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Integrable models and 3d dualities Evgeny Skvortsov

1. Introduction

We describe two closely related applications of a new rich class of strong homotopy algebras:

(i) integrable models [1] and (ii) three-dimensional bosonization duality [2, 3]. A cornerstone of

these applications is a new approach to constructing strong homotopy algebras [2, 4] via intrinsic

deformations. On the physics side, the 33-bosonization duality conjecture [5–10] takes place in

(Chern–Simons) vector models that describe various second-order phase transitions in 33, i.e., in the

‘real physical world’. The class of !∞-algebras, to be described below, allows one to give rigorous

mathematical grounds to the idea of the slightly-broken higher spin symmetry [4, 11]. Correlation

functions are then invariants of this symmetry. At least in the large-# limit the bosonization duality

can be reduced to the proof of uniqueness of these invariants.

Strong homotopy algebras, �∞, !∞, �∞, ..., help to implement the idea of the (most general)

consistent algebraic structure. They play a central role in string field theory and provide another

point of view on the BV–BRST quantization method, see e.g. [12–19]. However, strong homotopy

algebras did not seem to have appeared as symmetries of physical systems in the past. In [2] it

was proposed to implement the idea of the slightly-broken higher spin symmetry [6] as a certain

!∞-algebra. The usual symmetries are realized by Lie algebras whose generators act on one-particle

states and the action on multiparticle states is the sum of the actions on each of the one-particle

states. There are examples of symmetries that go beyond the standard Lie one. For instance,

Yangian is the algebra of conserved charges of an integrable model, whose action on multiparticle

states is defined in accordance with a nontrivial co-product and differs from the canonical one.

Slightly-broken higher spin symmetry extends the notion of symmetries in a different way. First

of all, higher spin symmetry is an infinite-dimensional symmetry present in free theories (or in the

# = ∞ limit of vector models). It is manifested by infinitely many conserved tensors �B = 901 · · ·0B

that include the stress-tensor (and global symmetry currents, if present). Canonically, the conserved

tensors lead to conserved currents parameterized by Killing tensors and then to conserved charges

&B . The conserved charges &B form an infinite-dimensional Lie algebra hs, which includes and

extends the usual space-time symmetries. For example, the higher spin currents �B form a single

multiplet of hs, [&, �] = �. It is significant that the Lie algebra hs originates from an associative

algebra,1 which we denote by the same symbol hs. The associative algebra hs carries all information

about the free theory, so that one can write a symbolic equality

Free CFT (QFT) = Associative algebra .

It is worth noting that the algebra hs is much smaller than the full operator algebra of a given

theory, otherwise the equality above would be rather a trivial statement. Since each higher spin

algebra enjoys a canonical trace, Tr : hs → C, the correlation functions of the corresponding free

theory can be understood as simple trace-type invariants. This can be summarized by the following

sequence:

Conserved tensor → current → symmetry → invariants=correlators .

1Symmetries of free/linear equations can be multiplied and, hence, form an associative algebra. The commutator of

two is, of course, a symmetry, but the associative structure is more rigid and powerful.
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When we turn on interactions or depart from the # = ∞ limit, the conservation of higher spin

currents is violated (m · �B ≠ 0) the stress-tensor (and global symmetry currents, if any) remain

conserved though. Now, everything depends on the spectrum of primary operators. Vector models

have a relatively sparse spectrum of primary operators, as different from models with matter in

matrix representations of gauge groups. Therefore, there are few operators that can appear in the

right-hand side of the equality m · �B = .... In the large-# limit, it is easy to see [5, 6] that one can

have composite operators of type [��]. Therefore, the conservation law gets broken by the higher

spin currents themselves:

m · � =
1
#
[��] . (1)

Had we found completely different primary operators on the right-hand side, almost no information

could have been extracted. Now, it is possible to close the loop!

The apparent simplicity of equation (1) is deceptive. Since the currents are not conserved, the

charges are no longer conserved as well. As a consequence, the charges do not have to form a Lie

algebra anymore, while the higher spin currents may not define a representation of &, i.e.,

[&,&] = & + . . . and [&, �] = � + . . . ,

where the dots stand for 1/# corrections. One can also show that the algebra hs is rigid and the

currents �, as an hs-module, cannot be deformed as well. Hence, it is impossible to account for

the dots on the right by any usual deformation of a Lie algebra or/and its representation. The main

proposal made in [2] is that we should deform the whole structure “Lie algebra plus its module”

into a strong homotopy Lie algebra. Now, the lowest structure maps ;2(•, •) simply encode hs and

� as its module. Higher structure maps ;= (•, . . . , •) allow one to deform the Lie algebra hs together

with its module �, so that they form a single algebraic structure.

To summarize, the new type of symmetry we propose deforms a Lie algebra and module(s) of

this algebra into a single !∞-algebra. Such a structure requires the !∞ to be made of two components

as a graded vector space: one for the initial Lie algebra and another for its module(s). Therefore,

this can also be understood as a Lie algebroid, but we will not exploit this interpretation. Now, the

problem of correlation functions is equivalent to the problem of invariants of this !∞-algebra.

In applications to the 33-bosonization duality conjecture, hs is the Weyl algebra, i.e., the

universal enveloping of the Lie algebra of canonical commutation relations [@8 , ? 9] = 8ℏX8
9
. It

results from the deformation quantization of the simplest Poisson Manifold. The !∞ algebra is

completely determined by a closely related algebra, which can be understood as a deformation

quantization of the simplest Poisson Orbifold R2/Z2. The last fact implies a deep relation between

the two problems. For the simplest case of $ (#) vector models, one can see [20] that the !∞-

algebra depends on two phenomenological parameters, which can be related with 1/# and the

Chern–Simons level :. It is also possible to show [20] that the trace invariants of hs are unique

invariants that deform to the invariants of the !∞-algebra. The 33-bosonization duality is a

simple consequence of the uniqueness: since the correlation functions are completely specified by

the symmetry, it does not matter if the underlying microscopical realization involves bosonic or

fermionic degrees of freedom.

