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Abstract: We describe a systematic approach for the evaluation of Witten dia-

grams for multi-loop scattering amplitudes of a conformally coupled scalar φ4-theory

in Euclidean AdS4, by recasting the Witten diagrams as flat space Feynman integrals.

We derive closed form expressions for the anomalous dimensions for all double-trace

operators up to the second order in the coupling constant. We explain the relation

between the flat space unitarity methods and the discontinuities of the short distance

expansion on the boundary of Witten diagrams.
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1 Introduction

Although quantum field theory in curved space time has a long tradition, progress

beyond classical, or tree-level calculations has been slow, compared to flat space

calculations because of technical complications due to the absence of translation

invariance, in particular.

The simplest space-times that are not flat are arguably de Sitter and anti-de

Sitter space (AdS), since they have the same number of isometries as Minkowski

space. Furthermore, there is a natural analog of S-matrix elements for these spaces in

the form of conformal boundary correlators for anti-de Sitter space [1–4] and the wave

function of the universe for de Sitter [5–10]. However, calculations in these spaces

are still technically challenging since no Fourier transformation into four-momentum

space exists and one has to evaluate amplitudes in position space. Recently there

have been several attempts at loop calculations in AdS, introducing new techniques

like Mellin space, differential representation and using the AdS/CFT correspondence

in combination with conformal bootstrap methods (see e.g. [11–42]).

Explicit loop calculations in these backgrounds in position space have been suc-

cessfully carried out for de Sitter [43] and for anti-de Sitter space [44, 45]. This has

lead to new results for loop corrections to the operator product expansion (OPE) co-

efficients and dimensions of “double-trace” operators of the three-dimensional confor-

mal field theory that governs the wave-function or boundary correlation functions—

the analog of branching ratios and the mass spectrum in flat space QFT. Never-

theless, it did not provide a systematic formalism for pushing these calculations to

higher-loop orders.

One of the aims of the present paper is to fill this gap. We do so by mapping

the AdS calculations to flat space calculations where an impressive machinery for

an analytic evaluation of Feynman integrals has been developed in recent years [46–

52]. Here, we bring the four-point function of a conformally coupled scalar φ4-theory

in euclidean AdS4 into a form we can interpret as a flat space Feynman diagram

and evaluate it analytically. In doing so, we are able to identify some well known

structures of flat space momentum integrals in position space calculations in AdS, in

particular, various types of special functions and the corresponding complex geometry

manifested in the integrands.

For a conformally coupled scalar field, the dimension ∆ of the “single-trace”

operator whose two- and four-point function we compute in this paper equals ∆ = 1

or ∆ = 2, depending on the choice of boundary conditions. We explain that the

results for ∆ = 2 can be obtained from the ones for ∆ = 1 by using a descent

procedure obtained by the action of differential operators on the Feynman integrals.

To the loop order that is considered in this work, the Witten diagrams for ∆ = 1

and ∆ = 2 are expressed in terms of single-valued multiple polylogarithms [53–55]

and elliptic polylogarithms [56–63].
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For a field of dimension ∆ ≥ 3, the large distance behaviour of the bulk AdS

propagator has a logarithmic behaviour, which can be treated by introducing an

auxiliary analytic regulator. This leads to non-integer powers of propagators, familiar

from the analytic regularisation [64].

As far as concrete results are concerned, the framework developed in this paper

allows us to derive a closed form of the anomalous dimensions for all “double-trace”

operators that arise in the deformation of the generalized free field in three euclidean

dimensions. In the absence of bulk interactions the three-dimensional conformal field

theory data is that of a generalized free field O∆ of dimension ∆ = 1 and ∆ = 2 for

which the double-trace operators are schematically of the form : O∆�
n∂lO∆ : with

dimension ∆(n,l) = 2∆+2n+ l and spin l. A φ4-interaction in the bulk amounts to a

shift in the dimensions of double-trace primaries as well as a deformation of the OPE-

coefficients in accordance with the conformal bootstrap [65]. As an application of

our formalism we derive a closed form of the anomalous dimensions for the complete

set of double-trace primaries, up to second order (or one-loop) in the deformation

parameter which can be taken to be the renormalised φ4 coupling λR. To give a

flavor of our results, we list some of the anomalous dimensions derived in this paper.

Writing ∆(n,l) = 2∆+ 2n+ l + γ
(1)
n,l (∆) + γ

(2)
n,l (∆), we determine

γ
(1)
n,0(∆) =

λR

16π2
(1 + δ∆,1δn,0) ; γ

(2)
n>0,l>0(∆) =

λ2
R

(16π2)2
T∆
n,l , (1.1)

with

T∆
n,l = − 2(l2 + (2∆ + 2n− 1)(∆ + n+ l − 1))

l(l+ 1)(2∆ + 2n+ l − 1)(2∆ + 2n+ l − 2)
−

2(−1)∆(H
(1)
l −H

(1)
2∆+2n+l−2)

(2∆ + 2n+ 2l − 1)(∆ + n− 1)
, (1.2)

where H
(1)
i =

∑i
n=1 n

−1 is the harmonic sum. We derive similar results for all values

of n and l in section 6.

To apply the flat space formalism in this work, we use dimensional regularisation.

While preserving flat space Poincaré invariance, this regularisation does not preserve

the AdS-invariance. This is in contrast to the regularisation scheme introduced in [44]

which, however, does not easily combine with mapping to flat space techniques used

in this work. We find a way to implement dimensional regularisation, which restores

the AdS-invariance of the renormalised four-point function

A natural question is whether the results for the anomalous dimensions are

scheme independent. Given that they correspond to what would be mass relations in

a flat space QFT one would expect this. On the other hand, since dimensional regu-

larisation is not AdS-invariant, one may question its validity. There are two ways to

test scheme invariance. One is to compare with the AdS-invariant scheme in [43–45].

For this purpose, we perform the calculations in both schemes and then show how

to relate them. Another test follows from the conformal bootstrap, or conformal

block expansion. It implies that the square of the first order anomalous dimension
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γ(1)(∆), that multiplies a logarithm of the cross-ratio in the short distance expansion

of the tree-level cross diagram, enters in the coefficient of the logarithm square term

of the one-loop diagram [43, 45]. This can also be seen to follow from unitarity by

relating sequential discontinuities of amplitudes at different loop order.1 While not

strictly necessary here, since we compute the one-loop amplitude explicitly, we pro-

pose a simple method, based on the Cutkosky rules [67–69], to extract the sequential

discontinuities of the Witten diagrams. We illustrate the success of this method by

comparing two examples to our exact results and emphasize that this method could

be useful for calculating higher-loop corrections to anomalous dimensions.

The paper is organized as follows: In section 2 we present the conventions as well

as the definitions and normalizations of the propagators used in the sequel. In partic-

ular the relation to boundary conditions in AdS is discussed in detail. We show how

to rewrite the AdS propagators as a combination of flat space propagators which will

be important in mapping AdS position space loop calculations to momentum space

calculations in flat space. In section 3 we describe the quantization of an interacting

scalar field on the Poincaré patch of AdS4, in particular, the choice of vacuum as

well as the relation of bulk- and boundary n-point functions to conformal correlators.

We also specify the Witten diagrams which we will compute in the sequel as well

as two regularisation prescriptions, natural for AdS- and flat space calculations, re-

spectively and the relation between them. Finally, we introduce differential operator

relations which will be important to interpolate between different boundary condi-

tions in loop calculations. In section 4 we evaluate the four-point correlation function

at tree-level and one-loop, both in the AdS-invariant regularisation and dimensional

regularisation relevant for the flat space approach to AdS-correlators. In section 5 we

evaluate the flat space unitarity cuts of the cross diagram and a one-loop diagram,

and show their relation to the discontinuities of the short distance expansion on the

boundary. We discuss renormalisation of UV-divergences in both schemes and, in

combination with appendix C, provided closed expressions for the finite parts that

will provide the data to determine the anomalous dimension of “double-trace” oper-

ators in section 6. In section 7 we discuss some further application of the methods

presented in this work. We have collected in the appendix A various expressions in

terms of single-valued multiple polylogarithms that enter our analytic evaluations.

In appendix B we collect various results about the tree-level (cross) Witten diagram.

In section B.1 we give the evaluation for the cross diagram for all ∆ in terms of

single-valued polylogarithms of weight at most two, in appendix B.2 we evaluate the

Witten cross diagram in dimensional regularisation, and in appendix B.3 we give the

expansion of the cross for general conformal dimension ∆. In appendix C we collect

our results for the evaluation of the one-loop Witten diagram, and in appendix D

1In AdS one can equally consider the double discontinuity [17, 30, 37, 39, 66] to relate the

logarithm square terms at one-loop to γ(1)(∆) at tree-level.
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we recall the expressions for the OPE coefficients for a generalized free field in d = 3

dimensions with external conformal dimension ∆ and the series representation of the

conformal blocks in three dimensions.

2 Coordinate systems and propagators in AdS

In this section we review the basic geometric properties of anti-de Sitter space as

well as the propagators of a scalar field theory in AdS. This defines the framework

that will be used for mapping the computation of Witten diagrams in the bulk of

AdS space to expressions that are familiar from momentum space Feynman integrals

in flat space. In the rest of this paper, except for section 5, we will exclusively work

with the Wick rotated geometry also known as EAdS.

2.1 Coordinate systems

Euclidean anti-de Sitter space or Lobachevsky space in four dimensions is a max-

imally symmetric space which can be embedded as a disconnected hyperboloid in

the five-dimensional ambient space equipped with the mostly plus metric (ηAB) =

(+, · · · ,+,−)

X
2 := ηABX

A
X

B = (X0)2 + · · ·+ (X3)2 − (X4)2 = − 1

a2
, (2.1)

where a is the inverse of the anti-de Sitter radius. There is a map from this space to

the upper-half space,

H+
4 :=

{
X := (~x, z), ~x ∈ R

3, z > 0
}
, (2.2)

equipped with the Poincaré metric

ds2 =
1

a2z2
(dz2 + d~x2). (2.3)

The Poincaré coordinates are related to the embedding coordinates by (1 ≤ i ≤ 3)

X
0 =

1√
2az

(1− ~x2

2
− z2

2
), X

i =
xi

az
, X

4 =
1√
2az

(1 +
~x2

2
+

z2

2
) . (2.4)

The SO(4, 1) invariant geodesic distance

d(X,Y) =
1

a
arccosh

(
−a2X ·Y

)
, (2.5)

involving hyperbolic functions complicates calculations unnecessarily. We use instead

the hyperbolic “angle”,

K(X,Y) := − 1

a2X ·Y =
2zw

(~x− ~y)2 + z2 + w2
, (2.6)

– 5 –



with

Y
0 =

1√
2aw

(1− ~y2

2
− w2

2
), Y

i =
yi

aw
, Y

4 =
1√
2aw

(1 +
~y2

2
+

w2

2
) . (2.7)

We introduce, the anti-podal map

σ(~x, z) := (~x,−z) , (2.8)

whose fixed locus is given by the conformal boundary of anti-de Sitter space, located

at z = 0. This operation exchanges the upper-half space in (2.2), with z > 0, and

the lower-half space H−
4 :=

{
(~x, z), ~x ∈ R

3, z < 0
}
.

It is easy to see that for coincident points in the bulk Y = X, i.e. (~y, w) = (~x, z),

we have K(X,X) = 1 and that for coincident antipodal points in bulk Y = σ(X),

i.e. (~y, w) = (~x,−z), one finds K(X, σ(X)) = −1.

2.2 Propagators in EAdS4

The bulk-to-bulk propagator Λ(X,Y; ∆) for a scalar field of mass m between two

bulk points X and Y in EAdS is a solution of

(
−✷+m2

)
Λ(X,Y) =

1
√

|g|
δ4(X−Y) , (2.9)

subject to boundary conditions at z = 0. By expressing the d’Alembertian in terms

of the hyperbolic “angle” K = K(X,Y) gives
[

K2(1−K2)
d2

dK2
− 2K

(
1 +K2

) d

dK
+

m2

a2

]

Λ(K) =
1√
g
δ4(X−Y) . (2.10)

It is clear that the solution only depends on the hyperbolic “angle”. We therefore

find the general solution

Λ(X,Y; ∆+) =C+(∆+)K
∆+

2F1

(
∆+

2
,
∆+ + 1

2
;∆+ − 1

2
;K2

)

+ C−(∆+)K
∆−

2F1

(
∆−

2
,
∆− + 1

2
;∆− − 1

2
;K2

)

, (2.11)

expressed in terms of the Gauss’ hypergeometric function 2F1(a, b; c; z). The coeffi-

cients C± are fixed by the boundary conditions and

∆+ =
3

2
+

√

9

4
+

m2

a2
, ∆− = 3−∆+ , (2.12)

determines the conformal weight of the dual operator on the boundary. The leading

contribution of the Green function for z → 0 is simply

lim
z→0

Λ(X,Y; ∆+) = C+(∆+)

(

(2zw)∆+

((~x− ~y)2 + w2)∆+
+ · · ·

)

+

+C−(∆+)

(

(2zw)∆−

((~x− ~y)2 + w2)∆−

+ · · ·
)

. (2.13)
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In what follows we will consider two boundary conditions2 by either setting

C+(∆+) or C−(∆+) to zero. The choice C+(∆+) = 0 corresponds to a Neumann

boundary condition, while C−(∆+) = 0 corresponds to a Dirichlet boundary con-

dition. For given boundary conditions, the behaviour of the propagator under the

antipodal map in (2.8) is determined by the factor K∆ appearing (2.11) and is there-

fore either even or odd depending whether ∆ is even or odd.

To fix the normalization of the Dirichlet and Neumann Green function we de-

mand that in the flat space limit, a → 0, their singularity agrees with the flat space

Green function. The properly normalized propagator is (see e.g. [70])

Λ(X,Y; ∆±) := N∆±
K(X,Y)∆±

2F1

(
∆±

2
,
∆± + 1

2
;∆± − 1

2
;K(X,Y)2

)

, (2.14)

with

N∆ =

(
a

2π

)2 Γ
(
∆
2

)
Γ
(
∆+1
2

)

Γ
(
∆− 1

2

) . (2.15)

The short distance singularity of the propagator for coincident points is given by

lim
Y→X

Λ(X,Y; ∆±) ≃
(

a

2π

)2
zw

(~x− ~y)2 + (z − w)2
, (2.16)

and for coincident antipodal points is given by

lim
Y→σ(X)

Λ(X,Y; ∆±) ≃ (−1)∆
(

a

2π

)2 −zw

(~x− ~y)2 + (z + w)2
. (2.17)

Using the functional equation for the Gauss hypergeometric function for |k| ≤ 1

k∆
2F1

(
∆

2
,
∆+ 1

2
;∆− 1

2
; k2

)

=
Γ(2−∆)Γ(3−∆)

2∆
(
1 + (−1)−2∆

)
Γ(3− 2∆)

×
(

2F1

(

3−∆,∆; 2;
k − 1

2k

)

+ (−1)−∆
2F1

(

3−∆,∆; 2;
k + 1

2k

))

, (2.18)

we obtain an equivalent expression for the normalized propagator (2.14)

Λ(X,Y; ∆) = −
(

a

2π

)2
π(∆− 1)(∆− 2)

2 tan(π∆)(1 + (−1)−2∆)

×
(

(−1)−∆
2F1

(

3−∆,∆; 2;
K(X,Y) + 1

2K(X,Y)

)

+ 2F1

(

3−∆,∆; 2;
K(X,Y)− 1

2K(X,Y)

))

.

(2.19)

2Choosing a Green function corresponds to choosing a vacuum. We will argue in section 3 why

the Dirichlet and Neumann boundary conditions correspond to the correct choice of the vacuum.
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The first term is singular for coincident points X = Y, i.e. K(X,Y) = 1, and the

second term is singular for coincident antipodal points X = σ(Y), i.e. K(X,Y) =

−1.

Since K(X, σ(Y)) = −K(X,Y), we have the alternative representation for the

bulk-to-bulk propagator

Λ(X,Y; ∆) = −π(∆− 1)(∆− 2)2∆

tan(π∆)

×1

2

(

(−1)−∆
2F1

(

3−∆,∆; 2;
K(X,Y) + 1

2K(X,Y)

)

+ 2F1

(

3−∆,∆; 2;
K(X, σ(Y)) + 1

2K(X, σ(Y))

))

.

(2.20)

Since the action of the antipodal map on a field of dimension ∆ is (−1)∆, we conclude

that the Dirichlet and Neumann propagators are obtained by the method of images

under the action of the antipodal map.

The bulk-to-boundary propagator, which determines the evolution of a field on

the boundary into the bulk, is therefore given by taking the Dirichlet or Neumann

Green function and pulling one point to the boundary:

lim
z→0

z−∆Λ(X,Y; ∆) =
a2Γ

(
∆
2

)
Γ
(
∆+1
2

)

(2π)2Γ
(
∆− 1

2

)
(2w)∆

((~x− ~y)2 + w2)∆
. (2.21)

2.3 Mapping to flat space propagators

In this section, we make the relationship between EAdS bulk-to-bulk propagators

and flat space propagators explicit. We will use this relationship for the analytic

evaluation of the Witten diagrams at loop orders.

2.3.1 The cases ∆ = 1, 2

For ∆ = 1, 2, the propagator (2.14) reads

Λ(X,Y; ∆) =

(
a

2π

)2
K(X,Y)∆

1−K(X,Y)2
. (2.22)

For this we first introduce the Euclidean norm

‖X‖2 := ~x2 + z2 , (2.23)

as well as

G(X, Y ) :=
zw

‖X − Y ‖2
= −1

4
2F1

(

1, 2; 2;
K(X,Y) + 1

2K(X,Y)

)

. (2.24)

We call G(X, Y ) the conformal flat space propagator 3 due to the following transfor-

mation properties:

3A Feynman iε prescription will be introduced in the unitarity cuts section 5.2.
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• Invariance under translation of boundary points, X0 = (~x, 0):

G(X +X0, Y +X0) = G(X, Y ); G(X +X0, Y ) = G(X, Y −X0). (2.25)

• Scale invariance:

G(λX, λY ) = G(X, Y ) , λ ∈ R− {0} . (2.26)

• Invariance under the inversion:

G

(

X ′

‖X ′‖2
,

Y ′

‖Y ′‖2

)

= G(X, Y ). (2.27)

• The antipodal map in (2.8) acts as

G(σ(X), Y ) = G(X, σ(Y )) = − zw
∥
∥X − σ(Y )

∥
∥2

=
1

4
2F1

(

1, 2; 2;
K(X,Y)− 1

2K(X,Y)

)

.

(2.28)

• An identity will be useful when simplifying the expressions for the multi-loop

Witten diagrams

G(X, Y )G(X, σ(Y )) =
1

4

(
G(X, Y ) +G(X, σ(Y ))

)
. (2.29)

To continue we note that the hyperbolic “angle” in (2.6) can be expressed in terms

of the conformal flat space propagator

1

K(X,Y)
=

1

4

(
1

G(X, Y )
− 1

G(X, σ(Y ))

)

. (2.30)

For ∆ = 1 and ∆ = 2 the bulk-to-bulk propagator (2.22) is then expressed in terms

of the conformal flat space propagator as

Λ(X,Y; 1) = −
(

a

2π

)2
(
G(X, Y )−G(X, σ(Y ))

)
,

Λ(X,Y; 2) = −
(

a

2π

)2
(
G(X, Y ) +G(X, σ(Y )

)
. (2.31)

Moreover, by sending X = (~x, z) to the boundary point (~x, 0) we have

K̄(~x, Y ) := lim
z→0

K(X,Y)

z
=

2w

‖~x− Y ‖2
= lim

z→0

2G(X, Y )

z
, (2.32)

in terms of the conformal flat space propagator which is again odd under the action

of the antipodal map σ.
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2.3.2 The cases ∆ ≥ 3

For ∆ ≥ 3 integers the bulk-to-bulk propagators take a more complicated form. We

have for ∆ = 2n+ 1 ≥ 3

Λ(X,Y; 2n+ 1) = Λ(X,Y; 1) +

(
a

2π

)2
1

K(X,Y)
P

(n−2)
1

(
1

K(X,Y)2

)

+

(
a

2π

)2

Q
(n−1)
1

(
1

K(X,Y)2

)

log

(−G(X, σ(Y ))

G(X, Y )

)

, (2.33)

and for ∆ = 2n ≥ 4

Λ(X,Y; 2n) = Λ(X,Y; 2) +

(
a

2π

)2

P
(n−2)
2

(
1

K(X,Y)2

)

+

+

(
a

2π

)2
1

K(X,Y)
Q

(n−2)
2

(
1

K(X,Y)2

)

log

(−G(X, σ(Y ))

G(X, Y )

)

, (2.34)

where P
(r)
i (x) and Q

(r)
i (x) are polynomial of degree r in x. Using the relation in (2.30)

these propagators can be written as a combination of the conformal flat space prop-

agators G(X, Y ) and G(X, σ(Y )).

