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Abstract

There exists a unique class of local Higher Spin Gravities with propagating massless

fields in 4d — Chiral Higher Spin Gravity. Originally, it was formulated in the light-cone

gauge. We construct a covariant form of this theory as a Free Differential Algebra up to

NLO, i.e. at the level of equations of motion. It also contains the recently discovered

covariant forms of the higher spin extensions of SDYM and SDGR, as well as SDYM and

SDGR themselves. From the mathematical viewpoint the result is equivalent to taking

the minimal model (in the sense of L∞-algebras) of the jet-space extension of the BV-

BRST formulation of Chiral Higher Spin Gravity, thereby, containing also information

about (presymplectic AKSZ) action, counterterms, anomalies, etc.
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1 Introduction

Higher Spin Gravities (HiSGRA) are defined to be the smallest possible extensions of gravity

with massless fields of arbitrary spin. While there are good reasons to expect higher spin states

to play an important role in general, e.g. string theory, the masslessness should imitate the high

energy behavior and, for that reason, HiSGRA can be interesting probes of the quantum gravity

problems since some of the issues can become visible already at the classical level. Indeed, it is

quite challenging to construct HiSGRA due to massless higher spin fields facing numerous issues.

As a result, all concrete HiSGRA’s available at the moment are quite peculiar: topological

models 3d with (partially)-massless and conformal fields [1–7]; 4d conformal HiSGRA [8–10]

that is a higher spin extension of Weyl gravity; Chiral HiSGRA [11–15] and its truncations

[16, 17].2 In this paper we covariantize the interactions of Chiral HiSGRA.

Chiral HiSGRA is easy to describe due to its simplicity — interactions stop at the cubic

level in the action. It is built from the standard cubic interactions, even though the formulation

available before the present paper is in the light-cone gauge. It is advantageous that the light-

cone gauge and the spinor-helicity formalism are closely related [23–27]. As is well-known

[28, 29], the Lorentz invariance fixes cubic amplitudes Vλ1,λ2,λ3
and for any triplet of helicities

λ1 + λ2 + λ3 > 0 there is a unique vertex and the corresponding amplitude:

Vλ1,λ2,λ3

∣

∣

∣

on-shell
∼ [12]λ1+λ2−λ3 [23]λ2+λ3−λ1 [13]λ1+λ3−λ2 . (1.1)

Chiral Theory can be defined as a unique combination of vertices [11–13] that (a) contains at

least one nontrivial self-interaction of a higher spin state with itself; (b) leads to a Lorentz-

invariant theory; (c) does not require higher order contact vertices. These assumptions imply

that the spectrum of the theory has to contain massless fields of all spins s = 0, 1, 2, ..., i.e.

helicities λ ∈ (−∞,+∞) and all coupling constants are uniquely fixed to be

VChiral =
∑

λ1,λ2,λ3

Cλ1,λ2,λ3
Vλ1,λ2,λ3

, Cλ1,λ2,λ3
=

κ (lp)
λ1+λ2+λ3−1

Γ(λ1 + λ2 + λ3)
. (1.2)

Here, lp is a constant of dimension length, e.g. Planck length, and κ is an arbitrary dimensionless

constant. In principle, there exists the φ3-vertex, i.e. λi = 0, but it is not present in Chiral

Theory. We also see that the Γ-function restricts the range of summation to λ1 + λ2 + λ3 > 0.

All such vertices are present. For example, one has the half of the usual +2,+2,−2 Einstein-

Hilbert vertex and, provided the Yang-Mills groups are turned one, the Yang-Mills interaction

2There are also other interesting recent ideas, e.g. [18, 19] and [20–22].
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+1,+1,−1. Importantly, the higher derivative corrections are also needed, e.g. the half of the

Goroff-Sagnotti counterterm [30], which is +2,+2,+2. Such higher derivative terms originate

from string theory as well, e.g. [31].

