic detection of different categories of laughter using
audio-visual data. The authors in [17] use full-body motion
capture data to detect laughter while [18] investigates the
laughter detection based on audio and facial motion capture.

Surprisingly, very few work can be found where S&L are
considered as two distinct expressions, and none of them
attempts to classify/detect them as different entities. Indeed,
even though the authors in [19] annotate them as two expres-
sions in their work, they build classifiers considering them
as the same class. The authors in [20] propose a system
classifying smiles vs non-smiles based on the visual cue and
laugh/non-laugh based on a single modality and on multimodal
data, but no smile/laugh discrimination is presented. One
reason for this might be the difficulty for the models to learn
the differences between smiles and laughs, especially given the
limited amount of resources available. Another reason might
be the common representation for some, of smiling being a
less intense expression of laughter or both even both being
the same expression, which is to the best of our knowledge,
unproven yet.

Although S&L are commonly defined as the former being a
purely facial expression while the latter being an audio-visual
one, no clear answer can be found in the literature as of the
relationship between these two: are they the same expression
at different intensity levels ? Are they distinct expressions
although smiles can be perceived in laughs ? Or does it
depend on the context/situation ? Ruch and Ekman observe
in [21] that enjoyment smiles were involved in laughter while
Trouvain’s perception study in [22] revealed that some partic-
ipants preferred to categorize speech-laughs into smiles and
laughs (speech-laughs being laughter-speech co-articulation
phenomenon involving laughter intermingling with speech). In
[23] the authors present existing relationships between S&L
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on several levels, suggesting a common ancestry of these
expressions and therefore that at least some relationship exist
between them.

Since no study showing proof of smiles and laughs being
separated expressions exists, nor a smiling-laughter continuum
established, we consider it important, in this work, to approach
S&L as two distinct expressions. Doing this makes it easier
to analyse the common and differentiating points, and allows
us to leverage the feature extraction power of deep learning to
further examine the intrinsic problems of smiles and laughter
detection systems.

In this paper, we present several contributions. First, we
propose a first step towards an efficient S&L detection system
discriminating between laughs and smiles, as opposed to
systems detecting a single category of smiles and laughs, by
building and analysing classifiers based on the audio and the
visual cues. Given the observations mentioned above regarding
the relationship between S&L , we push the analyses further by
examining the behavior of models with regard to S&L intensity
levels, while being trained without any supervised knowledge
of these intensities. These analyses reveal that not all S&L
levels are equal in the eyes of deep learning systems. This
understanding might change the simplistic approaches taken
for building laughter or smiling detection systems.

S&L are difficult to collect in naturalistic setups and to
annotate. This difficulty to access accurately annotated data
represents a challenge to develop efficient systems and a
significant barrier of entry for new contributions in the field.
Indeed this lack of well annotated data makes it more difficult
to leverage the efficiency of deep learning methods, and thus
stalls the improvement of S&L detection systems. So, as a
second main contribution, we apply transfer-learning by lever-
aging the knowledge learned with speech data by the models
to improve the efficiency and generalisation capabilities of the
models for S&L detection.

The following is a more detailed summary of our main
contributions in this work:

1) we propose the first deep learning-based S&L classifi-
cation system that we know of that considers S&L as
two different entities

2) a deeper analysis than what can be found in the literature
of the model’s behavior showing that deep learning-
based systems implicitly take into account the S&L
intensity levels in their learning process without being
trained with any explicit knowledge of them

3) we show that transferring knowledge from visual
lipreading task and from audio word classification im-
proves the performance of the models and help tackle
the problem of limited resources

The paper is organised as follows: in Section II we present
the datasets used for our experiments. Section III contains
the description of the model architectures for the audio and
the visual modalities, as well as for the fusion of both. We
describe the experimental protocol followed to train the models
in Section IV and we discuss the results of the aforementioned
experiments in Section V.

II. DATASET

The data used here are subsets of the Nonverbal Dyadic
Conversation on Moral Emotions (NDC-ME) [24], and of the
IFA Corpus (IFADV) [25] for which the S&L were annotated.
The S&L were segmented and the intensity level was added to
each segment. We followed the annotation protocol described
in [26]. The annotations were made using the ELAN software
[27] by two annotators on average and are available to the
community [28].

NDC-ME is an audiovisual collection of dyadic interactions
focusing on the emotions expressed during speaker-listener
interactions. The subset we use is distributed in 17 dyadic
interactions split between 10 male and 4 female individuals,
with 7 male-male, 6 male-female and 4 female-female pairs.
During these interactions, each duo discusses emotional topics
introduced by an open question. Since some of those interac-
tions are not fully annotated, the total duration of annotated
data is about 90 minutes with an unbalanced distribution
between individuals.

