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Abstract: Using the Schwinger-Keldysh-formalism, reformulated in [1] as an effec-

tive field theory in Euclidean anti-de Sitter, we evaluate the one-loop cosmological

four-point function of a conformally coupled interacting scalar field in de Sitter.

Recasting the Witten cosmological correlator as flat space Feynman integrals, we

evaluate the one-loop cosmological four-point functions in de Sitter space in terms of

single-valued multiple polylogarithms. From it we derive anomalous dimensions and

OPE coefficients of the dual conformal field theory at space-like, future infinity. In

particular, we find an interesting degeneracy in the anomalous dimensions relating

operators of neighboring spins.
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1 Introduction

De Sitter space-time (dS) is arguably the most relevant and, at the same time, sim-

ple model for the early, and late time evolution of the Universe in a cosmological

setting. It is a maximally symmetric solution of the Einstein equations with a posi-

tive cosmological constant, hence experiencing accelerated expansion. Overwhelming

observational evidence points to the fact that in the distant past our universe went

through a phase of accelerated expansion called inflation, while the asymptotic future

seems to be described by an accelerated expansion as well. Both of these scenarios

may be approximately described by a de Sitter space-time.

Furthermore, to explain the spectrum of density fluctuations in the cosmic mi-

crowave background (CMB) [2] and structure formation in the universe, which origi-

nate from the early stage of the universe, it is important to understand quantum field

theory in this background. Nevertheless, despite its relevance, this topic is much less

developed than quantum field theory in Anti-de Sitter space-time (AdS) let alone

Minkowski space-time. This is mainly due to conceptual and technical difficulties

since dS, in contrast to AdS, does not posses a globally defined time-like Killing

vector, which makes the choice of a vacuum more ambiguous and the definition of

an asymptotic region, relevant for scattering experiments, much more challenging.

In this paper we would like to advance the study of QFT in dS by calculating

the one-loop corrections to the cosmological correlation function of a conformally

coupled real scalar field with a quartic self-interaction. One of our main motivations

is to make sense of the notion of holography in the cosmological context. Similar

to AdS, one can define a conformal boundary for dS which, however, is given by a

space-like surface at future infinity, in contrast to AdS. It is therefore not possible to

fix boundary conditions in the same way as in AdS since this is incompatible with

unitary time evolution. Nevertheless, one expects a CFT description of the bulk

theory in dS on the boundary since the symmetry group of dS acts on the future

boundary as the euclidean conformal group.

There have been many attempts to implement the concept of holography in dS,

starting with [3]. Most of them focus on the calculation of the wave function of the

universe [4] for the Bunch-Davies vacuum [5]. In this case, there is a straightforward

relation to the situation in AdS. Calculations of the expansion coefficients to the

wave function have been pushed forward recently, using direct integration, unitarity

methods, Mellin space, differential representations and polytopes [6–18]. As the wave

function itself is, however, not an observable these results are more of a conceptual

rather than phenomenological value. In principle one could obtain a cosmological

correlation function by taking expectation values from this wave functional, but this

approach is impractical in reality since it requires non perturbative knowledge of

the wave function which, for interacting theories, is technically out of reach at the

moment, at least to our knowledge.
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Another approach, which we will follow in this work, is to evaluate the correlation

function directly by performing a path integral along a closed time contour, the so

called Schwinger-Keldysh or in-in formalism [19, 20]. This approach has lead to

several interesting results and the development of new techniques [1, 21–29]. We

are going to take advantage of progress made in [26–28] to express the cosmological

correlation functions in the Schwinger-Keldysh formalism as a sum over euclidean

AdS (EAdS) Witten diagrams which was expressed in [1] as an auxiliary EAdS action.

Here we calculate the four-point functions up to one-loop order by direct integration

in position space, applying the formalism developed in [30] to evaluate EAdS Witten

diagrams. Interestingly, the Witten diagrams up to this order do not contain any

elliptic integrals, in contrast to EAdS, and therefore can all be expressed in terms of

single-valued multiple polylogarithms. We then compare the late time cosmological

correlator to the conformal block expansion which allows us to extract the data of

the dual CFT.

We find that the CFT is given by a deformation of a direct product of generalized

free fields. However, in contrast to the CFT corresponding to the expansion of the

wave function, the cosmological CFT contains three different trajectories of double

trace operators due to the mixing of fields with different boundary conditions pictured

in figure 1.

Cosmological correlator CFT CFT(OS
n,l,O

A
n,l, [O1O2]n,l)

︷ ︸︸ ︷

GFF(O1)× GFF(O2)

Wave function CFT CFTΨ[π] × CFTΨ[φ]

Figure 1. Deformations of the generalized free field (GFF) CFTs in the wave function

CFTs (down) and cosmological correlator CFT (up). OS
n,l and OA

n,l are orthogonal linear

combinations of [O1O1]n,l and [O2O2]n,l (see section 4.1).

We find that the cosmological correlators obey several CFT consistency condi-

tions at different loop orders reflecting the fact the boundary theory is in fact a CFT.

The second order (one-loop) anomalous dimensions for the double trace operators

: O1✷
n∂lO1 :, : O2✷

n∂lO2 : and : O1✷
n∂lO2 :, derived in section 4 for all n and l,

γ
(2)S
n>0,l>0 = − γ2

l(l+1)
; γ

(2)A
n>0,l>0 = − γ2

(2n + l)(2n+ l + 1)

γ
(2)
n,2l>0 = γ

(2)S
n,2l>0; γ

(2)
n,2l+1>0 = γ

(2)A
n,2l+2 , (1.1)
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highlight an interesting symmetry between the anomalous dimensions at different

spins. From the bulk perspective, this is could be a consequence of the symmetry

in the EAdS action in eq. (3.3), enforced by the Schwinger-Keldysh formalism and

the fact that we take a conformally coupled scalar field. We do not expect this

symmetry to hold for general masses. The equations for γ
(2)S
n>0,l>0 and γ

(2)
n,l>0 even show

a degeneracy for the conformal dimensions of these operators for all twists ∆n,l − l,

which seems quite remarkable.

This paper is organised as follows: In section 2 we briefly review the Schwinger-

Keldysh formalism in the context of QFT in dS, define the propagators and give

the auxiliary EAdS action first derived in [1]. Section 3 is where we present the

calculation of the cosmological correlation function in terms of EAdS Witten dia-

grams and in section 4 we compare the results to a conformal block expansion on the

boundary and extract anomalous dimensions. We conclude in section 5 with a short

summary of the results and some suggestions for further investigation. The expres-

sion for the Witten diagrams are collected in the appendix A for the cross diagram

and appendix B for the one-loop diagram. The single-valued multiple polylogarithms

entering these evaluations are collected in the appendix C. The OPE coefficients are

conformal blocks for generalized field are recalled in appendix D.

2 Perturbative QFT in de Sitter space

The main reason why Quantum field theory in dS is less straightforward than in

AdS is the fact that it does not have a globally defined time-like Killing vector in all

patches relevant for cosmology, leading to a time-dependent classical background. In

this section we will describe how to deal with this issue.

2.1 Schwinger-Keldysh formalism in de Sitter space

To calculate expectations values of a time dependent background the Schwinger-

Keldysh formalism is well suited. For this one specifies the initial vacuum and cal-

culates the expectation value of local field insertions φ(X1) · · ·φ(Xn). Here we will

work on the Poincaré patch parametrized by coordinates X = (~x, η) as in figure 2,

which is given by the lower half space

H−
d+1 := {X = (~x, η) : ~x ∈ R

d, η < 0} (2.1)

equipped with the metric

ds2 =
1

a2η2
(−dη2 + d~x2) . (2.2)
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J−

J+

η = 0

η
=
−∞η =const

Figure 2. Conformal diagram of dS in the Poincaré patch.

In the interaction picture we then have

〈
φ(~x1, η) · · ·φ(~xn, η)

〉

BD
=

〈

0BD

∣
∣
∣U

†
I (−∞, η)φ(~x1, η) · · ·φ(~xn, η)UI(−∞, η)

∣
∣
∣ 0BD

〉

〈

0BD

∣
∣
∣U

†
I (−∞, η)UI(−∞, η)

∣
∣
∣ 0BD

〉 .

(2.3)

Here |0BD〉 is the Bunch-Davies vacuum to be defined below, while UI and U †
I are

the time-ordered and anti-time ordered evolution operator in the interaction picture

given by

UI(η0, η) := T
{

e
−i

∫ η
η0

dη̃HI(η̃)
}

, U †
I (η0, η) := T̄

{

e
i
∫ η
η0

dη̃HI(η̃)
}

, (2.4)

where HI is the interaction Hamiltonian and T and T̄ denote time- and anti-time

ordering respectively. The Bunch-Davies vacuum condition is imposed at η → −∞.

The denominator in equation (2.3) cancels vacuum bubble contributions, just as in

flat space.

There are two ways to perform this calculation. One is to expand the exponen-

tials in UI and U †
I and use Wick contraction on the left and right of the insertions to

calculate the correlator. Denoting the fields on the time ordered side of the integral

by φT (X), the anti-time order fields by φA(X) and the field insertions on the time

slice at future infinity by φ̄(~x), we have the Wick contractions

φT/A(X1)φT/A(X2) → ΛT/A,T/A(X1, X2) , (2.5)

where

ΛTT (X1, X2) =
〈

0
∣
∣T{φ(X1)φ(X2)}

∣
∣ 0
〉

, ΛAA(X1, X2) =
〈

0
∣
∣T̄{φ(X1)φ(X2)}

∣
∣ 0
〉

(2.6)
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are time- and anti time-ordered correlators, while ΛTA(X1, X2) and ΛAT (X1, X2) are

the retarded and advanced Green functions respectively. Similarly,

φT/A(X1)φ̄(~x2) → Λ̄T/A(X1, ~x2) , (2.7)

where Λ̄T/A(X1, ~x2) is obtained from ΛTT or ΛAA by taking X2 → ~x2 to the future

space-like conformal boundary of dS.

A free massive scalar field in dS evolves according to the Klein-Gordon equation

(−�dS +m2)φ = 0 , (2.8)

where the d’Alembertian is related to the quadratic Casimir of the SO(d + 1, 1)

isometry group of dS as C2 = − 1
a2
�dS. Comparing this with the weight ∆ and spin

ℓ representations of the conformal group in d Euclidean dimensions with

C2 = ∆(∆− d) + ℓ(ℓ+ d− 2), (2.9)

we recover the familiar relation between the mass of a scalar field and the scaling

dimension on the boundary

∆(∆− d) = −m2

a2
⇐⇒ ∆± =

d

2
±
√

d2

4
− m2

a2
. (2.10)

These equations are invariant under the shadow transformation ∆ → d−∆, which

relates two unitarily equivalent representations.

We can label the irreducible representations by the spin of the SO(d) part. We

have a Lorentzian field theory and the states appearing should therefore correspond

to unitary representations of the symmetry group SO(d+ 1, 1). The scaling dimen-

sion ∆, which can take complex values restricted by unitarity, is restricted to fall

into different classes. The most relevant ones to our analysis are the principal and

complementary series.

The equations of motion guarantee, that any free field transforms in a unitary

irreducible representation of the de Sitter group. Heavy fields with mass 4m2 > a2d2

in dS correspond to the principal series which exists for any spin ℓ. They have a

complex valued scaling dimension

∆ =
d

2
+ iν with ν ∈ R. (2.11)

Light fields in dS with mass 0 ≤ 4m2 < a2d2 correspond to the complementary series

given by the real valued dimension

∆ =
d

2
+ ν with ν ∈ R, (2.12)
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where −d
2
< ν < d

2
for ℓ = 0 and 1 − d

2
< ν < d

2
− 1 for ℓ > 0. As we will discuss

later this class of representations will be most relevant to us, since we will consider

a conformally coupled field. For more details on this topic we refer the interested

reader to [31].

EAdS can be constructed from the same ambient Minkowski space as dS with the

same signature of the metric. Therefore, we could conclude that the Hilbert space of

EAdS should be constructed from unitary irreducible representations of SO(d+1, 1).

But this is well-known not to be the case. The scaling dimension for EAdS can be

obtained by setting a → ia in equation (2.10). The value for ∆ is therefore always

real and the fields transform under unitary irreducible representations of SO(d, 2)

the symmetry group of the Lorentzian version of EAdS. This is not a problem since

QFT in EAdS is a euclidean field theory. Only after Wick rotation to Lorentzian

AdS the Hilbert space should be given by unitary representations which it clearly

does.

The situation for dS is different. In the four-point function that we analyse in our

perturbative calculation, we will see that there are operators appearing in the spec-

trum with arbitrary dimensions not obeying any SO(d+ 1, 1) unitarity constraints.

However, since there is no operator state correspondence in dS, this does not really

pose a problem, it just hints at the fact that the relation between the bulk and

boundary degrees of freedom is more obscure in dS than in AdS. These points have

been raised recently in the context of a proposed cosmological bootstrap in [1, 25].

Here we will focus on the four-point function of a scalar field theory with inter-

action term ∫ η

−∞

Hintdη =
λ

4!

∫

H−

d+1

dd+1X

(aη)d+1
φ4(X). (2.13)

The four-point function evaluated at future infinity is given by

lim
η→η0

〈
φ(η, ~x1)φ(η, ~x2)φ(η, ~x3)φ(η, ~x4)

〉
≡
〈
φ0(~x1)φ0(~x2)φ0(~x3)φ0(~x4)

〉
. (2.14)

Let us begin with the disconnected part

〈
φ0(~x1)φ0(~x2)φ0(~x3)φ0(~x4)

〉
=
〈
φ0(~x1)φ0(~x2)

〉 〈
φ0(~x3)φ0(~x4)

〉

+
〈
φ0(~x1)φ0(~x3)

〉 〈
φ0(~x2)φ0(~x4)

〉
+
〈
φ0(~x1)φ0(~x4)

〉 〈
φ0(~x2)φ0(~x3)

〉
, (2.15)

where each two-point function is just given by the propagator Λ with both legs taken

to future infinity.

The first order term in the coupling constant λ has two contributions

W0 =− iλ

∫

H−

d+1

dd+1X

(aηT )d+1
Λ̄T ( ~x1, X)Λ̄T ( ~x2, X)Λ̄T ( ~x3, X)Λ̄T ( ~x4, X)

+ iλ

∫

H−

d+1

dd+1X

(aηA)d+1
Λ̄A( ~x1, X)Λ̄A( ~x2, X)Λ̄A( ~x3, X)Λ̄A( ~x4, X) , (2.16)
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from contractions with the time-ordered and the anti-time-ordered Hamiltonian. We

perform this integral after a Wick rotation for ηT and ηA individually, such that we

do not cross the branch cut,

ηT → e−iπ
2 z; ηA → ei

π
2 z . (2.17)

With this transformation we can write the cross diagram as

W0 = −λ

∫

H+
d+1

dd+1X

(az)d+1
Λ̄T ( ~x1, X)Λ̄T ( ~x2, X)Λ̄T ( ~x3, X)Λ̄T ( ~x4, X)

− λ

∫

H+
d+1

dd+1X

(az)d+1
Λ̄A( ~x1, X)Λ̄A( ~x2, X)Λ̄A( ~x3, X)Λ̄A( ~x4, X) , (2.18)

where now, X := (~x, z).