It should be remembered that (1) is an exact quantum equation of motion, which is true even for

# = 1 (the case of the Ising model). It is unclear at the moment if the semi-classical arguments based
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on !∞ can be extended to the quantum domain. What makes them semi-classical is a simple form

of relation between � and [��] suggested by the representation theory. These operators, however,

renormalize in a nontrivial way. Therefore, it would be important to understand if ‘quantization’ of

the !∞-symmetry is possible to be able to extend the proof beyond the large-# limit.

Let us give an overview of other results that rely on the same construction [2, 4] of !∞-algebras.

In its simplest realization the idea of intrinsic deformations allows us to construct an �∞-algebra

from any associative algebra �D that depends on a parameter D. Canonically, every �∞-algebra

generates an !∞-algebra via the anti-symmetrization map. On the other hand, every !∞-algebra

can be identified with a homological vector field& on a formal graded manifold N with coordinates

ΦA . Given such a homological vector field &, we can construct a sigma-model with the following

equations of motion:

3Φ = & (Φ) ≡ ;2 (Φ,Φ) + ;3(Φ,Φ,Φ) + . . . . (2)

Here the fields ΦA define a map from the odd tangent bundle ) ∗[1]M of a space-time manifold M

to the target space N . This construction can, in principle, be applied to any field theory, as one can

always formulate classical equations of motion in the form (2) and there is a canonical procedure

of assigning a homological vector field & to any field theory [17, 21].

The class of strong homotopy algebras obtained via intrinsic deformations has a number of

special properties. First and foremost, all the multilinear maps ;= entering the r.h.s. of (2) can be

constructed from the bilinear maps

0 ◦ 1 = 0 ★ 1 +
∑

:=1

q: (0, 1) D
:

that determine expansion of the associative product ◦ in �D around D = 0. Second, the resulting

classical field theory/mechanics appears to be integrable, e.g., one can construct all its solutions

with the help of a Lax pair. To summarize, each one-parameter family of associative algebras gives

rise to a classical integrable model:

SoftD Associative Algebras −→ Integrable models .

As an interlude we also discuss Deformation Quantization of Poisson Orbifolds as a rich source

of one-parameter families of algebras; in particular, we discuss R2/Z2, which is relevant to the

33-bosonization duality. At present, this is largely an open problem since no analog of Kontsevich’s

formality is known for the case of Orbifolds.

2. Integrable models from associative algebras

A Lax pair is a cornerstone of integrable models. As the name suggests, it is a pair of two

matrices, usually called ! and �, that depend on the ‘time’ C and, possibly, on other parameters.

The matrices are required to satisfy the Lax equation

mC! = [�, !] . (3)

Often, � is a given function of !, so this is a nonlinear equation for ! as a function of C. As a

result, one gets immediately an infinite family of integrals of motion �= = Tr[!=], = = 1, 2, . . ., not
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all of which may be independent. Clearly, � plays the role of connection along C, and ! is required

to be covariantly constant. This suggests a natural generalization of the Lax pair to 3 dimensions.

Extension to 3 dimensions is not unique as one can have more structures. Given a 3-dimensional

manifold M3 , introduce a connection � on some vector bundle over M3 where a zero-form ! takes

its values and set

3� =
1
2
[�, �] , 3! = d(�)! . (4)

Here the covariant derivative is (implicitly) �� = 3 − d(�), where d denotes the action of � on

!. Optionally, one can introduce forms of various degrees that are constrained to be covariantly

constant with respect to �. Assume further that both � and ! take values in the algebra �0 = End(+)

of endomorphism of a vector space + . Such �0, depending on a situation, can be viewed as an

associative algebra or as a Lie algebra with the Lie bracket defined by the commutator. Setting

d(�)! = [�, !] and using the trace on �0, we obtain an infinite sequence of integrals of motion

�= = Tr[!=]. It may also be convenient sometimes to solve the generalized Lax’s equations (4) in a

‘pure gauge’ form:

� = 6−136 , ! = 6−1!06 , (5)

where !0 is constant, 3!0 = 0. The zero-form !0 parameterizes the solution space locally, but not

necessarily globally. The simplest Lax pair (4) will provide integrability of the class of models to

be introduced shortly.

Interactions. A model that can explicitly be reduced to (4) can be thought of as non-interacting

one, which is justified by local solutions (5). We would like to study the most general deformation

of (4). Based on the simple form-degree counting, a generic deformation is of the form

3� = ;2(�, �) + ;3 (�, �, !) + ;4 (�, �, !, !) + . . . = ��(�; !) ,

3! = ;2(�, !) + ;3 (�, !, !) + . . . = �! (�; !) ,
(6)

where ;= are various interaction vertices, or structure maps, with all arguments indicated explicitly.

The formal sum thereof gives two structure functions �� and �!. The bilinear maps are known from

(4) to define a Lie algebra (where � takes the values) and its module (where ! takes the values). In

our case, the algebra is �0 = End(+) for some vector space + and the module is the adjoint one.

Clearly, (6) is a particular case of a more general set up where one has a space-time manifold

M3 and a formal graded manifold N equipped with a homological vector field &. If Φ = {ΦA }

are coordinates on N , then & = &Am/mΦA and the defining condition for an odd vector field & to

be homological reads2

&2
= 0 ⇐⇒ &B m

mΦB
&A

= 0 . (7)

IfN is non-negatively graded, one can write down a sigma-model by promoting ΦA to smooth maps

ΦA : ) ∗[1]M3 → N of degree zero. Geometrically, on can think of these maps as differential

2The derivative with respect to Φ
A is understood in the appropriate graded sense.
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forms ΦA (G, 3G) on M3 with values in N . The sigma-model3

3Φ = & (Φ) (8)

is defined by requiring the map to respect the differentials, which is exactly (8). The most common

situation is when Φ are coordinates at a vicinity of a stationary point, i.e., & (0) = 0. The Taylor

expansion of & defines then multilinear graded-symmetric maps ;= (•, . . . , •) that satisfy Stasheff’s

relations for an !∞-algebra. Eq. (8), regarded as a set of PDE’s for the form fields ΦA (G, 3G), has

a very important property, which can be phrased in several equivalent ways: (i) there are no any

hidden algebraic constraints on the fields buried in (8); (ii) Eq. (8) is consistent with 33 ≡ 0, which

is the Frobenius integrability condition. Sadly, this is not a type of integrability that helps to solve

the model.

