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Integrable models and 3d dualities Evgeny Skvortsov

1. Introduction

We describe two closely related applications of a new rich class of strong homotopy algebras:
(i) integrable models [1] and (ii) three-dimensional bosonization duality [2, 3]. A cornerstone of
these applications is a new approach to constructing strong homotopy algebras [2, 4] via intrinsic
deformations. On the physics side, the 3d-bosonization duality conjecture [5—10] takes place in
(Chern—Simons) vector models that describe various second-order phase transitions in 3d, i.e., in the
‘real physical world’. The class of L-algebras, to be described below, allows one to give rigorous
mathematical grounds to the idea of the slightly-broken higher spin symmetry [4, 11]. Correlation
functions are then invariants of this symmetry. At least in the large-N limit the bosonization duality
can be reduced to the proof of uniqueness of these invariants.

Strong homotopy algebras, Ac, L, G, ..., help to implement the idea of the (most general)
consistent algebraic structure. They play a central role in string field theory and provide another
point of view on the BV-BRST quantization method, see e.g. [12-19]. However, strong homotopy
algebras did not seem to have appeared as symmetries of physical systems in the past. In [2] it
was proposed to implement the idea of the slightly-broken higher spin symmetry [6] as a certain
L,-algebra. The usual symmetries are realized by Lie algebras whose generators act on one-particle
states and the action on multiparticle states is the sum of the actions on each of the one-particle
states. There are examples of symmetries that go beyond the standard Lie one. For instance,
Yangian is the algebra of conserved charges of an integrable model, whose action on multiparticle
states is defined in accordance with a nontrivial co-product and differs from the canonical one.

Slightly-broken higher spin symmetry extends the notion of symmetries in a different way. First
of all, higher spin symmetry is an infinite-dimensional symmetry present in free theories (or in the
N = co limit of vector models). It is manifested by infinitely many conserved tensors Js = jg, ...q,
that include the stress-tensor (and global symmetry currents, if present). Canonically, the conserved
tensors lead to conserved currents parameterized by Killing tensors and then to conserved charges
Q. The conserved charges O, form an infinite-dimensional Lie algebra hs, which includes and
extends the usual space-time symmetries. For example, the higher spin currents Js form a single
multiplet of hs, [Q,J] = J. It is significant that the Lie algebra hs originates from an associative
algebra,! which we denote by the same symbol hs. The associative algebra hs carries all information
about the free theory, so that one can write a symbolic equality

Free CFT (QFT) = Associative algebra .

It is worth noting that the algebra hs is much smaller than the full operator algebra of a given
theory, otherwise the equality above would be rather a trivial statement. Since each higher spin
algebra enjoys a canonical trace, Tr : hs — C, the correlation functions of the corresponding free
theory can be understood as simple trace-type invariants. This can be summarized by the following
sequence:

Conserved tensor —  current —  symmetry —  invariants=correlators .

1Symmetries of free/linear equations can be multiplied and, hence, form an associative algebra. The commutator of
two is, of course, a symmetry, but the associative structure is more rigid and powerful.
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When we turn on interactions or depart from the N = oo limit, the conservation of higher spin
currents is violated (0 - Jg # 0) the stress-tensor (and global symmetry currents, if any) remain
conserved though. Now, everything depends on the spectrum of primary operators. Vector models
have a relatively sparse spectrum of primary operators, as different from models with matter in
matrix representations of gauge groups. Therefore, there are few operators that can appear in the
right-hand side of the equality 9 - Js; = .... In the large-N limit, it is easy to see [5, 6] that one can
have composite operators of type [JJ]. Therefore, the conservation law gets broken by the higher
spin currents themselves:

8-J=x[JJ]. (1)

Had we found completely different primary operators on the right-hand side, almost no information
could have been extracted. Now, it is possible to close the loop!