To define the propagator we consider the euclidean version of dS, which is a

sphere. Upon Wick rotating back to dS and restricting to the Poincaré patch this fixes

the vacuum as the Bunch-Davies or euclidean vacuum (see [32–34]). The propagator

for a scalar field of mass m between two bulk points X and Y on the sphere reads1

ΛS(X, Y ) = NdS 2F1

(

∆+,∆−;
d+ 1

2
;
K(X, Y )− 1

2K(X, Y )

)

, (2.20)

with

K(X, Y ) =
1

a2
∑d

i=0X
iY i

(2.21)

is the inverse of the geodesic distance and

NdS =
Γ(∆+)Γ(∆−)

(4π)
d+1
2 Γ

(
d+1
2

) , (2.22)

is a normalization constant. The Green function in dS is obtained from equa-

tion (2.20) by Wick rotating back and restricting to the Poincaré patch, which we

will denote by Λ(K(X, Y )). To obtain the correct time ordering for the Feynman

propagator when taking the flat limit, we have to obtain the correct behaviour across

the branch cut at 0 < K(X, Y ) < 1 which coincides with the region of time-like sep-

aration. We therefore demand that the commutator between two fields at space-like

separation should vanish, while at time-like separation it should be non-vanishing.

1The Gauß hypergeometric function is defined as

2F1 (a, b; c; z) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−adt (2.19)

for ℜ(b) > 0 and ℜ(c) > 0.
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Expressed in terms of two-point functions of the vacuum state defined by the analytic

continuation of (2.20), this means

〈

0
∣
∣[φ(X), φ(Y )]

∣
∣ 0
〉

= Λ(K(X, Y ))− Λ(K(Y,X)). (2.23)

For this expression to be non-vanishing for time-like separation we have to demand

that we approach the branch cut from above and below depending on the time-

ordering. In the Poincaré patch this means doing the replacement K(X, Y ) →
K(X, Y )− iεsgn(ηx − ηy), where ε is an infinitesimal, positive, real parameter. The

two-point function with the correct behaviour across the branch cut is therefore given

by

ΛTA(X, Y ) := Λ
(
K(X, Y )− iεsgn(ηx − ηy)

)
, (2.24)

with 0 ≤ ε ≪ 1. The time ordered Feynman two-point function is given by

ΛTT (X, Y ) :=
〈

0
∣
∣T{φ(X1)φ(X2)}

∣
∣ 0
〉

= θ(ηx − ηy)ΛTA(X, Y ) + θ(ηy − ηx)ΛTA(Y,X). (2.25)

This can be written in a more compact form replacing K(X, Y ) → K(X, Y ) + iε

in (2.20), where we used that K(X, Y ) expressed in local Poincaré coordinates is

given by

K(X, Y ) =
2ηxηy

η2x + η2y − (~x− ~y)2
. (2.26)

The time ordered Feynman Green function in dS is therefore given by

ΛTT (X, Y ) = NdS 2F1

(

∆+,∆−;
d+ 1

2
;
K(X, Y )− 1

2K(X, Y )
− iε

)

, (2.27)

while the anti-time ordered two-point function is given by

ΛAA(X, Y ) :=
〈

0
∣
∣T̄{φ(X1)φ(X2)}

∣
∣ 0
〉

,

= θ(ηx − ηy)ΛTA(Y,X) + θ(ηy − ηx)ΛTA(X, Y ),

= Λ(K(X, Y )− iε). (2.28)

These Green functions define the Bunch-Davies or euclidean vacuum. Let us mention

that this is not the unique de Sitter invariant vacuum. There is an infinite space of

de Sitter invariant vacua parametrised by two continuous parameters [35]. All these

vacua have singularities at points related by the antipodal map and therefore do not

provide the correct flat limit. The Bunch-Davies vacuum is therefore special from

a physical perspective. Also, from a cosmological point of view, the Bunch-Davies

vacuum seems to be the only reasonable choice, since it gives mode functions for the

field that behave like in flat space when going to the infinite past or to wavelengths

– 9 –



much smaller than the horizon. From now on we will only work in the Bunch-Davies

vacuum.

Note, that, contrary to EAdS, we cannot fix the fall-off behaviour of the Green

function at future infinity to be either ∼ K∆+ or ∼ K∆− . This is due to the fact

that we can always rewrite the Bunch-Davies propagator as a sum of the propaga-

tors with a definite fall-off behaviour. By applying the following identities for the

hypergeometric function

2F1

(

a, b;
a + b+ 1

2
; z

)

= (1− 2z)−a
2F1

(
a

2
,
a+ 1

2
;
a+ b+ 1

2
;
4z(z − 1)

(1− 2z)2

)

(2.29)

and

2F1(a, b; c, z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
2F1(a, b; a+ b+ 1− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−b

2F1(c− a, c− b; 1 + c− a− b; 1− z) , (2.30)

we can rewrite the hypergeometric function in (2.20) as

2F1

(

∆+,∆−;
d+ 1

2
;
K − 1

2K

)

=
Γ
(

d+1
2

)

Γ
(

∆− − d
2

)

Γ
(

∆−

2

)

Γ
(

∆−+1
2

) K∆+

× 2F1

(
∆+

2
,
∆+ + 1

2
;∆+ − d− 2

2
;K2

)

+ (∆+ ↔ ∆−) . (2.31)

With this formula we can express the time ordered Bunch-Davies propagator (2.27)

in terms of propagators with fall-off behaviour

ΛTT (X, Y ) =
1

2π
Γ

(

∆+ − d

2

)

Γ

(

∆− − d

2

)(

∆+ − d

2

)

×
(
ΛTT (X, Y,∆−) + ΛTT (X, Y,∆+)

)
. (2.32)

Here we introduced the propagator with a definite fall off behaviour as the Wick

rotation of the propagator in EAdS

ΛTT (X, Y,∆) =
ad−1

4π
d+1
2

Γ
(
∆+1
2

)
Γ
(
∆
2

)

Γ
(

∆− d
2
+ 1
)

×K(X, Y )∆2F1

(
∆

2
,
∆+ 1

2
;∆− d− 2

2
;K(X, Y )2 − iε

)

(2.33)

with equivalent expressions for ΛAA and ΛTA.

Following the same conventions as for the AdS/CFT case we introduce the bulk-

to-boundary propagator as the limit of the bulk-to-bulk propagator taking on leg to

future infinity

Λ̄T/A(X1, ~x2) := lim
η0:=η2→0

ΛT/A,T/A(X1, X2). (2.34)
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It does not matter if the boundary limit is taken with a time- or anti- time or-

dered point since there is no notion of time ordering at future infinity. The bulk-to-

boundary propagator reads

Λ̄T/A(X1, ~x2) =
Γ
(

∆+ − d
2

)

Γ
(

∆− − d
2

)(

∆+ − d
2

)

2π
×

×
(

η
∆−

0 Λ̄(K,∆−) + η
∆+

0 Λ̄(K,∆+) + · · ·
)

, (2.35)

where we introduced the bulk to boundary propagators with definite late-time fall-off

behaviour as

Λ̄(K,∆±) = N∆±

(2η2)
∆±

((~x2 − ~x1)2 − η22)
∆± ∓ iε

. (2.36)

Focusing on the conformally coupled case with ∆± = d±1
2

and using equa-

tion (2.36) and the Wick rotation (2.17) we can recast the four-point function (2.18)

up to the second subleading order in η0 → 0 as

W0 =− λ

∫

H+
4

dd+1X

(az)d+1

(

η
4∆−

0 Λ̄(K,∆−)Λ̄(K,∆−)Λ̄(K,∆−)Λ̄(K,∆−)

− η
2(∆−+∆+)
0 Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆−)Λ̄(K,∆−)

+ η
4∆+

0 Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆+)Λ̄(K,∆+) + · · ·
)

. (2.37)

The evaluation of the tree-level four-point function is therefore reduced to a calcu-

lation in EAdS, with two different boundary conditions contributing, corresponding

to conformal dimensions ∆+ and ∆−.

We could proceed with this calculation diagram by diagram, which is the way

this relation between cosmological correlator and EAdS Witten diagrams was first

written down in [26–28]. However, as shown in [1], there is an elegant way to rewrite

the dS action with the Schwinger-Keldysh contour directly in terms of an auxiliary

EAdS action, from which the cosmological correlation functions can be extracted by

straightforward functional derivation. We will review this formulation in the next

subsection.

2.2 Auxiliary action for EAdS

In this section we review the derivation of section 3 of [1], for the auxiliary action

for computing de Sitter correlators.

The closed time evolution between two in-states from the infinite past can be

expressed by a path integral with closed time curves. Then a correlation function is

given by taking functional derivatives of the time and anti-time ordered sources jT
and jA of the partition function

Z[jT , jA] =

∫

DφTDφAe
iSc+i

∫

(φT jT+φAjA), (2.38)
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with the closed time action given by

iSc = i

0∫

−∞

dηdd~x

ηd+1

{

−1

2
(∂φT )

2 − 1

2
m2φ2

T − V (φT ) +
1

2
(∂φA)

2 +
1

2
m2φ2

A + V (φA)

}

.

(2.39)

Performing the Wick rotation η = ze±iπ
2 as described above, the action becomes

iSc = −
∞∫

0

dzdd~x

zd+1

[

eiπ
d−1
2

(
1

2
(∂φT )

2 − 1

2
m2φ2

T − V (φT )

)

+ e−iπ d−1
2

(
1

2
(∂φA)

2 − 1

2
m2φ2

A − V (φA)

)]

(2.40)

As discussed above the classical solution of a free scalar field in de Sitter is given by

φ(η, ~x) = φ+(η, ~x) + φ−(η, ~x) with

φ+(η, ~x) :=

∫

d3~y Λ̄∆+(η, ~x− ~y)φ+
0 (~y),

φ−(η, ~x) :=

∫

d3~y Λ̄∆−
(η, ~x− ~y)φ−

0 (~y), (2.41)

where φ±(η, ~x) → η∆±, for η → 0. Under the Wick rotation we get

φ(ze±iπ
2 , ~x) = e±iπ

2
∆+φ+(z, ~x) + e±iπ

2
∆−φ−(z, ~x), (2.42)

which plugged in the action leads to

iSc = −
∞∫

0

dzdd~x

zd+1

[

e−iπ(∆+− d−1
2 )

2

(

(∂φ+)2 −m2φ+2
)

+
e−iπ(∆−− d−1

2 )

2

(

(∂φ−)2 −m2φ−2
)

+ e−iπ
2

(
∂φ−∂φ+ −m2φ−φ+

)
+

1

2
e+iπ(∆+− d−1

2 )
(

(∂φ+)2 −m2φ+2
)

+
1

2
eiπ(∆−− d−1

2 )
(

(∂φ−)2 −m2φ−2
)

+ ei
π
2

(
∂φ−∂φ+ −m2φ−φ+

)

− eiπ
d−1
2 V

(

e−iπ
2
∆+φ+ + e−iπ

2
∆−φ−

)

− e−iπ d−1
2 V

(

ei
π
2
∆+φ+ + ei

π
2
∆−φ−

)
]

, (2.43)

leading to the result, derived in [1],

iSc = −
∞∫

0

dzdd~x

zd+1



− sin

(

π

(

∆+ − d

2

))(

(∂φ+)2 −m2φ+2
)

− sin

(

π

(

∆− − d

2

))(

(∂φ−)2 −m2φ−2
)
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−eiπ
d−1
2 V

(

e−iπ
2
∆+φ+ + e−iπ

2
∆−φ−

)

− e−iπ d−1
2 V

(

ei
π
2
∆+φ+ + ei

π
2
∆−φ−

)]

. (2.44)

We want to study a theory in dS with the potential V (φ) = λ
4!
φ4. In that case the

action (2.44) becomes

iSc = −
∞∫

0

dzdd~x

zd+1



− sin

(

π

(

∆+ − d

2

))(

(∂φ+)2 −m2φ+2
)

+ (φ+,∆+ ↔ φ−,∆−)

+
2λ

4!

(

φ+4
sin

(
π

2
(3∆+ −∆−)

)

+ 6φ+2
φ−2

sin

(
πd

2

)

+ φ−4
sin

(
π

2
(3∆− −∆+)

)

+4φ+3
φ− sin(π∆+) + 4φ−3

φ+ sin(π∆−)
)]

. (2.45)

In this work we consider the case of the conformally coupled scalar with ∆+ = d+1
2

and ∆− = d−1
2

with odd boundary dimensions d. The action (2.45) then becomes

iSc = −
∞∫

0

dzdd~x

zd+1

[

−
(

(∂φ+)2 −m2φ+2
)

+
(

(∂φ−)2 −m2φ−2
)

−(−1)
d−1
2
2λ

4!

(

φ+4 − 6φ+2
φ−2

+ φ−4
)]

. (2.46)

This action can now be used to calculate correlation functions in dS, showing

to all orders in perturbation theory, that cosmological correlators can be expressed

in terms of EAdS Witten diagrams. The leading contributions in the late time

expansions are given by calculating the EAdS correlators of the field φ−. Note

however, that this field alone will not give a consistent CFT at the boundary, since

there will be mixing interaction vertices between φ− and φ+. To be able to describe

the CFT on the boundary we have to take into account the subleading terms in the

late time expansion of the cosmological correlator as well. We also notice that the

kinetic term in the action is not necessarily positive, leading to ghost-like behaviour

of one of the fields. This would be a problem if we wanted to interpret this action

as describing a bulk theory in EAdS, however, since we only us this action as a tool

to describe a theory in dS, we should treat these signs only as a way to keep track

of the correct relative prefactors in the expansion.

3 de Sitter correlation functions from EAdS Witten diagrams

In this section we focus entirely on the conformally coupled scalar field. As we

noticed, perturbatively, this can be treated like a theory of two interacting scalar
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fields with boundary scaling dimensions ∆+ = d+1
2

and ∆− = d−1
2

in EAdS, governed

by the action (2.46) for odd boundary dimension. The propagators (2.33) then read

ΛTT

(

X, Y,
d− 1

2

)

=
ad−1Γ

(
d−1
2

)

2(2π)
d+1
2

(
K(X, Y )

1−K(X, Y )

) d−1
2



1 +

(
1−K(X, Y )

1 +K(X, Y )

) d−1
2



 ,

(3.1)

ΛTT

(

X, Y,
d+ 1

2

)

=
ad−1Γ

(
d−1
2

)

2(2π)
d+1
2

(
K(X, Y )

1−K(X, Y )

) d−1
2



1−
(
1−K(X, Y )

1 +K(X, Y )

) d−1
2



 .

(3.2)

We will then be able to use the formalism of [30] for evaluating the Witten diagrams.

From now, we specialize to the case of d = 3.

To avoid unnecessary prefactors in the calculation we are changing the normali-

sation of the fields as φ± → φ±/
√
2 and the coupling constant as λ → 2λ

SEAdS =

∞∫

0

dzd3~x

z4

[

− 1

2

(

(∂φ+)2 −m2φ+2
)

+
1

2

(

(∂φ−)2 −m2φ−2
)

+
λ

4!