IFADV is also a collection of audio-visual recordings of
dyadic conversations. The subset we used contains 23 dyadic
interactions of 15 male and 28 female individuals with 4
male-male, 8 male-female and 11 female-female pairs of
interactions. The annotations cover only the first two minutes
of each file, leading two around 46 minutes of annotated data.

The laughs intensities are divided in three levels (low,
medium and high) and the smiles intensities in four (subtle,
low, medium and high). According to the authors of the
previously mentioned papers, the subtle level was added to
capture all the levels of smiles even the ones that are normally
left out because of the difficulty to annotate them: subtle smiles
co-occurring with other expressions for instance. A third class,
referred to as the None class, includes all segments of the
recordings that contain neither laughter nor smiles, such as
neutral expressions and speech. Therefore we ended up with
three main classes Laughs, Smiles and None, which will be
used for training without taking into account the intensity
levels.

III. CLASSIFIERS/DETECTION SYSTEMS

In this section, we describe the deep learning architectures
used for classification. Since S&L are distinguishable through
both audio and visual, we first separated our system in two
models, one per modality. We used the audio and visual
models proposed in [29] and [30], which present audio word
recognition/classification and visual lip reading applications.
We then perform the fusion of both modalities. Fig. 1 displays
a schematic representation of the system architecture.

There were several intuitions behind these choices. The first
one is the fact that modalities, as mentioned before, could be
a major factor helping a model discriminate between smiles,
laughs and everything else. This type of architecture already
takes this aspect into account and successfully applies it on
speech, making it a good candidate for our experiments. The
second intuition is the fact that our classification learning
could potentially benefit from knowledge learned from speech.



Fig. 1: Architectures of the audio model, the visual model and the fusion of both.

Indeed by learning to recognise speech pattern, these models
learn audio and visual features as well as pattern that could
also be useful for classifying smiling, laughter and others. In
fact, given the limited amount of S&L data available, a transfer
learning technique is a good option to optimise learning with
a small dataset. Transfer learning based on facial recognition
has already been used successfully in the context of smiles
detection [31].

A. Audio Cue

Our audio model is a mix between the backbone architecture
proposed in [29] for speech audio data and the frontend layers
proposed in [30]. The model consists of a modified 18-layer
ResNet backbone using 1D kernels fed to a multi-scale tempo-
ral convolutional network (MS-TCN). We used 1D operations
since audio waveforms are unidimensional signals. The MS-
TCN is a multi-layered combination of 1D convolutions with
batch normalisation and PReLU activation layers, designed in
such a way that it models both short and long term temporal
information simultaneously. The final layer of the MS-TCN
block is a fully connected (FC) layer with a softmax activation
function to perform the classification.

B. Visual Cue

We used the architecture proposed in [30] for the visual
recordings. The standard ResNet18 backbone was modified
to have its first layer to be a 3D convolution of kernel size
5×7×7. This layer extracts spatiotemporal features from the
sequences of image given as input to the model. The backbone
output is fed to the MS-TCN block of layers described above.
In the same fashion as for the audio, we used a softmax
activation function after the MS-TCN block to classify data
as Laughs, Smiles or None.

C. Fusion

We performed the fusion by feeding the output of each
modality to a network of two fully connected layers of size
1024 and 3 respectively. We froze the weights of each modality
and we used the concatenation of their output as input of the
fusion models.

IV. EXPERIMENTS

For our experiments, we extracted from the NDC-ME data
8,352 videos with 1.22s windows overlapping by 0.4s and split
them with respect to their classes giving us 446 Laughs, 4,858
Smiles and 3,048 None. We re-sampled the audio data at 16
kHz and we converted the visuals from RGB to grey scale and
then extracted a 96 x 96 pixel region of interest (ROI) around
the mouth. We then distributed 70% of each class as training
data, 15% as validation data and 15% as test data. Classes
were balanced during partitioning using a random weighted
batch sampler with each class given a weight proportional to
the inverse of the number of elements in the class.

We conducted three different training sessions for each
modality using exclusively the NDC-ME subset: a training
with weights randomly initialised (referred to as from scratch
models), an other one where we trained all layers from the
pre-trained lipreading model (fully fine-tuned models) and the
last one where we trained only the MS-TCN related layers of
the pre-trained model (last layers fine-tuned models). Each
training session consisted of 80 epochs with an evaluation
of the model at the end of each epoch using the validation
partition. Since we had limited amount of data, we used an
initial learning rate of 3 × 10−6 and a batch size of 16. The
learning rate decreased using a cosine annealing schedule.
The models were then evaluated with the test partition of our
NDC-ME subset on the one hand and on the other hand with
all annotated IFADV data to assess the generalisation of the
models.