It was shown that the tree-level amplitudes vanish on-shell [14, 15]. At one-loop there are no

UV divergences and the one-loop amplitudes are proportional to the all helicity plus amplitudes

of QCD or SDYM at one loop [32]. They also have a higher spin kinematical factor and a factor

of the total number of degree of freedom
∑

λ 1. The latter is infinite and, as in any QFT with

infinitely many fields, see e.g. [33], has to be given a prescription for. A great deal of vacuum

one-loop results [34–43] suggest that this has to be regularized to zero.

The power of the light-cone gauge is in that it excludes unphysical degrees of freedom and

evades ambiguities of covariant (gauge) descriptions. However, many interesting questions, e.g.

nontrivial backgrounds, exact solutions, higher order quantum corrections, are easier to tackle

within a covariant description. Until recently a subtlety has been that Chiral Theory requires

all vertices (1.1), some of which cannot be written within the most common covariant approach

to higher spin fields [44], where a massless spin-s field is represented by a symmetric rank-s

tensor Φµ1...µs
. This puzzle has been resolved in [17], where it was shown that the most basic

problematic interactions of higher spin fields — Yang-Mills and gravitational — can easily be

constructed by employing the covariant field variables discovered first in Twistor Theory [45–

48]. This should not be surprising since Chiral Theory was shown to admit a formulation similar

to self-dual Yang-Mills and self-dual gravity [16] and Twistor techniques are most natural for

self-dual theories.

In the present paper we extend these results to Chiral Theory and construct its minimal

model or, equivalently, its classical equations of motion as a Free Differential Algebra [49] to

NLO. In other words, Chiral Theory can be written as a sigma-model dΦ = Q(Φ), where Φ are

maps from ΠTM (the algebra of differential forms on a manifold M) to another supermanifold

N equipped with a homological vector field Q, QQ = 0. All essential information about a

given theory, e.g. action, anomalies, etc., is encoded in its minimal model as the Q-cohomology

[50, 51]. Therefore, the results of the paper can be used to investigate the quantum properties

of Chiral Theory, as well as to construct an action and look for classical solutions.

The paper is organized as follows. After a brief introduction in section 2 into Free Dif-

ferential Algebras and minimal models, we give in section 3 a concise overview of [17] where

covariant actions for the higher spin extensions of self-dual Yang-Mills and self-dual Gravity

were constructed. These results give important hints on how to extend them to Chiral Theory,

which these two classes are contractions of [16]. To find the right gauge algebra (higher spin

3



algebra) is the first step and it was done in [52]. We then proceed in section 4 to the main part

and construct L∞-structure maps/interaction vertices. We also check that some three-point

amplitudes (1.2) are correctly reproduced. The latter means that the FDA incorporates all the

physically relevant information at NLO. There are still some higher structure maps to be found

that are required for the complete covariantization of Chiral Theory. We leave this problem to

the future work.

2 Minimal Models

There is a very useful L∞-algebra, better say a Q-manifold, that can naturally be associated to

any (gauge) theory and encodes all relevant information about it, which is called the minimal

model. As is explained in [51, 53–59], one begins with the jet space BV-BRST formulation

of a given (gauge) theory. This way one gets a huge L∞-algebra which has been quite useful

in the analysis of numerous problems in (quantum) field theories, see e.g. [55, 56]. One can

then consider various equivalent reductions of this algebra that are quasi-isomorphic to it. An

important step is to take a usually much smaller equivalent L∞-algebra, called its minimal

model. The minimal model is, in some sense, the smallest possible L∞-algebra associated to

a given field theory. Nevertheless, modulo the usual topological issues, it contains the full

information about invariants, conserved currents, actions, counterterms, anomalies, etc. of the

initial field theory [50, 51].