(

φ+4 − 6φ+2
φ−2

+ φ−4
) ]

. (3.3)

The L-loop Witten diagrams between sets of fields of dimensions ∆1 and ∆2 are

denoted by

W∆1∆2∆3∆4,D
L,dS (~x1, ~x2, ~x2, ~x4). (3.4)

The case (∆1,∆2,∆3,∆4) = (1, 1, 1, 1) is evaluated in section 3.2.1, (∆1,∆2,∆3,∆4) =

(2, 2, 2, 2) is evaluated in section 3.2.2, and the mixed correlators with (∆1,∆2,∆3,∆4) =

(2, 2, 1, 1) and permutations are evaluated in section 3.2.3.

Using the normalization of the fields and the coupling constant introduced in (2.46)

and the conformal mappings as described in [30], we can write a generic EAdS four-

point Witten diagram with equal external dimensions ∆ as

W∆∆∆∆,D
L,dS (~x1, . . . , ~x4) =

a4

(4π2)2L+4
W

∆∆∆∆,D
L (~x1, . . . , ~x4), (3.5)

where W
∆∆∆∆,D
L is the corresponding Witten diagram in EAdS with standard nor-

malization of the propagator as defined in [30]. The four-point function with mixed

boundary conditions will be given by acting with the differential operator, defined in

section 3.2 of [30], onto the corresponding legs of the ∆ = 1 Witten diagrams. All

calculations will be done in the loop dependent dimensional regularisation scheme

introduced and described in section 3.1.2 of [30].
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3.1 Two-point functions

If we represent the propagators as

Λ(X, Y ; 1) = X Y , Λ(X, Y ; 2) = X Y (3.6)

then the loop corrections to the boundary two-point function up to order λ2 for

∆ = 1 correspond to the diagrams

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2 x1 x2 x1 x2

x1 x2 x1 x2 x1 x2 . (3.7)

For ∆ = 2 the diagrams are the same up to replacing the external lines by the ∆ = 2

bulk to boundary propagator.

Using the results from [36], it can be checked that the integrals appearing in (3.7)

all reduce to a divergent piece times a mass-shift term. We can therefore use the

same argument that the renormalized mass should be fixed at the value “measured”

at the boundary, which in our case fixes the leading order fall off behaviour at future

infinity to ∆ = 1. As a result, we can ignore the loop corrections to the two point

function in the following calculation of the four-point function, and we will draw the

renormalised propagators as

Λ(X, Y ; 1) = X Y , Λ(X, Y ; 2) = X Y . (3.8)

3.2 Four-point functions

Recalling (2.42), the dominant term contribution to the bulk scalar field φ is con-

tained in φ−. From this one may conclude that the four-point correlation function at
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future infinity is given by calculating the correlation functions of the auxiliary field

φ− at the boundary of EAdS, with action (2.46). However considering only φ− as

a boundary field one will not be able retrieve all the information of the dual CFT.

This can also be seen form the bulk action (2.46) in which φ− and φ+ are coupled.

To access the full CFT information we rather have to expand the four-point function

to second subleading order in η0, that is

〈
φ0( ~x1)φ0( ~x2)φ0( ~x3)φ0( ~x4)

〉
= η

4∆−

0

〈
φ−( ~x1)φ

−( ~x2)φ
−( ~x3)φ

−( ~x4)
〉

+ η
2(∆−+∆+)
0

(〈
φ+( ~x1)φ

+( ~x2)φ
−( ~x3)φ

−( ~x4)
〉
+
〈
φ+( ~x1)φ

−( ~x2)φ
+( ~x3)φ

−( ~x4)
〉

+
〈
φ+( ~x1)φ

−( ~x2)φ
−( ~x3)φ

+( ~x4)
〉)

+ η
4∆+

0

〈
φ+( ~x1)φ

+( ~x2)φ
+( ~x3)φ

+( ~x4)
〉
. (3.9)

3.2.1
〈
φ−φ−φ−φ−

〉

The contributions to the leading term of the late time expansion of the four-point

correlation function in equation (3.9) is given by

〈
φ−(x1)φ

−(x2)φ
−(x3)φ

−(x4)
〉
=








x1

x2

x3

x4

+ 2 perm.








− λ

x1

x2

x3

x4

+
λ2

2









x1

x2

x3

x4

+ 2 perm.









+
λ2

2









x1

x2

x3

x4

+ 2 perm.









+O(λ3).

(3.10)

• The disconnected part is given by the product of two-point functions

〈
φ−(x1)φ

−(x2)
〉 〈

φ−(x3)φ
−(x4)

〉
+
〈
φ−(x1)φ

−(x3)
〉 〈

φ−(x2)φ
−(x4)

〉

+
〈
φ−(x1)φ

−(x4)
〉 〈

φ−(x2)φ
−(x3)

〉
=

22a4

(4π2)2
1

x2
12x

2
34

(

1 + v +
v

1− Y

)

. (3.11)

Here we follow the notation and conventions of [30] for the cross-ratio

v =
x2
12x

2
34

x2
14x

2
23

= ζζ̄; 1− Y =
x2
13x

2
24

x2
14x

2
23

= (1− ζ)(1− ζ̄) . (3.12)

where x2
ij = |~xi − ~xj |2.

• The cross terms is given by the ∆ = 1 term in EAdS

W
1111,D
0 (ζ, ζ̄) =

1

2

v∆

x2
12x

2
34

∫

RD

dDX

‖X − u1‖2(D−4)

1

‖X‖2
∥
∥X − uζ

∥
∥
2‖X − u1‖2

, (3.13)
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where the norm is defined with a euclidean signature

‖X‖2 = z2 + ~x2 (3.14)

and the radial coordinate z is expressed with the help of the normal vector to the

boundary u = (0, 0, 0, 1) such that

u ·X = z. (3.15)

• For the one-loop contributions we use the following expression for the square of

the propagator:

Λ̃(X1, X2; ∆)2 =
(u ·X1)

2 (u ·X2)
2

‖X1 −X2‖4
+

(u ·X1)
2 (u · σ(X2))

2

∥
∥X1 − σ(X2)

∥
∥
4

− (−1)∆

2




u ·X1 u ·X2

‖X1 −X2‖2
+

u ·X1 u · σ(X2)
∥
∥X1 − σ(X2)

∥
∥2



 , (3.16)

where σ(X) is the antipodal map after Wick rotation

σ(~x, z) = (~x,−z). (3.17)

We have used that the bulk-to-bulk propagator without the normalisation factor is

given by for ∆ = 1 and ∆ = 2

Λ̃(X1, X2,∆) =
(u ·X1)(u ·X2)

‖X1 −X2‖2
− (−1)∆

(u ·X1)(u · σ(X2))
∥
∥X1 − σ(X2)

∥
∥2

, (3.18)

together with the identity

(u ·X1)(u ·X2)

‖X1 −X2‖2
(u ·X1)(u · σ(X2))
∥
∥X1 − σ(X2)

∥
∥
2 =

1

4




(u ·X1)(u ·X2)

‖X1 −X2‖2
+

(u ·X1)(u · σ(X2))
∥
∥X1 − σ(X2)

∥
∥
2



 .

(3.19)

Then, by regrouping contributions from the ∆ = 1 and ∆ = 2 fields propagating in

the loops in (3.10), one can see that for the sum, over ∆, of the propagators squared

the cross-terms cancel so that

Λ̃(X1, X2; 1)
2+Λ̃(X1, X2; 2)

2 = 2
(u ·X1)

2 (u ·X2)
2

‖X1 −X2‖4
+2

(u ·X1)
2 (u · σ(X2))

2

∥
∥X1 − σ(X2)

∥
∥
4 . (3.20)

After unfolding the integral to the whole space R
4 the one-loop contribution, in the

s-channel, for four external scalars of the same dimension ∆ adds up to

x1

x2

x3

x4

+

x1

x2

x3

x4

(3.21)
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=
24∆a4

(4π2)6

∫

(RD)2
dDXdDY

(u ·X)2∆−2(u · Y )2∆−2

‖X − Y ‖4‖X − x1‖2‖X − x2‖2‖Y − x3‖2‖Y − x4‖2
,

with similar expressions for the other channels. Finally, performing the conformal

mappings as described in [30] the integrand of equation (3.21) takes the form

W
∆,4−2ǫ,s
1,div =

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X1 − uζ

∥
∥
2∆‖X2 − u1‖2∆−4ǫ‖X1 − u1‖−4ǫ‖X1 −X2‖4

,

(3.22)

where the subscript “div” indicates that the integral is divergent and ǫ = 4−D
2

is

a regulator. The contributions to the other channels are given in the appendix in

equation (B.1).

These integrals were already calculated in [30] and the results are given in ap-

pendix B.1. Note that, because of (3.20), the elliptic sector, which was present in

the one-loop EAdS computation for ∆ = 1, cancels out. By consequence, the loop

integrals are linearly reducible [37] and thus can be expressed in terms of multiple

polylogarithms using the program HyperInt [38]. The entire four-point function then

becomes

〈
φ−(x1)φ

−(x2)φ
−(x3)φ

−(x4)
〉
=

22a4

(4π2)2

[

1

x2
12x

2
34

(

1 + v +
v

1− Y

)

− 22λ

(4π2)2
W

1111,4−4ǫ
0 (v, Y )

+
22λ2

(4π2)4



−3π2

ǫ
W

1111,4−4ǫ
0 (v, Y ) +

π4v

2x2
12x

2
34

∑

i∈{s,t,u}

L1,i
0 (v, Y )



+O(λ3)

]

. (3.23)

The integrals W1111,4−4ǫ
0 (v, Y ) and L1,i

0 have been evaluated in [30]. We have recalled

their expressions in (B.10) for L1,i
0 .

3.2.2
〈
φ+φ+φ+φ+

〉

The contributions to the φ+φ+φ+φ+ term of the late time expansion of the four point

correlation function in equation (3.9) are given by

〈
φ+(x1)φ

+(x2)φ
+(x3)φ

+(x4)
〉
=








x1

x2

x3

x4

+ 2 perm.








− λ

x1

x2

x3

x4

+
λ2

2









x1

x2

x3

x4

+ 2 perm.









+
λ2

2









x1

x2

x3

x4

+ 2 perm.









+O(λ3).

(3.24)
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• The cross term is again just given by the same expression as the ∆ = 2 cross in

EAdS, given in appendix A.

• Since the squares of the bulk-to-bulk propagators are the same, similar arguments

as for the ∆ = 1 case hold, i.e. the result can be written as a sum of the divergent

and finite parts of the one-loop Witten diagrams with ∆ = 2. The details are given

in appendix B.3

The entire four-point function at this order is therefore given by

〈
φ+(x1)φ

+(x2)φ
+(x3)φ

+(x4)
〉
=

24a4

(4π2)2

[

1

x4
12x

4
34

(

1 + v2 +
v2

(1− Y )2

)

− 24λ

(4π2)2
W

2,4−4ǫ
0 − 24λ2

(4π2)4

(

− 3π2

ǫ
W

2222,4−4ǫ
0 (v, Y )

+ 3π2W
2222,4
0 (v, Y )+

1

2

∑

j∈{s,t,u}

W
2222,j
1,fin (v, Y )+

π4v

2x2
12x

2
34

∑

i∈{s,t,u}

L2,i
0 (v, Y )

)

+O(λ3)

]

(3.25)

where W
2222,j
1,fin and L2,i

0 have been calculated in [30] and recalled in (B.26) and (B.27)

respectively. In fact, as described in [30] there is a differential relation between the

correlators with φ+ and φ− external legs. We will make use of this in the next

subsection.

3.2.3 Mixed correlators

Additionally, we have the correlation functions of φ+ with φ−, which are sub-leading

in the late-time expansion. They are equivalent up to permutation of the operators

φ−(xi), φ
+(xj) so we will only calculate

〈
φ+(x1)φ

+(x2)φ
−(x3)φ

−(x4)
〉

and discuss the

other combinations at the end of section 3.3.

The diagrams we calculate are given by

〈
φ+(x1)φ

+(x2)φ
−(x3)φ

−(x4)
〉
=

x1

x2

x3

x4

+ λ

x1

x2

x3

x4

−λ2









1

2

x1

x2

x3

x4

+
1

2

x1

x2

x3

x4

+

x1

x2

x3

x4

+

x1

x2

x4

x3









+O(λ3). (3.26)
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• The disconnected part only contains the product of two propagators and is therefore

given by

〈
φ+(x1)φ

+(x2)φ
−(x3)φ

−(x4)
〉
=

23a4

22(4π2)2
1

x4
12x

2
34

(3.27)

• The tree-level contribution can be inferred from (3.13) by acting on the latter with

H12 =
1

x2
12

(

2∆− 2v
∂

∂v

)

. (3.28)

Thus,

W 2211,4−4ǫ
0,dS (~x1, . . . , ~x4) =

26a4

(4π2)4
1

4
H12W

1111,4−4ǫ
0 (~x1, . . . , ~x4). (3.29)

To compute the right-hand-side we express W
1111,4−4ǫ
0 (~x1, . . . , ~x4) in parametric rep-

resentation and act with H12 before expanding the result in ǫ. See section 3.2 of [30]

and appendix A for more details with W
2211,4−4ǫ
0 (~x1, . . . , ~x4) there, related to (3.29)

as

W 2211,4−4ǫ
0,dS (~x1, . . . , ~x4) =

26a4

(4π2)4
W

2211,4−4ǫ
0 (~x1, . . . , ~x4) . (3.30)

The one-loop contributions can be obtained in the same way. We observe that the

sum of the first two terms contains a term like equation (3.20). The same arguments

apply therefore for the cancellation of the mixed terms and, we get

1

2

x1

x2

x3

x4

+
1

2

x1

x2

x3

x4

=
1

2

26a4

(4π2)6

∫

(RD)2
dDXdDY

(u ·X)2

‖X − Y ‖4‖X − x1‖4‖X − x2‖4‖Y − x3‖2‖Y − x4‖2
.

(3.31)

It is not hard to see that this integral is given by acting with H12 on W
1,4−2ǫ,s
1,div giving

W 2211,4−2ǫ,s
1,dS (~x1, . . . , ~x4) =

1

2

26a4

(4π2)6
1

4
H12W

1,4−2ǫ,s
1,div (~x1, . . . , ~x4),

=:
26a4

(4π2)6
W

2211,4−2ǫ,s
1 (~x1, . . . , ~x4) (3.32)

where W
2211,4−2ǫ,s
1 is given in appendix B.2.