From the modern point of view, every gauge PDE defines and is defined by a &-manifold N ,

see e.g. [26]. In a few words, given a canonical BV-BRST formulation of a gauge theory, one can

consider its jet space extension [17, 21, 26], which is an !∞-algebra. This algebra may have positive

and negative degrees corresponding to ghosts (ghosts for ghosts etc.) as well as to anti-fields. A

useful ‘derivative’ of any !∞-algebra is its minimal model, which, being much smaller, contains all

the essential information (it is said to be quasi-isomorphic to the initial !∞-algebra). For a large

class of models, e.g. field theories, such minimal model is a non-negatively graded !∞-algebra. It

is the corresponding &, &2 = 0, that can be thought of as an invariant definition of the field theory

we started with [26]. At the same time & is in the possession of all local relevant information about

the field theory, e.g. (8) defines solutions of the classical field equations.

As a result, we have system (6) that is a particular case of (8). Here, Φ = {�, !} and

& = ��m/m� + �!m/m!. It is a smooth deformation of a trivial one, which is the Lax pair. The

deformation is required to be nontrivial: (i) in the field theory language, there is no field redefinition

that brings (6) into (4); (ii) in the !∞-language, ;= (•, . . . , •), = > 2 cannot be eliminated by a natural

transformation of !∞-algebras; (iii) in the &-manifold language, there is no coordinates in which

the homological vector field assumes the quadratic form, & = ΦΦm/mΦ.

System (6) is yet to be constructed! We arrive at a number of questions regarding (6): (a) how

to construct vertices ;= given the initial data encoded in ;2? (b) how to solve it? Under certain

assumptions [1, 2, 27] it can be shown that the !∞ originates from a certain �∞ and the latter is built

from a deformation of �0 as an associative algebra. Solutions can also be constructed explicitly.

We recall that ;2 originates from an associative product on �0. Let us first recast these initial

data into !∞-language. In accordance with the form degrees, our L consists, as a vector space, of

two copies of �0 that are assigned degrees 0 and 1, i.e. L = L0 ⊕ L1, L0,1 ∼ �0. The bilinear

structure maps are defined as

;2(0, 1) = [0, 1]★ , ;2(0, E) = 0 ★ E − E ★ 0 , 0, 1 ∈ L1 , E ∈ L0 . (9)

In fact, the associative structure is of immense help. The underlying structure will turn out

to be �∞ rather than !∞.4 Anticipating this fact, the same initial data can be encoded by a small

3As a historical note, systems of the form (2) were first introduced by Sullivan [22] as Free Differential Algebras,

re-introduced into physics [23, 24] in the supergravity and higher spin [25] contexts.

4For completeness, �∞ is a graded vector space, equipped with degree (−1) maps <= (•, . . . , •) that satisfy <◦< = 0,
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�∞-algebra:

<2(0, 1) = 0 ★ 1 , <2(0, E) = 0 ★ a , <2(E, 0) = −E ★ 0 , 0, 1 ∈ A1 , E ∈ A0 . (11)

Our !∞-algebra will come from an �∞-algebra via the usual anti-symmetrization map

;= (G1, . . . , G=) =
∑

f∈(=

(−1) |fG |<= (Gf (1) , . . . , Gf (=) ) . (12)

We would like to deform (11) as to activate higher structure maps <=, = > 2, in a nontrivial way.

Main result. With all definitions above we can now formulate the main result [1, 2]. We need to

deform the �∞-algebra (11) that consists of an associative algebra A0 together with its natural bi-

module. Under some technical assumptions5, the deformation exists iff the underlying associative

algebra is soft, i.e. can be deformed into a (nontrivial, of course) one-parameter family of associative

algebras AD. Therefore, the product in AD deforms the one in A0:

0 ◦ 1 = 0 ★ 1 +

∞∑

:=1

q: (0, 1) D
: . (13)

That the deformed product is associative, 0 ◦ (1 ◦ 2) = (0 ◦ 1) ◦ 2, imposes certain conditions on

the bilinear maps q: . The nontriviality of the deformations implies that q1 is a nontrivial class of

the second Hochschild cohomology group ��2(A0,A0).

The algorithm for constructing the model is as follows. First, one constructs a deformation of

A0 as of an �∞-algebra. The first few structure maps read

<3(0, 1, E) = q1(0, 1) ★ E → ;3 ,

<4(0, 1, E, F) = q2(0, 1) ★ E ★ F + q1 (q1(0, 1), E) ★ F → ;4 .

There is a number of ways [2] to get all <=, including an explicit formula for any =. Secondly,

one induces the corresponding !∞-maps by means of anti-symmetrization (12). As a result we

have all ;= or & and it can be shown that model (6) so defined is not equivalent to a free one via

field-redefinitions.

Nevertheless, we can show that the model is integrable and its solution space can be understood

via an auxiliary Lax pair [1]. Not surprisingly the Lax pair, which has the same form as (4), is

based on the deformed product ◦, namely,

3G = G ◦ G , 3R = G ◦ R − R ◦ G , (14)

where < = <1 + <2 + ... is a formal sum and ◦ is the Gerstenhaber product. The latter is defined for any two multilinear

maps 5 and 6 of degrees | 5 | and |6 | and having : 5 and :6 arguments as

5 ◦ 6 =

∑

8

(−1)^ 5 (01, . . . , 08 , 6(08+1 , . . . , 08+:6 ), 08+:6+1, . . . , 0: 5 +:6−1) . (10)

Here ^ is the usual Koszul sign: ^ = |6 | ( |01 | + · · · + |08 |). Similar relations define !∞-algebras. However, it is more

handy to get them from the Taylor expansion of &2 = 0.