The apparent simplicity of equation (1) is deceptive. Since the currents are not conserved, the
charges are no longer conserved as well. As a consequence, the charges do not have to form a Lie
algebra anymore, while the higher spin currents may not define a representation of Q, i.e.,

[0,0]=0+... and [Q,J]=J+...,

where the dots stand for 1/N corrections. One can also show that the algebra hs is rigid and the
currents J, as an hs-module, cannot be deformed as well. Hence, it is impossible to account for
the dots on the right by any usual deformation of a Lie algebra or/and its representation. The main
proposal made in [2] is that we should deform the whole structure “Lie algebra plus its module”
into a strong homotopy Lie algebra. Now, the lowest structure maps /, (e, ®) simply encode hs and
J as its module. Higher structure maps [, (e, . . ., ®) allow one to deform the Lie algebra hs together
with its module J, so that they form a single algebraic structure.

To summarize, the new type of symmetry we propose deforms a Lie algebra and module(s) of
this algebra into a single L,-algebra. Such a structure requires the L, to be made of two components
as a graded vector space: one for the initial Lie algebra and another for its module(s). Therefore,
this can also be understood as a Lie algebroid, but we will not exploit this interpretation. Now, the
problem of correlation functions is equivalent to the problem of invariants of this L -algebra.

In applications to the 3d-bosonization duality conjecture, hs is the Weyl algebra, i.e., the
universal enveloping of the Lie algebra of canonical commutation relations [g’, p il = ihé;. It
results from the deformation quantization of the simplest Poisson Manifold. The L., algebra is
completely determined by a closely related algebra, which can be understood as a deformation
quantization of the simplest Poisson Orbifold R?/Z,. The last fact implies a deep relation between
the two problems. For the simplest case of O(N) vector models, one can see [20] that the Le-
algebra depends on two phenomenological parameters, which can be related with 1/N and the
Chern—Simons level k. It is also possible to show [20] that the trace invariants of hs are unique
invariants that deform to the invariants of the L..-algebra. The 3d-bosonization duality is a
simple consequence of the uniqueness: since the correlation functions are completely specified by
the symmetry, it does not matter if the underlying microscopical realization involves bosonic or
fermionic degrees of freedom.

It should be remembered that (1) is an exact quantum equation of motion, which is true even for
N =1 (the case of the Ising model). Itis unclear at the moment if the semi-classical arguments based
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on L, can be extended to the quantum domain. What makes them semi-classical is a simple form
of relation between J and [JJ] suggested by the representation theory. These operators, however,
renormalize in a nontrivial way. Therefore, it would be important to understand if ‘quantization’ of
the Lo.,-symmetry is possible to be able to extend the proof beyond the large-N limit.

Letus give an overview of other results that rely on the same construction [2, 4] of L -algebras.
In its simplest realization the idea of intrinsic deformations allows us to construct an As-algebra
from any associative algebra A, that depends on a parameter u. Canonically, every As-algebra
generates an L.-algebra via the anti-symmetrization map. On the other hand, every L..-algebra
can be identified with a homological vector field Q on a formal graded manifold N with coordinates
®7. Given such a homological vector field Q, we can construct a sigma-model with the following
equations of motion:

d® = Q(®) = I, (D, ®) + (D, D, D) +... . 2)

Here the fields @7 define a map from the odd tangent bundle T*[1] M of a space-time manifold M
to the target space N. This construction can, in principle, be applied to any field theory, as one can
always formulate classical equations of motion in the form (2) and there is a canonical procedure
of assigning a homological vector field Q to any field theory [17, 21].

The class of strong homotopy algebras obtained via intrinsic deformations has a number of
special properties. First and foremost, all the multilinear maps /,, entering the r.h.s. of (2) can be
constructed from the bilinear maps

aob=axb+ Y ¢r(a,b)u*
k=1
that determine expansion of the associative product o in A,, around u = 0. Second, the resulting
classical field theory/mechanics appears to be integrable, e.g., one can construct all its solutions
with the help of a Lax pair. To summarize, each one-parameter family of associative algebras gives
rise to a classical integrable model:

Soft,, Associative Algebras — Integrable models .