For the last two terms we use the fact that the propagators can be expressed as

(see section 2.3 of [30] for details):

Λ(X, Y ; 1) = −
(

a

2π

)2



zw

‖X − Y ‖2
+

zw
∥
∥X − σ(Y )

∥
∥
2



 ,
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Λ(X, Y ; 2) = −
(

a

2π

)2



zw

‖X − Y ‖2
− zw
∥
∥X − σ(Y )

∥
∥2



 . (3.33)

Therefore the product appearing in the Witten diagrams is given by:

Λ(X, Y ; 1)Λ(X, Y ; 2) =

(
a

2π

)4



(zw)2

‖X − Y ‖4
− (zw)2
∥
∥X − σ(Y )

∥
∥4



 (3.34)

We can unfold the region of integration of the last two diagrams from (H+
D)

2 to R
2D

by using that the measure of integration is odd under the action of the antipodal

map, like the product of propagators in (3.34). We then have

x1

x2

x3

x4

∝
∫

(H+
D)2

dDXdDY

z4w4




(zw)2

‖X − Y ‖4
− (zw)2
∥
∥X − σ(Y )

∥
∥
4





× (zw)3

‖X − x1‖4‖Y − x2‖4‖X − x3‖2‖Y − x4‖2
(3.35)

since
∥
∥X − σ(Y )

∥
∥
2
= (~x− ~y)2 + (z + w)2 we unfold the Y integral to the full space

R
D to get

(3.35) =

∫

H+
D

dDX

z4

∫

RD

dDY

w4

(zw)2

(‖X − Y ‖2)2
(zw)3

(‖X − x1‖2‖Y − x2‖2)2‖X − x3‖2‖Y − x4‖2
.

(3.36)

We then unfold the z integration to the full space R
D to get

(3.35) =
1

2

∫

RD

dDX

z4

∫

RD

dDY

w4

(zw)2

(‖X − Y ‖2)2
(zw)3

(‖X − x1‖2‖Y − x2‖2)2‖X − x3‖2‖Y − x4‖2
.

(3.37)

Including the correct normalization we end up with

x1

x2

x3

x4

=
1

2

26a4

(4π2)6

∫

(RD)2
dDXdDY

× (u ·X)(u · Y )

‖X − Y ‖4‖X − x1‖4‖Y − x2‖4‖X − x3‖2‖Y − x4‖2
.

(3.38)

Again, this integral is given by acting with H12 on W
1,4−2ǫ,t
1,div in equation (B.1). The

same applies to the last diagram with respect to W
1,4−2ǫ,u
1,div and we obtain for these

– 21 –



two contributions

W 2211,4−2ǫ,i
1,dS (~x1, . . . , ~x4) =

1

2

26a4

(4π2)6
1

4
H12W

1,4−2ǫ,i
1,div (~x1, . . . , ~x4),

=:
26a4

(4π2)6
W

2211,4−2ǫ,i
1 (~x1, . . . , ~x4) (3.39)

where W2211,4−2ǫ,i
1 with i ∈ {s, t, u} is given in appendix B.2. The complete four-point

function is therefore given by

〈
φ+(x1)φ

+(x2)φ
−(x3)φ

−(x4)
〉
=

23a4

(4π2)2

[

1

x4
12x

2
34

+
23λ

(4π2)2
W

2211,4−4ǫ
0

− 23λ2

(4π2)4



−3π2

ǫ
W

2211,4−4ǫ
0 +

∑

i∈{s,t,u}

W
2211,4,i
1,finite





]

. (3.40)

with W
2211,4,i
1,finite given in equations (B.17). The correlation functions

〈
φ+(x1)φ

−(x2)φ
+(x3)φ

−(x4)
〉

and
〈
φ+(x1)φ

−(x2)φ
−(x3)φ

+(x4)
〉

can be obtained from

this result by exchanging external points accordingly. This, however, only works after

regularisation as we will discuss in the next section.

3.3 Renormalization and finite result

To simplify the calculation in EAdS we changed the normalisation of the fields φ±

and the coupling constant λ in the auxiliary action (2.46). However if we want

to interpret our result in terms of a de Sitter calculation we have to reverse that

procedure, especially if we want to compare the β function with the well-known flat-

space result. At leading order they should coincide, since the leading short distance

divergence does not depend on the global geometry.

Following the same arguments as in section 4.2.1 in [30], we introduce the

renormalized coupling constant λR through the divergent bare coupling as λ =

λR(aµ)µ
2ǫ + δλ. Then, up to finite terms, the connected part of the four-point

functions is given by

2
∑

i ∆ia4

(8π2)4
(µa)4ǫ

(

2λRW
∆1∆2∆3∆4,4−4ǫ
0 +

λ2
R

16π4

3π2

ǫ
W

∆1∆2∆3∆4,4−4ǫ
0

)

=
2
∑

i ∆ia42

(8π2)4
(µa)4ǫ

(

λR +
3λ2

R

32π2ǫ

)

W
∆1∆2∆3∆4,4−4ǫ
0

=:
2∆1+···+∆4a42

(8π2)4
µ2ǫλW∆1∆2∆3∆4,4−4ǫ

0 . (3.41)

This determines the counter-term

δλ = −3λ2
Rµ

2ǫ

32π2ǫ
(3.42)

– 22 –



while the finite log µ contribution to λ gives rise to the Callan-Symanzik equation

0 =
d

d log µ
λ, (3.43)

which leads to the leading order contribution to the beta function

β =
3λ2

R

16π2
+O(λ3

R) (3.44)

coinciding with the flat space result.

After renormalisation with a minimal subtraction scheme and restoring the

canonical normalisation of the fields and coupling constant, from a dS point of view,

we obtain the following finite results for the four-point functions with equal external

dimensions ∆− = 1 or ∆+ = 2

〈
φ±(x1)φ

±(x2)φ
±(x3)φ

±(x4)
〉
=

22∆±a4

(8π2)2

[

1

x
2∆±

12 x
2∆±

34

(

1 + v∆± +
v∆±

(1− Y )∆±

)

− 22∆±2λR

(8π2)2
W

∆±∆±∆±∆±,4
0 +

22∆±4λ2
R

(8π2)4

∑

i∈{s,t,u}

W
∆±∆±∆±∆±,i
1,finite

]

, (3.45)

where W
1111,4
0 is given in (A.1), W2222,4

0 is given in (A.5), W1111,i
1,finite are given in (B.9)

and W
2222,i
1,finite are given in (B.25). The mixed correlator is given by

〈
φ+(x1)φ

+(x2)φ
−(x3)φ

−(x4)
〉
=

a4

8π4

[

1

x4
12x

2
34

+
λR

4π4
W

2211,4
0 +

λ2
R

128π8

∑

i∈{s,t,u}

W
2211,i
1,finite

]

,

(3.46)

where the term W
2211,4
0 is given in (A.4) and W

2211,i
1,finite are given in (B.17).

Note, that we considered the tree-level four-point function in D = 4 − 4ǫ di-

mensions in equation (3.41), meaning that the counter term contains a finite piece,

given by the coefficient of the O(ǫ) contribution to W
∆1∆2∆3∆4,4−4ǫ
0 . As discussed in

section 4.2.1 of [30] this is done to restore the global AdS symmetry in the bulk, guar-

anteeing that the renormalized four-point function transforms homogeneously under

dilatations on the boundary. As a consequence one should be able to obtain the

four-point functions
〈
φ+(x1)φ

−(x2)φ
+(x3)φ

−(x4)
〉

and
〈
φ+(x1)φ

−(x2)φ
−(x3)φ

+(x4)
〉

by simple permutation of the external points in equation (3.46), resulting in trans-

formations on the conformal cross-ratios.

Concretely, the correlation function
〈
φ+(x1)φ

−(x2)φ
+(x3)φ

−(x4)
〉

is obtained

from (3.46) by making the replacements x2 ↔ x3 which corresponds to ζ → 1−ζ, ζ̄ →
1− ζ̄ or (v, 1− Y ) → (1− Y, v). Similarly,

〈
φ+(x1)φ

−(x2)φ
−(x3)φ

+(x4)
〉

is obtained

from (3.46) by making the replacements x2 ↔ x4 which corresponds to ζ → 1
ζ
, ζ̄ → 1

ζ̄

or (v, 1−Y ) → (1/v, (1−Y )/v). We checked explicitly, that this holds for our result,

providing an additional test for the loop dependent regularisation scheme introduced

in [30] to restore the conformal symmetry on the boundary, which is a priori broken

by naive dimensional regularisation.
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4 Conformal block expansion

We have seen in the last section that we can interpret the leading- and subleading

expansion coefficients of the field at late times as operators, O1 and O2, of dimension

∆ = 1 and ∆ = 2 respectively, living on the euclidean R
3 hypersurface at future

infinity. Furthermore, since we have an auxiliary EAdS action for the correlation

functions of the latter, we conclude that the theory on the boundary should, at least

perturbatively, be described by a dual CFT.

In total there are five different four-point functions to be considered for de-

scribing this CFT. We write the possible OPEs between the operators O1 and O2

schematically as

O1(x1)×O1(x2) ∼
∑

Õ

a11
Õ
Õ(x2),

O2(x1)×O2(x2) ∼
∑

Õ

a22
Õ
Õ(x2), (4.1)

O1(x1)×O2(x2) ∼
∑

Õ

a12
Õ
Õ(x2) ,

where aij
Õ

are OPE coefficients and “∼” means that the contributions of descendant

operators are implicit.

In terms of conformal blocks [39], the general form of the five four-point functions

we have to consider is
〈
O1(x1)O1(x2)O1(x3)O1(x4)

〉
=

1

x2
12x

2
34

∑

Õ,l

(a11
Õ
)2GÕ,l, (4.2a)

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉
=

1

x4
12x

2
34

∑

Õ,l

a22
Õ
a11
Õ
GÕ,l, (4.2b)

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
=

1

(x2
12x

2
34)

3
2

(

x2
24

x2
13

) 1
2 ∑

Õ,l

(a12
Õ
)2GÕ,l, (4.2c)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
=

1

(x2
12x

2
34)

3
2

(x2
24x

2
13)

1
2

x2
14

∑

Õ,l

(a12
Õ
)2GÕ,l, (4.2d)

〈
O2(x1)O2(x2)O2(x3)O2(x4)

〉
=

1

x4
12x

4
34

∑

Õ,l

(a22
Õ
)2GÕ,l. (4.2e)

where GÕ,l is the conformal block for the primary field Õ. In the following we will

denote the square of the OPE coefficients by capital letters, that is

A∆1∆2
O

:= (a∆1∆2
O )2. (4.3)

Since we have no three-point functions due to the quartic vertex none of the “single

trace” operators O1 and O2 will appear in the OPE.
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The spectrum of “double trace” operators for the disconnected part can be

read off from the corresponding four-point functions by conglomeration as described

in [40]. The possible primary operators are given by

: O1�
n∂lO1 :, : O2�

n∂lO2 :, : O2�
n∂lO1 : (4.4)

which we will denote by

[O1O1]n,l , [O2O2]n,l , [O2O1]n,l (4.5)

respectively. They have the corresponding scaling dimension 2 + 2n + l, 4 + 2n + l

and 3+2n+ l with n, l ∈ N. Recall that in the scalar four-point function we can only

distinguish operators by their scaling dimension, which may be the same for different

values of n and l. Furthermore, while the dimensions of O1 and O2 are determined

by the (renormalized) mass m, which is fixed for a conformally coupled bulk scalar,

we may expect that the “double trace” operators pick up anomalous dimensions due

to the bulk interaction term.

4.1 Correlation functions with degenerate conformal block expansion

Let us first consider the four-point functions (4.2a), (4.2b) and (4.2e). By exam-

ining the bulk diagrams we notice, that we will have mixing between the double

trace operators in the double OPE. If the two-point function between the operators

[O1O1]n+1,l and [O2O2]n,l does not vanish they are not a good basis for the conformal

block expansion. Instead, we choose a basis of operators OS
n,l and OA

n,l both with

scaling dimension ∆
S/A
n,l = 2+2n+ l+O(λ) and spin l such that they are orthogonal,

i.e. at O(λ0) they have the two point functions

〈

OS
n,l(x1)O

A
n,l(x2)

〉

= 0;
〈

OS
n,l(x1)O

S
n,l(x2)

〉

=
〈

OA
n,l(x1)O

A
n,l(x2)

〉

=
1

2

〈
[O1O1]n,l(x1)[O1O1]n,l(x2)

〉
, (4.6)

where the additional factor of 1/2 guarantees canonical normalization of the final

result. Combining (4.1), (4.4) and (4.6) we then write

O1 ×O1 ∼ 1 +
∑

n, l
2
∈N

a1,1[O1O1]n,l
[O1O1]n,l ≡ 1 +

∑

n, l
2
∈N

(a1,1
OS

n,l
OS

n,l + a1,1
OA

n,l
OA

n,l) (4.7)

O2 ×O2 ∼ 1 +
∑

n, l
2
∈N

a2,2[O2O2]n,l
[O2O2]n,l ≡ 1 +

∑

n, l
2
∈N

(a2,2
OS

n,l
OS

n,l + a2,2
OA

n,l
OA

n,l) , (4.8)

where the OPE coefficients a∆,∆
[O∆O∆]n,l

for the generalized free field are given in the

appendix D.
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To find the OPE coefficients of the operators in the orthogonal basis we can

express the four-point functions of the generalized free field in terms of conformal

blocks as

〈
O1(x1)O1(x2)O1(x3)O1(x4)

〉
∣
∣
∣
λ0

=
1

x2
12x

2
34




1 +

∑

n, l
2
∈N

(

A1,1

OS
n,l

+ A1,1

OA
n,l

)
1

2
G0,0

∆n,l




 ,

(4.9a)

〈
O2(x1)O2(x2)O2(x3)O2(x4)

〉
∣
∣
∣
λ0

=
1

x4
12x

4
34




1 +

∑

n, l
2
∈N

(

A2,2

OS
n,l

+ A2,2

OA
n,l

)
1

2
G0,0

∆n,l




 ,

(4.9b)

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉
∣
∣
∣
λ0

=
1

x4
12x

2
34




1 +

∑

n, l
2
∈N

(

a2,2
OS

n,l
a1,1
OS

n,l
+ a2,2

OA
n,l
a1,1
OA

n,l

)
1

2
G0,0

∆n,l




 ,

(4.9c)

with the equation for the conformal blocks Ga,b
∆n,l

given in the appendix D. We used

the fact that the conformal blocks for operators with the same dimension and spin

are identical, meaning they coincide for OS
n,l and OA

n,l. Comparing this expansion to

the generalized free field, we see immediately that the OPE coefficients in the new

basis must obey the following conditions

A1,1

OS
n,l

+ A1,1

OA
n,l

=2A1,1
[O1O1]n,l

; A2,2

OS
n,l

+ A2,2

OA
n,l

= 2A2,2
[O2O2]n−1,l

;

a2,2
OS

n,l
a1,1
OS

n,l
+ a2,2

OA
n,l
a1,1
OA

n,l
= 0 . (4.10)

Note, that from the second condition it follows that a2,2
OS

0,l
= a2,2

OA
0,l

= 0, since A2,2
[O2O2]−1,l

=

0.