The short distance singularities for coincident bulk points or antipodal points

is the same as for ∆ = 1, 2 but the general structure differs due to the presence of

logarithms of the conformal flat space propagator. Using that xη = 1 + η log(x) +

O(η2) we can consider the η-deformed propagators by making the replacement

log

(−G(X, σ(Y ))

G(X, Y )

)

→
(−G(X, σ(Y ))

G(X, Y )

)η

, (2.35)

in the above expressions for Λ(X,Y; 2n+ 1) and Λ(X,Y; 2n).

In this representation we end up with expressions for the Witten diagrams in

terms of flat space like QFT Feynman integrals with generalised powers of the prop-

agators

G(X, Y )η =

(

zw

‖X − Y ‖2

)η

, G(X, σ(Y ))η =




−zw

∥
∥X − σ(Y )

∥
∥2





η

, (2.36)

which can be treated, using familiar analytic regularisation methods [64]. The pa-

rameter η will introduce some generalized powers of the propagators in addition to

the one generated by the breaking of the conformal invariance due to the dimensional

regularisation, as shown in section 3.1.3.

3 Perturbative QFT in AdS

Let us begin by reviewing some points about the perturbative quantization of a

conformally coupled scalar field on the Poincaré patch of AdS. Since the Poincaré
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patch is conformal to the upper-half space, which in turn is obtained from R4 by the

antipodal map described in the last section, we may start with the propagator

ΛF (X,X ′) = Ω(X)−1Ω(X ′)−1GF (X,X ′), (3.1)

where GF (X,X ′) is the Feynman Green function in flat space and Ω(X) is the scale

factor relating AdS to flat space such that gAdS
µν = Ω2ηµν . Equation (3.1) defines

the conformal vacuum [71]. The Wick rotated version of (3.1) then reproduces the

euclidean propagator (2.24) and the restriction to the upper-half space with the help

of the antipodal map returns (2.31) for Neumann and Dirichlet boundary conditions

respectively.

Now that we specified the vacuum we can calculate correlation functions in the

same way as in flat space by performing an analytic continuation t → ix4 such that

we are in EAdS and differentiate the perturbative expansion of the partition function

with respect to some external current

〈φ(X1)φ(X2) · · ·φ(Xn)〉 =
δn

δj(X1)δj(X2) · · · δj(Xn)
Z[j]|j=0. (3.2)

In this paper we will compute two and four-point functions on the Poincaré patch

of EAdS in a loop expansion and, moreover, map this calculation to an equivalent

calculation in flat space. The bulk amplitudes on AdS, evaluated on the conformal

boundary, define correlation functions of primary fields O in some conformal field

theory [44, 45] whose operator content and OPE coefficients can be extracted with

the help of the conformal block expansion [72]. The dimension of O is determined

by the propagator with a fixed boundary condition ∆ and the boundary correlation

function is obtained by taking the limit that moves the external bulk points to the

boundary while rescaling by a factor of z−∆
i for each boundary point. This is the

basis of the correspondence [1–3] between conformal field theory and field theory in

AdS.

The perturbative expansion of the correlation function is given by the well-known

Witten diagrams [1]. They have the following graphical representation. Each bound-

ary point lies on the outer circle and the bulk points are located inside the circle.

The lines connecting bulk and boundary points represent bulk-to-boundary propaga-

tors and lines connecting two bulk points represent a bulk-to-bulk propagator. The

vertices can be read off the Lagrangian and the symmetry factors can be obtained

in the same way as for the corresponding Feynman diagrams. We will elaborate on

this in section 3.1. Concretely, in this paper we consider a scalar field theory defined

by the action

S =

∫

AdS4

√
g

(

1

2
(∂φ)2 +

m2

2
φ2 +

λ

4!
φ4

)

, (3.3)
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which for m2 = −2a2 describes a conformally coupled scalar in AdS. The boundary

two point function for an operator O∆ has the perturbative expansion

〈O∆(x1)O∆(x2)〉 =: x1 x2

= x1 x2 − λ

2
x1 x2

+
λ2

4
x1 x2 +

λ2

4
x1 x2 +

λ2

6
x1 x2

− λ3

8
x1 x2 − λ3

8
x1 x2 − λ3

12
x1 x2

− λ3

12
x2x1 +O(λ4). (3.4)

The renormalised propagator is represented by a solid line and the bare propa-

gator by a dash line.

It is obvious that the loop corrections produce short distance divergences at

colliding bulk points and colliding antipodal bulk points [73, 74] which will have to

be regulated. We will show two different regularisation schemes and compare them

in sections 3.1.1 and 3.1.2.

In [44, 45] it was shown that the loop corrections to the two point function

considered in (3.4) are all proportional to the mass shift. The mass is usually fixed

to the physically relevant mass measured in an experiment. In our case the only

physically meaningful quantity related to the mass of the field is the scaling dimension

of the operator on the boundary. Therefore, by fixing the scaling dimension on

the boundary to be ∆, we automatically renormalise the mass and can ignore loop

corrections to the two point function in the following calculations
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The contributions to the four-point function to order λ3 without tadpoles are:

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 =








x2

x1

x3

x4

+ (x2 ↔ x3) + (x2 ↔ x4)








− λ

x2

x1

x3

x4

+
λ2

2









x2

x1

x3

x4

+ (x2 ↔ x3) + (x2 ↔ x4)









− λ3

4









x2

x1

x3

x4

+ (x2 ↔ x3) + (x2 ↔ x4) + 2

x2

x1

x3

x4

+ perm.









,

(3.5)

where the explicit forms of the permutations are given in section 4.

3.1 Definition of Witten diagrams

x1

F∆

x2

x3

x4

X1 X3

X2 X4

Figure 1. General four-point Witten diagram

A generic four-point Witten diagram ΓW depicted in figure 1 with L + 1 bulk

vertices and L loops is associated to the following integral:

W∆
L (~x1, ~x2, ~x3, ~x4) = 24∆ (N∆)

2L+4

∫

(H+
4 )L+1

L+1∏

i=1

d4Xi

(azi)4
F∆(X1, . . . , XL+1)

×
∑

ρ∈S4

δ(ΓW )

|ΓW | f
∆(Xρ(1), . . . , Xρ(4); ~x1, . . . , ~x4) , (3.6)

where the normalization N∆ of the propagators in (2.15) has been pulled out of

the integral. The delta-function δ(ΓW ) denotes the identification of the bulk points

according the topology of the graph and |ΓW | is the symmetry factor of the graph.
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The term F∆(X1, ..., XL+1) involves only bulk-to-bulk propagators. Its explicit

form is determined by the loop order and topology of the concrete graph. To-

gether with the integration measure it is invariant under AdS isometries. The term

f∆(X1, .., X4; ~x1, ..., ~x4) consists of bulk-to-boundary propagators and, depending on

the loop order and the topology of the graph, some of the bulk points Xi may be

identical. The sum is performed over different scattering channels corresponding to

permutations of the bulk points X1, ..., X4. In its most general form this term is

given by

f∆(X1, . . . , X4; ~x1, . . . , ~x4) =
4∏

i=1

(

zi

‖Xi − ~xi‖2

)∆

. (3.7)

The integral in (3.6) is divergent in general and thus needs to be regulated before it

can be manipulated. In what follows we will consider two regularisations. The first,

considered in [44, 45], preserves the AdS symmetry. The dimensional regularisation

discussed next, while being natural from the flat space perspective, breaks AdS

invariance.

3.1.1 AdS invariant regularisation

An AdS invariant regularisation method, given by the deformation

Kδ(X,Y) :=
K(X,Y)

1 + δ
, with δ > 0, (3.8)

was developed and used for regulating loops in AdS space in [44, 45] and applied

to loops in de Sitter space in [43]. This preserves the conformal symmetry on the

boundary and we will use it in section 4.2.2.

For ∆ = 1 the regularised propagator reads

Λ(X,Y; 1, δ) =

(
a

2π

)2
1

2

(

K(X,Y)

1 + δ −K(X,Y)
+

K(X,Y)

1 + δ +K(X,Y)

)

, (3.9)

and for ∆ = 2

Λ(X,Y; 2, δ) =

(
a

2π

)2
1

2

(

K(X,Y)

1 + δ −K(X,Y)
− K(X,Y)

1 + δ +K(X,Y)

)

, (3.10)

with similar expressions for propagators with ∆ ≥ 3.

We will denote the regularised Witten diagrams (3.6) by

W∆,δ
L (~x1, ~x2, ~x3, ~x4) = 24∆

(N∆)
2L+4

a4L+4

∫

(H+
4 )L+1

L+1∏

i=1

d4Xi

z4i
F∆,δ(X1, . . . , XL+1)

×
∑

ρ∈S4

δ(ΓW )

|ΓW | f
∆(Xρ(1), . . . , Xρ(4); ~x1, ~x2, ~x3, ~x4) , (3.11)

with normalization N∆ given in (2.15).
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3.1.2 Dimensional regularisation

For ∆ = 1 and ∆ = 2 we have shown in section 2.3, that the propagators in (2.31)

can be expressed as a sum of two euclidean propagators. Therefore the bulk-to-bulk

part F∆(X1, . . . , XL+1) (3.6) can always be expressed as a sum over products of flat

space propagators.

Let us now discuss the domain of integration, which for (3.6) is the upper-half

space H+
4 . In flat space momentum space on the other hand, one integrates over

the entire space R4. It is clear from the previous discussion in section 2.2 that the

propagator is in general not invariant under the antipodal map due to the z∆ term in

the numerator which changes the sign for odd ∆. However, since we focus on the λφ4

theory, each vertex joins four propagators, meaning that each radial coordinate in the

numerator only appears as z4∆−4, where the −4 is due to the integration measure. For

∆ ∈ N this is always an even number and therefore invariant under the antipodal

map. We thus conclude that the entire Witten diagram (3.6) is invariant under

mapping every bulk point to its antipodal point and the domain of integration can be

extended to R4. Note that this can also be done for the AdS-invariant regularisation

method in equation (3.11).

To continue we note that in (3.6) powers of the radial coordinates, zi appear in the

denominator, originating from the AdS-invariant measure as well as in the numerator

of the propagators. It is convenient to “covariantize” these contributions by writing

them as linear propagators z = u · Xi with the help of the auxiliary unit vector

u = (~0, 1), where the dot product is understood with respect to the euclidean metric.

This auxiliary vector is orthogonal to the boundary and is therefore perpendicular

to any vector Xi = (~xi, 0) parametrizing points on the boundary. In particular, for

∆ = 1, 2 the propagators in (2.31) take a tensorial from

Λ(X,Y; 1) = −
(

a

2π

)2



u ·X u · Y
‖X − Y ‖2

+
u ·X u · σ(Y )
∥
∥X − σ(Y )

∥
∥2



 ,

Λ(X,Y; 2) = −
(

a

2π

)2



u ·X u · Y
‖X − Y ‖2

− u ·X u · σ(Y )
∥
∥X − σ(Y )

∥
∥2



 , (3.12)

with similar expression for the propagator with ∆ ≥ 3.

We then define the dimensionally regulated Witten diagrams (3.6) by evaluating

the integration measure in D dimensions,

W∆,D
L (~x1, ~x2, ~x3, ~x4) = 24∆

(N∆)
2L+4

(2aD)L+1

∫

(RD)L+1

L+1∏

i=1

dDXi

(u ·Xi)4
F∆(X1, . . . , XL+1)

×
∑

ρ∈S4

δ(ΓW )

|ΓW | f
∆(Xρ(1), . . . , Xρ(4); ~x1, ~x2, ~x3, ~x4), (3.13)
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where we have pulled out a factor of (a−D)L+1 and rescaled every point with a such

that the only dimensional dependence is in the prefactor. Upon substitution of (3.7)

and (3.12) the Witten diagram (3.13) takes the form of standard flat space tensorial

integrals with linear propagators.

Remark 1: Note that we have used a dimensional regularisation scheme by chang-

ing the dimension of integration without changing the measure factor from the AdS

metric, which breaks the conformal invariance. An AdS preserving integration mea-

sure
∏L+1

i=1
dDXi

(u·Xi)D
in (3.13) will not regulate the integral as a consequence of conformal

symmetry.

Remark 2: When D approaches 4 the Witten diagrams develop divergences with

leading behaviour 1
(D−4)L

at L-loop order. In order to preserve the conformal sym-

metry, which is broken by the dimensional regularisation, we need to parametrize

D = 4 − 4ǫ
L+1

at each loop order. With ǫ < 0 since the only divergences come from

coinciding bulk points.

3.1.3 Conformal mapping of the regularised integrals

We will now use invariance of the diagram under translation of the boundary points

and inversion to write the four-point diagram in terms of three-dimensional con-

formal cross-ratios. First we apply these transformations to the integrand. The

non-invariance of the regularised measure will be taken into account in a second

step.

To begin with, we shift every boundary point by ~x3 and then invert every point.

The latter leaves the bulk-to-bulk propagators invariant while the bulk-to-boundary

propagators transform as

z

‖X − ~x‖2
=

1

x2

z′

‖X ′ − ~y‖2
with X ′ =

X

‖X‖2
and ~y =

~x

x2
, (3.14)

where we have set ‖~x‖2 ≡ x2. After these transformations (3.7) becomes

f∆(X1, . . . , X4; ~x1, . . . , ~x4) =
z∆3

(x2
13x

2
23x

2
34)

∆

(

z1

‖X1 − y13‖2

)∆

×
(

z2

‖X2 − y23‖2

)∆(

z4

‖X4 − y43‖2

)∆

, (3.15)

where we have set xij := ~xi − ~xj and yij := xij/x
2
ij . To continue we shift every

bulk point as Xi → Xi + y13 and use scale invariance to rescale every bulk point by

Xi →‖y43 − y13‖Xi. This gives
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f∆(X1, . . . , X4; ~x1, . . . , ~x4) =
1

(x2
14x

2
23)

∆

×







z1z2z3z4

‖X1‖2
∥
∥
∥X2 − y23−y13

‖y43−y13‖

∥
∥
∥

2∥∥
∥X4 − y43−y13

‖y43−y13‖

∥
∥
∥

2







∆

. (3.16)

Finally, we may use the fact that the AdS group acts on points of the conformal

boundary as the conformal group to implement the familiar conformal operations

on the boundary points that map ~x4 to infinity, ~x3 to the origin (0, 0, 0, 0) and

~x1 → (−1, 0, 0, 0). The remaining point ~x2 can be chosen to lie in the 1-4 plane,

parametrized by the complex coordinate ζ , that is

~x2 =

(

ζ + ζ̄ − 2

2(1− ζ)(1− ζ̄)
,

ζ − ζ̄

2i(1− ζ)(1− ζ̄)
, 0, 0

)

. (3.17)

This takes equation (3.7) to the final form

f∆(X1, . . . , X4; ~x1, . . . , ~x4) =
v∆

(x2
12x

2
34)

∆




z1z2z3z4

‖X1‖2
∥
∥X2 − uζ

∥
∥2‖X4 − u1‖2





∆

, (3.18)

with

u1 = (1, 0, 0, 0), uζ =

(

ζ + ζ̄

2
,
ζ − ζ̄

2i
, 0, 0

)

, v = ζζ̄ =
x2
12x

2
34

x2
14x

2
23

. (3.19)

Let us now turn to the measure. The dimensional regularisation implemented

in (3.13) breaks the AdS invariance of the integration measure. We therefore have to

take into account the Jacobian of the transformations implemented above. Since the

regularised measure is still invariant under shifts in the z = const hyperplane, the

first tranformation leaves the latter invariant. The second tranformation in (3.14)

is an inversion (Xi → Xi

‖Xi‖
2 ) which induces a Jacobian

L+1∏

i=1

dDXi

(u ·Xi)4
→

L+1∏

i=1

dDXi

(u ·Xi)4
1

‖Xi‖2(D−4)
. (3.20)

This is followed by a shift of all bulk points by y13, under which

L+1∏

i=1

dDXi

(u ·Xi)4
1

‖Xi‖2(D−4)
→

L+1∏

i=1

dDXi

(u ·Xi)4
1

‖Xi + y13‖2(D−4)
. (3.21)

Finally, the rescaling by ‖y43 − y13‖ gives

L+1∏

i=1

dDXi

(u ·Xi)4
1

‖Xi + y13‖2(D−4)
→

L+1∏

i=1

dDXi

(u ·Xi)4
‖y43 − y13‖4−D

∥
∥
∥Xi +

y13
‖y43−y13‖

∥
∥
∥

2(D−4)
. (3.22)
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Rewriting the inverted boundary points in terms of the original coordinates and

choosing ~x1, ~x2, ~x3 and ~x4 as described above we get

‖y43 − y13‖ =
‖x41‖

‖x43‖‖x13‖
→ 1 and

y13
‖y43 − y13‖

→ x13

‖x13‖2
= −u1 , (3.23)

and therefore the complete Jacobian is given by

L+1∏

i=1

dDXi

(u ·Xi)4
1

‖Xi − u1‖2(D−4)
. (3.24)

From (3.18) and (3.24) it is then clear that the Witten diagrams will depend only

on ζ and ζ̄ or, equivalently, the conformal cross-ratios introduced in [44, 45]

v =
x2
12x

2
34

x2
14x

2
23

= ζζ̄; 1− Y =
x2
13x

2
24

x2
14x

2
23

= (1− ζ)(1− ζ̄) . (3.25)

To summarize we have the δ-regularised Witten diagram (removing the prefactor

24∆ (N∆)
2L+4 /(a4)L+1 with N∆ given in (2.15))

W∆,δ
L (ζ, ζ̄) :=

1

2L+1

v∆

(x2
12x

2
34)

∆

∫

(R4)L+1

L+1∏

i=1

d4Xi

z4i
F∆,δ(X1, . . . , XL+1)

×
∑

ρ∈S4

δ(ΓW )

|ΓW |




zρ(1)

∥
∥Xρ(1)

∥
∥2





∆


zρ(2)

∥
∥Xρ(2) − uζ

∥
∥2





∆

z∆ρ(3)




zρ(4)

∥
∥Xρ(4) − u1

∥
∥2





∆

, (3.26)

while in dimensional regularisation, taking into account the Jacobian just derived,

we have instead

W∆,D
L (ζ, ζ̄) :=

1

2L+1

v∆

(x2
12x

2
34)

∆

∫

(RD)L+1

L+1∏

i=1

dDXi

(u ·Xi)4
F∆(X1, . . . , XL+1)

‖Xi − u1‖2(D−4)

×
∑

ρ∈S4

δ(ΓW )

|ΓW |




zρ(1)

∥
∥Xρ(1)

∥
∥
2





∆


zρ(2)

∥
∥Xρ(2) − uζ

∥
∥
2





∆

z∆ρ(3)




zρ(4)

∥
∥Xρ(4) − u1

∥
∥
2





∆

. (3.27)

3.2 Differential operator relations

It is possible to obtain the amplitude for the Witten diagrams with external dimen-

sion ∆ = 2 from those with ∆ = 1 by acting with a suitable differential operator

on the external points. This turns out to be rather useful when working with the

dimensional regularisation scheme.

We use the unit vector u = (0, 0, 0, 1) perpendicular to the boundary introduced

in section 3.1.2 and define the X̃i = (~xi, wi) associated to the external legs which, in
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this section, we take to lie in the bulk. We introduce the operators

Hi := uµ ∂

∂X̃µ
i

∣
∣
∣
∣
∣
wi=0

, Hij := uµuν ∂

∂X̃µ
i

∂

∂X̃ν
j

∣
∣
∣
∣
∣
wi=wj=0

,

Hijkl := uµ1uµ2uµ3uµ4
∂

∂X̃µ1

i

∂

∂X̃µ2

j

∂

∂X̃µ3

k

∂

∂X̃µ4

l

∣
∣
∣
∣
∣
wi=wj=wk=wl=0

. (3.28)

In order to define the action of these operators on Witten diagrams we move the ex-

ternal legs into the bulk, while keeping the form of the bulk-to-boundary propagator.

We consider the generalisation of (3.7)

f∆(X1, . . . , X4; X̃1, . . . , X̃4) =
4∏

i=1







u ·Xi
∥
∥
∥Xi − X̃i

∥
∥
∥

2







∆

, (3.29)

which is not a proper product of bulk-to-bulk propagators, but should rather be

understood as some generating function for bulk-to-boundary propagators obtained

by moving the boundary points to a finite value of the radial coordinate. It is

straightforward to check that the action of the differential operators (3.28) on the

redefined bulk-to-boundary propagator (3.29) gives

H1234f
∆(X1, . . . , X4; X̃1, . . . , X̃4) =

4∏

i=1

Hi







u ·Xi
∥
∥
∥Xi − X̃i

∥
∥
∥

2







∆

, (3.30)

so that

H1234f
∆(X1, . . . , X4; X̃1, . . . , X̃4) = (2∆)4

4∏

i=1

(

u ·Xi

‖Xi − ~xi‖2

)∆+1

, (3.31)

= (2∆)4f∆+1(X1, . . . , X4; ~x1, . . . , ~x4) .