Given a BRST complex that is non-negatively graded, e.g. the minimal model, one can

consider an associated sigma model whose fields are coordinates on the above Q-manifold [57]:

dΦ = Q(Φ) . (2.1)

Here, Φ ≡ Φ(x, dx) are maps ΠTM → N from the exterior algebra of differential forms on a

space-time manifold M to a supermanifold N that is equipped with a homological vector field

Q, QQ = 0. Equations (2.1) and their natural gauge symmetries are equivalent to the initial

field theory,3 thereby providing its reformulation as a Free Differential Algebra.4

If ΦA are coordinates on N , QQ = 0 is equivalent to (2.1) being formally consistent (that

3In general, the equations describe the parameterized version of the initial gauge field theory [57].
4Sullivan introduced Free Differential Algebras in [49] together with minimal models in the case of differential

graded Lie algebras. FDA were re-introduced into physics [60, 61] in the supergravity context and a bit later
in the higher spin gravity context in [62].
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is dd = 0 does not lead to any algebraic constraints on the fields), which can be rewritten as

Q2 = 0 ⇐⇒ QB ∂

∂ΦB
QA = 0 . (2.2)

The latter condition, when Taylor expanded in Φ, is equivalent to the L∞-relations [63, 64]

that define an L∞-algebra. This shows that FDA, L∞ and Q-manifolds are all closely related.

In many practical applications of minimal models, e.g. gauge field theories including gravity,5

coordinates on the formal graded manifold N consist of two subsets: degree-one and degree-

zero. We denote the coordinates and, then, the corresponding fields ω and C, respectively.

From the space-time point of view ω becomes a one-form connection of some Lie algebra and

zero-form C becomes a matter field taking values in some representation ρ. The simplest system

one can write

dω = 1
2
[ω, ω] , dC = ρ(ω)C , (2.3)

consists of the flatness condition for ω and of the covariant constancy equation on C. These

two equations will describe a background and the physical degrees of freedom propagating on

it. The most general non-linear deformation reads6

dω = l2(ω, ω) + l3(ω, ω, C) + l4(ω, ω, C, C) + . . . ,

dC = l2(ω,C) + l3(ω,C, C) + . . . .
(2.4)

This algebraic structure can also be identified as a Lie algebroid. Here the initial data — Lie

algebra and its module — are encoded in the bilinear maps l2(ω, ω) and l2(ω,C), respectively.

The higher spin algebra for Chiral Theory was guessed in [52] based on its truncation to the

self-dual gravity sector. The module structure is easy to identify, see below. The problem is to

find the higher order vertices. In the paper we determine l3(•, •, •).

5For some of the supergravities forms of higher degree need to be introduced.
6It was first proposed in [62] to look for Higher Spin Gravities in the form of an FDA. However, it is

important to constrain the vertices by further conditions: (a) to restrict to a basis of independent interaction
vertices (otherwise one and the same interaction can be present in infinitely many equivalent but differently
looking forms); (b) to impose some form of locality (otherwise any deformation can be completed with higher
orders [65], or, in the light-cone gauge, any function can serve as a Hamiltonian unless we care about locality
of the boost generators). All these issues are present [66, 67] in [62]. Therefore, unless (a) and (b) are taken
into account Q just gives the most general ansatz for interactions consistent with symmetries rather than any
concrete theory. These issues are under control in the present paper.
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3 HS-SDYM and HS-SDGR

Since the full covariant form of Chiral HiSGRA is not known and this is exactly the problem

we address in the paper, a good starting point is to extract some useful information from the

two contractions of Chiral Theory [16, 17], which can be understood as higher spin extensions

of SDYM and SDGR. We begin by reviewing some necessary facts about free fields. Impatient

readers familiar with the formalism can skip to section 4.

3.1 Free fields

Free massless fields of any spin can be described by equations proposed by Penrose [68]7

∇B
A′

ΨBA(2s−1) = 0 , ∇A
B′ ΨB′A′(2s−1) = 0 . (3.1)

The equations help to separate helicity eigenstates: one of them describes, say positive, and

another the negative helicity states. Twistor theory is very handy in constructing self-dual

theories. It requires positive and negative helicity states be described asymmetrically [47, 48, 69]

∇A
A′

ΦA,A′(2s−1) = 0 , δΦA,A′(2s−1) = ∇AA′

ξA
′(2s−2) , (3.2)

where ΦA1...A2s−1,A
′

is a gauge potential. For s = 1 it coincides with the usual one Aµ ∼ ΦA,A′

.