Eqn. (4.10) does not determine the zeroth order OPE coefficients uniquely. We

have to proceed to first order in λ to obtain additional conditions to fix them. We ex-

pect the operators OS
n,l and OA

n,l to receive anomalous dimensions from the interaction

term in the bulk

∆S/A = 2 + 2n+ l +
∞∑

i=0

γ
(i)S/A
n,l (4.11)

with γ
(i)S/A
n,l of order λi in the coupling constant. A convenient parametrization is to

expand the squared OPE coefficients and conformal blocks in γ [40, 41]:

A
∆,∆

O
S/A
n,l

=A∆,∆

O
S/A
n,l

+ (γ
(1)S/A
n,l + γ

(2)S/A
n,l )A

∆,∆(1)

O
S/A
n,l

+
1

2
(γ

(1)S/A
n,l )2A

(2)∆,∆

O
S/A
n,l

+ · · · (4.12)

a
1,1

OS
n,l
a
2,2

OS
n,l

= a1,1
O

S/A
n,l

a2,2
O

S/A
n,l

+ (γ
(1)S/A
n,l + γ

(2)S/A
n,l )a

1,1(1)

O
S/A
n,l

a
2,2(1)

O
S/A
n,l

+
1

2
(γ

(1)S/A
n,l )2a

1,1(2)

O
S/A
n,l

a
2,2(2)

O
S/A
n,l

+ · · ·
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G
0,0
∆(n,l),l

=G0,0
∆(n,l),l + (γ

(1)S/A
n,l + γ

(2)S/A
n,l )

∂G0,0
∆,l

∂∆

∣
∣
∣
∣
∣
∆(n,l)

︸ ︷︷ ︸

G′0,0
∆(n,l),l

+
1

2
(γ

(1)S/A
n,l )2

∂2G0,0
∆,l

∂∆2

∣
∣
∣
∣
∣
∆(n,l)

︸ ︷︷ ︸

G′′0,0
∆(n,l),l

+ · · · ,

(4.13)

where the expansion of a1,1

OS
n,l
a
2,2

OS
n,l

can be obtained by expanding
√

A
2,2

O
S/A
n,l

A
1,1

O
S/A
n,l

, pro-

viding us with an additional consistency check for our calculation.

In the following we will go in detail through the process of extracting the anoma-

lous dimensions and OPE coefficients up to second order in λ. Since this part is

quite technical, we highlighted the main result, which are the first and second order

anomalous dimensions.

First order calculation The first order contributions in λ to the four-point func-

tions (4.9) are then given by

〈
O∆(x1)O∆(x2)O∆(x3)O∆(x4)

〉
∣
∣
∣
λ1

=
1

(
x2
12x

2
34

)∆
×

∑

n, l
2
∈N

(

(γ
(1)S
n,l A∆,∆

OS
n,l

+ γ
(1)A
n,l A∆,∆

OA
n,l
)G′0,0

∆(n,l),l
+

(

γ
(1)S
n,l A

∆,∆(1)

OS
n,l

+ γ
(1)A
n,l A

∆,∆(1)

OA
n,l

)

G0,0
∆(n,l),l

)

(4.14a)

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉∣∣
∣
λ1

=
1

x4
12x

2
34

∑

n, l
2
∈N

(

(γ
(1)S
n,l a1,1

OS
n,l
a2,2
OS

n,l
+ γ

(1)A
n,l a1,1

OA
n,l
a2,2
OA

n,l
)G′0,0

∆(n,l),l

+

(

γ
(1)S
n,l a

2,2(1)

OS
n,l

a
1,1(1)

OS
n,l

+ γ
(1)A
n,l a

2,2(1)

OA
n,l

a
1,1(1)

OA
n,l

)

G0,0
∆(n,l),l

)

. (4.14b)

We compare this expansion to the bulk calculation. Keeping in mind that the deriva-

tive of a conformal block produces a term ∝ log v we notice that the logarithmic terms

in the four-point functions give us three additional conditions on the free OPE coef-

ficients a1,1
O

S/A
n,l

and a2,2
O

S/A
n,l

, while also introducing two new unknown quantities in the

first order anomalous dimensions γ
(1)S
n,l and γ

(1)A
n,l . Comparing to the bulk results, the

additional conditions for l = 0 are

γ
(1)S
n,l A1,1

OS
n,l

+ γ
(1)A
n,l A1,1

OA
n,l

=
λ

16π2
A1,1

[O1O1]n,l
,

γ
(1)S
n,l A2,2

OS
n,l

+ γ
(1)A
n,l A2,2

OA
n,l

=
λ

16π2
A2,2

[O2O2]n−1,l
(4.15)

γ
(1)S
n,l a2,2

OS
n,l

a1,1
OS

n,l

+ γ
(1)A
n,l a2,2

OA
n,l

a1,1
OA

n,l

=
λ

16π2
a1,1[O1O1]n,l

a2,2[O2O2]n−1,l
.

For n > 0, equations (4.10) and (4.15) require either γ
(1)S
n,l or γ

(1)A
n,l to vanish. This

choice is a matter of convention as OS and OA have not been defined separately so
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far. We choose γ
(1)A
n>0,l = 0. Then the solution for the zeroth order OPE coefficients

and first order anomalous dimensions is

A1,1

OS
n,l

= A1,1

OA
n,l

= A1,1
[O1O1]n,l

; A2,2

OS
n,l

= A2,2

OA
n,l

= A2,2
[O2O2]n−1,l

, (4.16)

a1,1
OS

n,l

a2,2
OS

n,l

= −a1,1
OA

n,l

a2,2
OA

n,l

=
√

A1,1
[O1O1]n,l

A2,2
[O2O2]n−1,l

, (4.17)

γ
(1)S
n,l = γδ0,l; γ

(1)A
n,l = 0 with γ :=

λ

16π2
. (4.18)

From the pieces without logarithmic terms we can access information about the first

order OPE coefficients. Since we chose γ
(1)A
n,l = 0 this determines only the OPE

coefficients for OS
n,l:

A
1,1(1)

OS
n,0

=
1

2

∂

∂n
A1,1

OS
n,0
; A

2,2(1)

OS
n,0

=
1

2

∂

∂n
A2,2

OS
n,0

for n ≥ 1 . (4.19)

Note that the first order OPE coefficients of the four-point function with mixed

external dimensions are determined by the four-point functions with equal dimensions

as

a
2,2(1)

O
S/A
n,0

a
1,1(1)

O
S/A
n,0

=
A

2,2(1)

O
S/A
n,0

A1,1

O
S/A
n,0

+ A2,2

O
S/A
n,0

A
1,1(1)

O
S/A
n,0

2
√

A1,1

O
S/A
n,0

A2,2

O
S/A
n,0

, for n ≥ 1 , (4.20)

therefore providing an additional consistency check for the calculation, which our

result passes.

For n = 0 the situation is a bit more complicated. Since a2,2
O

S/A
0,l

= 0 we do not

have the additional condition on the difference of the anomalous dimensions coming

from equation (4.14b). We therefore find from equation (4.14a) that

γ
(1)S
0,0 A1,1

OS
0,0

+ γ
(1)A
0,0 A1,1

OA
0,0

= 2γA1,1
[O1O1]0,0

, (4.21)

and since the expansion of equation (4.14a) with ∆ = 2 starts with O(v2) we need

to have

γ
(1)S
0,0 A

2,2(1)

OS
0,0

+ γ
(1)A
0,0 A

2,2(1)

OA
0,0

= 0. (4.22)

The expansion of the bulk result for equation (4.14b) starts already at order O(v)

but since it does not contain any log(v) terms at that order we get the additional

condition

γ
(1)S
0,0 a

2,2(1)

OS
0,0

a
1,1(1)

OS
0,0

+ γ
(1)A
0,0 a

2,2(1)

OA
0,0

a
1,1(1)

OA
0,0

= 2γ. (4.23)
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Second order calculation At second order in λ, the contributions from the con-

formal block expansion are given by

〈
O∆(x1)O∆(x2)O∆(x3)O∆(x4)

〉
∣
∣
∣
λ2

=
1

(x2
12x

2
34)

∆

∑

n, l
2
∈N

(
1

2

(

(γ
(1)S
n,l )2 + (γ

(1)A
n,l )2

)

A∆,∆

OS
n,l
G′′0,0

∆(n,l),l

+

(

(γ
(1)S
n,l )2A

∆,∆(1)

OS
n,l

+ (γ
(1)A
n,l )2A

∆,∆(1)

OA
n,l

)

G′0,0
∆(n,l),l

+
1

2

(

(γ
(1)S
n,l )2A

∆,∆(2)

OS
n,l

+ (γ
(1)A
n,l )2A

∆,∆(2)

OA
n,l

)

G0,0
∆(n,l),l

+ (γ
(2)S
n,l + γ

(2)A
n,l )A∆,∆

OS
n,l
G′0,0

∆(n,l),l
+

(

γ
(2)S
n,l A

∆,∆(1)

OS
n,l

+ γ
(2)A
n,l A

∆,∆(1)

OA
n,l

)

G0,0
∆(n,l),l

)

(4.24a)

and

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉∣∣
∣
λ2

=
1

x4
12x

2
34

∑

n, l
2
∈N

(
1

2

(

(γ
(1)S
n,l )2 − (γ

(1)A
n,l )2

)

a1,1
OS

n,l
a2,2
OS

n,l
G′′0,0

∆(n,l),l

+

(

(γ
(1)S
n,l )2a

1,1(1)

OS
n,l

a
2,2(1)

OS
n,l

+ (γ
(1)A
n,l )2a

1,1(1)

OA
n,l

a
2,2(1)

OA
n,l

)

G′0,0
∆(n,l),l

+ (γ
(2)S
n,l − γ

(2)A
n,l )a1,1

OS
n,l
a2,2
OS

n,l
G′0,0

∆(n,l),l
+

(

γ
(2)S
n,l a

1,1(1)

OA
n,l

a
2,2(1)

OS
n,l

+ γ
(2)A
n,l a

1,1(1)

OA
n,l

a
2,2(1)

OA
n,l

)

G0,0
∆(n,l),l

+
1

2

(

(γ
(1)S
n,l )2a

1,1(2)

OS
n,l

a
2,2(2)

OS
n,l

+ (γ
(1)A
n,l )2a

1,1(2)

OA
n,l

a
2,2(2)

OA
n,l

)

G0,0
∆(n,l),l

)

, (4.24b)

where all single trace primaries have the same weight in the first equation. Again

we compare this to the results from the bulk calculation. The terms proportional

to log(v)2 provide us with a consistency check between the first and second order

calculation. We find
(

γ
(1)S
0,0

)2

A1,1

OS
0,0

+
(

γ
(1)A
0,0

)2

A1,1

OA
0,0

(

γ
(1)S
0,0 A1,1

OS
0,0

+ γ
(1)A
0,0 A1,1

OA
0,0

)2 =
1

2A1,1
[O1O1]0,0

; (4.25)

(

γ
(1)S
n>0,0

)2

+
(

γ
(1)A
n>0,0

)2

(

γ
(1)S
n>0,0 + γ

(1)A
n>0,0

)2 =

(

γ
(1)S
n>0,0

)2

−
(

γ
(1)A
n>0,0

)2

(

γ
(1)S
n>0,0 − γ

(1)A
n>0,0

)2 = 1 (4.26)

from which it follows that γ
(1)A
n>0,0 = 0 in consistency with the first order calculation,

while for n = 0 we find that

γ
(1)S
0,0 = γ

(1)A
0,0 = γ; A1,1

OS
0,0

+ A1,1

OA
0,0

= 2A1,1
[O1O1]0,0

. (4.27)

From condition (4.22) it follows then, that

A
2,2(1)

OS
0,0

+ A
2,2(1)

OA
0,0

= 0, (4.28)
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and from equation (4.23) we get

a
2,2(1)

OS
0,0

a
1,1(1)

OS
0,0

+ a
2,2(1)

OA
0,0

a
1,1(1)

OA
0,0

= 2. (4.29)

The expansion of equation (4.24b) starts at order O(v), where the terms at that

order contain log(v) terms and terms purely polynomial in v, Y . The logarithmic

terms can be absorbed by imposing equation (4.23) providing an additional consis-

tency check between the first and second order calculation. The polynomial parts

give γ
(2)S
0,0 a

2,2(1)

OS
0,0

a
1,1(1)

OS
0,0

+ γ
(2)A
0,0 a

2,2(1)

OA
0,0

a
1,1(1)

OA
0,0

, which can only be solved, if we go to the

next order in λ.

The expansion of
〈
O2(x1)O2(x2)O2(x3)O2(x4)

〉
∣
∣
∣
λ2

starts at O(v), where the

terms at this order are purely polynomial in v and Y . These terms can be absorbed

by choosing

A
2,2(2)

OS
0,0

+ A
2,2(2)

OA
0,0

= 1. (4.30)

The coefficients of the log(v) terms give us access to the sum and difference between

the second order anomalous dimensions. We obtain the following results

γ
(2)S
n>0,l>0 + γ

(2)A
n>0,l>0 = − γ2

l(l + 1)
− γ2

2n+ l
+

γ2

2n + l + 1
,

γ
(2)S
n>0,l>0 − γ

(2)A
n>0,l>0 = − γ2

l(l + 1)
+

γ2

2n+ l
− γ2

2n + l + 1
, (4.31)

If l = 0 we find the following

γ
(2)S
n>0,0 + γ

(2)A
n>0,0 = 3H

(1)
2n γ

2 − γ2

2n(2n+ 1)
− γ2,

γ
(2)S
n>0,0 − γ

(2)A
n>0,0 = 3H

(1)
2n γ

2 +
γ2

2n(2n+ 1)
− 7γ2, (4.32)

with H
(1)
n =

∑n
m=1 1/m the harmonic number, which implies that

γ
(2)S
n>0,l>0 = − γ2

l(l + 1)
; γ

(2)A
n>0,l>0 = − γ2

(2n + l)(2n+ l + 1)
,

γ
(2)S
n>0,0 = 3γ2

2n∑

m=1

1

m
− 4γ2; γ

(2)A
n>0,0 = − γ2

2n(2n + 1)
+ 3γ2. (4.33)

Remarkably the anomalous dimensions for OS
n>0,l>0 seem to be completely degenerate

for all values of n and the dimension for OA
n,l>0 can be brought into the general form

∆A
n,l>0 = ∆̄A

n,l −
γ2

(∆̄A
n,l − 2)(∆̄A

n,l − 1)
+O(γ3) (4.34)

where ∆̄A
n,l = ∆A

n,l|λ=0 = 2+2n+ l. For the n = 0 trajectory we can again only make

a statement about the sum

γ
(2)S
0,0 + γ

(2)A
0,0 = −2γ2; γ

(2)S
0,l>0 + γ

(2)A
0,l>0 = − γ2

l(l + 1)
. (4.35)
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4.2 Correlation functions with non-degenerate conformal block expan-

sion

The four-point functions
〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
and

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉

provide us with the OPE of

O1 ×O2 ∼
∑

n,l∈N

a1,2[O1O2]n,l
[O1O2]n,l. (4.36)

Since the two-point function between these operators vanishes, the OPE will be

regular. The double trace operators appearing in the free four-point function are the

double trace operators [O1O2]n,l with scaling dimension ∆n,l = 3+2n+ l. Since they

have odd dimensions for even spin and even dimensions for odd spin, they can be

distinguished from the operators OS
n,l and OA

n,l in the OPE and the conformal block

expansion will be non-degenerate.