In the preceding section we have shown that the four-point Witten diagrams with

external points on the conformal boundary depend only on the cross-ratios (3.25).

If the external points are moved into the bulk, as above, we have to reconsider the

transformations leading to this, more precisely, (3.18) and (3.24). Repeating the

arguments in section 3.1.3 one can show that the integrals with external points in

the bulk again depend only on the cross-ratios v and Y now expressed as

v =

∥
∥
∥X̃12

∥
∥
∥

2∥
∥
∥X̃34

∥
∥
∥

2

∥
∥
∥X̃14

∥
∥
∥

2∥∥
∥X̃23

∥
∥
∥

2 ; 1− Y =

∥
∥
∥X̃13

∥
∥
∥

2∥
∥
∥X̃24

∥
∥
∥

2

∥
∥
∥X̃14

∥
∥
∥

2∥∥
∥X̃23

∥
∥
∥

2 . (3.32)
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Some of the operators in (3.28) have simple expressions in terms of the conformal

cross-ratios. In particular,

x2
12H12 =x2

34H34 = −2v
∂

∂v
,

x2
13H13 =x2

24H24 = 2 (1− Y ) ∂Y ,

x2
14H14 =x2

23H23 = 2v∂v − 2(1− Y )∂Y ,

and

(x12x34)
2H1234 =4v

(

v(1 + v)
∂2

∂v2
+ (1− Y )(2− Y )

∂2

∂Y 2
− 2v(1− Y )

∂2

∂v∂Y

+(1 + v)
∂

∂v
− (2− Y )

∂

∂Y

)

. (3.33)

We will use the differential operators H14 and H12 to obtain the finite part for ∆ = 2

at one-loop in (4.25) from the simpler auxiliary integral (4.23).

Acting with H1234 as in (3.28) on f∆ gives

H1234f
∆(X1, . . . , X4; X̃1, . . . , X̃4) =

1

(x2
12x

2
34)

∆+1

×
[
4∆2 + 2∆x2

12H12 + 2∆x2
34H34 + (x2

12x
2
34)H1234

]




v u ·X1 · · ·u ·X4

‖X1‖2
∥
∥X2 − uζ

∥
∥2‖X4 − u1‖2





∆

,

(3.34)

Plugging in equations (3.33) we obtain

H1234f
∆ =

4

(x2
12x

2
34)

∆+1

[

v
(
v(1 + v)∂2

v + (1− Y )(2− Y )∂2
Y − 2v(1− Y )∂v∂Y

+(1 + v − 2∆)∂v − (2− Y )∂Y
)
+∆2

]




v u ·X1 · · ·u ·X4

‖X1‖2
∥
∥X2 − uζ

∥
∥
2‖X4 − u1‖2





∆

. (3.35)

We will apply this differential operator for evaluating the diverging part for ∆ = 2

at one-loop in (4.26) from the ∆ = 1 result as we will describe in section 4.2.1.

4 Loop corrections to Witten diagrams

We are now ready to calculate loop corrections to Witten diagrams for a λφ4 theory

and make their dependence on conformal cross ratios explicit. Below we will use two

different regularisation schemes to establish scheme independence of our results.
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4.1 The tree-level cross diagram

We start with the evaluation of the cross diagram for general integer dimensions

∆ ≥ 1.4 This is the first order perturbation in λφ4 theory and depicted in figure 2.

x2

x1

x3

x4

Figure 2. Cross diagram

4.1.1 General dimensions

The integral corresponding to this Witten diagram as defined in (3.27) is finite and

therefore does not have to be regulated. Since this diagram only involves bulk-to-

boundary propagators it takes a simple form in any dimension D and for general

∆,

W∆,D
0 (ζ, ζ̄) =

1

2

v∆

(x2
12x

2
34)

∆

∫

RD

dDX

(u ·X)D




(u ·X)4

‖X‖2
∥
∥X − uζ

∥
∥
2‖X − u1‖2





∆

. (4.1)

We can evaluate this integral by using the parametric representation which is based

on the fact that for A > 0

1

An
=

1

Γ(n)

∫ ∞

0

dα e−αAαn−1 . (4.2)

In this representation (4.1) becomes

W∆,D
0 =

1

2

i4∆−Dπ
D+1
2

Γ
(
D+1
2

− 2∆
)
Γ(∆)2

v∆

(x2
12x

2
34)

∆
I∆× (ζ, ζ̄) , (4.3)

with

I∆× (ζ, ζ̄) =

∫

(RP+)2

3∏

i=1

dαiα
∆−1
i

(α1 + α2 + α3)∆(α1α2 + α1α3ζζ̄ + α2α3(1− ζ)(1− ζ̄))∆
, (4.4)

where (RP+)2 indicates that the integral is taken over the positive real projective

space defined as

(RP+)n−1 := {[α1, . . . , αn] ∈ RP
n−1 : α1, . . . , αn ≥ 0} . (4.5)

4The cross diagram is referred to as the D-function in [72]. We will not use this notation, reserv-

ing the name of D(ζ, ζ̄) for the Bloch-Wigner single-valued dilogarithm function defined in (A.4).
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Note that the only dependence on the spacetime dimension is contained in the pre-

factor.

We show in the appendix B.1 that for ∆ ≥ 1 the cross integral takes the form

I∆× (ζ, ζ̄) =
c∆1 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1)

4iD(ζ, ζ̄)

ζ − ζ̄
+

c∆2 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1)
log(ζζ̄)

+
c∆3 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1)
log((1− ζ)(1− ζ̄)) +

c∆4 (ζ, ζ̄)

(ζ − ζ̄)4(∆−1)
. (4.6)

where c∆r (ζ, ζ̄) are polynomial in ζ and ζ̄, and with D(ζ, ζ̄) is the Bloch-Wigner

dilogarithm defined in equation (A.4). Despite the apparent singularity for ζ̄ = ζ

the expression is regular on the real slice. As expected I∆× (ζ, ζ∗), with ζ̄ = ζ∗ being

complex conjugate of ζ , is a single-valued function on C \ {0, 1}.

In the rest of the paper we will make use of the result for ∆ = 1 which reads

W1,4
0 (ζ, ζ̄) =

π2

x2
12x

2
34

ζζ̄
2iD(ζ, ζ̄)

ζ − ζ̄
, (4.7)

and for ∆ = 2, given by

W2,4
0 (ζ, ζ̄) =

3π2(ζζ̄)2

4x412x
4
34

×
(4ζ2ζ̄2 − (ζ + ζ̄)3 + 2ζζ̄(ζ + ζ̄)2 + 2(ζ + ζ̄)2 − 8ζζ̄(ζ + ζ̄) + 4ζζ̄

(ζ − ζ̄)4
2iD(ζ, ζ̄)

ζ − ζ̄

+
(ζ + ζ̄)2 − 3ζζ̄(ζ + ζ̄) + 2ζζ̄

(ζ − ζ̄)4
log(ζζ̄)

+
3ζζ̄(ζ + ζ̄)− 2(ζ + ζ̄)2 + 3(ζ + ζ̄)− 4ζζ̄

(ζ − ζ̄)4
log((1− ζ)(1 − ζ̄)) +

1

(ζ − ζ̄)2

)

. (4.8)

W2,4
0 (ζ, ζ̄) can equivalently be obtained by acting on W1,4

0 (ζ, ζ̄) with the differential

operator H1234 in (3.28). This is a simple application of the method described in

section 3.2.

4.1.2 Dimensional regularisation

Even though the Witten cross diagram is finite and does not need to be regularised,

we will need the higher terms in the D− 4 expansion, for the renormalisation of the

one-loop diagrams. In order to restore AdS-invariance after regularisation, we need

to evaluate the cross diagram in D = 4− 4ǫ dimensions.5 For ∆ = 1 the integral is

W1,4−4ǫ
0 (ζ, ζ̄) =

1

2

ζζ̄

(x12x34)2

∫

R4

d4−4ǫX

‖X‖2‖X − u1‖2(1−4ǫ)
∥
∥X − uζ

∥
∥2

. (4.9)

5See Remark 2 at the end of section 3.1.2.
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Making use of the parametric representation (B.11) we can expand in ǫ. Again the

resulting integrand is linearly reducible and we can evaluate the integral by using

HyperInt [75], resulting in

W 1,4−4ǫ
0 (ζ, ζ̄) =

24a4+4ǫ

(2π)8
W1,4−4ǫ

0 (ζ, ζ̄) =
24a4+4ǫ

(2π)8

(

W1,4
0 (ζ, ζ̄) + ǫW1,4

0,ǫ (ζ, ζ̄) +O(ǫ2)
)

,

(4.10)

with W 1,4
0 (ζ, ζ̄) given in (4.7) and

W1,4
0,ǫ (ζ, ζ̄) =

ζζ̄π2

x2
12x

2
34

(

f1(ζ, ζ̄)

ζ − ζ̄
− 2iD(ζ, ζ̄)

ζ − ζ̄
log(ζζ̄) +

2iD(ζ, ζ̄)

ζ − ζ̄
log((1− ζ)(1− ζ̄))

)

,

(4.11)

where the function f1(ζ, ζ̄) can be found in equation (A.5). The corresponding result

for ∆ = 2 can then be obtained by acting on the parametric representation for ∆ = 1

with H1234 before expanding in ǫ. After integration over the Feynman parameters

(see (B.12)) we find

W 2,4−4ǫ
0 (ζ, ζ̄) =

28a4+4ǫ

(2π)8
W2,4−4ǫ

0 (ζ, ζ̄) =
28a4+4ǫ

(2π)8

(

W2,4
0 (ζ, ζ̄) + ǫW2,4

0,ǫ (ζ, ζ̄) +O(ǫ2)
)

,

(4.12)

with W2,4
0 (ζ, ζ̄) given in (4.8) and W2,4

0,ǫ (ζ, ζ̄) given by equation (B.14).

4.2 The one-loop diagram

x2

x1

x3

x4

+

x3

x1

x2

x4

+

x1

x4

x2

x3

Figure 3. One-loop Witten diagrams

At one-loop level there are numerous diagrams to be evaluated but, as we argued

in section 3, tadpoles and self-energy corrections only contribute to the mass shift

at this level so we can reabsorb them into the conformal dimension of the boundary

operator. In this section we fix this dimension to ∆ = 1 and ∆ = 2 and the only

remaining connected one-loop diagrams in λφ4 theory are the three channels of the

one-loop bubble diagram depicted in figure 3.

4.2.1 Dimensional regularisation

In order to restore conformal invariance after regularisation, we calculate these dia-

grams in dimensional regularisation with D = 4−2ǫ using the general formula (3.27)
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with δ(ΓW ) = δ(Xσ(1) = Xσ(2))δ(Xσ(3) = Xσ(4)) to obtain

W∆,4−2ǫ
1 (ζ, ζ̄) =

a4+4ǫ24∆(ζζ̄)∆

4(x2
12x

2
34)

∆(2π)8

∫

(RD)2

d4−2ǫX1d
4−2ǫX2 ·

· (u ·X1)
2∆−4(u ·X2)

2∆−4Λ̃(X1,X2; ∆)2

‖X1 − u1‖−4ǫ‖X2 − u1‖−4ǫ

(

1

‖X1‖2∆‖X2 − u1‖2∆
∥
∥X2 − uζ

∥
∥2∆

+
1

‖X2‖2∆‖X2 − u1‖2∆
∥
∥X1 − uζ

∥
∥2∆

+
1

‖X2‖2∆‖X1 − u1‖2∆
∥
∥X2 − uζ

∥
∥2∆

)

, (4.13)

where Λ̃ is the propagator (3.12) without the normalization factor a2/4π2 which has

been pulled out of the integral. Expanding the square with the help of the identity

in (2.29) one finds

Λ̃(X1,X2; ∆)2 =
(u ·X1)

2 (u ·X2)
2

‖X1 −X2‖4
+

(u ·X1)
2 (u · σ(X2))

2

∥
∥X1 − σ(X2)

∥
∥
4

− (−1)∆

2




u ·X1 u ·X2

‖X1 −X2‖2
+

u ·X1 u · σ(X2)
∥
∥X1 − σ(X2)

∥
∥2



 . (4.14)

Upon substitution into (4.13) we arrive at

W∆,4−2ǫ
1 (ζ, ζ̄) =

24∆a4+4ǫ

(2π)12

∑

i∈{s,t,u}

(

W∆,4−2ǫ,i
1,div (ζ, ζ̄)− (−1)∆

2
W∆,4,i

1,fin (ζ, ζ̄)

)

, (4.15)

where the integral in W∆,4−2ǫ,i
1,div (ζ, ζ̄) requires regularisation while W∆,4,i

1,fin (ζ, ζ̄) does

not. For instance, in the s-channel

W∆,4−2ǫ,s
1,div (ζ, ζ̄) =

1

2

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2‖X1 − u1‖4ǫ

‖X1‖2∆
∥
∥X1 − uζ

∥
∥
2∆‖X2 − u1‖2∆−4ǫ‖X1 −X2‖4

,

(4.16)

and

W∆,4,s
1,fin (ζ, ζ̄) =

1

2

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R8

d4X1d
4X2(u ·X1)

2∆−3(u ·X2)
2∆−3

‖X1‖2∆
∥
∥X1 − uζ

∥
∥
2∆‖X2 − u1‖2∆‖X1 −X2‖2

,

(4.17)

with similar expression for the other channels listed in equation (C.1).

For ∆=1 the evaluation of the divergent part is straightforward. In the parametric

representation (see (C.4)) we can integrate using HyperInt [75] giving

W∆,4−2ǫ,s
1,div (ζ, ζ̄) = −π4−2ǫe−2γǫζζ̄

2x2
12x

2
34

(1

ǫ

4iD(ζ, ζ̄)

ζ − ζ̄
+

f1(ζ, ζ̄)

ζ − ζ̄
− 2iD(ζ, ζ̄)

ζ − ζ̄
log(ζζ̄)
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+
4iD(ζ, ζ̄)

ζ − ζ̄
log((1− ζ)(1− ζ̄))

)

. (4.18)

Adding the corresponding contributions form the t- and u-channel from appendix C.1.1

we end up with

W 1,4−2ǫ
1,div (ζ, ζ̄) =

24a4+4ǫ

(2π)12

∑

i∈{s,t,u}

W1,4−2ǫ,i
1,div (ζ, ζ̄)

=
24a4+4ǫ

(2π)12



−3π2

ǫ
W1,4−4ǫ

0 (ζ, ζ̄) +
π4v

2x2
12x

2
34

∑

i∈{s,t,u}

L1,i
0 (ζ, ζ̄)



 , (4.19)

where the L∆,i
0 (ζ, ζ̄) terms are regular for ǫ → 0. Their expressions are given in

appendix C.1.3.

The finite piece W1,4,i
1,fin is harder to solve exactly. In the parametric representation

it can be rewritten as (see appendix C.1.4 for details)

W1,4,i
1,fin (v, Y ) =

2π4v∆

(x12x34)∆







L′
0(v, 1− Y, 1) i = s

L′
0(1− Y, 1, v) i = t

L′
0(1, v, 1− Y ) i = u

, (4.20)

with

L′
0(x, y, z) =

∫ ∞

1

dλ

∫ ∞

0

ds

∫ 1

0

dr
log(1 + λs)

4λ
√

(1 + s)(1 + λs)(sr(1− r)x+ ry + (1− r)z)
,

(4.21)

and v = ζζ̄ and ζ + ζ̄ = v + Y .

The integral is an elliptic polylogarithm obtained by integrating the dilogarithm

in (C.35) over the elliptic curve (C.37). Since we want to calculate anomalous di-

mensions, which are related to the coeffcients of the terms proportional to log(v), we

are not actually interested in the complete result of the integral. In appendix C.1.4

we provide an efficient way to extract the coefficients of the log(v)2 and log(v) terms

and do an expansion in v and Y .

Altogether, the total one-loop Witten diagram for ∆ = 1 is given by

W 1,4−2ǫ
1 (v, Y ) =

24a4+4ǫ

(2π)12

(

− 3π2

ǫ
W1,4−4ǫ

0 (v, Y ) +
π4v

2x2
12x

2
34

∑

i∈{s,t,u}

L1,i
0 (v, Y )+

π4v

x2
12x

2
34

∑

i∈{s,t,u}

L′
0
i
(v, Y ) +O(ǫ)

)

. (4.22)

For ∆ = 2 we start with the calculation of the finite part. There are no elliptic

integrals to compute and we can find closed form expressions in terms of single-valued

polylogarithms of weight up to three.
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To obtain the parametric representation of the finite part (4.17) we introduce

the auxiliary integrals W̃2,4,i
1,fin for each channel, with the s-channel given by

W̃2,4,s
1,fin =

1

8

∫

R8

d4X1d
4X2

‖X1 − ~x1‖2‖X1 − ~x2‖4‖X2 − ~x3‖4‖X2 − ~x4‖2‖X1 −X2‖2

=
1

8

x2
14

x4
12x

4
34

(ζζ̄)2
∫

R8

d4X1d
4X2

‖X1‖2
∥
∥X1 − uζ

∥
∥
4‖X2 − u1‖2‖X1 −X2‖2

, (4.23)

and the other channels displayed in (C.2). The second line in equation (4.23) is

obtained by performing the conformal mappings as described in section 3.1.3. Con-

sidering the discussion in section 3.2 it is straightforward to see, that the finite part

of the one-loop integral in each channel is given by the action of the differential

operator Hij on the corresponding auxiliary integral by

W2,4,s
1,fin = H14W̃2,4,s

1,fin ; W2,4,t
1,fin = H12W̃2,4,t

1,fin ; W2,4,u
1,fin = H12W̃2,4,u

1,fin . (4.24)

In equation (C.8) we give the result of (4.24) in the parametric representation. In-

tegrating over the Feynman parameters we obtain

W2,4,s
1,fin (ζ, ζ̄) =

π4

8

(ζζ̄)2

(x2
12x

2
34)

2

(

(ζ + ζ̄ − 2)8iD(ζ, ζ̄)

(ζ − ζ̄)3

+
2(2ζζ̄ − ζ − ζ̄)

ζζ̄(ζ − ζ̄)2
log((1− ζ)(1− ζ̄))− 4 log(ζζ̄)

(ζ − ζ̄)2

)

, (4.25)

for the s channel. The results for the other channels are given in appendix C.1.2.

The divergent integrals in (4.15) can be calculated by acting with H1234 on the

corresponding expressions for ∆ = 1. Some care has to be taken since the action

of H1234 and the ǫ expansion do not commute: We have to act on the parametric

representation of the ∆ = 1 expressions which gives us the parametric representation

of the ∆ = 2 expressions. These can then be expanded in ǫ. The explicit expressions

are given in equation (C.10). Integrating over the Feynman parameters and summing

over the three channels we end up with

W 2,4−2ǫ
1,div (ζ, ζ̄) =

28a4+4ǫ

(2π)12

(

− 3π2

ǫ
W2,4−4ǫ

0 + 3π2W2,4
0

+
1

2

∑

j∈{s,t,u}

W2,4,j
1,fin +

3π4v2

8(x2
12x

2
34)

2

∑

i∈{s,t,u}

L2,i
0 +O(ǫ)

)

. (4.26)

In sum, the total one-loop Witten diagram for ∆ = 2 is given by

W 2,4−2ǫ
1 (ζ, ζ̄) =

28a4+4ǫ

(2π)12



−3π2

ǫ
W2,4−4ǫ

0 + 3π2W2,4
0 +

3π4v2

8(x2
12x

2
34)

2

∑

i∈{s,t,u}

L2,i
0 +O(ǫ)



 ,

(4.27)

with the expressions for L∆,i
0 given in appendix C.1.3.
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Renormalisation: In order to subtract the UV-divergences in our dimensional re-

gularisation we define the bare coupling constant λ as usual through λ = λR (aµ)µ2ǫ+

δλ. The bare coupling is divergent but gives finite four-point functions by choosing

the divergent counter-term δλ accordingly. The renormalised coupling λR is finite

and dimensionless in any dimension due to the factor µ2ǫ where µ has the dimension

of length, which accounts for the scaling correction due to dimensional regularisa-

tion. Summing the tree-level (cross) and the one-loop (bubble) diagram contribu-

tions from (4.12) and (4.27) above, we have, for the connected part of the four-point

function, up to finite terms,

λRµ
4ǫW∆,4−4ǫ

0 − λ2
Rµ

4ǫ

2
W∆,4−2ǫ

1 =
24∆a4

(2π)8
λR · (aµ)4ǫ

(

1 +
3λR

32π2

1

ǫ

)

W∆,4−4ǫ
0

≡ µ2ǫλW∆,4−4ǫ
0 . (4.28)

The extra factor µ2ǫ in front of λ arises since we have chosen the measure d4−4ǫX,

rather than d4−2ǫX for the cross diagram in (4.9). Focusing on the 1/ǫ pole then

fixes the value of the counter-term

δλ = −3λ2
Rµ

2ǫ

32π2

1

ǫ
. (4.29)

On the other hand the log µ contribution to the finite part in δλ gives rise to the

Callan-Symanzik equation

0 = µ
d

dµ
λ = 2ǫµ2ǫ

(

λR − 3λ2
R

32π2

1

ǫ

)

+ µ2ǫµ
∂λR

∂µ

∂

∂λR

(

λR − 3λ2
R

32π2

1

ǫ

)

, (4.30)

from which we read of the beta function

β =
3λ2

R

16π2
+O(λ3) . (4.31)

This coincides with the β function of λφ4 theory in flat space.