For s = 2 it can be identified with a component of the spin-connection. A bit more geometrically

one can [46] introduce a one-form connection

ωA′(2s−2) = ΦB,A′(2s−2)′B′

dxBB′ . (3.3)

It can be decomposed into two irreducible spin-tensors

ωA′(2s−2) ≡ eBB′ΦB,A′(2s−2)B′

+ eB
A′

ΘB,A′(2s−3) , (3.4)

where eAA′

≡ eAA′

µ dxµ is the vierbein one-form. With the help of gauge transformations

δωA′(2s−2) = ∇ξA
′(2s−2) + eC

A′

ηC,A′(2s−3) , (3.5)

7We also introduce a compact notation for symmetric indices: all indices in which some tensor is symmetric
or to be symmetrized are denoted by the same letter. In addition a group of k symmetric indices A1...Ak can
be abbreviated as A(k).

6



we get (3.2) for Φ and can eliminate Θ. Eqs. (3.1) and (3.2) follow from a simple action [17, 46]8

S =

∫

ΨA′(2s) ∧HA′A′ ∧ ∇ωA′(2s−2) . (3.6)

Here HA′B′

≡ eC
A′

∧eCB′

. For s = 1 we have the action of the free SDYM theory. By replacing

∇ω with F = ∇ω − 1
2
[ω, ω] and promoting ω and Ψ to a Lie-algebra-valued one-form we get

the complete SDYM action [17].

Free equations of motion as Free Differential Algebra. Let us start9 with the variational

equations of motion, which do not have an FDA-form yet:

∇ΨA′(2s) ∧HA′A′ = 0 , HA′A′

∧ ∇ωA′(2s−2) = 0 . (3.7)

Indeed, we need ∇Ψ = ... and ∇ω = .... The equations are equivalent to

∇ΨA′(2s) = eBB′ΨB,A′(2s)B′

, ∇ωA′(2s−2) = eB
A′

ωB,A(2s−3) , (3.8)

where we introduced a zero-form ΨA,A′(2s+1) and one-form ωA,A′(2s−3). These fields are known

to be relevant for free higher spin fields since [71].10 Of course, we need to know what ∇ of

these new fields is, which encourages one to introduce other fields and so on. It is clear that

the free equations are easy to write as

dωA(i),A′(n−i) = eB
A′

ωA(i)B,A′(n−i−1) , i = 0, ..., n− 1 , (3.9a)

dωA(n) = HBBC
A(n)BB , (3.9b)

dCA(n+k+2),A′(k) = eBB′CBA(n+k+2),B′A′(k) , k = 0, 1, 2, ... , (3.9c)

dΨA(k),A′(n+k+2) = eBB′ΨBA(k),A′(n+k+2)B′

, k = 0, 1, 2, ... , (3.9d)

8This action also can be derived as the presymplectic AKSZ action [70].
9The content of this paragraph has a large overlap with original paper [71]. Apart from the self-dual subtleties

the material is standard and can be found, e.g., in [72].
10Indeed, since [71] introduces fields to parameterize all on-shell nontrivial derivatives of massless fields, any

other covariant formulation has to employ at least some of them. Note, however, that the fields of (3.7) appeared
first thanks to the twistor approach [47, 48, 68, 69].
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where C and Ψ are zero forms and ω are one-forms. It is convenient introduce generating

functions:

ω(y, y) =
∑

n,m

1
n!m!