As an interlude we also discuss Deformation Quantization of Poisson Orbifolds as a rich source
of one-parameter families of algebras; in particular, we discuss R?/Z,, which is relevant to the
3d-bosonization duality. At present, this is largely an open problem since no analog of Kontsevich’s
formality is known for the case of Orbifolds.

2. Integrable models from associative algebras

A Lax pair is a cornerstone of integrable models. As the name suggests, it is a pair of two
matrices, usually called L and A, that depend on the ‘time’ ¢ and, possibly, on other parameters.
The matrices are required to satisfy the Lax equation

&L =[AL]. 3)

Often, A is a given function of L, so this is a nonlinear equation for L as a function of . As a
result, one gets immediately an infinite family of integrals of motion I,, = Tr[L"],n = 1,2, ..., not
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all of which may be independent. Clearly, A plays the role of connection along ¢, and L is required
to be covariantly constant. This suggests a natural generalization of the Lax pair to d dimensions.
Extension to d dimensions is not unique as one can have more structures. Given a d-dimensional
manifold My, introduce a connection A on some vector bundle over M, where a zero-form L takes
its values and set

dA = 1[A, A], dL = p(A)L. )

Here the covariant derivative is (implicitly) D4 = d — p(A), where p denotes the action of A on
L. Optionally, one can introduce forms of various degrees that are constrained to be covariantly
constant with respect to A. Assume further that both A and L take values in the algebra Ag = End(V)
of endomorphism of a vector space V. Such A, depending on a situation, can be viewed as an
associative algebra or as a Lie algebra with the Lie bracket defined by the commutator. Setting
p(A)L = [A, L] and using the trace on A, we obtain an infinite sequence of integrals of motion
I, = Tr[L™]. It may also be convenient sometimes to solve the generalized Lax’s equations (4) in a
‘pure gauge’ form:

A=gldg, L=g'Log, )

where L is constant, dLy = 0. The zero-form L parameterizes the solution space locally, but not
necessarily globally. The simplest Lax pair (4) will provide integrability of the class of models to
be introduced shortly.

Interactions. A model that can explicitly be reduced to (4) can be thought of as non-interacting
one, which is justified by local solutions (5). We would like to study the most general deformation
of (4). Based on the simple form-degree counting, a generic deformation is of the form

dA lQ(A,A) + lg(A,A, L) + l4(A,A,L, L) +...= FA(A;L) ,

(6)

dL L(A,L) +135(A,L, L) +...= F;(A;L),

where /,, are various interaction vertices, or structure maps, with all arguments indicated explicitly.
The formal sum thereof gives two structure functions 4 and Fy. The bilinear maps are known from
(4) to define a Lie algebra (where A takes the values) and its module (where L takes the values). In
our case, the algebra is Ag = End(V) for some vector space V and the module is the adjoint one.

Clearly, (6) is a particular case of a more general set up where one has a space-time manifold
My and a formal graded manifold NV equipped with a homological vector field Q. If ® = {®7}
are coordinates on NV, then Q = 0#9/0®7 and the defining condition for an odd vector field Q to
be homological reads?

0

2_0 B
0 — (0] _E)<DB

07 =0. (7)

If NV is non-negatively graded, one can write down a sigma-model by promoting @7 to smooth maps
&M : T*[1]My — N of degree zero. Geometrically, on can think of these maps as differential

2The derivative with respect to @7 is understood in the appropriate graded sense.
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forms @7 (x, dx) on M with values in NV. The sigma-model?
d® = Q(P) ®)

is defined by requiring the map to respect the differentials, which is exactly (8). The most common
situation is when @ are coordinates at a vicinity of a stationary point, i.e., Q(0) = 0. The Taylor
expansion of Q defines then multilinear graded-symmetric maps /,, (e, . . ., ®) that satisfy Stashefl’s
relations for an L.-algebra. Eq. (8), regarded as a set of PDE’s for the form fields @ (x, dx), has
a very important property, which can be phrased in several equivalent ways: (i) there are no any
hidden algebraic constraints on the fields buried in (8); (ii) Eq. (8) is consistent with dd = 0, which
is the Frobenius integrability condition. Sadly, this is not a type of integrability that helps to solve
the model.