The free four-point functions are given by

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
∣
∣
∣
λ0

=
1

(x2
12x

2
34)

3
2

(

x2
24

x2
13

) 1
2 (

v

1− Y

) 3
2

, (4.37a)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉∣∣
∣
λ0

=
1

(x2
12x

2
34)

3
2

(
x2
24x

2
13

) 1
2

x2
14

v
3
2

√
1− Y

. (4.37b)

Expanding in terms of conformal blocks gives

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
∣
∣
∣
λ0

=
1

(x2
12x

2
34)

3
2

(

x2
24

x2
13

) 1
2 ∑

n,l∈N

A2,1
[O2O1]n,l

G
1
2
, 1
2

∆n,l
, (4.38a)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
∣
∣
∣
λ0

=
1

(x2
12x

2
34)

3
2

(
x2
24x

2
13

) 1
2

x2
14

∑

n,l∈N

A2,1
[O2O1]n,l

G
1
2
,− 1

2
∆n,l

,

(4.38b)

where the squared OPE coefficients are given in the appendix D. A major difference

with respect to the OPE of the correlation functions in the previous section is the

fact that now also operators with odd spin l contribute.

At first order in the bulk coupling λ we can determine the first order anomalous

dimensions and OPE coefficients through

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
∣
∣
∣
λ1

=
1

(x2
12x

2
34)

3
2

(

x2
24

x2
13

) 1
2

×

∑

n,l∈N

γ
(1)
n,l

(

A2,1
[O2O1]n,l

G′
1
2
, 1
2

∆n,l
+ A

2,1(1)
[O2O1]n,l

G
1
2
, 1
2

∆n,l

)

, (4.39a)
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〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
∣
∣
∣
λ1

=
1

(x2
12x

2
34)

3
2

(
x2
24x

2
13

) 1
2

x2
14

×

∑

n,l∈N

γ
(1)
n,l

(

A2,1
[O2O1]n,l

G′
1
2
,− 1

2
∆n,l

+ A
2,1(1)
[O2O1]n,l

G
1
2
,− 1

2
∆n,l

)

. (4.39b)

Comparing with the bulk calculation gives the result

γ
(1)
n,l = γδ0,l; A

2,1(1)
[O2O1]n,0

=
1

2

∂

∂n
A2,1

[O2O1]n,0
. (4.40)

The result is the same for both of the above four-point functions showing the con-

sistency of the calculation.

At second order in λ we get the following conformal block expansion

〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉∣∣
∣
λ2

=
1

(x2
12x

2
34)

3
2

(

x2
24

x2
13

) 1
2

×

∑

n,l∈N

[

γ
(2)
n,l

(

A2,1
[O2O1]n,l

G′
1
2
, 1
2

∆n,l
+ A

2,1(1)
[O2O1]n,l

G
1
2
, 1
2

∆n,l

)

+
1

2

(

γ
(1)
n,l

)2
(

A2,1
[O2O1]n,l

G′′
1
2
, 1
2

∆n,l
+ 2A

2,1(1)
[O2O1]n,l

G′
1
2
, 1
2

∆n,l
+ A

2,1(2)
[O2O1]n,l

G
1
2
, 1
2

∆n,l

)]

, (4.41a)

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
∣
∣
∣
λ2

=
1

(x2
12x

2
34)

3
2

(
x2
24x

2
13

) 1
2

x2
14

×

∑

n,l∈N

[

γ
(2)
n,l

(

A2,1
[O2O1]n,l

G′
1
2
,− 1

2
∆n,l

+ A
2,1(1)
[O2O1]n,l

G
1
2
,− 1

2
∆n,l

)

+
1

2

(

γ
(1)
n,l

)2
(

A2,1
[O2O1]n,l

G′′
1
2
,− 1

2
∆n,l

+ 2A
2,1(1)
[O2O1]n,l

G′
1
2
,− 1

2
∆n,l

+ A
2,1(2)
[O2O1]n,l

G
1
2
,− 1

2
∆n,l

)]

. (4.41b)

Again the coefficient of the log(v)2 term provides us with a consistency check between

the first and second order calculation which our results pass. From either (4.41a)

or (4.41b) we can determine the second order anomalous dimensions. As it should

be they lead to identical results given by the following formulas:

γ
(2)
n,0 = 3γ2

2n+1∑

m=1

1

m
− 7γ2,

γ
(2)
n,l>0 =







− γ2

l(1+l)
for l mod 2 = 0

− γ2

(l+2n+2)(l+2n+1)
for l mod 2 = 1.

(4.42)

Comparing to the results from the previous section we notice a striking similar-

ity. The anomalous dimensions of [O1O2]n,2l>0 and OS
n,2l>0 are the same while for
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[O1O2]n,2l+1 we find a form similar to OA
n,2l

∆n,2l+1 = ∆̄n,2l+1 −
γ2

(∆̄n,2l+1 − 2)(∆̄n,2l+1 − 1)
+O(γ3), l ≥ 0 (4.43)

with ∆̄n,l = ∆n,l|λ=0 = 3 + 2n+ l. Note that ∆A
n,l>0 in (4.34) only has contributions

for even spin, while (4.43) applies to odd spins.

4.3 The whole picture

Let us summarize the results of this rather technical section: We confirmed the

proposal in [1, 26–28], that cosmological four-point functions can be described by a

CFT dual to an effective field theory in Euclidean AdS, by describing explicitly the

CFT dual to conformally coupled scalar φ4 theory at loop level. The CFT consists of

two scalar single-trace operators O1 and O2 with scaling dimension ∆ ∈ {1, 2} and

an infinite tower of three types of double-trace operators OS
n,l, O

A
n,l with dimension

∆̄
S/A
n,l = 2+ 2n+ l and [O1O2]n,l with dimension ∆̄n,l = 3+ 2n+ l. For OS

n,l and OA
n,l

the spin l can only take even integer values, while for [O1O2]n,l it can take all integer

values.

The operator OS
n,l receives anomalous dimensions encoded in the four-point func-

tions
〈
O∆(x1)O∆(x2)O∆(x3)O∆(x4)

〉
and

〈
O2(x1)O2(x2)O1(x3)O1(x4)

〉
and so does

OA
n,l. Similarly, the operator [O1O2]n,l receives anomalous dimensions from the four-

point function
〈
O2(x1)O1(x2)O2(x3)O1(x4)

〉
or, equivalently,

〈
O2(x1)O1(x2)O1(x3)O2(x4)

〉
.

However, the spectrum contains operators with all integer spins instead of only even

spins, which was the case for OS
n,l and OA

n,l. Interestingly, there is a simple relation

between the anomalous dimensions of OS
n,l, O

A
n,l and [O1O2]n,l given by

γ
(2)
n,2l>0 = γ

(2)S
n,2l>0, γ

(2)
n,2l+1>0 = γ

(2)A
n,2l+2 l > 0. (4.44)

This relation seems to suggest a symmetry between the operators OA
n,l,O

S
n,l and

[O1O2]n,l, which could have several origins. One possible explanation is the special

choice for the scaling dimension of the single-trace operators, ∆± ∈ {1, 2}. It is

easily checked that for different values of ∆± the relative coefficients between the

vertices in (2.45) change and even new vertices of the form φ+3
φ− are generated. The

cancellation of the elliptic sector, discussed in section 3.2, does not occur anymore,

and we expect the integrals to have a very different structure. As we do not have a

simple form for the propagator for general values of ∆ the technical implementation

of the explicit loop calculation, necessary to check this claim, is much more involved,

and we leave it for future studies. For conformal coupling in odd d the propagator

simplifies to a rational function of K and the auxiliary EAdS action (3.3) is always

the same. We therefore expect the general structure of the results, including the

apparent symmetry to hold for those cases as well.
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On the other hand, for generic scaling dimension of the single trace operators,

the action (2.46) still displays a symmetry due to the fact that all vertices have the

same coupling constant λ, which look fine-tuned in the general class of φ4 theories in

EAdS. Possibly, the apparent symmetry in the anomalous dimensions of the double

trace operators is related to this.

Comparing with previous work [10, 30] we can draw the following picture. Start-

ing from the theory in the bulk we can calculate either the Bunch-Davies wave func-

tion [10] or the cosmological correlation functions as we did here. The Bunch-Davis

wavefunction is defined as

Ψ[φ0(x)] = lim
η′→−∞(1+iε)

∫

φ(0,x)=φ0(x)
φ(η′,x)=0

DφeiS[φ] or

Ψ̃[π0(x)] =

∫

Dφ0e
i
∫

d3xφ0(x)π0(x)Ψ[φ0] , (4.45)

where φ0 and π0(x) denote the value of the bulk field and its canonically conjugate

momentum at the boundary respectively. From a dS point of view Ψ[π0] corresponds

to choosing Neumann instead of Dirichlet boundary conditions at future infinity.

Performing a semiclassical expansion of (4.45) one finds that the Bunch-Davis

wave function has an interpretation as a generating functional for a CFT at future

infinity. A conformally coupled scalar field in dS, without self-interactions, will give

rise to a direct product of CFTs of two generalized free fields, where Ψ[φ0(x)] cor-

responds to the external dimension ∆ = 2 while Ψ[π0(x)] to ∆ = 1. Introducing

interactions in the bulk theory deforms the theory on the boundary. However, no

non-trivial OPEs between O1 and O2 are introduced. Thus, the deformations will

only affect the ∆ = 1 and ∆ = 2 sector separately and the theory keeps its prod-

uct structure. In [10] it was shown that the deformed CFT obtained in this way is

identical to that obtained from a bulk theory in EAdS considered in [30, 36, 42].

The cosmological correlator CFT introduces non-trivial OPE’s between O1 and

O2. Thus, the deformed CFT looses its product structure. Additionally, a new

tower of double trace operators [O1O2]n,l receives anomalous dimensions due to the

new mixing vertex introduced by the Schwinger-Keldysh formalism. Curiously we

noticed, that the anomalous dimensions generated for these new operators are the

same as the ones already found for OS
n,l and OA

n,l.

There is, however, a relation between the CFT of the Bunch-Davies wave function

and that of cosmological correlators. This can be seen by expressing a cosmological

correlation function as

〈
φ0(x1)φ0(x2)φ0(x3)φ0(x4)

〉
=

∫

Dφ0Ψ
∗[φ0]Ψ[φ0]φ0(x1)φ0(x2)φ0(x3)φ0(x4) (4.46)

or, equivalently,
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〈
φ0(x1)φ0(x2)φ0(x3)φ0(x4)

〉
=

∫

Dφ0Dπ0e
i
∫

d3xφ0(x)π0(x)Ψ̃[π0]Ψ[φ0]φ0(x1)φ0(x2)φ0(x3)φ0(x4) , (4.47)

where in the second step we used the inverse Fourier transformation of (4.45) as is

explained in [1]. Analogous expressions exist for π0(x). The CFT of cosmological

correlators can therefore be understood as a functional integral over the wavefunction

CFTs with all possible boundary conditions, where the mixing between the two kinds

boundary conditions contained in the Fourier exponential. This is analogous to

the mixing vertex that was introduced in section 2.1 resulting from the Schwinger-

Keldysh contour.

Finally, let us note, that the expression (4.46) is merely of conceptual value

since it requires the exact knowledge of the wavefunctionals to perform the inte-

gral. From (4.46) it is not even clear that the result of the functional integration

should preserve conformal symmetry. Computationally, the way to go is through the

Schwinger-Keldysh formalism and the auxiliary EAdS action, introduced in [1] and

reviewed in section 2.2. The two different ways to deform the generalized free field

is schematically depicted in figure 1.

5 Outlook

The goal of this work was to extend the technique of mapping EAdS Witten dia-

grams to flat space Feynman integrals, developed in [30], to calculate cosmological

correlation functions in a de Sitter background. We achieved this goal for a confor-

mally coupled, field with quartic self-interaction, by applying the Schwinger-Keldysh

formalism in the form of [1], where it was shown that the calculation can be mapped

to an equivalent problem for an auxiliary EAdS action.

We succeeded to extract anomalous dimensions of “double trace” operators ap-

pearing in the conformal block expansion of the four point functions up to one-loop

order. As suspected, we find that the cosmological correlator CFT differs from the

Bunch-Davies wave function CFT. Furthermore, there is no straightforward way to

obtain the conformal data of the latter from the former.

Interestingly, we find an apparent symmetry between different operators in the

OPE’s. We expect this to be explained by either the special choice of the field

masses, the constraints coming from the Schwinger-Keldysh contour, or a combina-

tion of both. To further investigate this phenomenon, one would have to consider

different masses of the fields which, however, is very nontrivial due to the complicated

structure of the propagator in those cases.

Another way to proceed would be to test if this symmetry still holds for higher-

loop contributions. The cancellations in the loop integrals discussed in section 3.2,

points to some simplifications regarding the corresponding calculation in EAdS. Es-
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pecially, the diagrams given by multiple bubbles attached after one another, which

are expressible in terms of single-valued multiple polylogarithms at any loop order.

One can also try to make contact with the cosmological bootstrap program by

expressing our results for the two- and four-point function in momentum space (with

respect to the three-dimensional space-like hypersurface). This can be of use since,

to our knowledge, loop corrections have not been available in that formalism so far.

It would be interesting to analyze the connection with the position space results of

this work.

Another interesting avenue is to make contact with inflationary cosmology which

deviates form the de Sitter geometry but, for the two-point function in momentum

space the violation of scale-invariance manifests itself only in the spectral index.

Perhaps, there is a similarly tractable pattern for three- and four-point functions

along the lines of [24].

Acknowledgments

We thank Shota Komatsu, Alexander Zhiboedov and Arthur Lipstein for discussions.

The research of P.V. has received funding from the ANR grant “Amplitudes” ANR-

17- CE31-0001-01, and the ANR grant “SMAGP” ANR-20-CE40-0026-01. The work

of E.S. was partially supported by the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme (grant agree-

ment No 101002551) and by the Fonds de la Recherche Scientifique — FNRS under

Grant No. F.4544.21 The work of T.H. and I.S. was funded by the Excellence Cluster

Origins of the DFG under Germany’s Excellence Strategy EXC-2094 390783311.

A Cross diagrams

The leading term is given by the ∆ = 1 result from EAdS, which in dimensional

regularisation in D = 4− 4ǫ have been evaluated in appendix B of [30] and is given

by

W
1111,4−4ǫ
0 (ζ, ζ̄) =

π2

x2
12x

2
34

(

ζζ̄
2iD(ζ, ζ̄)

ζ − ζ̄
+ ǫW1111,4

0,ǫ (ζ, ζ̄) +O(ǫ2)

)

. (A.1)

with

W
1111,4
0,ǫ (ζ, ζ̄) =

ζζ̄π2

x2
12x

2
34

(

f1(ζ, ζ̄)

ζ − ζ̄
− 2iD(ζ, ζ̄)

ζ − ζ̄
log(ζζ̄) +

2iD(ζ, ζ̄)

ζ − ζ̄
log((1− ζ)(1− ζ̄))

)

,

(A.2)

where D(ζ, ζ̄) is the Bloch-Wigner diloagarithm in (C.4) and f1(ζ, ζ̄) is given in (C.5).