ωA(n),A′(m) y
A...yA yA

′

...yA
′

, (3.10)

idem. for C, where we pack both CA(k),A′(n+k+2) and ΨA(n+k+2),A′(k) into a single generating

function C(y, y). On top of that C(y, y) contains CA(k),A′(k), which describe a free massless scalar

field. Note that the scalar field is necessarily present in Chiral Theory. We can summarize the

free equations as (recall that ∇2 = 0)

∇ω = eBB′

yB′∂Bω +HBB∂B∂BC(y, y = 0) , ∇C = eBB′

∂B∂B′C . (3.11)

These equations form a boundary condition for the non-linear theory.

3.2 Initial data for interactions

It can be useful to have a look at the two contractions of Chiral Theory [16, 17] in order to

understand how interactions can be introduced. Both HS-SDYM and HS-SDGR [17] operate

with holomorphic fields ωA′(2s−2) and ΨA′(2s). It is still useful to package them into generating

functions ω(y) and Ψ(y).

HS-SDYM. In order to construct Yang-Mills type interactions of higher spin fields, we pro-

mote ω and Ψ to Lie-algebra-valued fields, e.g. ωA′(k) ≡ ωA′(k);a Ta. It is convenient to realize

Ta as matrices MatN for some N , e.g. ω(y) ≡ ω(y)ij . We will omit the matrix indices and the

only trace they leave is that we cannot swap various ω and Ψ factors, the order is important,

e.g. Ψ ∧ ω 6= ω ∧Ψ. The action of HS-SDYM can be written as

S =
∑

s=1

1
(2s)!

tr

∫

ΨA′(2s) ∧HA′A′ ∧ FA′(2s−2) , (3.12)

where the curvature is F (y) = ∇ω − ω ∧ ω. Note that indices contracted with yA
′

are sym-

metrized automatically:

ω ∧ ω =
∑

n,m=0

1

2n!m!
[ωA′(n), ωA′(m)] y

A′

1... yA
′

n+m . (3.13)
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The action is invariant under the Yang-Mills transformations:

δω = ∇ξ − [ω, ξ] , δΨ = [Ψ, ξ] . (3.14)

It is also invariant under the algebraic symmetries (thanks to eBA′

∧HA′A′

≡ 0):

δωA′(k) = eC
A′

ηC,A′(k−1) , (3.15)

which is vital for ω to have the right number of degrees of freedom. See [17] for detail and [21]

for the twistor reformulation.

In principle, we can write down the variational equations of motion and try to represent

them as an FDA. Two important hints will play a role in what follows: (a) interactions must

contain (3.13), i.e. dω(y) = ω(y) ∧ ω(y) + ...; (b) Ψ(y) takes values in the module that is dual

to that of ω, which follows from the structure of the action.

HS-SDGR. Higher spin extension of SDGR [73] is more peculiar [17]. Let us start with its

version on constant (non-zero) curvature spacetimes. The flat-space version [52] is a simple

limit. To proceed we introduce a Poisson structure on the space C[y] of functions in yA
′

:11

{f, g} = ∂C′

f∂C′g =
∑

n,m

1
(n−1)!(m−1)!

fA′(n−1)
C′

gA′(m−1)C′ yA
′

... yA
′

. (3.16)

Since Poisson implies Lie, we can define a curvature as usual

F = dω − 1
2
{ω, ω} , δω = dξ − {ω, ξ} ≡ Dξ . (3.17)

In particular, the Poisson bracket reproduces the standard FAB = dωAB + ωA
C ∧ ωCB in the

spin-two sector. The action reads:

S = 1
2
〈Ψ | F ∧ F 〉 =

∑

n,m=0

1

2(n+m)!

∫

ΨA′(n+m) ∧ FA′(n) ∧ FA′(m) . (3.18)

It is again important that there is a generalization of the shift symmetry that leaves the full

action invariant [17]. To this effect, one first needs to induce the module structure on Ψ, which

11This algebra is also know as w1+∞, see e.g. [74] for the latest applications.
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is a module dual to the Poisson algebra as a Lie algebra:

〈f ; {ξ, g}〉 := 〈f ◦ ξ ; g〉 . (3.19)

That it is a module structure is manifested by

Rf (Ψ) := −Ψ ◦ f , [Rf ,Rg](Ψ) = R{f,g}(Ψ) . (3.20)

The structure of the action and of the gauge symmetries gives a strong support to the idea that

Ψ has to be in the dual (coadjoint) representation of the higher spin symmetry. The flat-space

limit is easy to take: one just needs to drop {ω, ω}-term in the curvature, which is equivalent

to taking the commutative limit for y. While we could discuss the FDA formulation of this

theory, an example of SDGR gives enough information about the gauge algebra to attack the

main problem.