5The main assumption is that we are looking for a deformation that makes sense when �0 is replaced by Mat# (�0) for

any # . Obviously, (11) can be defined for Mat# (�0). It is this assumption that allows us to reduce a complicated problem

of Chevalley–Eilenberg cohomology to a much simpler Hochschild cohomology. Nevertheless, in some examples of

practical importance the # = 1 case seems to be as general as any # > 1.
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where G, R take values in the associative algebra AD. The integrability means here that solutions

of (6) can be built from those of (14), the latter having pure gauge form

G = g−1 ◦ 3g , R = g−1 ◦ R0 ◦ g . (15)

The map is constructed order by order in D as6

� = G + (mDG) ◦ R + . . .

���
D=0

, ! = R + (mDR) ◦ R + . . .

���
D=0

. (16)

Provided the associative algebra AD admits a trace TrD , that is, TrD [0 ◦ 1 − 1 ◦ 0] = 0, we can also

define the integrals of motion �= = TrD [R ◦ · · · ◦ R] obeying the conservation law 3�= = 0.7 For

infinite-dimensional algebras there can be other types of integrals of motion [20].

To summarize, given a one-parameter family of associative algebras AD, one can construct a

non-linear system of formally consistent8 PDE’s that, nevertheless, can be solved via an auxiliary

Lax pair.

3. Deformation quantization of Poisson Orbifolds.

A natural question is where to find either soft associative algebras (to be deformed) or one-

parameter families of associative algebras right away. There are two large stocks of such algebras:

(1) finite dimensional associative algebras; (2) deformation quantization.

All finite-dimensional semi-simple associative algebras, by the Artin–Wedderburn theorem,

are products of matrix algebras. As such they cannot have free parameters. Therefore, soft algebras

have to be outside the nice class of semi-simple algebras. The classification of the latter is known

to be wild. Good news: there are a lot of soft algebras along these lines. Bad news: it is hard to

find them. Below we discuss the item (2) in more detail as it is of some interest due to its relation

to the 33 bosonization duality.

Deformation quantization is an obvious source of one-parameter associative algebras. Let us

recall the main idea. Given any Poisson manifold P one considers the algebra of functions �∞(P).

It is an associative and commutative algebra. One then tries to deform the product

5 ★ 6 = 5 · 6 + ℏ{ 5 , 6} + O(ℏ2) , (17)

where the first order deformation is the Poisson bracket on P, which, at same time, is a nontrivial

Hochschild two-cocycle of �∞(P). The general solution of this problem was given by Kontsevich

in [34]. Later [35], it was shown that Kontsevich’s graphs can be understood as Feynman’s diagrams

of an auxiliary topological string theory, called Poisson sigma-model. Deformation quantization

6Similar maps relating interacting and quasi-free or non-commutative and commutative theories are known in the

literature [28–30].

7Note that this invariants differ from what is usually called integrals of motion (function(al)s of fields that are time

independent). In modern terms, integrals of motion correspond to zero-form symmetries and are given by closed (3−1)-

forms. Due to 3�= = 0 functions �= do not depend on space-time points at all and correspond to (3−1)-form symmetries,

[31].

8A word of warning is that formal consistency does not imply actual consistency. It is easy to construct examples

of formally consistent equations that do not make any sense, i.e. they are just symbolic expressions, but lead to infinite

tree-level amplitudes. See e.g. [32, 33] for explicit examples.
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gives a large class of one-parameter families of associative algebras, parameterized by Poisson

manifolds.

The space of algebras can be extended even further, leading to an interesting open problem

in deformation quantization. Poisson manifolds generally enjoy a lot of symmetries. For a given

Poisson manifold P one can pick up some group of discrete symmetries Γ. There are two associative

algebras naturally linked to these data:

1. Γ-invariant functions �∞(P)Γ ∼ �∞(P/Γ), where we see the orbifold P/Γ. This algebra is

commutative;

2. Cross-product algebra �∞(P) ⋉ Γ. The algebra is generated by sums
∑

8 58 ⊗ W8, where the

58 ∈ �∞(P) and W8 ∈ Γ. The product is defined as ( 5 ⊗ W) ⋄ ( 5 ′ ⊗ W′) = ( 5 W( 5 ′), WW′),

where W( 5 ) denotes the action of W ∈ Γ on a function 5 ∈ �∞(P). Note that this algebra is

generally non-commutative even for abelian Γ.

The two algebras above are closely related to each other. From the viewpoint of non-commutative

geometry the second algebra is more favorable. In some sense, it encodes complicated information

about singular manifolds like orbifolds through the non-commutativity of the algebra.

In both cases one can ask: (i) what are nontrivial deformations? (ii) how to construct them to all

orders? We will refer to both of the problems, i.e. for algebras (1) and (2) above, as to the problem

of Deformation Quantization of Poisson Orbifolds. More generally: is there any counterpart of

Kontsevich’s Formality Theorem for Poisson Orbifolds?

The first surprising result is that Poisson Orbifolds have more deformations! There are other

directions of deformation quantization that rely on orbifolding (or on the extension by Γ). These

new deformations are not captured by Kontsevich’s Formality at all. It is also not clear what

kind of Formality one should be looking for [36, 37]. In principle, following Kontsevich (who

mentioned in [34] that his construction originates from a topological string theory, which has been

then manifested by the quantization of the Poisson sigma-model in [35]) one should quantize the

same Poisson sigma-model on Poisson Orbifolds, which may crucially depend on the type of an

orbifold, preventing one from seeking out any universal extension of the Formality Theorem.