The sub-leading terms are given by either acting with H12,H13 or H14 on the cross
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term for ∆ = 1, before expanding in D = 4−4ǫ. We obtain the following parametric

representations

W
2211,4−4ǫ
0 =

π2−2ǫ(ζζ̄)2Γ(2− 2ǫ)

4Γ(1− 4ǫ)x4
12x

2
34

×
∫

(RP+)2

dα1dα2dα3α1α
−4ǫ
2 α3

(α1 + α2 + α3)
(
α2α3(1− ζ)(1− ζ̄) + α1(α2 + α3ζζ̄)

)2−2ǫ . (A.3)

We obtain for the O(1) terms

2x4
12x

2
34

π2(ζζ̄)2
W

2211,4
0 =

(ζ + ζ̄ − 2)2iD(ζ, ζ̄)

(ζ − ζ̄)3
− ζ + ζ̄ − 2ζζ̄

2ζζ̄(ζ − ζ̄)2
log((1− ζ)(1− ζ̄))− log(ζζ̄)

(ζ − ζ̄)2
.

(A.4)

The sub-sub-leading term is given by the ∆ = 2 result from EAdS, which in dimen-
sional regularisation in D = 4− 4ǫ is given by

W
2222,4
0 (ζ, ζ̄) =

3π2

4x412x
4
34

×
(

(ζζ̄)2
(4ζ2ζ̄2 − (ζ + ζ̄)3 + 2ζζ̄(ζ + ζ̄)2 + 2(ζ + ζ̄)2 − 8ζζ̄(ζ + ζ̄) + 4ζζ̄

(ζ − ζ̄)4
2iD(ζ, ζ̄)

ζ − ζ̄

+
(ζ + ζ̄)2 − 3ζζ̄(ζ + ζ̄) + 2ζζ̄

(ζ − ζ̄)4
log(ζζ̄)

+
3ζζ̄(ζ + ζ̄)− 2(ζ + ζ̄)2 + 3(ζ + ζ̄)− 4ζζ̄

(ζ − ζ̄)4
log((1−ζ)(1−ζ̄))+

1

(ζ − ζ̄)2

)

+ǫW
2222,4
0,ǫ +O(ǫ2)

)

.

(A.5)

with the coefficient of the order ǫ term

W
2222,4
0,ǫ =

3(ζζ̄)2
(

−
(

ζ + ζ̄
)3

+ 2
(

ζ + ζ̄
)2

ζζ̄ + 2
(

ζ + ζ̄
)2

− 8ζζ̄
(

ζ + ζ̄
)

+ 4ζ2ζ̄2 + 4ζζ̄
)

2(ζ − ζ̄)5
f2

−
4i(ζζ̄)2

(

−3
(

ζ + ζ̄
)3

+ 5
(

ζ + ζ̄
)2

ζζ̄ + 5
(

ζ + ζ̄
)2

− 12ζζ̄
(

ζ + ζ̄
)

+ 4ζ2ζ̄2 + 4ζζ̄
)

D(ζ, ζ̄)

(ζ − ζ̄)5

+
3(ζζ̄)2

(

−2
(

ζ + ζ̄
)2

+ 3ζζ̄
(

ζ + ζ̄
)

+ 3ζ + 3ζ̄ − 4ζζ̄
)

2(ζ − ζ̄)4

(

Li1 (ζ)Li1
(

ζ̄
)

+ Li1,1 (1, ζ) + Li1,1
(

1, ζ̄
)

)

−
3ζζ̄

(

−
(

ζ + ζ̄
)2

ζζ̄ + 3
(

ζ + ζ̄
)

ζ2ζ̄2 − 2ζ2ζ̄2
)

2(ζ − ζ̄)4
log(ζζ̄) log((1− ζ)(1− ζ̄))

−
ζζ̄

(

(

ζ + ζ̄
)3

ζζ̄ +
(

ζ + ζ̄
)3

− 18
(

ζ + ζ̄
)2

ζζ̄ + 8
(

ζ + ζ̄
)

ζ2ζ̄2 + 8ζζ̄
(

ζ + ζ̄
)

+ 24ζ2ζ̄2
)

4(ζ − ζ̄)4
log((1− ζ)(1− ζ̄))

+
3(ζζ̄)2

(

−
(

ζ + ζ̄
)2

+ 3ζζ̄
(

ζ + ζ̄
)

− 2ζζ̄
)

4(ζ − ζ̄)4
log2(ζζ̄)+

+
(ζζ̄)2

(

−
(

ζ + ζ̄
)4

+
(

ζ + ζ̄
)3

ζζ̄ + 10
(

ζ + ζ̄
)3

− 18
(

ζ + ζ̄
)2

ζζ̄ + 8
(

ζ + ζ̄
)

ζ2ζ̄2 − 8
(

ζ + ζ̄
)2

− 4ζζ̄
(

ζ + ζ̄
)

+ 16ζ2ζ̄2 + 8ζζ̄
)

log(ζζ̄)

4(ζ − ζ̄)4(1− ζ)(1− ζ̄)

(A.6)

– 37 –



B One-loop diagrams

B.1 Leading term ∆1 = ∆2 = ∆3 = ∆4 = 1

The leading term is given by the correlation function of the ∆ = 1 scalar field in

EAdS, with only the divergent part contributing.

W
∆,4−2ǫ,s
1,div =

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X1 − uζ

∥
∥
2∆‖X2 − u1‖2∆−4ǫ‖X1 − u1‖−4ǫ‖X1 −X2‖4

,

W
∆,4−2ǫ,t
1,div =

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X2 − uζ

∥
∥2∆‖X2 − u1‖2∆−4ǫ‖X1 − u1‖−4ǫ‖X1 −X2‖4

W
∆,4−2ǫ,u
1,div =

(ζζ̄)∆

(x2
12x

2
34)

∆

∫

R2D

d4−2ǫX1d
4−2ǫX2(u ·X1)

2∆−2(u ·X2)
2∆−2

‖X1‖2∆
∥
∥X2 − uζ

∥
∥
2∆‖X1 − u1‖2∆−4ǫ‖X2 − u1‖−4ǫ‖X1 −X2‖4

(B.1)

The parametric representation is given by

• For the s-channel

W
1,4−2ǫ,s
1,div =

2π4−2ǫζζ̄

Γ(−2ǫ)x2
12x

2
34

∫

(RP+)4

5∏

i=1

dαi
α−1−2ǫ
3 α−2ǫ

1 α5(U
s)−1−ǫ

(F s)1−2ǫ (B.2)

with

Us := (α2 + α3 + α4)α5 + (α2 + α3 + α4 + α5)α1

F s := α4(α3α5 + α1(α3 + α5))(1− ζ)(1− ζ̄) + α2α4(α1 + α5)ζζ̄

+ α2(α3α5 + α1(α3 + α5)) (B.3)

• For the t-channel

W
1,4−2ǫ,t
1,div =

2π4−2ǫζζ̄

Γ(−2ǫ)x2
12x

2
34

∫

(RP+)4

5∏

i=1

dαi
α−1−2ǫ
2 α−2ǫ

3 α5(U
t)−1−ǫ

(F t)1−2ǫ (B.4)

with

U t := (α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5

F t := α4((α1 + α2)α3 + (α2 + α3)α5)(1− ζ)(1− ζ̄) + α1α2(α3 + α4 + α5)

+ α1α5(α3 + α4ζζ̄) (B.5)

• For the u-channel

W
1,4−2ǫ,u
1,div =

2π4−2ǫζζ̄

Γ(−2ǫ)x2
12x

2
34

∫

(RP+)4

5∏

i=1

dαi
α−1−2ǫ
1 α−2ǫ

4 α5(U
u)−1−ǫ

(F )1−2ǫ (B.6)
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with

Uu := (α1 + α2)(α3 + α4) + (α1 + α2 + α3 + α4)α5

F u := α3α4α5 + α1α3(α4 + α5) + α2(α4α5 + α1(α3 + α4 + α5))(1− ζ)(1− ζ̄)

+ α2α3(α4 + α5ζζ̄). (B.7)

The result is given by

W
1,4−2ǫ,i
1,div = −π2

ǫ
W

1,4−4ǫ
0 +W

1111,i
1,finite withi = s, t, u , (B.8)

where W
1111,i
1,finite for each channel is given by

W
1111,i
1,finite =

π4v

2x2
12x

2
34

L1,i
0 (B.9)

where the integrals L1,i
0 for i ∈ {s, t, u} are known from EAdS calculations and

obtained in appendix C.1.3 of [30], with the result

L1,s
0 (ζ, ζ̄) =

f1(ζ, ζ̄)− 2i log(ζζ̄)D(ζ, ζ̄)

ζ − ζ̄
(B.10)

L1,t
0 (ζ, ζ̄) =

f1(ζ, ζ̄)− 2i log((1− ζ)(1− ζ̄))D(ζ, ζ̄)

ζ − ζ̄
(B.11)

L1,u
0 (ζ, ζ̄) =

f1(ζ, ζ̄)

ζ − ζ̄
. (B.12)

B.2 Sub-leading term ∆1 = ∆2 = 2 ∆3 = ∆4 = 1

The subleading terms are given by either acting with H12,H13 or H14 on the divergent

part of the ∆ = 1 result. In the parametric representation we obtain

• For the s-channel

W
2211,4−2ǫ,s
1 =

π4−2ǫ(ζζ̄)2(1− 2ǫ)

4Γ(−2ǫ)x4
12x

2
34

∫

(RP+)4

4∏

i=1

dαi
α2α4α5(α1 + α5)α

−2ǫ
1 α−2ǫ−1

3 (Us)−ǫ−1

(F s)−2(ǫ−1)

(B.13)

with Us and F s given in (B.3).

• For the t-channel

W
2211,4−2ǫ,t
1 =

π4−2ǫ(ζζ̄)2

4Γ(−2ǫ))x4
12x

2
34

∫

(RP+)4

4∏

i=1

dαi
α1α

−1−2ǫ
2 α4α

2
5(U

t)−1−ǫ(1− 2ǫ)

(F t)−2(ǫ−1)
(B.14)

with U t and F t given in (B.5).

• For the u-channel

W
2211,4−2ǫ,u
1 =

π4−2ǫ(ζζ̄)2

4Γ(−2ǫ))x4
12x

2
34

∫

(RP+)4

4∏

i=1

dαi
α−1−2ǫ
1 α2α3α

−2ǫ
4 α2

5(U)−1−ǫ(1− 2ǫ)

(F u)−2(ǫ−1)

(B.15)
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with Uu and F u given in (B.7).

Integrating over the Feynman parameters and expanding in ǫ we find the follow-

ing structure for each diagram

W
2211,4−2ǫ,i
1 = −π2

ǫ
W

2211,4−4ǫ
0 +W

2211,i
1,finite +O(ǫ2) with i = s, t, u (B.16)

where the finite part W1,finite for each diagram is given by

4x4
12x

2
34

π4(ζζ̄)2
W

2211,s
1,finite =

ζ + ζ̄ − 2

(ζ − ζ̄)3
f1 −

(ζ + ζ̄ − 2) log(ζζ̄)

(ζ − ζ̄)3
2iD(ζ, ζ̄) +

4iD(ζ, ζ̄)

ζζ̄(ζ − ζ̄)

− log(ζζ̄)(log((1− ζ)(1− ζ̄))− log(ζζ̄) + 4)

(ζ − ζ̄)2

− 2(ζ + ζ̄ − 2ζζ̄) log((1− ζ)(1− ζ̄))

ζζ̄(ζ − ζ̄)2
(B.17a)

4x4
12x

2
34

π4(ζζ̄)2
W

2211,t
1,finite =

ζ + ζ̄ − 2

(ζ − ζ̄)3
(f1 + 2f2) +

2iD(ζ, ζ̄)

ζζ̄(ζ − ζ̄)
− 4 log(ζζ̄)

(ζ − ζ̄)2
+

ζ + ζ̄ − 2ζζ̄

ζζ̄(ζ − ζ̄)2
f3

(B.17b)

4x4
12x

2
34

π4(ζζ̄)2
W

2211,u
1,finite =

ζ + ζ̄ − 2

(ζ − ζ̄)3
f1 +

2iD(ζ, ζ̄)

ζζ̄(ζ − ζ̄)
+

2(2ζζ̄ − ζ − ζ̄)

ζζ̄(ζ − ζ̄)2
log((1− ζ)(1− ζ̄))

− ζ + ζ̄

ζ ζ̄(ζ − ζ̄)2
log(ζζ̄) log((1− ζ)(1− ζ̄))− 4 log(ζζ̄)

(ζ − ζ̄)2
(B.17c)

where D(ζ, ζ̄), f1, f2 and f3 are given in appendix C.

B.3 Sub-sub-leading term ∆1 = ∆2 = ∆3 = ∆4 = 2

The sub-sub-leading term is given by the correlation function of the ∆ = 2 scalar field

in EAdS, with only the divergent part contributing. The parametric representation

is given

• For the s-channel

W
2222,4−2ǫ,s
1,div =

4π4−2ǫ(ζζ̄)2

16Γ(−2ǫ)x4
12x

4
34

∫

(RP+)4

5∏

i=1

dαi
α−1−2ǫ
3 α−2ǫ

1 α5(U
s)−1−ǫ

(F s)3−2ǫ

× Fs(ζ, ζ̄, ǫ;α1, α2, α3, α4, α5), (B.18)

with Us and F s given in (B.5).

• For the t-channel

W
2222,4−2ǫ,t
1,div =

4π4−2ǫ(ζζ̄)2

16Γ(−2ǫ)x4
12x

4
34

∫

(RP+)4

5∏

i=1

dαi
α−1−2ǫ
2 α−2ǫ

3 α5(U
t)−1−ǫ

(F t)3−2ǫ

× Ft(ζ, ζ̄, ǫ;α1, α2, α3, α4, α5),
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with U t and F t given in (B.5).

• For the u-channel

W
2222,4−2ǫ,u
1,div =

4π4−2ǫ(ζζ̄)2

16Γ(−2ǫ)x4
12x

4
34

∫

(RP+)4

5∏

i=1

dαi
α−1−2ǫ
1 α−2ǫ

4 α5(U
u)−1−ǫ

(F u)3−2ǫ

× Fu(ζ, ζ̄, ǫ;α1, α2, α3, α4, α5), (B.19)

with Uu and F u given in (B.7).