For the fusion, we trained our network of fully connected
layers initialised with random weights using several configu-
rations of audio and visual models. In this paper, we present
only two configurations: the first one combines both modalities
trained from scratch while the second configuration is based
on the results obtained for each modality individually. This
second fusion model combines the output from the audio
model fine-tuned on its MS-TCN layers only and the visual
model fine-tuned on all layers. We used an initial learning
rate of 3 × 10−6 and a batch size of 16, and the training
lasted 30 epochs. The other possible combinations were indeed
tested during the experimentation phase, but did not bear any



interesting results (either performed generally less well than
the ones presented here or from which we could not draw any
relevant conclusion).

V. RESULTS AND DISCUSSIONS

A. Results

Table I contains the Precision, Recall, F1-score and UAR
metrics for the S&L classifications. The configurations are
separated by modality and evaluation dataset. The highest
value per metric and per separation is highlighted in green. We
can observe better generalisation to other datasets for the fine-
tuned models compared to the models trained from scratch.
Fine-tuning is also better for classification except on the NDC-
ME evaluation of the fusion model.

Fig. 2a, Fig. 2b and Fig. 2c each contains four heatmaps
representing, just like confusion matrices, the way the Laughs,
Smiles and None were classified but breaking down the clas-
sification results of the laughs and smiles into their different
intensity levels. Each column shows the class predicted by the
model, while each row is the ground truth intensity levels of
each expression. The values are presented in percentages of
the sum of the corresponding row/ground truth: for example,
X% in (row 1, column 1) represents X% of the sum of row 1.

In this work, we present and discuss only the results of the
configurations for which we were able to draw interesting con-
clusions. But the readers should note that all the configurations
not reported for a specific modality but that were reported for
another one were indeed carried on during the experimentation
phase but left out of this paper on purpose. This is for similar
reasons as the fusions configuration in Section IV: the results
not reported here, did not bear any interesting conclusion or
the performances were not good enough to even be relevant
for this work (for example fine-tuning all the layers the audio
modality gave very poor classification results, no interpretation
of the results could be made, and so was not reported here).

Fig. 2a shows heatmaps related to the audio models trained
either from scratch or by fine-tuning the last layers only. The
first and second heatmaps from the left are the results of the
tests on the NDC-ME data. We can observe that the medium
and high levels of laughs have more True Positives than the
other cases for both models, and that the fine-tuned model
achieves higher results for low level laughs than the model
trained from scratch. The third and fourth heatmaps are the
results for the same models in the first and second heatmaps
(trained on NDC-ME data) but tested on IFADV data. The
model trained from scratch tends to classify the samples
mostly into the None category, while the fine-tuned model
shows better performance for all laughter intensity levels.

Heatmaps in Fig. 2b shows the results for the visual models
trained either from scratch or by fine-tuning all layers. The
first and second heatmaps from the left show that both models
have similar results for lower levels (subtle and low) smiles
and for None. The model from scratch seems to confuse
laughter with smiles no matter the intensity, while the fine-
tuned model performs better for high level laughs. The third
and fourth heatmaps contain the results for the same models

mentioned before but applied on the IFADV data. The model
trained from scratch shows, as expected since applied on a
different dataset, decreased performances but the fine-tuned
one seems to perform well on laughs. It seems to improve the
performance on smiles compared to the model trained from
scratch.

Fig. 2c displays the performance of the fusion of the models
trained from scratch for audio and visual modalities (labelled
as ”From scratch”) and the fusion of the fine-tuned audio and
visual models mentioned above (labelled as ”Fine tuning”).
The first and second heatmaps show that the fusion appears
to have similar results on NDC-ME data, with better a per-
formance on high level laughter with the models trained from
scratch. The third heatmap shows that the low generalisation
rate of both modalities trained from scratch induces the same
behaviour on their fusion model, while the fourth one presents
better True Positives on both laughter and smiles detection.

