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Injecting noise in a multistable non-linear system can result in transitions between its stable states. The transition probability is related to the ratio between
the potential barrier to overcome and the noise intensity. When such a system is modulated periodically, stochastic resonance (SR) is possible. In this
regime, a particular noise intensity leads to periodic noise-assisted transitions.

We show that temperature can be used as a noise source in a non-linear modulated photonic cavity to induce SR. This regime can be used for frequency
conversion to a signal frequency with efficiency reaching up to 40 % for certain parameters.
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{ Modelling and numerical methods }
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(a) Small temperatures: the transition probability is close to zero.

(b) Temperature increase: the system can jump between stable states.

(c) SR : Periodic transitions: maximum conversion efficiency.

(d) Very high temperatures: high probability of transition, conversion
efficiency decreases.

(e) Conversion efficiency maximum at stochastic resonance.

(f) At critical coupling, most of the incoming power is absorbed by the
cavity : transmission is minimal

(g) High coupling leads to high conversion efficiency reaching up to
40 %.

The outgoing power is tuned by changing the temperature and maximized at stochastic resonance. Frequency conversion is optimized by considering a
large coupling factor compared to the internal dissipation rate. Please check our recent publication: B.Braeckeveldt et al. JOSA-B, 39, 2074-2083 (2022).
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