4.2.2 AdS invariant regularisation

Let us compare the results obtained so far to the AdS-invariant regularisation method

described in section 3.1.1, which was used in [43–45]. The one-loop Witten diagram

associated to the graphs in figure 3, with the regularisation given by (3.26), again

consists of the sum over the contributions from the three channels

W∆,δ
1 (ζ, ζ̄) =

24∆a4

(2π)12

∑

i∈{s,t,u}

W∆,δ,i
1 (ζ, ζ̄) , (4.32)

with the contribution to the s-channel given by

W∆,δ,s
1 =

1

4

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R8

d4X1d
4X2z

2∆−4
1 z2∆−4

2

‖X1‖2∆
∥
∥X1 − uζ

∥
∥2∆‖X2 − u1‖2∆

(

Kδ(X1,X2)
∆

1−Kδ(X1,X2)2

)2

,

(4.33)
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and the integrals for the other channels given in (C.3).

In order to simplify the calculation we will separate these double integrals into

an integral with the two external legs connected to X1 and perform the integration

over X2 later as

W∆,δ,i
1 =

1

2

∫

R4

d4X2Ŵ∆,δ,i
1 (~w1, ~w2, X2)

z2∆−4
2

‖~w3 −X2‖2∆
, (4.34)

with the intermediate integral

Ŵ∆,δ,i
1 (~w1, ~w2, X2) =

1

2

v∆

(x2
12x

2
34)

∆

∫

R4

d4X1 z2∆−4
1

‖~w1 −X1‖2∆‖~w2 −X1‖2∆

(

Kδ(X1,X2)
∆

1−Kδ(X1,X2)2

)2

,

(4.35)

associated to the fish diagram in figure 4. Comparing to the expressions in equa-

~w1

~w2

X1 X2

Figure 4. Fish diagram

tion (4.33) it is straightforward to identify the three channels as:

• s-channel: ~w1 → 0, ~w2 → uζ and ~w3 → u1

• t-channel: ~w1 → uζ, ~w2 → u1 and ~w3 → 0

• u-channel: ~w1 → 0, ~w2 → u1 and ~w3 → uζ

For ∆ = 1 and ∆ = 2, this integral can be further simplified by rewriting the

square of the bulk-to-bulk propagator in (4.33) in terms of euclidean propagators as

described in 2.3. The fish diagram is then given by

Ŵ∆,δ,i
1 (~w1, ~w2, X2) =

v∆

(x2
12x

2
34)

∆

1

4

∫

R4

d4X1

z41

2∏

i=1

z∆1

‖~wi −X1‖2∆

×
(

Kδ(X1,X2)
2

(1−Kδ(X1,X2))2
− (−1)∆

Kδ(X1,X2)

1−Kδ(X1,X2)

)

. (4.36)
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For ∆ = 2: We split the integral into a first piece that diverges when δ → 0

Ŵ∆,δ,i
1 (~w1, ~w2, X2)|1 :=

v2

(x2
12x

2
34)

2

1

4

∫

R4

d4X1

2∏

i=1

1

‖~wi −X1‖4
K(X1,X2)

2

(1−K(X1,X2) + δ)2

=
π2v2

(x2
12x

2
34)

2

[

1

8

2∏

i=1

z2

‖~wi −X2‖2
−

2∏

i=1

z22
‖~wi −X2‖4

·


log

(

z22 |~w1 − ~w2|2

‖~w1 −X2‖2‖~w2 −X2‖2

)

+ log 2δ + 2





]

(4.37)

and a second piece that is finite when δ → 0:

Ŵ∆,δ,i
1 (~w1, ~w2, X2)|2 := lim

δ→0

v2

(x2
12x

2
34)

2

1

4

∫

R4

d4X1

2∏

i=1

1

‖~wi −X1‖4
K(X1,X2)

1−K(X1,X2) + δ

=
π2v2

(x2
12x

2
34)

2

1

8

2∏

i=1

z2

‖~wi −X2‖2
,

(4.38)

so that the complete result for the fish diagram becomes

Ŵ∆,δ,i
1 (~w1, ~w2, X2) = Ŵ∆,δ,i

1 (~w1, ~w2, X2)|1 − Ŵ∆,δ,i
1 (~w1, ~w2, X2)|2

= − π2v2

(x2
12x

2
34)

2

2∏

i=1

z22
‖~wi −X2‖4



log

(

z22 |~w1 − ~w2|2

‖~w1 −X2‖2‖~w2 −X2‖2

)

+ log 2δ + 2



 .

(4.39)

Finally, using (4.34) we attach the remaining bulk-to-boundary propagator to obtain

the integral for the one-loop diagram for ∆ = 2

W∆,δ,i
1 = − v2

(x2
12x

2
34)

2

π2

2

∫

R4

d4Xz4
3∏

i=1

1

‖X − ~wi‖4
· (4.40)



log

(

z22 |~w1 − ~w2|2

‖~w1 −X‖2‖~w2 −X‖2

)

+ log 2δ + 2



 ,

(4.41)

which evaluates to

W∆,δ,i
1 = −π2

(

log

(
δ

2

)

+
11

3

)

W2,δ
0 +

3π4v2

8(x2
12x

2
34)

2
L2,i
0 . (4.42)
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Restoring the prefactors, the complete one-loop diagram is thus

W 2,δ
1 =

28a4π2

(2π)12



−3 log

(
δ

2

)

W2,δ
0 − 11W2,δ

0 +
3π4v2

8(x2
12x

2
34)

2

∑

i∈{s,t,u}

L2,i
0



 , (4.43)

where the L∆,i
0 terms are given in C.1.3 and W∆,δ

0 is the cross diagram evaluated in

section 4.1.1.

For ∆ = 1: We split the integral in a first piece that diverges when δ → 0

Ŵ1,δ,i
1 (~w1, ~w2, X2)|1 :=

v

(x2
12x

2
34)

1

4

∫

R4

d4X1

2∏

i=1

1

‖~wi −X1‖2
K(X1,X2)

2

(1−K(X1,X2) + δ)2

= − π2v

(x2
12x

2
34)

2∏

i=1

z2

‖~wi −X2‖2



log

(

z22 |~w1 − ~w2|2

‖~w1 −X2‖2‖~w2 −X2‖2

)

+ log 2δ



 ,

(4.44)

and the finite piece when δ → 0:

Ŵ1,δ,i
1 (~w1, ~w2, X2)|2 := lim

δ→0

v

(x2
12x

2
34)

1

4

∫

R4

d4X1

z21

2∏

i=1

1

‖~wi −X1‖2
K(X1,X2)

1−K(X1,X2) + δ

=
2π2v2

(x2
12x

2
34)

2

2∏

i=1

z2

‖~wi −X2‖2
∫ 1

0

du
arctanh(u)

4u2 + (1− u2)
|~w1−~w2|

24z22
‖~w1−X2‖

2‖~w2−X2‖
2

.

(4.45)

Thus the complete integral for the fish diagram is

Ŵ∆,δ,i
1 (~w1, ~w2, X2) = Ŵ1,δ,i

1 (~w1, ~w2, X2)|1 − Ŵ1,δ,i
1 (~w1, ~w2, X2)|2

= − π2v

(x2
12x

2
34)

2∏

i=1

z2

‖~wi −X2‖2

[

log

(

z22 |~w1 − ~w2|2

‖~w1 −X2‖2‖~w2 −X2‖2

)

+ log 2δ





− 2

∫ 1

0

du
arctanh(u)

4u2 + (1− u2)
|~w1−~w2|

24z22
‖~w1−X2‖

2‖~w2−X2‖
2

]

.

(4.46)

Finally we attach the remaining bulk-to-boundary propagator to obtain the full one-

loop diagram for ∆ = 1

W1,δ,i
1 =

1

2

π2v

(x2
12x

2
34)

∫

R4

d4X2

3∏

i=1

1

‖~wi −X2‖2

[

2

∫ 1

0

du
arctanh(u)

4u2 + (1− u2)
|~w1−~w2|

24z22
‖~w1−X2‖

2‖~w2−X2‖
2

−



log

(

z22 |~w1 − ~w2|2

‖~w1 −X2‖2‖~w2 −X2‖2

)

+ log 2δ





]

,

(4.47)

– 30 –



with the result

W1,δ,i
1 = −π2 log

(
δ

2

)

W1,δ
0 +

π4v

2x2
12x

2
34

L1,i
0 +

π4v

x2
12x

2
34

L′
0
i
. (4.48)

Restoring the prefactors, the complete one-loop diagram is then

W 1,δ
1 =

24a4π2

(2π)12



−3 log

(
δ

2

)

W1,δ
0 +

π2v

2x2
12x

2
34

∑

i∈{s,t,u}

L1,i
0 +

π2v

x2
12x

2
34

∑

i∈{s,t,u}

L′
0
i
+O(δ)



 ,

(4.49)

where L∆,i
0 and L′

0
i are given in C.1.3 and C.1.4 respectively and W∆,δ

0 is the cross

diagram evaluated in section 4.1.1.

Note that since the finite terms in both regulariation schemes corresponding to

W∆,4,i
1,fin and the second term in (4.36) are the same, we can conclude immediately

that L′
0 is the same in both regularisation schemes.

Renormalisation: As expected the UV divergent part is proportional to the cross

diagram and can therefore be absorbed in the coupling constant λ, which makes the

coupling constant scale dependent.

To understand how this works in the AdS-invariant regularisation we expand the

regularised inverse geodesic distance around the coincidence points

K

1 + δ
=

1

1 + δ

1√
1 + a2R2

→ 1− 1

2
a2R2 − δ +O(a4R4, δ2), (4.50)

where δ is a dimensionless quantity and R =
√

(X0 −Y0)2 + · · ·+ (X3 −Y3)2. If

we write it as δ = 1
2
a2r2 we see that this regularisation procedure corresponds to

cutting out a ball of radius r around the coinciding points. The quantity a would be

the renormalisation scale in usual flat space renormalisation theory, corresponding

to the energy at which the physical scattering experiment is performed. In our case,

where we are merely interested in boundary to boundary correlation functions, the

only physically relevant length scale is the AdS radius and we can therefore identify

a with the inverse AdS radius.

To perform the renormalisation we write the connected part of the four-point

correlator up to order λ2:

λW∆,δ
0 − λ2

2
W∆,δ

1 =
24∆a4

(2π)8



λR ·
(

1 +
3λR

32π2
log

(
δ

2

))

W∆,δ
0 + finite terms



 .

(4.51)

To absorb the divergent part, it is straightforward to see that we can choose a

counterterm of the form

δλW∆,δ
0 = − 3λ2

R

32π2
log δW∆,4

0 . (4.52)
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The renormalised coupling is then related to the bare coupling λ through

λ = λR − 3λ2
R

2(4π)2
log δ +O(λ3

R) . (4.53)

This regularises the expression (4.51) up to order λ2
R. The beta function can now be

calculated as

β(λ) = − dλ

d log r
=

3λ2

16π2
+O(λ3) , (4.54)

which is again consistent with the flat space λφ4 theory. In this equation we used

the fact that δ is defined as δ = 1
2
r2a2 as described above.

Comparing (4.49) and (4.43) with (4.27) and (4.22) makes it clear that both

regularisation schemes are equivalent up to addition of a cross diagram W∆
0 . Since

these are the tree-level contributions they can always be absorbed into the coupling

constant by choosing a non-minimal subtraction scheme.

In the following we will choose our counter-term such that the finite piece only

contains the L∆
0 and L′

0
∆ terms. Therefore the renormalised one-loop contributions

are given by:

W 1,ren
1 =

24a4π4

(2π)12
v

x2
12x

2
34




1

2

∑

i∈{s,t,u}

L1,i
0 +

∑

i∈{s,t,u}

L′
0
i



 (4.55)

W 2,ren
1 =

28a4π4

(2π)12
3v2

8(x2
12x

2
34)

2

∑

i∈{s,t,u}

L2,i
0 . (4.56)

Note that this differs from the scheme used in [43–45] where contributions from

the cross diagram have been integrated into the finite piece. For the anomalous

dimensions the effect of different renormalisation schemes can always be absorbed

into a redefinition of the coupling constant, that is, a change in parametrization, as

we will discuss in section 6.

4.3 Two loop diagrams

To give an outlook on how to proceed to higher-loop integrals, we present the integral

expressions of the two-loop contributions to the four-point function in terms of the

euclidean propagators from section 2.2 but leave the evaluations of the integrals for

future work.

There are two topologies contributing, which we will refer to as the necklace and

the ice cream diagram.
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x2

x1

x3

x4

x2

x1

x3

x4

Figure 5. One channel of the two-loop Necklace (left) and Ice cream (right) diagram. The
other channels can be obtained by permutations of the boundary points.

The necklace diagram is depicted in figure 5 on the left. In dimensional regular-

isation it leads to the integral

W∆,D
2,◦◦ (ζ, ζ̄) =

v∆

8(x212x
2
34)

∆

∫

(RD)3

3∏

i=1

dDXi

(u ·Xi)4‖Xi − u1‖2(D−4)
f∆◦◦(X1,X3; ζ, ζ̄)

(

(u ·X1)
2(u ·X2)

2

‖X1 −X2‖4
+

(−1)∆

2

(u ·X1)(u ·X2)

‖X1 −X2‖2

)(

(u ·X2)
2(u ·X3)

2

‖X2 −X3‖4
+

(−1)∆

2

(u ·X2)(u ·X3)

‖X2 −X3‖2

)

,

where the bulk-to-boundary part

f∆◦◦(X1,X3; ζ, ζ̄) =
(u ·X1)

2∆(u ·X3)
2∆

‖X1‖2∆‖X3 − u1‖2∆
∥
∥X3 − uζ

∥
∥2∆

(u ·X1)
2∆(u ·X3)

2∆

‖X3‖2∆‖X3 − u1‖2∆
∥
∥X1 − uζ

∥
∥2∆

+
(u ·X1)

2∆(u ·X3)
2∆

‖X3‖2∆‖X1 − u1‖2∆
∥
∥X3 − uζ

∥
∥2∆

, (4.57)

is the same as for the one loop diagram in equation (4.13).
The ice-cream diagram is depicted in figure 5 on the right. In dimensional regularisation

it corresponds to the integral

W∆,D
2,⊳◦ (ζ, ζ̄) =

v∆

8(x212x
2
34)

∆

∫

(RD)3

3∏

i=1

dDXi

(u ·Xi)4‖Xi − u1‖2(D−4)
f∆⊳◦(X1,X2,X3; ζ, ζ̄)

× (u ·X1)
4(u ·X2)

2(u ·X3)
2

‖X1 −X2‖4‖X1 −X3‖4

(

(u ·X2)
2(u ·X3)

2

‖X2 −X3‖4
+

(−1)∆

2

(u ·X2)(u ·X3)

‖X2 −X3‖2

)

, (4.58)

where the bulk-to-boundary part can easily be read-off from the general formula (3.18).
It is easy to see, that when D approaches 4, these diagrams diverge like (D − 4)−2,

with coefficients proportional to the cross diagram, and a sub-leading divergence of order
(D − 4)−1 proportional to the one-loop Witten diagram. In order to restore the AdS
invariance of the renormalised four-point function, we will need to evaluate these divergences
in D = 4− 4ǫ/3 dimensions.

In principle, solving these integrals can be done by following the same steps as for the
one-loop case, the main difference being that the integrals are more complicated and that
we will have elliptic polylogarithms appearing for the ∆ = 2 case in the necklace diagram
integrals. For ∆ = 1 we meet integrals beyond elliptic integrals whose analysis is beyond
the scope of the present work.

– 33 –



5 Discontinuities and unitarity of Witten diagrams

In this section we discuss how unitarity can be used to extract the prefactors of the log(v)n

terms in Witten diagrams, by calculating the discontinuity in v.

5.1 Discontinuities

On general grounds, to any loop order the Witten diagrams have a small v expansion of
the form

W∆
L (v, Y ) =

1

2L+1

v∆

(x212x
2
34)

∆

L+1∑

n=0

logn(v)p
(n)
L (v, Y ;∆) +O(v) , (5.1)

where p(n)L (v, Y ;∆) is an analytic function in v and Y for v and Y small. The (sequential)
discontinuity in v of the Witten diagram is therefore contained in the logn(v) terms. More
precisely,

DiscvW∆
L (v, Y ) =

1

2L+1

v∆

(x212x
2
34)

∆

L+1∑

n=1

Discv
(
logn(v)

)
p
(n)
L (v, Y ;∆) . (5.2)

The discontinuity of a function f(v) is defined by

Discvf(v ± i0) := lim
ε→0

(
f(v + iε)− f(v − iε)

)
. (5.3)

We use the principal branch for the logarithm which is a continuous function on the complex
plane except for the negative real axis. Thus, the discontinuities of log(v) and log2(v) are

Discv log(v) = lim
ε→0

(
log(v + iε)− log(v − iε)

)
= 2πiΘ(−v) , (5.4)

Discv log
2(v) = 4πiΘ(−v) log(|v|) , (5.5)

while the sequential double discontinuity is given by

DiscvDiscv log(v) = 0 , (5.6)

DiscvDiscv log
2(v) = 2(2πi)2Θ(−v) . (5.7)

Here we are only concerned with Witten diagrams up to loop order L = 1, therefore only
terms which are maximally quadratic in log(v) can appear. In this case the (sequential)
discontinuities with respect to v, applied to the one-loop Witten diagrams in (5.2), lead to

DiscvW∆
0 (v, Y ) =

1

2

v∆

(x212x
2
34)

∆
2πiΘ(−v)p(1)0 (v, Y ;∆),

DiscvW∆
1 (v, Y ) =

1

4

v∆

(x212x
2
34)

∆
2πiΘ(−v)

(

2 log(|v|)p(2)1 (v, Y ;∆) + p
(1)
1 (v, Y ;∆)

)

,

DiscvDiscvW∆
1 (v, Y ) =

1

2

v∆

(x212x
2
34)

∆
(2πi)2Θ(−v)p(2)1 (v, Y ;∆). (5.8)

From these expressions we can read-off the coefficients of log(v)2 and log(v) which, in
turn, provide us with the information about the second order anomalous dimensions of the
double-trace operators of the boundary theory.
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As we will discuss in section 6 a direct consequence of the conformal symmetry at the
boundary is the fact, that the sequential discontinuities of the Witten diagrams can be
expanded in terms of conformal blocks of a generalized free field

1

2πi
DiscvW∆

0 =
∑

n,l≥0

c∆0,n,lG∆n,l
;

1

2(2πi)2
DiscvDiscvW∆

1 =
∑

n,l≥0

c∆1,n,lG∆n,l
. (5.9)

and furthermore, that the expansion coefficients of the renormalised Witten diagrams are
related by the simple relation

c∆1,n,l = −1

4

(

c∆0,n,l

)2
, (5.10)

This relation (and its generalisation to higher-loop order) follows directly from the way the
perturbative bulk interactions generate the anomalous dimensions in (6.9). For example
in the ∆ = 2 case, since c21,n,l = c20,n,l = 1, we have the following relation between the
discontinuities of the tree-level and one-loop Witten diagram

1

2πi
DiscvW∆

0 (v, Y ) = −1

4

1

2(2πi)2
DiscvDiscvW∆

1 (v, Y ) . (5.11)

In the following we will show how to use the relation between the sequential disconti-
nuities and multiple unitarity cuts developed in [67–69] for flat space Feynman integrals in
momentum space to extract the coefficient of the log(v). We will demonstrate the success
of the method with two examples and compare them to our exact results from section 4.
Note that we did not have to use this method, since we were able to solve the integrals for
the Witten diagrams exactly. However, for higher loops and different conformal weights ∆,
where solving the integrals exactly might be more challenging, this method could turn out
to be useful.