B. Discussion

Firstly it is clear that not one model performed better than all
the others in all categories. But by considering overall results,
we can argue that, when training and testing on the same
dataset, models fusion trained from scratch performs relatively
well on all classes, even better than the fine-tuned visual model
which, interestingly, seems to confuse low level laughs with
smiles. The fusion model seems able to keep the overall good
performances of the visual modality while improving the bad
ones (low level laughs notably). It is worthy to note though,
that in this work, a simple fusion mechanism and training were
applied. Improving these should allow to take better advantage
of both modalities. We can also note that audio laughs, when
misclassified, are most often confused with smiles, especially
low-level laughs. Which is an interesting point suggesting that
a relationship might exist even in the audio modality. However,
this modality does not perform as well on smiles, for either
evaluation datasets. It is true that the smiles true positives
are quite high but so are the false positives represented by
the None being misclassified as smiles. On an intuitive level,
this makes sense. Indeed, although smiles have been shown
to be audibly recognisable, smiled speech is more a change
of voice than a burst of affect as is laughter, which makes
it more complicated to discriminate from non-smiling speech,
especially with the limited amount of data at our disposal.
The audio modality seems to perform rather well on laughter,
but the smile misclassification leads to poor metrics value.
The visual models seem to perform overall better for the
smiles than audio modality. This also intuitively makes sense
since an obvious discriminating feature between smiles and
laughs is the audio cue. Nevertheless the models also seem to
perform rather well on laughs especially when fine-tuned, this
is probably due to the physical movements accompanying the
laughs that are less present when smiling.

Some interesting notes can also be taken concerning the
fusion. First, the fusion surprisingly seems to work better when
fused models were trained from scratch, than from fine-tuned
ones. This fusion of models trained from scratch seems to



TABLE I: Precision, Recall, F1-score and UAR metrics per configuration for S&L classification. The configuration name
follows a XYZZZ pattern with X being the modality: A (Audio), V (Video) or F (Fusion); Y the training method: S (from
Scratch) or F (corresponding Finetuning method); ZZZ the evaluation dataset: NDC (NDC-ME) or IFA (IFADV). The highest
value for each configuration and dataset is coloured in green.

AUDIO VIDEO FUSIONMetrics ASNDC AFNDC ASIFA AFIFA VSNDC VFNDC VSIFA VFIFA FSNDC FFNDC FSIFA FFIFA
Precsion 0.4828 0.4937 0.3431 0.3719 0.7116 0.7074 0.3993 0.4137 0.6154 0.6018 0.3837 0.4986
Recall 0.4769 0.4757 0.3689 0.4379 0.6743 0.6793 0.4316 0.4770 0.7829 0.7138 0.3847 0.4639
F1-score 0.4798 0.4845 0.3555 0.4022 0.6924 0.6930 0.4148 0.4431 0.6892 0.6530 0.3842 0.4807
UAR 0.6081 0.6058 0.5206 0.5578 0.7571 0.7611 0.5731 0.5929 0.8077 0.7364 0.5422 0.6046

(a) Heatmaps: Audio models

(b) Heatmaps: Visual models

(c) Heatmaps: Fusion models

Fig. 2: Class distribution heatmaps. Each column corresponds to the predicted class while each row shows the ground-truth
label and its intensity. The colour gradient expresses the distribution in percentage per row (the sum of each row should be
100%).



allow the model to use the best prediction of both modalities
in one system by improving the recall at the cost of a decrease
in precision. Another interesting point to note regarding fine-
tuning in general is that it improves laughter classification and
generalisation (when applied to IFADV data) in all cases. It
also seems to improve smiles true positives score but at the
expense in some cases (audio and fusion - fourth heatmap
from the left) of the smiles false positives, represented by the
confusion of None with smiles. For the visual modality, fine-
tuning seems to improve the performance of the models both
for smiles and laughs detection and its generalizability most of
the time which is observed on the results of the models on the
IFADV data. The only slight deterioration that we can observe
is that more None samples are confused for smiles than in the
model trained from scratch. We can deduce that fine-tuning
allows a model to use the knowledge gained from prior training
on speech or lip-reading data to increase its robustness to other
datasets.

With the goal to get a better understanding of the models’
data representation especially on the impact of fine-tuning,
we present a visualisation of the ending layers of the models.
For this, we extract embeddings from the output of the MS-
TCN block’s last layer. We then apply a t-SNE [32] method to
reduce the embeddings dimensions to a two-dimensional space
while retaining the most relevant features. The general process
is depicted in Fig. 3 while the results on the audio modality
are shown in Fig. 4 and the ones on the visual modality in
Fig. 5. For both modalities, we can see that fine-tuning allows
to discriminate better the three classes. Indeed the audio laughs
(shades of orange on the figure) are pushed at the extremities
of the pattern, while the smiles are still rather mixed with
the None class, which is coherent with the results presented
above. An even more interesting observation can be made on
the visual data: we can clearly see the laughs being pushed at
the left of the pattern, the low level laughs (yellow dots) tend
to also be present in the centre of the pattern, the higher level
smiles (darker blue) tend to be more mixed with the laughs and
lower level smiles (lighter blue) with the None - all coherent
with our observations made above.