From the modern point of view, every gauge PDE defines and is defined by a Q-manifold N,
see e.g. [26]. In a few words, given a canonical BV-BRST formulation of a gauge theory, one can
consider its jet space extension [17, 21, 26], which is an L,-algebra. This algebra may have positive
and negative degrees corresponding to ghosts (ghosts for ghosts etc.) as well as to anti-fields. A
useful ‘derivative’ of any L.,-algebra is its minimal model, which, being much smaller, contains all
the essential information (it is said to be quasi-isomorphic to the initial L,-algebra). For a large
class of models, e.g. field theories, such minimal model is a non-negatively graded L..-algebra. It
is the corresponding Q, Q% = 0, that can be thought of as an invariant definition of the field theory
we started with [26]. At the same time Q is in the possession of all local relevant information about
the field theory, e.g. (8) defines solutions of the classical field equations.

As a result, we have system (6) that is a particular case of (8). Here, ® = {A, L} and
Q = FA9/0A + FL9/OL. Tt is a smooth deformation of a trivial one, which is the Lax pair. The
deformation is required to be nontrivial: (i) in the field theory language, there is no field redefinition
that brings (6) into (4); (ii) in the L-language, [, (e, ..., ®), n > 2 cannot be eliminated by a natural
transformation of L,-algebras; (iii) in the Q-manifold language, there is no coordinates in which
the homological vector field assumes the quadratic form, Q = DI /HD.

System (6) is yet to be constructed! We arrive at a number of questions regarding (6): (a) how
to construct vertices /,, given the initial data encoded in /;? (b) how to solve it? Under certain
assumptions [1, 2, 27] it can be shown that the L, originates from a certain A, and the latter is built
from a deformation of A as an associative algebra. Solutions can also be constructed explicitly.

We recall that [, originates from an associative product on Ag. Let us first recast these initial
data into L-language. In accordance with the form degrees, our L consists, as a vector space, of
two copies of Ay that are assigned degrees O and 1, i.e. £ = Lo ® Ly, Lo1 ~ Ao. The bilinear
structure maps are defined as

bh(a,b) =[a,b]x, b(a,v)=a*xv-vxa, a,be Ly, vely. 9)

In fact, the associative structure is of immense help. The underlying structure will turn out
to be A rather than L.,.# Anticipating this fact, the same initial data can be encoded by a small

3As a historical note, systems of the form (2) were first introduced by Sullivan [22] as Free Differential Algebras,
re-introduced into physics [23, 24] in the supergravity and higher spin [25] contexts.
4For completeness, Ao is a graded vector space, equipped with degree (—1) maps my (e, . . ., o) that satisfy mom = 0,
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A-algebra:
my(a,b) =axb, myla,v)=axv, my(v,a)=-vxa, a,beA;, veA,. (11)
Our L-algebra will come from an A-algebra via the usual anti-symmetrization map

(1 oxn) = L (=D (), X)) - (12)

ogeS,

We would like to deform (11) as to activate higher structure maps m,,, n > 2, in a nontrivial way.

Main result. With all definitions above we can now formulate the main result [1, 2]. We need to
deform the A..-algebra (11) that consists of an associative algebra Ay together with its natural bi-
module. Under some technical assumptions>, the deformation exists iff the underlying associative
algebra is soft, i.e. can be deformed into a (nontrivial, of course) one-parameter family of associative
algebras A,,. Therefore, the product in A,, deforms the one in Ag:

aob=ax*b+ ) ¢i(ab)u. (13)
k=1

That the deformed product is associative, a o (b o ¢) = (a o b) o ¢, imposes certain conditions on
the bilinear maps ¢. The nontriviality of the deformations implies that ¢ is a nontrivial class of
the second Hochschild cohomology group HH?(Ag, Ag).