5.2 Unitarity cuts

We notice that we can interpret the dimensionally regulated L-loop Witten diagrams
in (3.13) as three-point momentum Feynman integrals in flat space, with external “mo-
menta” k1 = u1 − uζ , k2 = uζ and k3 = −u1 where we integrate over L+ 1 loop momenta.

Because of this interpretation, we want to apply the relation between the discontinuity
of the Witten diagrams with respect to the variable v and unitarity cuts DiscvW

∆
L (v, Y ) =

CutW∆
L (v, Y ) along the lines of [67, 68]. For being able to apply the standard methods

of calculating the Cutkosky discontinuities to the Witten diagrams, we need to perform a
Wick rotation to go to Lorentzian AdS, meaning, that in this section the conformal flat
propagator in (2.24) is given by

G(X,Y ) :=
zw

‖X − Y ‖2 − iε
, ‖X − Y ‖2 = (X1 − Y1)

2 −
4∑

i=2

(Xi − Yi)
2, (5.12)

and uζ = 1
2(ζ+ζ̄, ζ−ζ̄ , 0, 0). We have introduced a Feynman −iε prescription following [76],

which provides the correct flat limit.
We only consider the case ∆ = 1 because the ∆ = 2 case is obtained by acting with

H1234 introduced in section 3.2.
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5.2.1 Unitarity cuts of the cross Witten diagram

As an example, consider the tree-level cross diagram in AdS from equation (4.9). Identifying
the bulk point X with the loop momentum l, this is equivalent to the flat space diagram
depicted in figure 6.

k1

k2

k3

k2 − l

l

k3 + l

Figure 6. Cross diagram as a flat space three point function with k1 = u1 − uζ , k2 = uζ ,
k3 = −u1 and l = X. The red line corresponds to the unitarity cut in the k22 = ζζ̄-channel.

We are interested in the unitarity cut with respect to k22 = u2ζ = ζζ̄ = v. The corre-
sponding cut we have to perform is indicated in figure 6. The cut diagram is now given
by [68]

Cutuζ
W1,4−4ǫ

0 =
1

2

v

x212x
2
34

(2πi)2
∫

d4−4ǫX
δ+(‖X‖2)δ+(

∥
∥X − uζ

∥
∥2)

(

‖X − u1‖2 − iε
)1−4ǫ , (5.13)

where δ+(‖X‖2) = δ(‖X‖2)Θ(X1). We parametrize the loop momentum X byX = (x0, r cos θ, 0, r sin θ).
The integration measure is then given by

∫

R4

d4Xδ+(‖X‖2) = 2π1−2ǫe−2γǫ

∞∫

0

dx0

∞∫

0

drr2−4ǫ

+1∫

−1

d cos θδ(x20 − r2) . (5.14)

With this, the cut diagram becomes

Cutuζ
W1,4−4ǫ

0 =
(2π)3

4

(πeγ)−2ǫv

x212x
2
34

∞∫

0

dx0

+1∫

−1

d cos θx1−4ǫ
0 (sin θ)4ǫ

δ
(

ζζ̄ − x0
(
ζ + ζ̄ − cos θ(ζ − ζ̄)

))

(1− 2x0)1−4ǫ

=
(2π)3

4

(πeγ)−2ǫv

x212x
2
34

+1∫

−1

dx
(1− x2)−2ǫ(ζζ̄)1−4ǫ

(ζ + ζ̄ − x(ζ − ζ̄))(ζ + ζ̄ − 2ζζ̄ − x(ζ − ζ̄))1−4ǫ
,

(5.15)

which evaluates to

Cutuζ
W1,4−4ǫ

0 = − vπ3

x212x
2
34

1

(ζ − ζ̄)
log

(
1− ζ

1− ζ̄

)

+O(ǫ) , (5.16)

where the O(ǫ) term is given in the appendix by equation (C.47). Comparing the O(ǫ0)

expression to (5.2) we see that the coefficient of log(v) is given by

p
(1)
0 (v, Y ) =

x212x
2
34

v

1

2πi
Cutuζ

W1,4
0 =

iπ2

2

1

ζ − ζ̄
log

(
1− ζ

1− ζ̄

)

, (5.17)
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which coincides with the exact calculation in (4.7) up to the additional factor of i which is
due to the Lorentzian signature. This is a direct verification of the relation between the v
discontinuities and the unitarity cuts.

The result for ∆ = 2 can easily be obtained by acting with H1234 on the ∆ = 1 result,
since there are no terms in the Witten diagram that would produce extra log(v) terms due
to differentiation.

5.2.2 Unitarity cuts of the one-loop Witten diagram

The same method can be applied at one loop, given by the integrals (C.1). As an example we
consider the divergent part of the s-channel diagram given by W1,4−2ǫ,s

1,div . The corresponding
flat space diagram is now given by a two-loop momentum space integral depicted in figure 7.

k1

k2

k3

k2 − l1

l1

l2 + k3 l1 − l2

Figure 7. One-loop s-channel diagram as a two-loop flat space three point function with
k1 = u1 − uζ , k2 = uζ , k3 = −u1, l2 = X2 and l1 = X1. The red line corresponds to the
unitarity cut in the k22 = ζζ̄ channel.

The discontinuity in v can then be calculated by performing the cut as shown in figure 7
and we get

Cutuζ
W1,4−2ǫ,s

1,div =
1

4

(2πi)2v

x212x
2
34

∫

d4−2ǫX1d
4−2ǫX2

δ+(‖X1‖2)δ+(
∥
∥X1 − uζ

∥
∥2)‖X1 − u1‖4ǫ

(‖X2 − u1‖2)1−2ǫ(‖X1 −X2‖2)2

=− π2−ǫΓ(ǫ)

Γ(1− 2ǫ)

1

4

(2πi)2v

x212x
2
34

∫

d4−2ǫX1
δ+(‖X1‖2)δ+(

∥
∥X1 − uζ

∥
∥2)

(‖X1 − u1‖2)1−3ǫ
,

(5.18)

evaluating the delta-function constraints we have

Cutuζ
W1,4−2ǫ,s

1,div =− π4−2ǫΓ(ǫ)

Γ(1− 2ǫ)Γ(1− ǫ)

1

4

(2πi)2v

x212x
2
34

×
+1∫

−1

dx
(1− x2)−ǫ(ζζ̄)1−2ǫ

(ζ + ζ̄ − x(ζ − ζ̄))1+ǫ(ζ + ζ̄ − 2ζζ̄ − x(ζ − ζ̄))1−3ǫ

=− π4−2ǫe−4γǫ 1

4

(2πi)2v

x212x
2
34

[
1

ǫ
I11,div + I1,ǫ1,div +O(ǫ)

]

. (5.19)

By comparing the integrand with equation (5.15) it is obvious, that I11,div is given by the

ǫ0 term of the cut of the cross diagram in that equation. The expression for I1,ǫ1,div is given
in the appendix by equation (C.48).
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The coefficient of the log(v) term of the uncut diagram can be extracted from this by
comparing I1,ǫ1,div to equation (5.8).

p
(1)
1 (v, Y ) =

2

iπ
I1,ǫ1,div

∣
∣
∣
log(v=ζζ̄)=0

. (5.20)

Comparing to the exact result in equation (C.5) we see that the log(v) coefficients coincide,
which is direct verification of the relation between the v discontinuities and the unitarity
cuts.

This method can be applied to all other integrals to extract the log(v) coefficients.
As mentioned above we will not proceed here since we were able to calculate the exact
expressions. We merely want to propose this technique, since it might be useful in future
work to go to higher-loop orders, where calculating the exact expressions is much harder.

We note, in passing, that this approach differs from the AdS unitarity methods devel-
oped in [17, 30, 37, 39] where the double discontinuity of a Witten diagram is calculated
using the split representation of the propagator and the Lorentzian inversion formula [77].
While that method generalizes straightforwardly to general ∆ and gives the result in terms
of conformal blocks right away, it is much harder to compute anomalous dimensions beyond
tree-level since they would involve cuts in the external bulk to boundary propagators.

In the language of [30] we are performing external cuts and therefore calculate the
single discontinuity, which lets us extract the information about loop corrections to the
anomalous dimensions.

6 Conformal block expansion

In order to extract the conformal dimensions of the “double-trace” operators in the conformal
field dual to φ4-theory in AdS we now compare the bulk calculation of the latter to the
conformal block expansion of the former. First, let us note that the free part of the four-
point correlation function, i.e. the disconnected part of equation (3.5) has the form of a
generalized free field, meaning that it consists of the sum over all permutations of products
of two point functions, but no classical CFT action exists which would generate these
two-point correlation functions

〈O∆(~x1)O∆(~x2)〉 = lim
z1,z2→0

(z1z2)
−∆Λ(X1,X2,∆) = 2∆N∆

1

(x212)
∆
. (6.1)

Summing over the three permutations, as shown in equation (3.5), the disconnected part
of the four-point correlation function becomes

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉disc =
22∆N 2

∆

(x212x
2
34)

∆

(

1 + v∆ +

(
v

1− Y

)∆
)

(6.2)

=
22∆N 2

∆

(x212x
2
34)

∆




1 + v∆



2 +

∞∑

n=1

Γ(∆ + n)

Γ(∆)Γ(n+ 1)
Y n








 .
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In the last step we expand in ~x1 → ~x2 and ~x3 → ~x4, which translates into a small v and Y
expansion

v =
x212x

2
34

x214x
2
23

, Y = 1− x213x
2
24

x214x
2
23

. (6.3)

From the perspective of the CFT this corresponds to the double operator product expansion
(OPE)

O∆(~x1)O∆(~x2) =
∑

Õ

a∆
Õ
DÕ(x12, ∂2)Õ(~x2) ,

O∆(~x3)O∆(~x4) =
∑

Õ

a∆
Õ
DÕ(x34, ∂4)Õ(~x4) , (6.4)

where DÕ(xij , ∂i) is a differential operator given by a power series in ∂i of the form

DÕ(xij , ∂j) = (x2ij)
−∆+ 1

2
∆

Õ

(

1 + a xij · ∂j + b x2ij∂
2
j + · · ·

)

, (6.5)

where the expansion coefficients a, b, . . . are completely fixed by conformal symmetry.
The four-point function then becomes

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉 =
∑

Õ, ˜̃O

a∆
Õ
a∆ ˜̃

O

D(x12, ∂2)D(x34, ∂4)〈Õ(~x2)
˜̃O(~x4)〉

=
22∆N 2

∆

(x212x
2
34)

∆



1 +
∑

Õ

A∆
Õ
G∆

Õ
,l(v, Y )



 , (6.6)

where we used that 〈Õ(~x2)
˜̃O(~x4)〉 vanishes for Õ 6= ˜̃O. Here G∆

Õ
,l(v, Y ) are conformal

blocks, see e.g. [72], that contain the information about the entire multiplet of a primary
operator Õ and its descendants appearing in the OPE. They are eigenfunctions of the
quadratic Casimir of the conformal group and depend on the conformal dimension ∆Õ and
the spin l of Õ. In three dimensions the conformal blocks can be obtained from the formula
for general dimensions, which has been calculated in [78]. We list the relevant formula from
this calculation in appendix D. In the following we will refer to A∆O

≡ a2∆O
as the OPE

coefficients. The normalization of the expansion is fixed by our bulk theory.
For a generalized free field the conformal block expansion can be determined exactly:

The spectrum of primary “double-trace” operators is given by : O∆�
n∂lO∆ :, with confor-

mal dimension ∆(n,l) = 2∆+ 2n+ l, where n, l/2 ∈ N. The OPE coefficients An,l for these
operators are known as well [66] and given in appendix D. We can therefore immediately
write down the conformal block expansion for the generalized free field

〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉 =
22∆N 2

∆

(x212x
2
34)

∆



1 +
∑

n,l

An,lG∆(n,l),l(v, Y )



 . (6.7)

By adding the interaction term λφ4 in the bulk we deform the four-point function, such
that the deformation is parametrized by an expansion in the renormalized bulk coupling
constant λR. From the calculation in section 4 we obtained the following four-point function
up to O(λ2R):
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〈O∆(~x1)O∆(~x2)O∆(~x3)O∆(~x4)〉 =
22∆N 2

∆

(x212x
2
34)

∆




1 + v∆



2 +
∞∑

n=1

Γ(∆ + n)

Γ(∆)Γ(n+ 1)
Y n

− λR
(4π)2

22∆
√
π

2Γ(52 − 2∆)Γ(∆)2
I∆× (v, Y ) +

λ2R
(4π)4

∑

i∈{s,t,u}

{

L1,i
0 + 2L′

0
i for ∆ = 1

3L2,i
0 for ∆ = 2








 , (6.8)

From the CFT side the deformation generated by the bulk interaction term generates
anomalous dimensions for the double-trace operators

∆(n,l) → ∆(n,l) +

∞∑

p=0

γ
(p)
n,l (∆) , (6.9)

where γ(p)n,l (∆) is of order λpR in the renormalized bulk coupling constant λR. In order to
match the conformal block expansion to the deformed four-point correlation function in
equation (6.8), we expand both, the OPE coefficients and conformal blocks in powers of
the anomalous dimensions up to O(λ2R)

An,l(∆) =An,l(∆) + (γ
(1)
n,l (∆) + γ

(2)
n,l (∆))A

(1)
n,l +

1

2
(γ

(1)
n,l (∆))2A

(2)
n,l + · · · (6.10)

G∆(n,l),l =G∆(n,l),l + (γ
(1)
n,l (∆) + γ

(2)
n,l (∆))

∂G∆,l

∂∆

∣
∣
∣
∣
∆(n,l)

︸ ︷︷ ︸

G′

∆(n,l),l

+
1

2
(γ

(1)
n,l (∆))2

∂2G∆,l

∂∆2

∣
∣
∣
∣
∣
∆(n,l)

︸ ︷︷ ︸

G′′

∆(n,l),l

+ · · · ,

so that

An,lG∆(n,l),l =An,lG∆(n,l),l + γ
(1)
n,l (∆)

(

An,lG
′
∆(n,l),l + C

(1)
n,lG∆(n,l),l

)

+
1

2
(γ

(1)
n,l (∆))2

(

An,lG
′′
∆(n,l),l +A

(2)
n,lG∆(n,l),l + 2A

(1)
∆(n,l),lG

′
∆(n,l),l

)

+ γ
(2)
n,l (∆)

(

An,lG
′
∆(n,l),l +A

(1)
n,lG∆(n,l),l

)

+O(λ3) . (6.11)

The conformal blocks are of the form G∆,l(v, Y ) = v∆/2f(v, Y ) so that the derivatives
contain terms like

G′
∆,l(v, Y ) = v∆/2 log(v)f(v, Y ) + · · · ; G′′

∆,l(v, Y ) = v∆/2 log2(v)f(v, Y ) + · · · (6.12)

Comparing this to equation (6.11) we realize that the terms proportional to log(v) in (6.11)
give us access to the anomalous dimensions at a given order in λR, while the log2(v) term
provides a consistency check that the boundary Witten diagrams correspond to a consistent
CFT. Consistency between the first and second order calculation in λR require that the
log2(v) term has to be proportional (γ(1)n,l )

2. This is the basis for equation (5.10) as well.
The contributions without log’s then provide information about the OPE coefficients. Thus
we can expand the exact expressions for the Witten diagrams we calculated in section 4
in v, Y and compare them to the conformal block expansion to extract the anomalous
dimensions and OPE coefficients.
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By extracting the coefficient of log(v) = log(ζζ̄) in the analytic expressions for Wit-
ten diagrams up to one-loop order, and comparing with the expansion of the four-point
correlation function, we can extract the L-loop contributions to the anomalous dimensions
γ
(L)
n,l (∆). These contributions to the anomalous dimensions depend on the renormalised

coupling

γ :=
λR
16π2

, (6.13)

such that at loop order L the ratio γ(L)n,l (∆)/γL is independent of the renormalised coupling.
We will comment more about the renormalisation scheme dependence below.

Anomalous dimensions for ∆ = 1 The anomalous dimensions for ∆ = 1 are given
by

γ
(1)
n,l (1) = γ (1 + δn,0)δl,0; (6.14)

γ
(2)
n,l>0(1) = γ2







−2
l(l+1) +

4
2l+1

(

H
(2)
l − ζ(2)

)

for n = 0

T 1
n,l for n > 0

(6.15)

γ
(2)
n,0(1) = γ2







−4 + 4
2l+1

(

H
(2)
l − ζ(2)

)

for n = 0

(6n2−3n−2)
n(2n+1) H

(1)
2n − 1 for n > 0

, (6.16)

where the generalized harmonic numbers are given by H
(k)
i =

∑i
n=1 n

−k and the rational
piece T∆

n,l is given by

T∆
n,l = − 2(l2 + (2∆+ 2n− 1)(∆ + n+ l − 1))

l(l+ 1)(2∆ + 2n+ l − 1)(2∆ + 2n+ l − 2)
− 2(−1)∆(H

(1)
l −H

(1)
2∆+2n+l−2)

(2∆ + 2n+ 2l− 1)(∆ + n− 1)
. (6.17)

The tree level results agree with [65]. The OPE coefficients at order λ for l = 0 are
given by the known formula [65, 66]

A
(1)
n,0(∆) =

1

2

∂An,0(∆)

∂n
, (6.18)

For the second order OPE coefficients and the first order OPE coefficients at l > 0 one
needs to expand the finite piece of the L′

0 integral, which we leave to a further study.

Anomalous dimensions for ∆ = 2 Similarly we have the following results for the
anomalous dimensions

γ
(1)
n,l (2) = γ δl,0 for n ≥ 0; (6.19)

γ
(2)
n,l (2) = γ2







T 2
n,l for l > 0

2(6n2+15n+11)H(1)
2n+2−(26n2+65n+41)

2(n+1)(2n+3) for l = 0
(6.20)

where T 2
n,l is given by equation (6.17).6 We thus obtained closed expressions for the anoma-

lous dimensions of all double trace operators appearing in the OPE expansion of the single
trace operator O∆ for ∆ = 1, 2. To our knowledge, these have not been obtained before.

6The OPE coefficients at first order and l = 0 obey equation (6.18) as well. The OPE coefficients

A
(1)
n,l(∆) up to spin 200 can be downloaded here.
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Renormalisation scheme dependence Note, that the first order anomalous di-
mension, which is generated by the cross Witten diagram, has only a non-zero constant
contribution for l = 0. Changing the renormalisation scheme, i.e. adding a cross term to
the finite piece of the one loop contribution therefore only shifts the γ(2)n,0(∆) part of the
second order anomalous dimensions by a constant, which can always be absorbed by re-
defining the coupling constant. The anomalous dimensions for l > 0 are completely scheme
independent.

In the ∆ = 1 case we find an anomalous piece in the n = 0 trajectory given by

4γ2

2l + 1

(

H
(2)
l − ζ(2)

)

= −4γ2ψ(1)(l + 1)

2l + 1
, (6.21)

where ψ(1)(l + 1) is the digamma function, which is absent in the ∆ = 2 case. This is
consistent with the result obtained in [45].

In both cases the anomalous dimensions of the scalar operators : O�
nO : are positive

and have different behaviour compared to the operators with non-vanishing spin. The
behaviour for the latter can be summarized into equation (6.17), applicable to both cases. It
is consistent with previous results for the n = 0 trajectory in [44, 45] and for the subleading
trajectories obtained in [43].

Regge trajectories We can use equation (6.17) to compare our result to previous
results for large l obtained by bootstrap methods [18, 79, 80]. Expanding around l → ∞
we obtain

γ
(2)
n,l (∆) = γ2

∞∑

k=0

q∆k (n)

l2∆+k
, (6.22)

where the q∆k (n) are polynomials in n of order 2∆ + k − 2, which can easily be extracted
from the exact expressions.