While the general problem of Deformation Quantization of Poisson Orbifolds is open, there

is a number of cases, where a constructive approach is possible. For example, let us consider the

Weyl algebra �= extended by a finite group of symplectomorphisms Γ ⊂ Sp=, i.e. �= ⋉ Γ. The

Weyl algebra can be understood as a result of the deformation quantization of R2= endowed with the

canonical symplectic form 3?8 ∧ 3@8 . Now, on top of that we can have several new deformations.

The number of such deformations depends on Γ. The deformations can be constructed explicitly to

all orders via injective resolutions [38, 39].

Let us consider in more detail the case of the algebra �1 ⋉ Z2, as it is relevant for the 33

bosonization duality. Here �1 can be understood as an associative algebra generated by the pair of

canonical variables subject to the commutation relation

[@, ?] = 8ℏ , (18)

i.e. we have already quantized R2 along 3@ ∧ 3?. The group of symplectic reflections Γ = Z2 is

generate by a single element ' that sends (@, ?) to (−@,−?). The crossed-product algebra �1 ⋉ Z2

9
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is obtained by adding the new generator ' to @ and ? such that

'2
= 1 , '@' = −@ , '?' = −? . (19)

The general element of �1 ⋉ Z2 is given by a polynomial 5 (@, ?, ') = 50 (@, ?) + 51(@, ?)' and

' acts via the reflection whenever we need to drag it through @ or ?. We can also start from

scratch: set ℏ = 0. The algebra A0,0 of functions 5 (@, ?, ') is still non-commutative due to

'. As an associative algebra A0,0 admits a two-parameter family of deformations, the usual one

along the classical Poisson bracket {•, •} and another one, along '. We can also jump directly to

Aℏ,0 = �1 ⋉ Z2. The latter algebra features the second deformation along '.

Independently of the ideas above, the deformation of Aℏ,0 was found by Wigner [40] and

explored further in a great number of papers, see e.g. [41–44]. It is remarkable, that one can

generate the deformed algebra Aℏ,D by deforming the canonical commutation relations [41, 42, 44]

[@, ?] = 8ℏ + 8D' . (20)

Based on this relation, one can work out the structure constants, see [45–50] for different approaches

to the problem. There are closely related algebras: the '-invariant subalgebra, known as 6;_ [51],

and the non-commutative hyperboloid [46] (or fuzzy sphere, depending on the real form).

It is also interesting that the first order deformation of Aℏ,0 can be derived [27] from an

extension of Kontsevich’s Formality known as the Shoikhet–Tsygan–Kontsevich formality [52, 53].

We start from �ℏ,0, which can be realized as the algebra of functions 5 (@, ?, ') equipped with the

Moyal–Weyl star-product, 5 ★ 6. Extension with ' is easy and requires us to first move all ' to the

left (or to the right), while properly commuting them with @, ?, and then take the star-product. The

first order deformation along ',

5 ◦ 6 = 5 ★ 6 + D q( 5 , 6)' + O(D2) , (21)

is defined by a Hochschild two-cocycle q. It is this two-cocycle that can be computed with the help

of Shoikhet-Tsygan-Kontsevich formality. None of the known formality theorems seems to have

anything to say about higher orders.

4. Slightly-broken higher spin symmetry and three-dimensional bosonization

duality

Another application of the �∞- and !∞-algebras constructed in section 2 is to the three-

dimensional bosonization duality conjecture [2, 3]. What is interesting here is that !∞-algebras

manifest themselves as symmetries of physical models. We begin with a brief overview of the

simplest models conjectured to exhibit the duality. Next, we discuss why and how these models

exhibit infinite-dimensional symmetries that are realized as !∞-algebras. Correlation functions can

then be understood as invariants of this symmetry, while the proof of their uniqueness leads to a

proof of the duality.

10
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Higher spin symmetry of free theories. It has long been known that free QFT’s (as well as the

classical field theories they are based on) feature infinite-dimensional symmetries that are generated

by infinitely many conserved tensors on top of the usual low spin stress-tensor (spin-two) and

global symmetry currents (spin-one). Such symmetries were dubbed Zilch symmetries [54, 55]. In

modern terminology they are called higher spin currents and symmetries. The conserved tensors,

e.g. for the free scalar theory,

�01 · · ·0B = q̄m01
· · · m0Bq + . . . (22)

are sandwiches of two fields with an arbitrary number of derivatives. The omitted terms can be

arranged to make it conserved as a consequence of �q = <2q. In the momentum space, the

existence of the corresponding charges is obvious since any

& 5 =

∫
33−1? 0̄? 5 (?,∇?)0? (23)

is a conserved charge for arbitrary kernel 5 . Locality of the conserved tensors imposes mild

restrictions on kernels 5 [54]. Charges & 5 map one-particle states+ to themselves, i.e. they belong

to End(+). For QFT’s in Minkowski space End(+) contains the Poincaré algebra and for massless

QFT’s it usually includes the conformal algebra. As a useful toy model we can think of the massless

scalar field, which is conformally-invariant.

A closely related classical concept is that of the (higher) symmetries of field equations, i.e.

maps ( that map solutions of some equation �q = 0 to solutions. Such maps have to obey �( = (′�

for some (′ that depends on (. For the free massless scalar the conformal transformation reads

XEq = E<m<q +
Δ

3
(m<E

<)q , (24)

where Δ = (3 − 2)/2 is the conformal weight and E< (G) is a conformal Killing vector. The stress-

tensor �01 gives rise to a number of currents 9< = �<1E
1 that are parameterized by Killing vectors.

The infinitesimal transformations XE form the conformal algebra B>(3, 2) under commutators.

Likewise, given a conserved rank-B tensor, one can construct a number of conserved currents

9< (E) = �<01 · · ·0B−1
E01 · · ·0B−1 , m (01E02 · · ·0B ) − traces = 0 , (25)

where E01 · · ·0B−1 is a conformal Killing tensor.9 The charges &B (E) corresponding to higher spin

currents 9< (E) form an infinite-dimensional Lie algebra, denoted by hs, that contains B>(3, 2) as a

subalgebra.