The algorithm for constructing the model is as follows. First, one constructs a deformation of
Ao as of an A -algebra. The first few structure maps read

m3(a,b,v) = ¢1(a,b) x v — I3,

ma(a,b,v,w) =¢r(a,b) x v x w+¢1(¢d1(a,b),v) xw — 4.

There is a number of ways [2] to get all m,,, including an explicit formula for any n. Secondly,
one induces the corresponding L.,-maps by means of anti-symmetrization (12). As a result we
have all /,, or Q and it can be shown that model (6) so defined is not equivalent to a free one via
field-redefinitions.

Nevertheless, we can show that the model is integrable and its solution space can be understood
via an auxiliary Lax pair [1]. Not surprisingly the Lax pair, which has the same form as (4), is
based on the deformed product o, namely,

dA=Ao0A, dL=AoL-LoA, (14)

where m = m| +my + ... is a formal sum and o is the Gerstenhaber product. The latter is defined for any two multilinear
maps f and g of degrees | f| and |g| and having k ¢ and kg arguments as

Fog= DL F (@ i i ik ) Gis kg k1) (10)
1

Here « is the usual Koszul sign: « = |g|(|a| + - -- + |a;]). Similar relations define L -algebras. However, it is more
handy to get them from the Taylor expansion of 0%=0.

5The main assumption is that we are looking for a deformation that makes sense when Ay is replaced by Matp (Ag) for
any N. Obviously, (11) can be defined for Maty (Ag). Itis this assumption that allows us to reduce a complicated problem
of Chevalley-Eilenberg cohomology to a much simpler Hochschild cohomology. Nevertheless, in some examples of
practical importance the N = 1 case seems to be as general as any N > 1.
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where A, L take values in the associative algebra A,. The integrability means here that solutions
of (6) can be built from those of (14), the latter having pure gauge form

A=glodg. L=g'oLoog. (15)
The map is constructed order by order in u as®

A=A+ (0,A)oL+... , L=L+OuL)oL+... . (16)

Provided the associative algebra A,, admits a trace Tr,, that is, Tr,[a o b — b o a] = 0, we can also
define the integrals of motion I,, = Tr,[L o --- o L] obeying the conservation law dI,, = 0.7 For
infinite-dimensional algebras there can be other types of integrals of motion [20].

To summarize, given a one-parameter family of associative algebras A,,, one can construct a
non-linear system of formally consistent® PDE’s that, nevertheless, can be solved via an auxiliary
Lax pair.

3. Deformation quantization of Poisson Orbifolds.

A natural question is where to find either soft associative algebras (to be deformed) or one-
parameter families of associative algebras right away. There are two large stocks of such algebras:
(1) finite dimensional associative algebras; (2) deformation quantization.

All finite-dimensional semi-simple associative algebras, by the Artin—Wedderburn theorem,
are products of matrix algebras. As such they cannot have free parameters. Therefore, soft algebras
have to be outside the nice class of semi-simple algebras. The classification of the latter is known
to be wild. Good news: there are a lot of soft algebras along these lines. Bad news: it is hard to
find them. Below we discuss the item (2) in more detail as it is of some interest due to its relation
to the 3d bosonization duality.

Deformation quantization is an obvious source of one-parameter associative algebras. Let us
recall the main idea. Given any Poisson manifold # one considers the algebra of functions C*(%).
It is an associative and commutative algebra. One then tries to deform the product

frxg=f -g+h{f.gt+0(), (17)

where the first order deformation is the Poisson bracket on #, which, at same time, is a nontrivial
Hochschild two-cocycle of C*(%). The general solution of this problem was given by Kontsevich
in [34]. Later [35], it was shown that Kontsevich’s graphs can be understood as Feynman’s diagrams
of an auxiliary topological string theory, called Poisson sigma-model. Deformation quantization

6Similar maps relating interacting and quasi-free or non-commutative and commutative theories are known in the
literature [28-30].