It is also straightforward to express the anomalous dimensions in terms of the conformal
spin

J2 = (l +∆+ n)(l +∆+ n− 1). (6.23)

Expanding the anomalous dimensions in large J we obtain

γ
(2)
n,J(∆) = γ2

∞∑

k=0

Q∆
k (n)

J2∆+2k
, (6.24)

where theQ∆
k (n) are polynomials in n of order 2∆+2k−2. For ∆ = 1 these polynomials only

contain even powers of n. These behaviours are in agreement with the results from [79–81].
Another interesting limit to explore would be the behaviour at n → ∞. Taking the

limit n→ ∞ in equation (6.17) we obtain

lim
n→∞

γ
(2)
n,l>0(∆) = −γ2 1

l(1 + l)
. (6.25)

For ∆ = 1 the limit is approached from below, while for ∆ = 2 it is reached from above, as
can be understood from the (−1)∆ factor in (6.17). Curiously the limit does not appear to
depend on the value of ∆. It would be interesting to test this observation for other values
of ∆.
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7 Outlook

One of the main goals of this work is to build a bridge between Witten diagrams and flat
space multi-loop Feynman integral techniques. To this end, we have presented a formulation
of the Witten diagrams as combinations of dimensionally regularised7 flat space Feynman
integrals of the type

I(n,m, η,D) =

∫ L∏

i=1

dDXi

(u ·Xi)ni

∏

1≤i<j≤L

1
∥
∥Xk −Xj

∥
∥2nkj+ηk,j

× 1

(
∥
∥Xa1

∥
∥2)m1(

∥
∥Xa2 − u1

∥
∥2)m2+2(D−4)(

∥
∥Xa3 − uζ

∥
∥2)m3

(7.1)

where nkj ∈ Z are integers, ni, m1, m2 and m3 are powers depending on the conformal
dimensions ∆ and ηkj are analytic parameters. The value of the Witten diagram is the
mutli-linear contribution

∏

k,j ∂ηk,jI(n,m, η,D)|ηk,j=0 in the analytic parameters ηk,j.
With this reformulation, one can analyze the Witten diagrams using the standard

methods for evaluating Feynman integrals [64] and apply the flat space unitarity methods
after performing the Wick rotation to Lorentz signature as described in [67–69]. We hope
that this approach will be useful for extracting the higher-loop corrections to the anomalous
dimensions.

As an application, we found analytic and closed expressions to almost all integrals
involved and, furthermore, found closed expressions for the anomalous dimensions for all
values of n and l of the “double-trace” operators : O�

n∂lO : up to second order in the
coupling constant. To our knowledge, these have not been obtained before. In the process
we formulated a version of dimensional regularisation in AdS which keeps the finite piece of
the result AdS invariant. We checked this by comparing to an AdS invariant regularisation
method and testing some CFT consistency conditions.

We also showed how unitarity can be used to extract the coefficients of the log(v) in
the conformal block expansion. This should be useful to extract the higher-loop corrections
to the anomalous dimensions.

The techniques presented in this work give a systematic way of analyzing the loop
corrections to the anomalous dimensions of double-trace operators and their Regge trajec-
tories. We hope that they will be useful in improving the understanding of string theory in
AdS-space.

There are several interesting directions to proceed. The most obvious next application
of our method is to continue with the calculation of higher loop corrections. Let us em-
phasize that, since the integrals involved will be significantly harder to solve, the method
of choice would be the unitarity cuts, as proposed in section 5.

7To restore conformal invariance of the renormalised four-point functions we had to use a loop

depend regularisation D = 4− 4ǫ
L+1 . This situation is somewhat similar to the one with the critical

vector model [82], where the interaction is logarithmic (conformal) in any dimension and, hence,

the usual replacement d → d − 2ǫ does not regularize the model. One can employ the analytic

regularization by shifting the dimension of one of the fields by ǫ. As a result, contributions to the

physical quantities, e.g. anomalous dimensions, are proportional to the number of regulated lines

in a diagram.
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Another straightforward application is the generalization to different values of the
conformal dimension, especially ∆ ≥ 3. In section 2.3.2, we explained that those cases could
be treated using our method if we consider flat space propagators with additional analytic
parameters. It would be interesting to compare the anomalous dimensions obtained like this
with the results of [25], in the same way as it would be interesting to check if the bootstrap
methods of [25] can be used to reproduce our results for subleading Regge trajectories
described in section 6.

A further potentially fruitful way to proceed is to use different new techniques to
calculate Witten diagrams, like the differential representation [14, 83, 84] and unitarity
methods based on the split representation of the propagator [17, 30, 37] in combination
with our method.

Finally, we would like to mention some recent developments in the calculation of cos-
mological correlators in de Sitter [36, 85–87]. It could be interesting to explore, if our
method can be applied in that framework as well.
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A Multiple polylogarithms

In the evaluation of the Witten diagrams, we encountered multiple polylogarithms as the
results of linearly reducible Witten diagrams in the parametric representation. Following
the convention used by Panzer in HyperInt [75], they are defined by the nested sum

Lis1,...,sk(x1, . . . , xk) :=

∞∑

0<p1<···<pk

xp11
ps11

· · · x
pk
k

pskk
for |x1 · · · xi| < 1, ∀i ∈ {1, .., k} . (A.1)

The sum s1 + s2 + · · ·+ sk is referred to as the weight of the multiple polylogarithm.
Some useful definitions and identities are

Li1 (x) = − log(1− x) , (A.2)

Li1,1 (y, x) = Li2

(
x(y − 1)

1− x

)

− Li2

(
x

x− 1

)

− Li2 (xy) , (A.3)

and the Bloch-Wigner dilogarithm given by:

D(ζ, ζ̄) =
1

2i

(

Li2 (ζ)− Li2
(
ζ̄
)
− 1

2
log(ζζ̄)

(

Li1 (ζ)− Li1
(
ζ̄
))
)

. (A.4)

For a detailed discussion of these functions and their properties we refer the interested
reader to [88–91].

A.1 Some recurring expressions

We collect recurring expressions that enter the evaluation of the Witten diagrams:

f1(ζ, ζ̄) = log(ζζ̄)



Li1,1

(

ζ̄,
ζ

ζ̄

)

− Li1,1

(

ζ,
ζ̄

ζ

)

+ Li1 (ζ)Li1

(

ζ̄

ζ

)

− Li1
(
ζ̄
)
Li1

(
ζ

ζ̄

)




+ Li3 (ζ)− Li3
(
ζ̄
)
+ Li2,1 (1, ζ)− Li2,1

(
1, ζ̄
)

+ 2Li2,1

(

ζ,
ζ̄

ζ

)

− 2Li2,1

(

ζ̄,
ζ

ζ̄

)

+ Li1,2

(

ζ,
ζ̄

ζ

)

− Li1,2

(

ζ̄ ,
ζ

ζ̄

)

− 2Li1

(

ζ̄

ζ

)

Li2 (ζ)− Li2

(

ζ̄

ζ

)

Li1 (ζ) + 2Li1

(
ζ

ζ̄

)

Li2
(
ζ̄
)
+ Li1

(
ζ̄
)
Li2

(
ζ

ζ̄

)

,

(A.5)

f2(ζ, ζ̄) = −1

2
f1(ζ, ζ̄) +

1

2

(

Li2 (ζ)Li1
(
ζ̄
)
− Li2

(
ζ̄
)
Li1 (ζ)

)

+ Li1,2 (1, ζ)− Li1,2
(
1, ζ̄
)
+

1

2

(

Li2,1 (1, ζ)− Li2,1
(
1, ζ̄
))

+
1

2
log(ζζ̄)

(

Li2 (ζ)− Li2
(
ζ̄
)
− Li1,1 (1, ζ) + Li1,1

(
1, ζ̄
))

− 1

4
log2(ζζ̄)

(

Li1 (ζ)− Li1
(
ζ̄
))

, (A.6)

f3(ζ, ζ̄) = 4i
ζ + ζ̄ − 2

ζ − ζ̄
D(ζ, ζ̄) + log(ζζ̄) log

(

(1− ζ)(1− ζ̄)

ζζ̄

)

, (A.7)
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f4(ζ, ζ̄) = −4i
ζ + ζ̄

ζ − ζ̄
D(ζ, ζ̄)− log((1− ζ)(1− ζ̄)) log

(

(1− ζ)(1− ζ̄)

ζζ̄

)

(A.8)

f5(ζ, ζ̄) =
4i(ζ + ζ̄ − 2ζζ̄)

ζ − ζ̄
D(ζ, ζ̄)− log(ζζ̄) log((1− ζ)(1− ζ̄)), (A.9)

All these expression are single-valued multiple-polylogarithms in C\{0, 1} where ζ̄ = ζ∗

is the complex conjugate of ζ. The single-valuedness of the expressions are easily checked
using the HyperlogProcedures by Schnetz [92].

B Evaluation of the Witten cross diagram

In this appendix we collect exact evaluations of the Witten cross diagram. In section B.1
we given an analytic evaluation of the cross diagram for all ∆, in section B.2 we give the
results for the evaluation of the cross diagram in dimensional regularisation for ∆ = 1 and
∆ = 2 and in section B.3 we give the v and Y expansion of the cross diagram for all values
of ∆.

B.1 The analytic evaluation of cross diagram for all ∆

Using the creative telescoping algorithm implemented in [93] we deduce that the integral

I∆× (ζ, ζ̄) =

∫

αi≥0

3∏

i=1
dαiα

∆−1
i

(α1 + α2 + α3)∆(α1α2 + α1α3ζζ̄ + α2α3(1− ζ)(1− ζ̄))∆
, (B.1)

satisfies the recursion relation for ∆ ≥ 1

4∑

n=0

c(n)I∆+n
× (ζ, ζ̄) = 0, (B.2)

with

c(0) = ∆2(4∆ + 7)(4∆ + 11),

c(1) = −
((

64∆4 + 352∆3 + 620∆2 + 410∆ + 99
)

(2ζζ̄ − ζ − ζ̄ + 2)

)

,

c(2) =4
(

16∆2 + 56∆ + 33
)

(2∆ + 3)2ζ2ζ̄2 − 4
(

16∆2 + 56∆ + 33
)

(2∆ + 3)2(ζ + ζ̄)

− 4
(

16∆2 + 56∆ + 33
)

(2∆ + 3)2ζζ̄(ζ + ζ̄) + 4
(

16∆2 + 56∆ + 33
)

(2∆ + 3)2

+
(

96∆4 + 624∆3 + 1414∆2 + 1322∆ + 423
)

(ζ + ζ̄)2

+ 8
(

48∆4 + 312∆3 + 715∆2 + 689∆ + 234
)

ζζ̄,

c(3) = −
(

16∆2 + 48∆ + 27
) (

4
(

8∆2 + 36∆ + 39
)

ζ2ζ̄2

+ 2ζζ̄

((

4∆2 + 18∆ + 19
)

(ζ + ζ̄)2 − 4
(

6∆2 + 27∆ + 29
)

(ζ + ζ̄) + 16∆2 + 72∆ + 78

)
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−
(

4∆2 + 18∆ + 19
)

(ζ + ζ̄ − 2)(ζ + ζ̄)2
)

,

c(4) = (∆ + 3)2
(

16∆2 + 40∆ + 21
)

(ζ − ζ̄)4,

which are symmetric polynomials in v = ζζ̄ and v + Y = ζ + ζ̄. The recursion implies that
for n ≥ 0 integer

I×(∆ + 4 + n) =
3∑

r=0

∑

a0+···+a4=n+1
a1+2a2+3a3+4a4=3n+r

4∏

i=0

c(r)ai
I∆+r
× (ζ, ζ̄)

(ζ − ζ̄)4(n+1)
. (B.3)

The case of ∆ integer. When ∆ is a positive integer we have that for ∆ ≥ 5

I∆× (ζ, ζ̄) =

3∑

r=0

∑

0≤a,b≤∆+1 n
a,b
r (∆)(ζζ̄)a(ζ + ζ̄)b

(ζ − ζ̄)4(∆−4)
I1+r
× (ζ, ζ̄). (B.4)

The evaluation of the integrals Ir×(ζ, ζ̄) with 1 ≤ r ≤ 4 is easily done with HyperInt [75],
with the results

I1×(ζ, ζ̄) =
4iD(ζ, ζ̄)

ζ − ζ̄
, (B.5)

and

I2×(ζ, ζ̄) =
4i
(
−(ζ + ζ̄)3 + 2(ζ + ζ̄)2ζζ̄ + 2(ζ + ζ̄)2 − 8(ζ + ζ̄)ζζ̄ + 4ζ2ζ̄2 + 4ζζ̄

)

(ζ − ζ̄)4
D(ζ, ζ̄)

ζ − ζ̄

+
4
((
ζ + ζ̄

)2 − 3
(
ζ + ζ̄

)
ζζ̄ + 2ζζ̄

)

(ζ − ζ̄)4
log(ζζ̄)

+
4
(

−2
(
ζ + ζ̄

)2
+ 3

(
ζ + ζ̄

)
ζζ̄ + 3ζ + 3ζ̄ − 4ζζ̄

)

(ζ − ζ̄)4
log((1− ζ)(1− ζ̄)) +

2

(ζ − ζ̄)2
(B.6)

and

I3×(ζ, ζ̄) =
c31(ζ, ζ̄)

(ζ − ζ̄)8
4iD(ζ, ζ̄)

ζ − ζ̄
+
c32(ζ, ζ̄)

(ζ − ζ̄)8
log(ζζ̄) +

c33(ζ, ζ̄)

(ζ − ζ̄)8
log((1− ζ)(1− ζ̄)) +

c34(ζ, ζ̄)

(ζ − ζ̄)8
,

(B.7)
with

c31(ζ, ζ̄) =
(
ζ + ζ̄

)6 − 6
(
ζ + ζ̄

)5
ζζ̄ + 6

(
ζ + ζ̄

)4
ζ2ζ̄2 − 6

(
ζ + ζ̄

)5
+ 66

(
ζ + ζ̄

)4
ζζ̄

− 132
(
ζ + ζ̄

)3
ζ2ζ̄2 + 72

(
ζ + ζ̄

)2
ζ3ζ̄3 + 6

(
ζ + ζ̄

)4 − 132
(
ζ + ζ̄

)3
ζζ̄ + 324

(
ζ + ζ̄

)2
ζ2ζ̄2

− 216
(
ζ + ζ̄

)
ζ3ζ̄3 + 36ζ4ζ̄4 + 72

(
ζ + ζ̄

)2
ζζ̄ − 216

(
ζ + ζ̄

)
ζ2ζ̄2 + 104ζ3ζ̄3 + 36ζ2ζ̄2

c32(ζ, ζ̄) = −3
(
ζ + ζ̄

)5
+ 22

(
ζ + ζ̄

)4
ζζ̄ − 25

(
ζ + ζ̄

)3
ζ2ζ̄2 + 6

(
ζ + ζ̄

)4 − 96
(
ζ + ζ̄

)3
ζζ̄

+ 204
(
ζ + ζ̄

)2
ζ2ζ̄2 − 110

(
ζ + ζ̄

)
ζ3ζ̄3 + 72

(
ζ + ζ̄

)2
ζζ̄ − 198

(
ζ + ζ̄

)
ζ2ζ̄2 + 92ζ3ζ̄3 + 36ζ2ζ̄2

c33(ζ, ζ̄) = −6
(
ζ + ζ̄

)5
+ 28

(
ζ + ζ̄

)4
ζζ̄ − 25

(
ζ + ζ̄

)3
ζ2ζ̄2 + 28

(
ζ + ζ̄

)4 − 192
(
ζ + ζ̄

)3
ζζ̄

+ 276
(
ζ + ζ̄

)2
ζ2ζ̄2 − 110

(
ζ + ζ̄

)
ζ3ζ̄3 − 25

(
ζ + ζ̄

)3
+ 276

(
ζ + ζ̄

)2
ζζ̄ − 396

(
ζ + ζ̄

)
ζ2ζ̄2

+ 128ζ3ζ̄3 − 110
(
ζ + ζ̄

)
ζζ̄ + 128ζ2ζ̄2
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c34(ζ, ζ̄) =
−13

(
ζ + ζ̄

)3
+ 26

(
ζ + ζ̄

)2
ζζ̄ + 26

(
ζ + ζ̄

)2 − 88
(
ζ + ζ̄

)
ζζ̄ + 36ζ2ζ̄2 + 36ζζ̄

2

(B.8)

and

I4×(ζ, ζ̄) =
c41(ζ, ζ̄)

(ζ − ζ̄)12
4iD(ζ, ζ̄)

ζ − ζ̄
+

c32(ζ, ζ̄)

(ζ − ζ̄)12
log(ζζ̄)+

c33(ζ, ζ̄)

(ζ − ζ̄)12
log((1−ζ)(1− ζ̄))+ c34(ζ, ζ̄)

(ζ − ζ̄)12

(B.9)
with

c41(ζ, ζ̄) = 400ζ3ζ̄3 − 5076
(
ζ + ζ̄

)5
ζ2ζ̄2 + 9312

(
ζ + ζ̄

)4
ζ3ζ̄3 − 6900

(
ζ + ζ̄

)3
ζ4ζ̄4

+ 1800
(
ζ + ζ̄

)2
ζ5ζ̄5 − 19304

(
ζ + ζ̄

)3
ζ3ζ̄3 + 15528

(
ζ + ζ̄

)2
ζ4ζ̄4 − 4800

(
ζ + ζ̄

)
ζ5ζ̄5

− 11136
(
ζ + ζ̄

)
ζ4ζ̄4 + 12

(
ζ + ζ̄

)8
ζζ̄ − 30

(
ζ + ζ̄

)7
ζ2ζ̄2 + 20

(
ζ + ζ̄

)6
ζ3ζ̄3

− 234
(
ζ + ζ̄

)7
ζζ̄ + 948

(
ζ + ζ̄

)6
ζ2ζ̄2 − 1320

(
ζ + ζ̄

)5
ζ3ζ̄3 + 600

(
ζ + ζ̄

)4
ζ4ζ̄4

+ 948
(
ζ + ζ̄

)6
ζζ̄ − 1320

(
ζ + ζ̄

)5
ζζ̄ + 9312

(
ζ + ζ̄

)4
ζ2ζ̄2 + 600

(
ζ + ζ̄

)4
ζζ̄

− 6900
(
ζ + ζ̄

)3
ζ2ζ̄2 + 15528

(
ζ + ζ̄

)2
ζ3ζ̄3 + 1800

(
ζ + ζ̄

)2
ζ2ζ̄2

− 4800
(
ζ + ζ̄

)
ζ3ζ̄3 −

(
ζ + ζ̄

)9
+ 12

(
ζ + ζ̄

)8 − 30
(
ζ + ζ̄

)7
+ 20

(
ζ + ζ̄

)6
+ 2352ζ5ζ̄5

+ 400ζ6ζ̄6 + 2352ζ4ζ̄4

c42(ζ, ζ̄) =
1

3

(

11
(
ζ + ζ̄

)8 − 150
(
ζ + ζ̄

)7
ζζ̄ + 411

(
ζ + ζ̄

)6
ζ2ζ̄2 − 294

(
ζ + ζ̄

)5
ζ3ζ̄3 − 60

(
ζ + ζ̄

)7

+ 1444
(
ζ + ζ̄

)6
ζζ̄ − 6390

(
ζ + ζ̄

)5
ζ2ζ̄2 + 9306

(
ζ + ζ̄

)4
ζ3ζ̄3 − 4368

(
ζ + ζ̄

)3
ζ4ζ̄4

+ 60
(
ζ + ζ̄

)6 − 3060
(
ζ + ζ̄

)5
ζζ̄ + 18786

(
ζ + ζ̄

)4
ζ2ζ̄2 − 34920

(
ζ + ζ̄

)3
ζ3ζ̄3

+ 24264
(
ζ + ζ̄

)2
ζ4ζ̄4 − 5544

(
ζ + ζ̄

)
ζ5ζ̄5 + 1800

(
ζ + ζ̄

)4
ζζ̄ − 18000

(
ζ + ζ̄

)3
ζ2ζ̄2

+ 37984
(
ζ + ζ̄

)2
ζ3ζ̄3 − 25680

(
ζ + ζ̄

)
ζ4ζ̄4 + 4944ζ5ζ̄5 + 5400

(
ζ + ζ̄

)2
ζ2ζ̄2

− 13800
(
ζ + ζ̄

)
ζ3ζ̄3 + 6656ζ4ζ̄4 + 1200ζ3ζ̄3

)

c43(ζ, ζ̄) =
1

3

(

6144ζ3ζ̄3 − 9450
(
ζ + ζ̄

)5
ζ2ζ̄2 + 11106

(
ζ + ζ̄

)4
ζ3ζ̄3 − 4368

(
ζ + ζ̄

)3
ζ4ζ̄4

− 52920
(
ζ + ζ̄

)3
ζ3ζ̄3 + 29664

(
ζ + ζ̄

)2
ζ4ζ̄4 − 5544

(
ζ + ζ̄

)
ζ5ζ̄5 − 39480

(
ζ + ζ̄

)
ζ4ζ̄4

− 210
(
ζ + ζ̄

)7
ζζ̄ + 471

(
ζ + ζ̄

)6
ζ2ζ̄2 − 294

(
ζ + ζ̄

)5
ζ3ζ̄3 + 2888

(
ζ + ζ̄

)6
ζζ̄

− 9450
(
ζ + ζ̄

)5
ζζ̄ + 37572

(
ζ + ζ̄

)4
ζ2ζ̄2 + 11106

(
ζ + ζ̄

)4
ζζ̄ − 52920

(
ζ + ζ̄

)3
ζ2ζ̄2

+ 75968
(
ζ + ζ̄

)2
ζ3ζ̄3 − 4368

(
ζ + ζ̄

)3
ζζ̄ + 29664

(
ζ + ζ̄

)2
ζ2ζ̄2 − 39480

(
ζ + ζ̄

)
ζ3ζ̄3

− 5544
(
ζ + ζ̄

)
ζ2ζ̄2 + 22

(
ζ + ζ̄

)8 − 210
(
ζ + ζ̄

)7
+ 471

(
ζ + ζ̄

)6 − 294
(
ζ + ζ̄

)5
+ 6144ζ5ζ̄5

+ 13312ζ4 ζ̄4
)

c44(ζ, ζ̄) =
1

18

(

193
(
ζ + ζ̄

)6 − 1044
(
ζ + ζ̄

)5
ζζ̄ + 1044

(
ζ + ζ̄

)4
ζ2ζ̄2 − 1044

(
ζ + ζ̄

)5

+ 9384
(
ζ + ζ̄

)4
ζζ̄ − 17352

(
ζ + ζ̄

)3
ζ2ζ̄2 + 8784

(
ζ + ζ̄

)2
ζ3ζ̄3 + 1044

(
ζ + ζ̄

)4

− 17352
(
ζ + ζ̄

)3
ζζ̄ + 39648

(
ζ + ζ̄

)2
ζ2ζ̄2 − 24768

(
ζ + ζ̄

)
ζ3ζ̄3 + 3600ζ4ζ̄4

+ 8784
(
ζ + ζ̄

)2
ζζ̄ − 24768

(
ζ + ζ̄

)
ζ2ζ̄2 + 11552ζ3 ζ̄3 + 3600ζ2ζ̄2

)