SDGR in flat space. It may be useful to recall the first few terms of the FDA for self-dual

gravity [75, 76] in flat space [77]. The action reads [52]

∫

ΨA′B′C′D′

∧ dωA′B′ ∧ dωC′D′ . (3.21)

The equations of motion are (FA′B′

≡ dωA′B′

)

F(A′B′ ∧ FC′D′) = 0 , dΨA′B′C′D′

∧ FA′B′ = 0 . (3.22)

The first equation implies that there is no 5-dimensional representation of sl2 in the symmetric

tensor product of two FA′B′

. Therefore, FA′B′

can be represented as eB
A′

∧ eBA′

for some field

eAA′

. Indeed, it is easy to see that FA′A′

∧ FA′A′

= 0. Now, it is not surprising that the first

few equations in the FDA read

dωA′A′

= eB
A′

∧ eBA′

, deAA′

= ωA
B ∧ eBA′

, dωAA = ωA
C ∧ ωCA +HBBC

AABB .

We note that the non-abelian terms with ωA′A′

are missing here-above as compared to the

standard curvature of so(3, 2) ∼ sp(4). However, we do not recognize the curvature of the

Poincare algebra either. As for Ψ, the equation can be rewritten as

dΨA′B′C′D′

∧HA′B′ = 0 , (3.23)

10



which is equivalent to

∇ΨA′A′A′A′

= eBB′ΨB,A′A′A′A′B′

. (3.24)

One can see that we employ exactly the same fields as for the full gravity, but certain structures

’abelianize’. Half of the Lorentz symmetry becomes global rather than originating from a local

gauge symmetry.

4 FDA for Chiral Higher Spin Gravity

After the preliminary steps above we proceed to constructing the Free Differential Algebra of

Chiral Theory. Firstly, we summarize the known initial data and boundary conditions for the

L∞ structure maps.

4.1 Initial data

Coordinates/fields, on-shell jet. The coordinates on the Q-manifold or, alternatively, the

fields of the minimal model are exactly the same as for the free fields discussed in Section 3.

h = +s : ωA(k),A′(2s−2−k) , CA(2s+i),A′(i) , k = 0, ..., 2s− 2 , i = 0, 1, 2, ... , (4.1a)

h = −s : CA(i),A′(2s+i) , i = 0, 1, 2, ... , (4.1b)

h = 0 : CA(i),A′(i) , i = 0, 1, 2, ... . (4.1c)

As before, it is convenient to keep all components of ω and C confined in generating functions

ω(y, y), C(y, y). Chiral Theory is known to admit Yang-Mills gaugings [15] that, however,

come in a very restricted Chan-Paton-like fashion. To be precise, one can have U(N), O(N)

and USp(N) gaugings. Therefore, we assume that ω and C take values in MatN .
12

General form. Given all the data above, we are looking for Chiral Theory in the form

dω = V(ω, ω) + V(ω, ω, C) + ... , (4.2a)

dC = U(ω,C) + U(ω,C, C) + ... . (4.2b)

12It was shown in [78–80] that this assumption allows one to reduce a complicated Chevalley-Eilenberg
cohomology problem to a much simpler Hochschild one. In other words, it is important to remember that
usually higher spin algebras originate from associative ones.
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Here, V and U are some L∞ structure maps to be determined. It would be sufficient if the

expansion stops at the quartic terms. This can be justified on the basis of the light-cone action

of Chiral Theory: interactions stop at the cubic level. One might argue that they have to stop

then at quadratic terms for equations. However, this does not have to be the case since the

light-cone gauge theory requires a background, i.e. some specific ω0. Therefore, V(ω, ω, C) is

legit, as well as V(ω, ω, C, C), while higher order terms may not be necessary. One can also see

that V(ω, ω) cannot account for all of the interactions, e.g. ω does not contain the scalar field

at all.