7Note that this invariants differ from what is usually called integrals of motion (function(al)s of fields that are time
independent). In modern terms, integrals of motion correspond to zero-form symmetries and are given by closed (d — 1)-
forms. Due to dI,; = 0 functions 7, do not depend on space-time points at all and correspond to (d — 1)-form symmetries,
[31].

8A word of warning is that formal consistency does not imply actual consistency. It is easy to construct examples
of formally consistent equations that do not make any sense, i.e. they are just symbolic expressions, but lead to infinite
tree-level amplitudes. See e.g. [32, 33] for explicit examples.
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gives a large class of one-parameter families of associative algebras, parameterized by Poisson
manifolds.

The space of algebras can be extended even further, leading to an interesting open problem
in deformation quantization. Poisson manifolds generally enjoy a lot of symmetries. For a given
Poisson manifold # one can pick up some group of discrete symmetries I'. There are two associative
algebras naturally linked to these data:

1. T-invariant functions C®(P)'' ~ C®(P/T’), where we see the orbifold /I". This algebra is
commutative;

2. Cross-product algebra C*(P) = I'. The algebra is generated by sums ) ; f; ® y;, where the
fi € C=(P) and y; € I'. The product is defined as (f ® y) o (f' ®y') = (fy(f"),vy"),
where y(f) denotes the action of y € I" on a function f € C*(%). Note that this algebra is
generally non-commutative even for abelian I".

The two algebras above are closely related to each other. From the viewpoint of non-commutative
geometry the second algebra is more favorable. In some sense, it encodes complicated information
about singular manifolds like orbifolds through the non-commutativity of the algebra.

In both cases one can ask: (i) what are nontrivial deformations? (ii) how to construct them to all
orders? We will refer to both of the problems, i.e. for algebras (1) and (2) above, as to the problem
of Deformation Quantization of Poisson Orbifolds. More generally: is there any counterpart of
Kontsevich’s Formality Theorem for Poisson Orbifolds?

The first surprising result is that Poisson Orbifolds have more deformations! There are other
directions of deformation quantization that rely on orbifolding (or on the extension by I'). These
new deformations are not captured by Kontsevich’s Formality at all. It is also not clear what
kind of Formality one should be looking for [36, 37]. In principle, following Kontsevich (who
mentioned in [34] that his construction originates from a topological string theory, which has been
then manifested by the quantization of the Poisson sigma-model in [35]) one should quantize the
same Poisson sigma-model on Poisson Orbifolds, which may crucially depend on the type of an
orbifold, preventing one from seeking out any universal extension of the Formality Theorem.

While the general problem of Deformation Quantization of Poisson Orbifolds is open, there
is a number of cases, where a constructive approach is possible. For example, let us consider the
Weyl algebra A, extended by a finite group of symplectomorphisms I' c Sp,,, i.e. A, < I". The
Weyl algebra can be understood as a result of the deformation quantization of R?" endowed with the
canonical symplectic form dp; A dg'. Now, on top of that we can have several new deformations.
The number of such deformations depends on I'. The deformations can be constructed explicitly to
all orders via injective resolutions [38, 39].

Let us consider in more detail the case of the algebra A < Z,, as it is relevant for the 3d
bosonization duality. Here A; can be understood as an associative algebra generated by the pair of
canonical variables subject to the commutation relation

lq.p] = iR, (18)

i.e. we have already quantized R? along dg A dp. The group of symplectic reflections I' = Z, is
generate by a single element R that sends (g, p) to (—g, —p). The crossed-product algebra A < Z,
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is obtained by adding the new generator R to g and p such that
R>=1, RqR = —q, RpR=—p. (19)

The general element of A; < Z; is given by a polynomial f(q, p,R) = fo(q,p) + fi(g, p)R and
R acts via the reflection whenever we need to drag it through g or p. We can also start from
scratch: set # = 0. The algebra Ay of functions f(q, p, R) is still non-commutative due to
R. As an associative algebra Ay admits a two-parameter family of deformations, the usual one
along the classical Poisson bracket {e, } and another one, along R. We can also jump directly to
Ano = Ay < Z;. The latter algebra features the second deformation along R.