(B.10)
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B.2 Cross in dimensional regularisation

The cross term for ∆ = 1 in D = 4− 4ǫ dimensions is given by:

W1,4−4ǫ
0 =

1

2

ζζ̄

x212x
2
34

∫

R4−4ǫ

d4−4ǫX(u ·X)4

‖X‖4‖X − u1‖4(1−4ǫ)
∥
∥X − uζ

∥
∥4

=
1

2

π2−2ǫζζ̄

x212x
2
34

Γ(1− 2ǫ)

Γ(1− 4ǫ)

∫

(RP+)2

dα1dα2dα3α
−4ǫ
2

(α1 + α2 + α3)(α1α2 + α1α3ζζ̄ + (1− ζ)(1− ζ̄)α2α3)1−2ǫ

(B.11)

Acting on (B.11) with H1234 we obtain the parametric representation of the ∆ = 2 case:

W2,4−4ǫ
0 =

1

2

(ζζ̄)2

x412x
4
34

∫

R4−4ǫ

d4−4ǫX(u ·X)4

‖X‖4‖X − u1‖4(1−4ǫ)
∥
∥X − uζ

∥
∥4

=
2π2−2ǫ

16

(ζζ̄)2

x412x
4
34

Γ(1− 2ǫ)

Γ(1− 4ǫ)
×

∫

(RP+)2

dα1dα2dα3α
−4ǫ
2 (C1α1α

2
2α3 + C2α

2
1α2α3 + C3α

2
2α

2
3 + C4α1α2α

2
3 + C5α

2
1α

2
3)

(α1 + α2 + α3)(α1α2 + α1α3ζζ̄ + (1− ζ)(1− ζ̄)α2α3)3−2ǫ

(B.12)

The coefficients in the parametric integral (B.12) are given by:

C1 = (1− 6ǫ)(ζ + ζ̄ − ζζ̄) + 8ǫ− 2

C2 = −(1− 6ǫ)ζζ̄ − 1 + 2ǫ

C3 = (4ζζ̄ǫ2 − 4ǫ2(ζ + ζ̄) + 8ǫ2 − 4ǫ+ 1)(1− ζ)(1− ζ̄)

C4 = 8ζ2ζ̄2ǫ2 − 8ζζ̄ǫ2(ζ + ζ̄) + ζζ̄
(

8ǫ2 + 4ǫ− 2
)

+ (1− 2ǫ)(ζ + ζ̄) + 2ǫ− 1

C5 = 4ζ2ζ̄2ǫ2 + ζζ̄
(

4ǫ2 − 4ǫ+ 1
)

(B.13)

The O(ǫ) term of the result of equation (B.12) is given by

W2,4
0,ǫ =

3(ζζ̄)2
(

−
(

ζ + ζ̄
)3

+ 2
(

ζ + ζ̄
)2

ζζ̄ + 2
(

ζ + ζ̄
)2

− 8ζζ̄
(

ζ + ζ̄
)

+ 4ζ2ζ̄2 + 4ζζ̄
)

2(ζ − ζ̄)5
f2

−
4i(ζζ̄)2

(

−3
(

ζ + ζ̄
)3

+ 5
(

ζ + ζ̄
)2

ζζ̄ + 5
(

ζ + ζ̄
)2

− 12ζζ̄
(

ζ + ζ̄
)

+ 4ζ2ζ̄2 + 4ζζ̄
)

D(ζ, ζ̄)

(ζ − ζ̄)5

+
3(ζζ̄)2

(

−2
(

ζ + ζ̄
)2

+ 3ζζ̄
(

ζ + ζ̄
)

+ 3ζ + 3ζ̄ − 4ζζ̄
)

2(ζ − ζ̄)4

(

Li1 (ζ)Li1
(

ζ̄
)

+ Li1,1 (1, ζ) + Li1,1
(

1, ζ̄
)

)

−
3ζζ̄

(

−
(

ζ + ζ̄
)2

ζζ̄ + 3
(

ζ + ζ̄
)

ζ2ζ̄2 − 2ζ2ζ̄2
)

2(ζ − ζ̄)4
log(ζζ̄) log((1− ζ)(1− ζ̄))

−
ζζ̄

(

(

ζ + ζ̄
)3

ζζ̄ +
(

ζ + ζ̄
)3

− 18
(

ζ + ζ̄
)2

ζζ̄ + 8
(

ζ + ζ̄
)

ζ2ζ̄2 + 8ζζ̄
(

ζ + ζ̄
)

+ 24ζ2ζ̄2
)

4(ζ − ζ̄)4
log((1− ζ)(1− ζ̄))

+
3(ζζ̄)2

(

−
(

ζ + ζ̄
)2

+ 3ζζ̄
(

ζ + ζ̄
)

− 2ζζ̄
)

4(ζ − ζ̄)4
log2(ζζ̄)+

+
(ζζ̄)2

(

−
(

ζ + ζ̄
)4

+
(

ζ + ζ̄
)3

ζζ̄ + 10
(

ζ + ζ̄
)3

− 18
(

ζ + ζ̄
)2

ζζ̄ + 8
(

ζ + ζ̄
)

ζ2ζ̄2 − 8
(

ζ + ζ̄
)2

− 4ζζ̄
(

ζ + ζ̄
)

+ 16ζ2ζ̄2 + 8ζζ̄
)

log(ζζ̄)

4(ζ − ζ̄)4(1− ζ)(1− ζ̄)
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(B.14)

B.3 The expansion of the cross diagram

Here we rederive the cross term in general ∆ ≥ 1 as an expansion in v and Y .
We start from equation (4.4), replace v = ζζ̄ and Y = 1− (1− ζ)(1− ζ̄) and make the

coordinate transformation αi → α−1
i . Setting α1 = 1 due to the projectivity of the integral

and expanding in Y we arrive at

I∆× =
∞∑

m=0

Y m

m!

Γ(∆ +m)

Γ(∆)

∞∫

0

dα2dα3(α2α3)
∆−1

(α2 + α3 + α2α3)∆(1 + α3 + α2v)∆+m

=
∞∑

m=0

Y m

m!

Γ(∆ +m)2

Γ(2∆ +m)

∞∫

0

dα3α
∆−1
3

(1 + α3)2∆+m 2F1

(
∆,∆+m

2∆ +m
, 1− α3v

(1 + α3)2

)

(B.15)

For a, b ∈ N the hypergeometric function can be expanded as

2F1

(
a, b

a+ b
, 1− z

)

= − Γ(a+ b)

Γ(a)Γ(b)

∑

n≥0

(

log(z) +H
(1)
a+n−1 +H

(1)
b+n−1 − 2H(1)

n

)

× Γ(a+ n)Γ(b+ n)

Γ(a)Γ(b)

zn

n!2
, (B.16)

where H(1)
n =

∑n
r=1 1/r is the harmonic number. Using that

∫ ∞

0

αn+∆−1
3

(1 + α3)2n+m+2∆
dα3 =

Γ(∆ + n)Γ(∆ +m+ n)

Γ(2∆ + 2n+m)
, (B.17)

and

∫ ∞

0

αn+∆−1
3

(1 + α3)2n+m+2∆
log

(
α3

(1 + α3)2

)

dα3 =
Γ(∆ + n)Γ(∆ +m+ n)

Γ(2∆ + 2n+m)

×
(

H
(1)
∆+n−1 +H

(1)
∆+m+n−1 − 2H

(1)
2∆+m+2n−1

)

, (B.18)

the expansion of I∆× reads

I∆× = −
∑

n,m≥0

Γ(∆ + n)2Γ(∆ +m+ n)2

Γ(∆)2Γ(2∆ +m+ 2n)

vnY m

n!2m!

×
(

log(v) + 2H
(1)
∆+n−1 + 2H

(1)
∆+m+n−1 − 2H(1)

n − 2H
(1)
2∆+m+2n−1

)

. (B.19)

This expression matches the one given in [72].

C Evaluation of the one-loop Witten bubble diagram

In this appendix we give the expressions for the evaluation of the one-loop Witten bubble
diagram in dimensional regularisation for ∆ = 1 and ∆ = 2.
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C.1 The one-loop diagram

The general integrals to be solved in dimensional regularisation are given by:

W∆,4−2ǫ,s
1,div =

1

2

(ζζ̄)∆

(x212x
2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X1 − uζ

∥
∥2∆‖X2 − u1‖2∆−4ǫ‖X1 − u1‖−4ǫ‖X1 −X2‖4

W∆,4−2ǫ,t
1,div =

1

2

(ζζ̄)∆

(x212x
2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X2 − uζ

∥
∥2∆‖X2 − u1‖2∆−4ǫ‖X1 − u1‖−4ǫ‖X1 −X2‖4

W∆,4−2ǫ,u
1,div =

1

2

(ζζ̄)∆

(x212x
2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X2 − uζ

∥
∥2∆‖X1 − u1‖2∆−4ǫ‖X2 − u1‖−4ǫ‖X1 −X2‖4

W∆,4,s
1,fin =

1

2

(ζζ̄)∆

(x212x
2
34)

∆

∫

R8

d4X1d
4X2(u ·X1)

2∆−3(u ·X2)
2∆−3

‖X1‖2∆
∥
∥X1 − uζ

∥
∥2∆‖X2 − u1‖2∆‖X1 −X2‖2

W∆,4,t
1,fin =

1

2

(ζζ̄)∆

(x212x
2
34)

∆

∫

R8

d4X1d
4X2(u ·X1)

2∆−3(u ·X2)
2∆−3

‖X1‖2∆
∥
∥X2 − uζ

∥
∥2∆‖X2 − u1‖2∆‖X1 −X2‖2

W∆,4,u
1,fin =

1

2

(ζζ̄)∆

(x212x
2
34)

∆

∫

R8

d4X1d
4X2(u ·X1)

2∆−3(u ·X2)
2∆−3

‖X1‖2∆
∥
∥X2 − uζ

∥
∥2∆‖X1 − u1‖2∆‖X1 −X2‖2

(C.1)

The auxiliary integrals used to obtain the parametric representation of the finite inte-
grals for ∆ = 2 are given by

W̃2,4,s
1,fin =

1

8

∫

R8

d4X1d
4X2

‖X1 − ~x1‖2‖X1 − ~x2‖4‖X2 − ~x3‖4‖X2 − ~x4‖2‖X1 −X2‖2

=
1

8

x214
x412x

4
34

(ζζ̄)2
∫

R8

d4X1d
4X2

‖X1‖2
∥
∥X1 − uζ

∥
∥4‖X2 − u1‖2‖X1 −X2‖2

W̃2,4,t
1,fin =

1

8

∫

R8

d4X1d
4X2

‖X1 − ~x1‖2‖X1 − ~x3‖4‖X2 − ~x2‖2‖X2 − ~x4‖4‖X1 −X2‖2

=
1

8

ζζ̄

x212x
4
34

∫

R8

d4X1d
4X2

‖X1‖2‖X2 − u1‖4
∥
∥X2 − uζ

∥
∥2‖X1 −X2‖2

W̃2,4,u
1,fin =

1

8

∫

R8

d4X1d
4X2

‖X1 − ~x1‖2‖X1 − ~x4‖4‖X2 − ~x2‖2‖X2 − ~x3‖4‖X1 −X2‖2

=
1

8

ζζ̄

x212x
4
34

∫

R8

d4X1d
4X2

‖X1‖2‖X1 − u1‖4
∥
∥X2 − uζ

∥
∥2‖X1 −X2‖2

. (C.2)

The integrals to be solved in the AdS-invariant regularisation are given by:

W∆,δ,s
1 =

1

4

(ζζ̄)∆

(x212x
2
34)

∆

∫

R8

d4X1d
4X2z

2∆−4
1 z2∆−4

2

‖X1‖2∆
∥
∥X1 − uζ

∥
∥2∆‖X2 − u1‖2∆

(

Kδ(X1,X2)
∆

1−Kδ(X1,X2)2

)2

W∆,δ,t
1 =

1

4

(ζζ̄)∆

(x212x
2
34)

∆

∫

R8

d4X1d
4X2z

2∆−4
1 z2∆−4

2

‖X2‖2∆
∥
∥X1 − uζ

∥
∥2∆‖X1 − u1‖2∆

(

Kδ(X1,X2)
∆

1−Kδ(X1,X2)2

)2

W∆,δ,u
1 =

1

4

(ζζ̄)∆

(x212x
2
34)

∆

∫

R8

d4X1d
4X2z

2∆−4
1 z2∆−4

2

‖X1‖2∆
∥
∥X2 − uζ

∥
∥2∆‖X1 − u1‖2∆

(

Kδ(X1,X2)
∆

1−Kδ(X1,X2)2

)2

. (C.3)
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C.1.1 ∆ = 1

The finite integrals are the L′
0 integrals which are discussed in detail in appendix C.1.4

The divergent integrals in the parametric representation are given by

W1,4−2ǫ,s
1,div =

π4−2ǫζζ̄

Γ(−2ǫ)

∫

(RP+)4

5∏

i=1

dαi

· α−1−2ǫ
3 α−2ǫ

1 α5((α2 + α3 + α4)α5 + (α2 + α3 + α4 + α5)α1)
−1−ǫ

(
α4(α3α5 + α1(α3 + α5))(1− ζ)(1 − ζ̄) + α2α4(α1 + α5)ζζ̄ + α2(α3α5 + α1(α3 + α5))

)1−2ǫ

W1,4−2ǫ,t
1,div =

π4−2ǫζζ̄

Γ(−2ǫ)

∫

(RP+)4

5∏

i=1

dαi

· α−1−2ǫ
2 α−2ǫ

3 α5((α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5)
−1−ǫ

(
α4((α1 + α2)α3 + (α2 + α3)α5)(1 − ζ)(1 − ζ̄) + α1α2(α3 + α4 + α5) + α1α5(α3 + α4ζζ̄)

)1−2ǫ

W1,4−2ǫ,u
1,div =

π4−2ǫζζ̄

Γ(−2ǫ)

∫

(RP+)4

5∏

i=1

dαi

· α−1−2ǫ
1 α−2ǫ

4 α5((α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5)
−1−ǫ

(
α3α4α5 + α1α3(α4 + α5) + α2(α4α5 + α1(α3 + α4 + α5))(1 − ζ)(1 − ζ̄) + α2α3(α4 + α5ζζ̄)

)1−2ǫ

(C.4)

The solution to the integrals (C.4) up to O(ǫ0) is given by

W∆,4−2ǫ,s
1,div =− π4−2ǫe−2γǫ(ζζ̄)1−

ǫ
2 ((1− ζ)(1− ζ̄))ǫ

2x212x
2
34

(

1

ǫ

4iD(ζ, ζ̄)

ζ − ζ̄
+
f1(ζ, ζ̄)

ζ − ζ̄
+O(ǫ)

)

,

(C.5)

W∆,4−2ǫ,t
1,div =− π4−2ǫe−2γǫ(ζζ̄)1−ǫ((1 − ζ)(1− ζ̄))

3ǫ
2

2x212x
2
34

(

1

ǫ

4iD(ζ, ζ̄)

ζ − ζ̄
+
f1(ζ, ζ̄)

ζ − ζ̄
+O(ǫ)

)

,

(C.6)

W∆,4−2ǫ,u
1,div =− π4−2ǫe−2γǫ(ζζ̄)1−ǫ((1 − ζ)(1− ζ̄))ǫ

2x212x
2
34

(

1

ǫ

4iD(ζ, ζ̄)

ζ − ζ̄
+
f1(ζ, ζ̄)

ζ − ζ̄
+O(ǫ)

)

.

(C.7)

C.1.2 ∆ = 2

The finite integrals are given by:

W 2,4,s
1,fin =

π4

2

(ζζ̄)2

(x12x34)4

∫

(RP+)3

4∏

i=1

dαi

α1α2α3α4(α4(α1 + α2 + α3) + α3(α1 + α2))
−1

(α1α2(α3 + α4)ζζ̄ + α1α3α4(1− ζ)(1 − ζ̄) + α2α3α4)2
,

W 2,4,t
1,fin =

π4

2

(ζζ̄)2

(x12x34)4

∫

(RP+)3

4∏

i=1

dαi

α1α2α3α4(α4(α1 + α2 + α3) + α2(α1 + α3))
−1

(α1α3(α2 + α4)(1 − ζ)(1 − ζ̄) + α1α2α4ζζ̄ + α2α3α4)2
,
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W 2,4,u
1,fin =

π4

2

(ζζ̄)2

(x12x34)4

∫

(RP+)3

4∏

i=1

dαi

α1α2α3α4(α1(α2 + α3 + α4) + α4(α2 + α3))
−1

(α1α2(α3 + α4ζζ̄) + α1α3α4(1− ζ)(1 − ζ̄) + α2α3α4)2
. (C.8)

The solution to the integrals (C.8) is given by

W2,4,s
1,fin =

π4

8

(ζζ̄)2

(x12x34)4

(

(ζ + ζ̄ − 2)8iD(ζ, ζ̄)

(ζ − ζ̄)3
+

(4ζ − 2)ζ̄ − 2ζ

ζζ̄(ζ − ζ̄)2
log((1− ζ)(1 − ζ̄))− 4 log(ζζ̄)

(ζ − ζ̄)2

)

W2,4,t
1,fin =

π4

8

(ζζ̄)2

(x12x34)4

(

− (ζ + ζ̄)8iD(ζ, ζ̄)

(ζ − ζ̄)3
+

(4ζ − 2)ζ̄ − 2ζ

(1− ζ)(1 − ζ̄)(ζ − ζ̄)2
log(ζζ̄)− 4 log((1− ζ)(1 − ζ̄))

(ζ − ζ̄)2

)

W2,4,u
1,fin =

π4

8

(ζζ̄)2

(x12x34)4

(

− ((4ζ − 2)ζ̄ − 2ζ)4iD(ζ, ζ̄)

(ζ − ζ̄)3
+

2(ζ + ζ̄)

(ζ − ζ̄)2
log(ζζ̄)− 2(ζ + ζ̄ − 2) log((1− ζ)(1 − ζ̄))

(ζ − ζ̄)2

)

(C.9)

The divergent integrals are given by:

W2,4−2ǫ,s
1,div =

4π4−2ǫ(ζζ̄)2

16Γ(−2ǫ)

∫

(RP+)4

5∏

i=1

dαiFs(ζ, ζ̄ , ǫ;α1, α2, α3, α4, α5)

× α−1−2ǫ
3 α−2ǫ

1 α5((α2 + α3 + α4)α5 + (α2 + α3 + α4 + α5)α1)
−1−ǫ

(
α4(α3α5 + α1(α3 + α5))(1 − ζ)(1 − ζ̄) + α2α4(α1 + α5)ζζ̄ + α2(α3α5 + α1(α3 + α5))

)3−2ǫ

W2,4−2ǫ,t
1,div =

4π4−2ǫ(ζζ̄)2

16Γ(−2ǫ)

∫

(RP+)4

5∏

i=1

dαiFt(ζ, ζ̄, ǫ;α1, α2, α3, α4, α5)