The expansion of the prefactors starts at O(ǫ) so only integrals that diverge at

least with ǫ−1 contribute to the final result. When only keeping those terms, the

functions Fs, Ft and Fu are given by:

Fs = C1(α
2
1α2α4α

2
5 + 2α1α2α3α4α

2
5 + α2α

2
3α4α

2
5)

+ C2(α1α
2
2α4α

2
5 + α2

2α3α4α
2
5 + α2

1α
2
2α4α5) + C3(α

2
1α

2
4α

2
5 + 2α1α3α

2
4α

2
5 + α2

3α
2
4α

2
5)

+ C4(α
2
1α2α

2
4α5 + α1α2α

2
4α

2
5 + α2α3α

2
4α

2
5) + C5(2α1α

2
2α

2
4α5 + α2

2α
2
4α

2
5 + α2

1α
2
2α

2
4)

+ α2
1α

2
2α

2
5 + 2α1α

2
2α3α

2
5 + α2

2α
2
3α

2
5 (B.20)

Ft = C1(α
2
1α

2
3α4α5+α1α

2
2α4α

2
5+2α1α2α3α4α

2
5+α1α

2
3α4α

2
5)+C2(α

2
1α2α4α

2
5+α2

1α3α4α
2
5)

+ C3(α
2
2α

2
4α

2
5 + 2α2α3α

2
4α

2
5 + α2

3α
2
4α

2
5 + α2

1α
2
3α

2
4 + 2α1α

2
3α

2
4α5)

+ C4(α
2
1α3α

2
4α5 + α1α2α

2
4α

2
5 + α1α3α

2
4α

2
5) + C5α

2
1α

2
4α

2
5

+ α2
1α

2
2α

2
5 + 2α2

1α2α3α
2
5 + α2

1α
2
3α

2
5 (B.21)

Fu = C1(α
2
1α2α3α5 + 2α1α2α3α4α

2
5 + α2

2α3α
2
4α5 + α2α3α

2
4α

2
5)

+ C2(α1α2α
2
3α

2
5 + α2

2α
2
3α4α5 + α2α

2
3α4α

2
5) + C3(α

2
1α

2
2α

2
5 + 2α1α

2
2α4α

2
5 + α2

2α
2
4α

2
5)

+ C4(α1α
2
2α3α

2
5 + α2

2α3α4α
2
5) + C5α

2
2α

2
3α

2
5 + α2

1α
2
3α

2
5 + 2α1α

2
3α4α

2
5 + α2

2α
2
3α

2
4

+ 2α2α
2
3α

2
4α5 + α2

3α
2
4α

2
5 (B.22)

with the coefficients Ci given by

C1 = (1− 6ǫ)(ζ + ζ̄ − ζζ̄) + 8ǫ− 2, (B.23)

C2 = −(1 − 6ǫ)ζζ̄ − 1 + 2ǫ,

C3 = (4ζζ̄ǫ2 − 4ǫ2(ζ + ζ̄) + 8ǫ2 − 4ǫ+ 1)(1− ζ)(1− ζ̄),

C4 = 8ζ2ζ̄2ǫ2 − 8ζζ̄ǫ2(ζ + ζ̄) + ζζ̄
(
8ǫ2 + 4ǫ− 2

)
+ (1− 2ǫ)(ζ + ζ̄) + 2ǫ− 1,

C5 = 4ζ2ζ̄2ǫ2 + ζζ̄
(
4ǫ2 − 4ǫ+ 1

)
.

Integrating over the Feynman parameters we obtain the result for the channels i =

s, t, u

W
2222,4−2ǫ,i
1 = −π2

ǫ
W

2222,4−4ǫ
0 + 3π2W

2222,4
0 +

3π4

8x4
12x

4
34

L2,i
0 +

1

2
W

2222,i
fin +O(ǫ2) (B.24)
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where L2,i
0 and W

2,4,i
fin are known from EAdS calculations and given in [30]. After a

minimal substraction scheme, i.e. subtracting the term −π2

ǫ
W

2,4−4ǫ
0 the remaining

finite piece is given by

W
2222,i
1,finite = 3π2W

2222,4
0 +

3π4

8x4
12x

4
34

L2,i
0 +

1

2
W

2222,i
fin . (B.25)

where W
2222,4
0 is given in (A.5), the contributions W

2222,i
fin were denoted W

2,4,i
fin and

evaluated in appendix C.1.2 of [30] and L2,i
0 were evaluated in appendix C.1.3 of [30].

We recall the results here for completeness

W
2222,s
1,fin =

π4

8

(ζζ̄)2

(x12x34)4

(

(ζ + ζ̄ − 2)8iD(ζ, ζ̄)

(ζ − ζ̄)3
+

(4ζ − 2)ζ̄ − 2ζ

ζζ̄(ζ − ζ̄)2
log((1− ζ)(1 − ζ̄))− 4 log(ζζ̄)

(ζ − ζ̄)2

)

W
2222,t
1,fin =

π4

8

(ζζ̄)2

(x12x34)4

(

− (ζ + ζ̄)8iD(ζ, ζ̄)

(ζ − ζ̄)3
+

(4ζ − 2)ζ̄ − 2ζ

(1− ζ)(1 − ζ̄)(ζ − ζ̄)2
log(ζζ̄)− 4 log((1− ζ)(1 − ζ̄))

(ζ − ζ̄)2

)

W
2222,u
1,fin =

π4

8

(ζζ̄)2

(x12x34)4

(

− ((4ζ − 2)ζ̄ − 2ζ)4iD(ζ, ζ̄)

(ζ − ζ̄)3
+

2(ζ + ζ̄)

(ζ − ζ̄)2
log(ζζ̄)

−2(ζ + ζ̄ − 2) log((1 − ζ)(1 − ζ̄))

(ζ − ζ̄)2

)

(B.26)

L
2,s
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

((
ζ + ζ̄

)2 − 3
(
ζ + ζ̄

)
ζ ζ̄ + 2 ζ ζ̄

)

f3(ζ, ζ̄)

+
(

−
(
ζ + ζ̄

)3
+ 2

(
ζ + ζ̄

)2
ζ ζ̄ + 2

(
ζ + ζ̄

)2 − 8
(
ζ + ζ̄

)
ζ ζ̄ + 4 ζ2ζ̄2 + 4 ζ ζ̄

)

f1(ζ, ζ̄)

− 2 i
(

2 ζ3ζ̄ + 8 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 11 ζ2ζ̄ − 11 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 8 ζ ζ̄ + 2 ζ̄2
)

ln
(
ζ ζ̄
)
D(ζ, ζ̄)

− 4 i
(

ζ3ζ̄ + 6 ζ2ζ̄2 + ζ ζ̄3 − ζ3 − 7 ζ2ζ̄ − 7 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 4 ζ ζ̄ + 2 ζ̄2
)

D(ζ, ζ̄)

− 2
(
ζ − ζ̄

)
ζ ζ̄
(
ζ + ζ̄ − 2

)
ln
(
ζ ζ̄
)

+
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄ − 2

)
ln
(

(−1 + ζ)
(
−1 + ζ̄

))

+ 2
(
ζ − ζ̄

)3
(B.27)

L
2,t
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

(

(3 ζ − 2) ζ̄2 +
(

3 ζ2 − 8 ζ + 3
)

ζ̄ − 2 ζ2 + 3 ζ

)

f4(ζ, ζ̄)

+

(

(2 ζ − 1) ζ̄3 +
(

8 ζ2 − 11 ζ + 2
)

ζ̄2 +
(

2 ζ3 − 11 ζ2 + 8 ζ
)

ζ̄ − ζ3 + 2 ζ2
)

f1(ζ, ζ̄)

+ 2 i
(
(−2ζ + 1) ζ̄3 −

(

8 ζ2 − 11 ζ + 2
)

ζ̄2 −
(

2 ζ3 − 11 ζ2 + 8 ζ
)

ζ̄

+ (−2 + ζ) ζ2
)
ln
(

(1− ζ)
(
1− ζ̄

))

D(ζ, ζ̄)

− 4 i

(

ζ ζ̄3 +
(

6 ζ2 − 8 ζ + 1
)

ζ̄2 + ζ
(

ζ2 − 8 ζ + 6
)

ζ̄ + ζ2
)

D(ζ, ζ̄)

−
(
2 ζ ζ̄ − ζ − ζ̄

) (

ζ2 − ζ̄2
)

ln
(
ζ ζ̄
)
+ 2

(
1− ζ̄

)
(1− ζ)

(
ζ − ζ̄

) (
ζ + ζ̄

)
ln
(

(1− ζ)
(
1− ζ̄

))
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+ 2
(
ζ − ζ̄

)3
(B.28)

L
2,u
0 (ζ, ζ̄) · (ζ − ζ̄)5 =

(

ζ2 + 4 ζ ζ̄ + ζ̄2 − 3 ζ − 3 ζ̄
)

f5(ζ, ζ̄)

+
(

2 ζ3ζ̄ + 8 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 11 ζ2ζ̄ − 11 ζ ζ̄2 − ζ̄3 + 2 ζ2 + 8 ζ ζ̄ + 2 ζ̄2
)

f1(ζ, ζ̄)

− 4 i
(

2 ζ3ζ̄ + 4 ζ2ζ̄2 + 2 ζ ζ̄3 − ζ3 − 7 ζ2ζ̄ − 7 ζ ζ̄2 − ζ̄3 + ζ2 + 6 ζ ζ̄ + ζ̄2
)

D(ζ, ζ̄)

−
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄

)
ln
(
ζ ζ̄
)

+
(
2 ζ ζ̄ − ζ − ζ̄

) (
ζ − ζ̄

) (
ζ + ζ̄ − 2

)
ln
(

(1− ζ)
(
1− ζ̄

))

+ 2
(
ζ − ζ̄

)3
(B.29)

C Recurring expressions

In this appendix we collect the recurring expressions entering the evaluation of the

Witten diagrams. These expressions are single-valued multiple polylogarithms. The

evaluation of the parametric form of the Witten diagram is done using HyperInt [38].

We will the conventions of this work for the multiple polylogarithms

Lis1,...,sk(x1, . . . , xk) :=
∞∑

0<p1<···<pk

xp1
1

ps11
· · · x

pk
k

pskk
for |x1 · · ·xi| < 1, ∀i ∈ {1, .., k} .

(C.1)

The sum s1 + s2 + · · ·+ sk is referred to as the weight of the multiple polylogarithm.

Some useful definitions and identities are

Li1 (x) = − log(1− x) , (C.2)

Li1,1 (y, x) = Li2

(
x(y − 1)

1− x

)

− Li2

(
x

x− 1

)

− Li2 (xy) , (C.3)

and the (single-valued) Bloch-Wigner dilogarithm given by:

D(ζ, ζ̄) =
1

2i

(

Li2 (ζ)− Li2
(
ζ̄
)
− 1

2
log(ζζ̄)

(

Li1 (ζ)− Li1
(
ζ̄
))
)

. (C.4)

Some other recurring expressions are weight 3 single-valued multiple-polylogarithms

f1(ζ, ζ̄) = Li3 (ζ)− Li3
(
ζ̄
)
+ Li2,1 (1, ζ)− Li2,1

(
1, ζ̄
)

+ 2Li2,1

(

ζ,
ζ̄

ζ

)

− 2Li2,1

(

ζ̄ ,
ζ

ζ̄

)

+ Li1,2

(

ζ,
ζ̄

ζ

)

− Li1,2

(

ζ̄ ,
ζ

ζ̄

)

− 2Li1

(

ζ̄

ζ

)

Li2 (ζ)− Li2

(

ζ̄

ζ

)

Li1 (ζ) + 2Li1

(
ζ

ζ̄

)

Li2
(
ζ̄
)
+ Li1

(
ζ̄
)
Li2

(
ζ

ζ̄

)
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+ log(ζζ̄)



Li1,1

(

ζ̄ ,
ζ

ζ̄

)

− Li1,1

(

ζ,
ζ̄

ζ

)

+ Li1 (ζ)Li1

(

ζ̄

ζ

)

− Li1
(
ζ̄
)
Li1

(
ζ

ζ̄

)


 ,

(C.5)

f2(ζ, ζ̄) =
1

2

(

Li2 (ζ)Li1
(
ζ̄
)
− Li2

(
ζ̄
)
Li1 (ζ)

)

+ Li1,2 (1, ζ)− Li1,2
(
1, ζ̄
)

+
1

2

(

Li2,1 (1, ζ)− Li2,1
(
1, ζ̄
))

+
1

2
log
(
ζζ̄
) (

−Li1,1 (1, ζ) + Li1,1
(
1, ζ̄
))

(C.6)

f3(ζ, ζ̄) = −(Li1,1 (1, ζ) + Li1,1
(
1, ζ̄
)
) +

1

2

(
log(ζζ̄) + 4

)
log((1− ζ)(1− ζ̄))

− log(1− ζ) log(1− ζ̄) (C.7)

f4(ζ, ζ̄) = −4i
ζ + ζ̄

ζ − ζ̄
D(ζ, ζ̄)− log((1− ζ)(1− ζ̄)) log

(

(1− ζ)(1− ζ̄)

ζζ̄

)

(C.8)

f5(ζ, ζ̄) =
4i(ζ + ζ̄ − 2ζζ̄)

ζ − ζ̄
D(ζ, ζ̄)− log(ζζ̄) log((1− ζ)(1− ζ̄)), (C.9)

For a detailed discussion of these functions and their properties we refer the interested

reader to [43–46].

D OPE coefficients and conformal blocks

The squared OPE coefficients for a canonically normalized double trace operator
[OiOj ]n,l in an OPE between Oi and Oj for a generalized field has been calculated
in [40] and is given by

A
i,j

[OiOj]n,l
=

(−1)l
(

∆i − d
2 + 1

)

n

(

∆j − d
2 + 1

)

n
(∆i)l+n(∆j)l+n

l!n!
(

l + d
2

)

n
(∆i +∆j + n− d+ 1)n(∆i +∆j + 2n+ l− 1)l

(

∆i +∆j + n+ l − d
2

)

n

,

(D.1)

where (x)n := Γ(x+n)
Γ(x)

is the Pochhammer symbol. The conformal block for a mul-

tiplet of dimension ∆ and spin l in a four-point function with external dimensions

∆1,∆2,∆3 and ∆4 in d = 3 space-time dimensions has been calculated in [47] and is

given by

Ga,b
∆,l(ṽ, Ỹ ) =

∞∑

k=0

ṽ
∆−l
2

+k

2k∑

m=0

Ak,mfk,m(Ỹ ), (D.2)

with

fk,m(Ỹ ) = Ỹ l−m
2F1

(
∆+ l

2
+ k −m− a,

∆+ l

2
+ k −m+ b,∆+ l + 2k − 2m; Ỹ

)

,

(D.3)
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and

Ak,m(∆) =

⌊m
2
⌋

∑

m1,m2=0

(−1)m+m1+14m1+m2
(−l)m(−⌊m/2⌋))m1+m2(k − ⌊m/2⌋) + 1/2)m1

m!m1!m2!(k −m+m1)!

× (∆− 1)2k−m(3/2−∆)m−k−m1−m2(l −∆+ 2)2(⌊m/2⌋−m2)−n

(∆ + l −m− 1)2k−m(∆ + l)2(k+m1−⌊m/2⌋)−m

×
∏

α∈{±a,±b}

((
1

2
(∆ + l) + α

)

k−m+m1

(
1

2
(∆− l − 1) + α

)

m2

)

(1+(4ab−1)(n mod 2)).

(D.4)

where a = ∆1−∆2

2
and b = ∆3−∆4

2
and the conformal cross ratios are defined in a

slightly different way as

ṽ =
v

1− Y
; 1− Ỹ =

1

1− Y
. (D.5)

Note that we use a slightly different normalization compared to [47].
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