Independently of the ideas above, the deformation of Ay was found by Wigner [40] and
explored further in a great number of papers, see e.g. [41-44]. It is remarkable, that one can
generate the deformed algebra Aj ,, by deforming the canonical commutation relations [41, 42, 44]

lg,p]l =ih+iuR. (20)

Based on this relation, one can work out the structure constants, see [45-50] for different approaches
to the problem. There are closely related algebras: the R-invariant subalgebra, known as g/, [51],
and the non-commutative hyperboloid [46] (or fuzzy sphere, depending on the real form).

It is also interesting that the first order deformation of Ay can be derived [27] from an
extension of Kontsevich’s Formality known as the Shoikhet-Tsygan—Kontsevich formality [52, 53].
We start from Ay o, which can be realized as the algebra of functions f(g, p, R) equipped with the
Moyal-Weyl star-product, f x g. Extension with R is easy and requires us to first move all R to the
left (or to the right), while properly commuting them with ¢, p, and then take the star-product. The
first order deformation along R,

fog=frxg+ud(f.g) R+0(u?), 21)

is defined by a Hochschild two-cocycle ¢. It is this two-cocycle that can be computed with the help
of Shoikhet-Tsygan-Kontsevich formality. None of the known formality theorems seems to have
anything to say about higher orders.

4. Slightly-broken higher spin symmetry and three-dimensional bosonization
duality

Another application of the A.- and L..-algebras constructed in section 2 is to the three-
dimensional bosonization duality conjecture [2, 3]. What is interesting here is that L,-algebras
manifest themselves as symmetries of physical models. We begin with a brief overview of the
simplest models conjectured to exhibit the duality. Next, we discuss why and how these models
exhibit infinite-dimensional symmetries that are realized as L-algebras. Correlation functions can
then be understood as invariants of this symmetry, while the proof of their uniqueness leads to a
proof of the duality.

10
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Higher spin symmetry of free theories. It has long been known that free QFT’s (as well as the
classical field theories they are based on) feature infinite-dimensional symmetries that are generated
by infinitely many conserved tensors on top of the usual low spin stress-tensor (spin-two) and
global symmetry currents (spin-one). Such symmetries were dubbed Zilch symmetries [54, 55]. In
modern terminology they are called higher spin currents and symmetries. The conserved tensors,
e.g. for the free scalar theory,

Jaya, = B0y - Oa b+ ... (22)

are sandwiches of two fields with an arbitrary number of derivatives. The omitted terms can be
arranged to make it conserved as a consequence of O¢ = m’¢. In the momentum space, the
existence of the corresponding charges is obvious since any

Oy = / d'pa,f(p.Vy)a, (23)

is a conserved charge for arbitrary kernel f. Locality of the conserved tensors imposes mild
restrictions on kernels f [54]. Charges Q y map one-particle states V to themselves, i.e. they belong
to End(V). For QFT’s in Minkowski space End(V) contains the Poincaré algebra and for massless
QFT’s it usually includes the conformal algebra. As a useful toy model we can think of the massless
scalar field, which is conformally-invariant.

A closely related classical concept is that of the (higher) symmetries of field equations, i.e.
maps S that map solutions of some equation E¢ = 0 to solutions. Such maps have to obey ES = S'F
for some S’ that depends on S. For the free massless scalar the conformal transformation reads

506 = V"0 + 5G9, (24)

where A = (d — 2)/2 is the conformal weight and v (x) is a conformal Killing vector. The stress-
tensor J,, gives rise to a number of currents j,, = J,,,;»v? that are parameterized by Killing vectors.
The infinitesimal transformations &, form the conformal algebra so(d,2) under commutators.
Likewise, given a conserved rank-s tensor, one can construct a number of conserved currents

Jm (V) = Jmay g vVTET 9ty as) _traces = 0, (25)