× α−1−2ǫ
2 α−2ǫ

3 α5((α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5)
−1−ǫ

(
α4((α1 + α2)α3 + (α2 + α3)α5)(1− ζ)(1 − ζ̄) + α1α2(α3 + α4 + α5) + α1α5(α3 + α4ζζ̄)

)3−2ǫ

W2,4−2ǫ,u
1,div =

4π4−2ǫ(ζζ̄)2

16Γ(−2ǫ)

∫

(RP+)4

5∏

i=1

dαiFu(ζ, ζ̄, ǫ;α1, α2, α3, α4, α5)

× α−1−2ǫ
1 α−2ǫ

4 α5((α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5)
−1−ǫ

(
α3α4α5 + α1α3(α4 + α5) + α2(α4α5 + α1(α3 + α4 + α5))(1 − ζ)(1 − ζ̄) + α2α3(α4 + α5ζζ̄)

)3−2ǫ

(C.10)

The expansion of the prefactors starts at O(ǫ) so only integrals that diverge at least
with ǫ−1 contribute to the final result. When only keeping those terms, the functions Fs, Ft

and Fu are given by:

Fs = C1(α
2
1α2α4α

2
5 + 2α1α2α3α4α

2
5 + α2α

2
3α4α

2
5)

+ C2(α1α
2
2α4α

2
5 + α2

2α3α4α
2
5 + α2

1α
2
2α4α5) + C3(α

2
1α

2
4α

2
5 + 2α1α3α

2
4α

2
5 + α2

3α
2
4α

2
5)

+ C4(α
2
1α2α

2
4α5 + α1α2α

2
4α

2
5 + α2α3α

2
4α

2
5) + C5(2α1α

2
2α

2
4α5 + α2

2α
2
4α

2
5 + α2

1α
2
2α

2
4)

+ α2
1α

2
2α

2
5 + 2α1α

2
2α3α

2
5 + α2

2α
2
3α

2
5 (C.11)

Ft = C1(α
2
1α

2
3α4α5 + α1α

2
2α4α

2
5 + 2α1α2α3α4α

2
5 + α1α

2
3α4α

2
5) + C2(α

2
1α2α4α

2
5 + α2

1α3α4α
2
5)

+ C3(α
2
2α

2
4α

2
5 + 2α2α3α

2
4α

2
5 + α2

3α
2
4α

2
5 + α2

1α
2
3α

2
4 + 2α1α

2
3α

2
4α5)
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+ C4(α
2
1α3α

2
4α5 + α1α2α

2
4α

2
5 + α1α3α

2
4α

2
5) + C5α

2
1α

2
4α

2
5

+ α2
1α

2
2α

2
5 + 2α2

1α2α3α
2
5 + α2

1α
2
3α

2
5

(C.12)

Fu = C1(α
2
1α2α3α5 + 2α1α2α3α4α

2
5 + α2

2α3α
2
4α5 + α2α3α

2
4α

2
5)

+ C2(α1α2α
2
3α

2
5 + α2

2α
2
3α4α5 + α2α

2
3α4α

2
5) + C3(α

2
1α

2
2α

2
5 + 2α1α

2
2α4α

2
5 + α2

2α
2
4α

2
5)

+ C4(α1α
2
2α3α

2
5 + α2

2α3α4α
2
5) +C5α

2
2α

2
3α

2
5 + α2

1α
2
3α

2
5 + 2α1α

2
3α4α

2
5 + α2

2α
2
3α

2
4

+ 2α2α
2
3α

2
4α5 + α2

3α
2
4α

2
5

(C.13)

with the coeffifients Ci given in (B.13).

C.1.3 L∆
0 integrals

The L∆
0 pieces appearing in the finite part of the one-loop bubble integrals of ∆ = 1 and

∆ = 2 are given by:

L∆
0 (x,y, z) =

∞∫

0

dσ

1∫

0

d̺
(σ̺(1 − ̺))∆−1 log(1 + σ)

(1 + σ)∆
(
σ̺(1− ̺)x+ ̺y + (1− ̺)z

)∆
(C.14)

Where the three channels are given by

• s-channel: x → v, y → 1− Y , z → 1

• t-channel: x → 1− Y , y → v, z → 1

• u-channel: x → 1, y → 1− Y , z → v

They are linearly reducible and given by single valued polylogarithms of maximal weight
three

For ∆ = 1 we have

L1,s
0 (ζ, ζ̄) =

f1(ζ, ζ̄)− 2i log(ζζ̄)D(ζ, ζ̄)

ζ − ζ̄
(C.15)

L1,t
0 (ζ, ζ̄) =

f1(ζ, ζ̄)− 2i log((1− ζ)(1− ζ̄))D(ζ, ζ̄)

ζ − ζ̄
(C.16)

L1,u
0 (ζ, ζ̄) =

f1(ζ, ζ̄)

ζ − ζ̄
. (C.17)

For ∆ = 2 we have

L2,s
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

((
ζ + ζ̄

)2 − 3
(
ζ + ζ̄

)
ζ ζ̄ + 2 ζ ζ̄

)

f3(ζ, ζ̄)

+
(

−
(
ζ + ζ̄

)3
+ 2

(
ζ + ζ̄

)2
ζ ζ̄ + 2

(
ζ + ζ̄

)2 − 8
(
ζ + ζ̄

)
ζ ζ̄ + 4 ζ2ζ̄2 + 4 ζ ζ̄

)

f1(ζ, ζ̄)

−2 i
(

2 ζ3ζ̄ + 8 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 11 ζ2ζ̄ − 11 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 8 ζ ζ̄ + 2 ζ̄2
)

ln
(
ζ ζ̄
)
D(ζ, ζ̄)

− 4 i
(

ζ3ζ̄ + 6 ζ2ζ̄2 + ζ ζ̄3 − ζ3 − 7 ζ2ζ̄ − 7 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 4 ζ ζ̄ + 2 ζ̄2
)

D(ζ, ζ̄)
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− 2
(
ζ − ζ̄

)
ζ ζ̄
(
ζ + ζ̄ − 2

)
ln
(
ζ ζ̄
)

+
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄ − 2

)
ln
(

(−1 + ζ)
(
−1 + ζ̄

))

+ 2
(
ζ − ζ̄

)3
(C.18)

L2,t
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

(

(3 ζ − 2) ζ̄2 +
(

3 ζ2 − 8 ζ + 3
)

ζ̄ − 2 ζ2 + 3 ζ

)

f4(ζ, ζ̄)

+

(

(2 ζ − 1) ζ̄3 +
(

8 ζ2 − 11 ζ + 2
)

ζ̄2 +
(

2 ζ3 − 11 ζ2 + 8 ζ
)

ζ̄ − ζ3 + 2 ζ2
)

f1(ζ, ζ̄)

+ 2 i
(
(−2ζ + 1) ζ̄3 −

(

8 ζ2 − 11 ζ + 2
)

ζ̄2 −
(

2 ζ3 − 11 ζ2 + 8 ζ
)

ζ̄

+ (−2 + ζ) ζ2
)
ln
(

(1− ζ)
(
1− ζ̄

))

D(ζ, ζ̄)

− 4 i

(

ζ ζ̄3 +
(

6 ζ2 − 8 ζ + 1
)

ζ̄2 + ζ
(

ζ2 − 8 ζ + 6
)

ζ̄ + ζ2
)

D(ζ, ζ̄)

−
(
2 ζ ζ̄ − ζ − ζ̄

) (

ζ2 − ζ̄2
)

ln
(
ζ ζ̄
)
+ 2

(
1− ζ̄

)
(1− ζ)

(
ζ − ζ̄

) (
ζ + ζ̄

)
ln
(

(1− ζ)
(
1− ζ̄

))

+ 2
(
ζ − ζ̄

)3
(C.19)

L2,u
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

(

ζ2 + 4 ζ ζ̄ + ζ̄2 − 3 ζ − 3 ζ̄
)

f5(ζ, ζ̄)

+
(

2 ζ3ζ̄ + 8 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 11 ζ2ζ̄ − 11 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 8 ζ ζ̄ + 2 ζ̄2
)

f1(ζ, ζ̄)

− 4 i
(

2 ζ3ζ̄ + 4 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 7 ζ2ζ̄ − 7 ζ ζ̄2 − ζ̄3 + ζ2 + 6 ζ ζ̄ + ζ̄2
)

D(ζ, ζ̄)

−
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄

)
ln
(
ζ ζ̄
)

+
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄ − 2

)
ln
(

(1− ζ)
(
1− ζ̄

))

+ 2
(
ζ − ζ̄

)3
(C.20)

C.1.4 L′
0 integrals

The finite integrals for ∆ = 1 are much harder to evaluate since they involve elliptic integrals
in the parametric representation. Therefore we were not able to find closed expressions.
But as the main goal of this work is to extract anomalous dimensions of the double-trace
operators in the dual CFT, we are mainly interested in the coefficients of the log(v)n terms.
After identifying these terms the rest of the integral is finite and we can expand the integrand
in powers of v and Y and integrate over the coefficients.

Let us first note that the integrals involved in the finite piece are all of the form

I(v1, v2) :=

∫

R8

d4Xd4Y

‖X‖2‖Y − v1‖2‖Y − v2‖2‖X − Y ‖2 u ·X u · Y
. (C.21)

Comparing with (C.1) we recognise the finite pieces of the different channels as:

W1,4,s
1,fin =

1

2

(ζζ̄)∆

(x212x
2
34)

∆
I(u1, u1 − uζ),

W1,4,t
1,fin =

1

2

(ζζ̄)∆

(x212x
2
34)

∆
I(u1, uζ),
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W1,4,u
1,fin =

1

2

(ζζ̄)∆

(x212x
2
34)

∆
I(uζ , uζ − u1). (C.22)

A parametric representation is given by

I(v1, v2) := π4
∫

(RP+)4

dα0 · · · dα5

(α1+α2+α3
4 α2

4 +
α0+α1

4 α2
5 +

α1
2 α4α5 + F̂ )2

, (C.23)

with
F̂ = −(v1 − v2)

2(α0 + α1)α2α3 − v21α0α1α2 − v22α0α1α3 . (C.24)

Changing variables to

α1 + α2 + α3

4
α2
4 +

α0 + α1

4
α2
4 +

α1

2
α4α4 =

α1 + α2 + α3

4
(β24 + β25), (C.25)

with

β4 = α4 +
α1α5

α1 + α2 + α3
; β5 =

α5

√

α0(α1 + α2 + α3) + α1(α2 + α3)

α1 + α2 + α3
. (C.26)

Setting

β4 =
tβ5α1

√

α0(α1 + α2 + α3) + α1(α2 + α3)
, (C.27)

and performing the integration over β5, and changing variables to αi → 1/αi we get

I(v1, v2; 0) := −2π4
∫ ∞

1
dt

∫ ∞

0

dα0dα1dα2dα3

(v1 − v2)2(α0 + α1) + v21α3 + v22α2

× 1

α1((α0 + α1)(α2 + α3) + α2α3) + α0α2α3t2
. (C.28)

Setting x := (v1− v2)2, y := v21 and z := v22 , this defines the L′
0(x, y, z) := I(v1, v2; 0)/(4π

4)

integral

L′
0(x, y, z) =

∫ ∞

1
dλ

∫ ∞

0
ds

∫ 1

0
dr

log(1 + λs)

4λ
√

(1 + s)(1 + λs)(sr(1− r)x+ ry + (1− r)z)
.

(C.29)
For the s-channel we have

(x, y, z) = (v, 1− Y, 1), (C.30)

For the t-channel we have
(x, y, z) = (1− Y, 1, v), (C.31)

For the u-channel we have
(x, y, z) = (1, v, 1 − Y ). (C.32)

We first evaluate the integral over λ to get

I(s) =

∫ ∞

1

log(1 + sλ)

λ
√
1 + λs

dλ (C.33)
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= 2Li2

(
1√
s+ 1

)

− 2Li2

(

− 1√
s+ 1

)

− log(s + 1) log

(√
s+ 1− 1√
s+ 1 + 1

)

.

For computing this integral we evaluated

∫ ∞

1

(1 + sλ)−
1
2
+ǫ

λ
dλ = −

2s−
1
2
+ǫ

2F1

(
1
2 − ǫ, 12 − ǫ; 32 − ǫ;−1

s

)

−1 + 2ǫ

= − log

(√
s+ 1− 1√
s+ 1 + 1

)

+ ǫ
(

2Li2

(
1√
s+ 1

)

− 2Li2

(

− 1√
s+ 1

)

− log(s + 1) log

(√
s+ 1− 1√
s+ 1 + 1

)
)

+O
(

ǫ2
)

(C.34)

changing variables by setting s = 1/σ2 − 1 we have

I(σ) = 2Li2 (σ)− 2Li2 (−σ) + 2 log(σ)
(
log(1− σ)− log(1 + σ)

)
(C.35)

L′
0(x, y, z) =

1

4

∫ 1

0

∫ 1

0

I(σ)
(
σ2 − 1

)
xr2 +

(
(−x+ y − z)σ2 + x

)
r + z σ2

drdσ (C.36)

The vanishing locus of the denominator of the integral
(

σ2 − 1
)

xr2 +
(

(−x+ y − z) σ2 + x
)

r + z σ2 = 0 (C.37)

defines an elliptic curve. Therefore the result of the integral is an elliptic polylogarithm. We
are not interested in the exact expression but in the degeneration limit of the elliptic curve
for small v and Y . Therefore, we only evaluate the integrals in the asymptotic 0 ≤ v ≪ 1

region.

s-channel We can perform the integration over σ right away. The positive root of equa-
tion (C.37) in σ is given by

σ(r) :=

√

(1− r) rv√
−r2v + Y r + rv − 1

. (C.38)

Note that the limit v → 0 coincides with σ(r) → 0, which means that the integration in σ
should provide us with the log(v)2 and log(v) divergences of the integral.
Indeed, performing the integration over σ leads to

L′
0(v, 1 − Y, 1) =

1

4

∫ 1

0
log

(
1− σ(r)

1 + σ(r)

)
dr

2
(
−1− r2v + r (v + Y )

)
σ(r)

log(v)2

+

∫ 1

0

(

Li2
(
σ(r
)
)− Li2

(
−σ(r

)
) + iπLi1

(
−σ(r

)
)− iπLi1

(
σ(r
)
)
) log(v)dr

2
(
−1− r2v + r (v + Y )

)
σ(r)

+

∫ 1

0
log

(

−i
√

r(1− r)√
1− Y r

)

log(v)dr

2
(
−1− r2v + r (v + Y )

)
σ(r)

+O(v0) (C.39)

One can perform the small v series expansion under the integrals and integrate in r term
by term.
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t-channel Here the log(v) divergence can be extracted from the r integral. We notice
that equation (C.36) can be written as

L′
0(1− Y, 1, y) =

1

4

∫ 1

0

∫ 1

0

I(σ)

(r − r+(σ))(r − r−(σ))

1

(σ2 − 1)(1 − Y )
drdσ

=
1

4

∫ 1

0

I(σ) log
(
r+(1−r−)
r−(1−r+)

)

r− − r+
dσ (C.40)

with

r± =
1

2

σ2(v − Y )− (1− Y )±
√

(σ2(v − Y )− (1− Y ))2 − 4σ2v(σ2 − 1)(1− Y )
√

(σ2 − 1)(1− Y )
(C.41)

The logarithmic term in the numerator diverges with log(v) in the limit v → 0. The log(v)
term to the integral is therefore given by

L′

0(1−Y, 1, v) = −
∫ 1

0

(

Li2 (σ)− Li2 (−σ) + log(σ)
(
log(1 − σ)− log(1 + σ)

))

dσ
√

(Y 2 + 2Y v + v2 − 4v)σ4 − 2 (Y − 1) (v + Y )σ2 + (Y − 1)2
log(v)+O(v0)

(C.42)

The integrand can be expanded for small v and Y and integrated term-by-term using
the small σ expansion

Li2 (σ)− Li2 (−σ) + log(σ)
(
log(1− σ)− log(1 + σ)

)
= 2

∑

n≥0

σ2n
(

1

(2n + 1)2
− log(σ)

2n+ 1

)

(C.43)
so that
∫ 1

0

(

Li2 (σ)− Li2 (−σ) + log(σ)
(
log(1− σ)− log(1 + σ)

))

σ2mdσ

=
π2

6(1 + 2m)
+

1

2(1 + 2m)

m∑

n=1

1

n2
. (C.44)

u-channel Repeating the same steps as for the t channel we arrive at the integral

L′

0(1, v, 1−Y ) = −
∫ 1

0

(

Li2 (σ)− Li2 (−σ) + log(σ)
(
log(1− σ)− log(1 + σ)

))

dσ
√

1 +
(
v2 + (2Y − 4) v + Y 2

)
σ4 + (−2Y + 2v)σ2

log(v)+O(v0)

(C.45)

The integrand can be expanded for small v and Y and integrated term by term using (C.44).

C.2 Expressions from unitarity cuts

The unitarity cut of the cross diagram in D = 4− 4ǫ dimensions up to order ǫ is given by

Cutuζ
W1,4−4ǫ

0 =
(2π)3

4

(πeγ)−2ǫv

(x12x34)2

+1∫

−1

dx
(1− x2)−2ǫ(ζζ̄)1−4ǫ

(ζ + ζ̄ − x(ζ − ζ̄))(ζ + ζ̄ − 2ζζ̄ − x(ζ − ζ̄))1−4ǫ

(C.46)
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which evaluates

Cutuζ
W1,4−4ǫ

0 = − vπ3

(x12x34)2
1

(ζ − ζ̄)

[

log

(
1− ζ

1− ζ̄

)

− 2ǫ



Li1,1

(

ζ̄ ,
ζ

ζ̄

)

− Li1,1

(

ζ,
ζ̄

ζ

)

+ Li1 (ζ)Li1

(

ζ̄

ζ

)

− Li1
(
ζ̄
)
Li1

(
ζ

ζ̄

)

−(Li2 (ζ)− Li2
(
ζ̄
)
) + log

(
1− ζ

1− ζ̄

)

log((1 − ζ)(1− ζ̄))

+ log(ζζ̄) log

(
1− ζ

1− ζ̄

))

+O(ǫ2) (C.47)

The O(ǫ0) term of the cut one-loop s-channel integral is given by

I1,ǫ1,div =
1

2(ζ − ζ̄)

(

Li1,1

(

ζ̄ ,
ζ

ζ̄

)

− Li1,1

(

ζ,
ζ̄

ζ

)

+ Li1 (ζ)Li1

(

ζ̄

ζ

)

− Li1
(
ζ̄
)
Li1

(
ζ

ζ̄

)

− (Li2 (ζ)− Li2
(
ζ̄
)
) + log

(
1− ζ

1− ζ̄

)

log((1− ζ)(1− ζ̄))− log(ζζ̄) log

(
1− ζ

1− ζ̄

))

+O(ǫ).

(C.48)

D Conformal blocks and OPE coefficients

The OPE coefficients for a generalized free field in d = 3 dimensions with external conformal
dimension ∆ are given by [66]

An,l(∆) =
21+l(∆− 1/2)2n(∆)2n+l

l!n!(l + 3/2)n(2∆ + n− 2)n(2∆ + n+ l − 3/2)n(2∆ + 2n+ l − 1)l
, (D.1)

where (a)n := Γ(a + n)/Γ(a) is the Pochhammer symbol. The conformal blocks for a
multiplet of dimension ∆ and spin l in d = 3 dimensions have been calculated in [78]. In
the v, Y expansion we are interested in, they are given by

G∆,l(v, Y ) =
∞∑

k=0

v
∆−l
2

+k
2k∑

m=0

Ak,mfk,m(Y ), (D.2)

with

fk,m(Y ) = Y l−m
2F1

(
1
2(∆ + l) + k −m, 12(∆ + l) + k −m

∆+ l + 2k − 2m
;Y

)

(D.3)

and

Ak,m(∆) =

⌊m
2
⌋

∑

m1,m2=0

(−1)m+m1+14m1+m2

2l
(−l)m(−⌊m/2⌋))m1+m2(k − ⌊m/2⌋) + 1/2)m1

m!m1!m2!(k −m+m1)!

× (∆− 1)2k−m(3/2 −∆)m−k−m1−m2(l −∆+ 2)2(⌊m/2⌋−m2)−n

(∆ + l −m− 1)2k−m(∆ + l)2(k+m1−⌊m/2⌋)−m
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× (m+m2 −m1 − k − l − 1/2)(⌊(m + 1)/2⌋ − l)m2

(1/2 − l)m+m2−k(3/2 + l −m2)k−m+m1+m2

×
((

1

2
(∆ + l)

)

k−m+m1

(
1

2
(∆− l − 1)

)

m2

)4

. (D.4)

where we use a slightly different normalization compared to [78].
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