Thanks to the linearity of the equations of motion, the algebra of symmetries is associative, i.e.

the product (1(2 of any two symmetries (1,2 is a symmetry again. One does not have to take the

commutator [(1, (2] to get a symmetry. In particular, one can multiply a number of the conformal

symmetries (24) to get a genuine higher spin symmetry. An important conclusion is that the algebra

of symmetries is an infinite-dimensional associative algebra, still called hs and referred to as the

higher spin algebra, that contains B>(3, 2) as a Lie subalgebra. (One can always get a Lie algebra

9As an B>(3, 2)-module the space of solutions for E01 · · ·0: can be identified [56] with an irreducible tensor

E�1 · · ·�: ,�1 · · ·�: , �, �, . . . = 0, . . . , 3 + 1 being B>(3, 2)-indices. This tensor is symmetric in �’s and �’s, separately. It

is traceless and subject to the Young condition E (�1 · · ·�: ,�:+1)�2 · · ·�: = 0.

11
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out of an associative one by defining the Lie bracket as the commutator.) Higher spin algebras

‘know’ everything about the underlying free field theories, which we summarize as

Free CFT = Associative Algebra .

The arguments above suggest that any higher spin algebra (for a conformally invariant theory) can

be understood as * (B>(3, 2))/� for a suitable two-sided ideal � [56]. Different matter systems lead

to different higher spin algebras, e.g. the higher spin algebra of the free boson is not isomorphic to

that of the free fermion in 3 > 3.

The 33 case is very special. First of all, one-particle states of the free boson |q〉 and free

fermion |k〉 can be realized, respectively, as even and odd subspaces of the Fock space 5 (0̂
†
8
) |0〉

of the 23 harmonic oscillator [0̂8 , 0̂
†
9
] = X8

9
, 8, 9 = 1, 2. This is partly thanks to the isomorphism

B>(3, 2) ∼ B?(4,R) and the latter algebra has the standard oscillator realization where the generators

of B?(4,R) can be identified with bilinears in the ladder operators. In particular, translations %<f
<
8 9

act as 0̂
†
8
0̂
†
9
, where f<

8 9
are the Pauli matrices. Secondly, the higher spin algebra of the free fermion

coincides with that of the free boson. Thirdly, they are both isomorphic to the even subalgebra �4
2

of the Weyl algebra �2 [57–59], i.e. to the algebra of even functions 5 (0̂, 0̂†) = 5 (−0̂,−0̂†). The

fact that the higher spin algebras of the free boson and fermion are isomorphic is the starting point

for the proof of the three-dimensional bosonization duality.

Correlation functions in a CFT must be conformally-invariant. Likewise, correlators in a CFT

with a higher spin symmetry hs should be invariant under the full hs. Therefore, one can ask if hs

as a Lie algebra admits any invariants that can serve as correlation functions provided one computes

them on appropriate elements. Indeed, each higher spin algebra is equipped with an invariant trace

Tr★[•], i.e. Tr★[0 ★ 1 − 1 ★ 0] = 0, where ★ denotes the product in hs. The ★-notation is not

an accident. In the case of 33 the product in the Weyl algebra can be realized as the Moyal–Weyl

star-product.10 It comes as no surprise that all =-point correlation functions of � can be computed

at once as higher spin invariants

〈�1 . . . �=〉 = Tr★[J1 ★ · · ·★ J=] , (26)

provided J8 are chosen appropriately to behave as quasi-primary operators that represent a generating

function �8 ≡ � (G8) of higher spin currents at point G8. Invariance under the higher spin and, hence,

under the conformal symmetry is manifest:

&B 〈�1 . . . �=〉 = 0 ⇐⇒ XbTr★[J1 ★ · · ·★ J=] = 0 , (27)

where Xb J = [b, J]★, b ∈ hs incorporates the action of the higher spin algebra, including the

conformal symmetries, of course. Transformation Xb J represents the action [&, �] = � of higher

spin charges & onto the higher spin current multiplet. Xb form the same higher spin algebra hs as

a Lie algebra, which corresponds to [&,&] = & - type relations at the level of charges.

The calculation of the invariants is simple and gives all =-point functions [61–64]. For example,

the four-point correlation function (generating function of all four-point correlators of �) in the free

10In general, higher spin algebras can be understood as a result of deformation quantization, see e.g. [47, 60] and

references therein.
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boson CFT reads [62]

〈����〉�.�. =
1

|G12 | |G23 | |G34 | |G41 |
×

× cos(&2
13 + &3

24 + &4
31 +&1

43) cos(%12) cos(%23) cos(%34) cos(%41)

+ permutations .

Here & and % are the standard conformally-invariant variables [65].

Three-dimensional bosonization duality. The 33 bosonization duality is a recently discovered

type of duality that takes place in vector models [5–10]. In what follows, we deal with the four

simplest vector models. These models are constructed by taking an order parameter, which is an

#-component complex scalar q8 or Dirac fermion k8, and writing down the most general * (#)-

invariant action:

:

4c
(�( (�) + Matter




(�q8)2 free boson

(�q8)2 + 6(q8q8)2 Wilson–Fisher (Ising)

k̄ /�k free fermion

k̄ /�k + 6(k̄k)2 Gross–Neveu

where (�( =
∫

Tr[�3� + 2
3
�3] is the Chern–Simons action. Other gaugings, e.g. $ (#)-gauging,

are straightforward. There is a huge variety of vector models with different matter multiplets, with

and without supersymmetry. Coupling 6 is not a free parameter, it has to be tuned to the fixed point,

so that the model is conformally invariant. The true parameters are the number of fields # and the

Chern–Simons level :. It is convenient to work with _ = #/:, which is an analog of the t’Hooft

coupling in the large-# limit. Note that due to the Chern–Simons term and covariant derivatives,

even the 6 = 0 models are not free and it is difficult to say anything concrete about them.