An analysis of the results with respect to intensity levels
shows that the system tends to learn implicit knowledge of
those levels from the data. Apart from the high level laughs,
the levels on the extremes seem to be more often confused
by the models than the medium ones. Low level laughter are
in general mostly confused as smiles and the high levels of
smiles (medium and high) are mostly confused as laughs while
the low levels (subtle and low) are mostly confused as being
None (which, as we could observe in our dataset, contains a
majority of neutral expressions or speech). These observations
can be seen in almost all the presented results from the
visual modality. This confusion by models are intuitive to us.
Indeed, although they were not given any information about
the intensity levels of the expressions during training, the
models seem to have more difficulty with some intensities
on the extreme levels than with others. In the visual modality,
if we revised the current results by considering the samples

Fig. 3: t-SNE dimensional reduction applied to each modality.
Graphic results are display in Fig. 4 and 5.

classified as higher levels of smiles (medium and high) as
laughs and lower level smiles (subtle and low) as None (thus
having only 2 classes at the end instead of 3), the data would
be correctly classified as laughs at an average 69.15% with an
standard deviation of 5.58% compared to the current average
rate 66.46% with an standard deviation of 10.06%. We assume
that this is due to the nature of the expressions themselves,
since the features representative of some intensities in one
expression can be shared with features in another expression
(high level smiles and laughs can both show pulled lip corners
and raised cheeks for instance).

We can therefore mainly conclude that:

1) Fine-tuning is beneficial for performance and general-
ization in most cases and should be considered instead
of training a model from scratch.

2) Given all the observations and analyses made regarding
the intensity levels, we can safely conclude that the
relationship between smiles and laughs is not as simple
as a binary or single class relationship. A more complex
relationship should therefore be considered when dealing
with these expressions,

Finally, the readers should note that we suspect some aspects
of the dataset to have probably influenced negatively some of
the results. A first aspect is that some files contain speech
coming from the interlocutor of the concerned subject, over-
lapping the subjects laughter. More accurate detection could
be achieved by removing those artefacts from the dataset.
A second drawback is that some of the annotations contain
subjectivity due to the limited number of annotators and this
can make the annotations more sensitive to human error.

VI. CONCLUSION AND FUTURE WORKS

In this work, we presented a study on deep-learning based
S&L classifiers discriminating laughs and smiles as two
separate entities. We investigated models applied to word



(a) Model trained from scratch. (b) Last-layers fine-tuned model.

Fig. 4: Audio models outputs using a 2D t-SNE representation.

(a) Model trained from scratch. (b) Fully fine-tuned model.

Fig. 5: Visual models outputs using a 2D t-SNE representation.

recognition and lip reading applications for audio and visual-
based S&L classification and we fused both modalities with a
simple network of fully connected layers. We showed that the
fusion system achieves better overall performance than single
modalities. We also highlighted the influence that fine-tuning
has on the generalization of all models to different datasets.
We analysed the behavior of the models with respect to the
S&L intensity levels and concluded that these levels should
be considered in S&L detection as they have an impact on the
models trained in all modalities considered here, even though
no prior knowledge was given about them to the model during
training.

We intend to investigate in future works other fusion ap-
proaches and their effect on classification, trying to improve
the fusion results and focus on improving the S&L detection
system’s efficiency. The observations regarding the behavior
of the models with respect to the intensity levels suggested
that more complicated relationships between smiles and laughs
should be considered rather than a simple binary one or
grouping them in a single class. We will therefore also study
different grouping methods in different contexts to optimize
the use of the datasets. Finally we will integrate intensity level
knowledge in the training process and analyse their effect on
the knowledge acquired by the models per modality and the
impact on the performances.

ETHICAL IMPACT STATEMENT

Several aspects should be considered when using data rep-
resenting emotional states or that could be used as biometric
information. In this section we attempt to draw the attention
of the readers to a non-exhaustive set of aspects to take into
account.

S&L are socio-culturally dependant expressions. Therefore,
using them in applications without taking the context into
account (user gender, socio-cultural background, interaction
topic, etc.) could have unintended impacts, for example by
changing the message intended or by extracting false infor-
mation in a user profiling app.

The resources available in S&L related work in general
are limited due to the difficulty of collecting and annotating
these expressions and their context. This makes it difficult to
generalise the results obtained. Even in this work, although
efforts were put in this to balance our datasets for the purposes
of our experiments, improvements are still needed and even
though the results suggested here provide good directions
for future work, a particular attention should be put on the
diversity of the subjects in the data and not only its quantity.

S&L have been considered in previous work for biometric
identification purposes [33], [34]. It is therefore important
that the field of S&L detection in general should evolve in
a direction preserving the users privacy.
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