The 33-bosonization duality can be formulated with the help of the following diagram:

free boson Gross–Neveu

Wilson–Fisher free fermion

_̃1 -coupling

_̃ 5 -coupling

_̃1 -coupling

_̃ 5 -coupling

The conjecture is that all gauge-invariant observables should be identical along the double-arrows

at the top and at the bottom, i.e. the four theories are dual pairwise. The vertical lines indicate

that the ’top’ and ’bottom’ models are related via RG-flows. The upper line connects the free

boson theory to the Gross–Neveu model, while the bottom line connects the free fermion theory

to the Wilson–Fisher model. The red color is for fermionic matter and the blue is for bosonic one.

Therefore, the conjecture is that along the upper and along the bottom line there are two equivalent

descriptions of the same physics, one in terms of a model with fermionic matter and another one in

terms of a model with bosonic matter (provided _ and # are mapped appropriately). Let us make

this a bit more precise.

13
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Intuitively, it is clear that in the : → ∞ limit the Chern–Simons action implies the flatness

of �, 3� + �� = 0. Therefore, � effectively decouples, the only trace of it being in that we have

to consider gauge-invariant observables built out of the matter fields. Note that neither q nor k

are gauge-invariant. The 33-bosonization duality, as different from the 23 one, does not imply any

explicit map between q and k. $ (#)-models are simpler due to the absence of the spin-one current

that can be gauged again.

There is a number of simple observations that can be made in the large-# limit, irrespective of

the value of _. The simplest gauge-invariant operators are bilinears

�B = q� · · ·�q , �B = k̄W� · · ·�k . (28)

They reduce to the usual higher spin currents for free theories once the Chern–Simons term is

removed, e.g. via : = ∞ or just � = 0. Therefore, the higher spin symmetry is present in # = ∞

limit. It is also clear that all local gauge-invariant operators can be built from the higher spin

tensors. For example, the simplest class next to �B are ’double-trace’ operators of type [��], see

e.g. [66] for explicit formulas. Schematically,

[�B1
�B2

]B =
∑

m . . . m�B1
m . . . m�B2

− traces . (29)

Out of �B1
and �B2

one can build primary operators of spin B ≥ B1+B2. Obviously, (higher) correlation

functions of �B contain full information about OPE coefficients and anomalous dimensions of all

the other local gauge-invariant operators. Therefore, we should concentrate on learning as much as

possible about �B .

To the leading order the spectrum of higher spin tensors is identical for both theories on the

bottom line and for both theories on the top line. The only difference between the top and bottom

models is that the spin-zero operator �0 has conformal dimension 1 + O(#−1) for the top ones and

dimension 2 + O(#−1) for the bottom ones. That the spectra coincide in the large-# limit for the

dual models is the first indication of the duality.

Slightly-broken higher spin symmetry. The main question is what happens to �B once we depart

from the # = ∞ limit. Conserved higher spin tensors signal that the theory is a free one in disguise

[67–70]. Therefore, they cannot be conserved. However, the spectrum of vector models is very

sparse and there are not so many operators to violate the conservation law:

m · �B =
1

#

∑

B1+B2≤B

�B
B1,B2

[�B1
�B2

]B . (30)

Here the structure constants �B
B1,B2

contain the dynamical input, while the form of the double-trace

operators is fixed by conformal symmetry to the leading order.11

It was shown in [6], that the non-conservation law (30) is powerful enough as to fix the form

of three-point functions of �B . The idea was to abstract the non-conservation law from any concrete

microscopical realization without making any assumptions about structure constants �B
B1,B2

. The

11We note that a simple spin/conformal dimension counting ensures that in the ‘worst case scenario’ one can find in

addition #−2 [���] on the right-hand side, which happens for the models with �0 of dimension 1 + O(#−1).
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non-conservation law should be combined with the corresponding violation (or, more precisely,

deformation) of the action of charges &B on �B:

[&B1
, �B2

] =
∑

B

�B
B1 ,B2

�B +
1

#

∑
�;1,;2 ,:
B1 ,B2

[�;1�;2]: . (31)

Here �’s encode the structure constants of the higher spin algebra and �’s signal a violation of the

Lie algebra module structure. Now, one can use the fact that three-point functions are fixed up to

three numbers per each triplet of spins:

〈�B1
�B2

�B3
〉 ∼ 0B1 ,B2 ,B3

〈�B1
�B2

�B3
〉1 + 1B1 ,B2 ,B3

〈�B1
�B2

�B3
〉 5 + 2B1 ,B2 ,B3

〈�B1
�B2

�B3
〉> . (32)

The first two structure can be computed in the free boson and free fermion theory, respectively. The

last one, called odd, does not show up in any free theory. Nevertheless, it can be shown to exist and

to be unique. Constants 0, 1, 2 represent the dynamical information about a given theory and can

depend on spins and coupling constants. A remarkable result [6], is that the slightly-broken higher

spin symmetry along can fix all the structure constants in (30), (31) and (32) in terms of only two

phenomenological parameters #̃ and cos2 \ = 1/(1 + _̃2). The final expression for the three-point

functions reads12

〈�B1
�B2

�B3
〉 = #̃

[
cos2 \〈�B1

�B2
�B3

〉1 + sin2 \〈�B1
�B2

�B3
〉 5 + cos \ sin \〈�B1

�B2
�B3

〉>
]
. (33)

Similar results have been obtained for other three-point functions and some four-point correlators,

see e.g. [72–76]. This indicates that the slightly-broken higher spin symmetry can be powerful

enough to fix all correlation functions! It remains to understand what it is mathematically.

Slightly-broken higher spin symmetry via strong homotopy algebras. At this point, it is

important to understand what "slightly-broken higher spin symmetry" is. The currents are no

longer conserved (30); the action of charges on higher spin currents gets deformed (31); the charges

themselves cannot form a Lie algebra. Therefore, we cannot abstract a single structure – higher spin

algebra – and deform it as a Lie algebra. In fact, the algebra does not even have such deformations.

Since the non-conservation operator is built from the higher spin currents, it should be clear

that one cannot disentangle hs from its action on �’s. One has to deform the whole package [2]:

algebra hs plus its module �. The structure that accommodates this is !∞-algebra. The starting

point is an !∞-algebra L = L0 ⊕ L1 concentrated in degree zero and one, with L1 being reserved

for hs and L0 for the hs-module that �’s form:

[Xb1
, Xb2

] = ;2 (b1, b2) , Xb � = ;2 (b, �) , b , b1,2 ∈ hs .

From now on we can abstract �’s and think of them as of specific hs-module L0 rather than concrete

operators. What one can do now is to look for the most general deformation

Xb � = ;2 (b, �) + ;3 (b, �, �) + . . . , [Xb1
, Xb2

] = Xb ,

12Note that this requires the building blocks to be properly normalized, so that the spin dependence is trivial. The

exact form of all the structures can be found in [71] in the light-cone gauge and in [66] manifestly Lorentz invariant

expressions are given for ‘almost’ all the structures.
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where b = ;2 (b1, b2) + ;3(b1, b2, �) + . . . Self-consistency requires ;=’s to form an !∞-algebra.

There is one specific feature of the problem that allows us to apply the results of section 2,

i.e. to reduce !∞ to �∞. Higher spin tensors �B , being bilinear operators, belong to the tensor

product |q〉 ⊗ |q〉 or |k〉 ⊗ |k〉. Higher spin algebra hs is the endomorphism algebra of one-particle

states |q〉 or |k〉. As such it is formally isomorphic to |q〉〈q | or |k〉〈k |. Recall that the latter two

tensor products are isomorphic since the higher spin algebra of free boson and free fermion are

identical. Also, |q〉 ⊗ |q〉 is formally isomorphic to |q〉〈q |, idem. for k. Therefore, we can map the

module of higher spin tensors onto hs. The difference between |q〉 ⊗ |q〉 and |q〉〈q | is by the map

' : |q〉 → 〈q |, which is realized via the inversion map '. Inversion ' is a discrete automorphism

of the conformal and, hence, of the higher spin algebra. Finally, the underlying associative structure

of hs is important again and leads to the following realization of the initial data:

;2(0, 1) = 0 ★ 1 − 1 ★ 0 , ;2 (0, E) = 0 ★ E − E ★ '(0) , 0, 1 ∈ L1 , E ∈ L0 .

The last step is to encode ' in the smash product �0 = hs ⋉ Z2, where Z2 = {4, '}. Now, one can

apply the powerful machinery of section 2, see [2]. While hs does not have any deformations as an

associative algebra, �0 is soft and can be deformed into �D, with D being a formal parameter.13 This

gives the deformation quantization of the simplest Poisson Orbifold R2/Z2 discussed in section 3

(one needs to copies of this Poisson Orbifold since �2 = �1 ⊗ �1). As a result, there is an explicit

description of all ;=’s.

In order to discuss the bosonization duality it is also important to understand what is the most

general deformation of ;2’s that are based on a given hs. Restricting for simplicity to the$ (#) case,

i.e. even spin currents, it may be shown [20] that the deformation depends on two phenomenological

parameters. They can be related to the microscopical parameters # and :, if needed.

Correlation functions as invariants. For the unbroken higher spin symmetry the correlation

functions are given by simple hs-invariants of type Tr★[•], (26). It was shown in [20] that these

invariants are unique, i.e. there are no other invariants that can serve as correlation functions. Now,

one can ask if it is possible to deform them

〈�1 . . . �=〉 = Tr0 [J1 ★ · · ·★ J=] + . . . (34)

in such a way that they remain invariant under the deformed higher spin symmetry, i.e. under the

!∞-transformations. Here we also trivially rewrote Tr★[•] on hs as Tr0[•] on �0, since hs ∈ �0

and �0 admits a trace as well. In what follows it is important that the trace can be deformed to a

trace TrD [•] on �D .

It is worth noting that there is a simple generating function of the free CFT correlators

,free [J] = P.p.Tr★
[
log★[1 − D−1

J]
]
, (35)

where P.p. stands for the principal part of the Laurent series in D. Note that D is introduced

artificially here and is not present in the ★-product. Now, it is possible to show that the free CFT

13For a multi-parameter deformation there is always an overall scale of the parameters that we call D here. It is

important to count orders in the expansion, the rest of the parameters, if any, being implicit.
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correlators admit a smooth deformation that is invariant under the full !∞-algebra [3, 77]. The final

result can be expressed as a very similar generating function:

,SBHS[J] = P.p.TrD
[
log◦[1 − D−1

J]
]
, (36)

where D is now present in the deformed ◦-product and in the trace, cf. (13).

It remains now to compute the corrections to the free CFT correlators. However, several

important observations can be made without having to do that. First of all, it can be shown [20]

that the deformed invariants – the !∞-invariants – are unique. Therefore, if the idea of the slightly-

broken higher spin symmetry is correct, there is a unique !∞-invariant to serve as a correlation

function. This statement proves, in principle, the bosonization duality since the invariant is fixed by

the symmetry and does not require any microscopical realization via Chern–Simons vector models,

i.e. it has to be the same both for bosonic and fermionic matter. Secondly, a very simple observation

is that for any = the =-point correlation functions have to have the following form

〈� . . . �〉 =
∑

〈fixed〉8 × params ,

i.e. it has to be a sum of a finite number of fixed conformally invariant structures multiplied

by the powers of the phenomenological deformation parameters. Considering unitarity, the two

deformation parameters D1,2 have to be of the form D1 = D4+8\ , D2 = D4−8\ . This is consistent with

all available correlation functions [5–7, 66, 72–76, 78–80]. It is intriguing that expression (36)

bears close similarity to the partition function of a one-loop exact theory.
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