An important subtlety is that covariantization of a given theory (going from the light-cone

gauge to a covariant formulation) may require more terms in the perturbation theory that are

there only for the sake of covariance. Such contact terms will not give any contribution to phys-

ical amplitudes. Another subtlety is due to field redefinitions: it is easy to perform a nonlinear

field redefinition in the cubic theory and generate spurious interactions. Alternatively, when

looking for V’s and U ’s one can find oneself in an unfortunate field frame with such spurious

interactions all around. We check in Appendix C that certain cubic amplitudes are reproduced

correctly. Therefore, (4.2) contains all the physically relevant information. Comparing the

Chiral Theory FDA to those of SDYM and SDGR [77] we find that the former contains only

the terms essential for consistency, which fixes field redefinitions.

Boundary conditions. There are some boundary conditions for V’s and U ’s that we learned

from the free equations (3.11):

V(e, ω) + V(ω, e) = eCC′

∂CyC′ω , (4.3a)

U(e, C) + U(C, e) = eCC′

∂C∂C′C , (4.3b)

V(e, e, C) = eCB′ eCB′

∂C∂CC(y, y = 0) . (4.3c)

To summarize we are looking for a theory with the spectrum of fields given in (4.1), in the form

of FDA (4.2) such that it reproduces the boundary conditions (4.3), i.e. the free equations.

4.2 FDA

In what follows we will have to write down ansätze for L∞-maps. Given that we have packaged

the coordinates into generating functions ω(y, y) and C(y, y), the L∞-structure maps can be
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represented by poly-differential operators:

V(f1, ..., fn) = V(y, ∂1, ..., ∂2) f(y1)...f(yn)
∣

∣

∣

yi=0
, (4.4)

where fi’s are ω’s or C’s and we have explicitly indicated dependence on y, omitting y which

can be treated similarly. With further details on the operator calculus collected in Appendix

C, we only note that (i) we abbreviate yA
′

≡ pA
′

0 , ∂
yi
A′ ≡ piA′ , yA ≡ qA0 , ∂

yi
A ≡ qiA; (ii) contractions

pij ≡ pi · pj ≡ −ǫABp
A
i p

B
j = pAi pjA are done in such a way that exp[p0 · pi]f(yi) = f(yi + y); (iii)

all operators are Lorentz invariant in the most naive sense of having all indices contracted either

with ǫAB or ǫA′B′ ; (iv) we usually omit explicit arguments yi in f ’s, drop |yi=0 and sometimes

write down only the operator itself whenever it is clear what the arguments are. Of course, all

poly-differential operators are assumed to be local, i.e. they map polynomials to polynomials,

which, after Taylor expansion means, that the operators contract a number of Lorentz indices

on the arguments.13 To give a couple of useful examples, the usual commutative product on y

and the Moyal-Weyl star-product on y correspond to the following symbols

exp (y(∂1 + ∂2)) = exp[p0 · p1 + p0 · p2] ≡ exp[p01 + p02] , (4.5a)

exp (y(∂1 + ∂2) + ∂1∂2) = exp[q0 · q1 + q0 · q2 + q1 · q2] ≡ exp[q01 + q02 + q12] . (4.5b)

We also would like to rewrite the boundary conditions (4.3) in the operator language:

V(e, ω) + V(ω, e) ∼ p01q12 e
p02+q02 (eCC′

y1Cy
1
C′)ω(y2, y2)

∣

∣

∣

y1,2=y1,2=0
, (4.6a)

U(e, C) + U(C, e) ∼ q12p12 e
p02+q02 (eCC′

y1Cy
1
C′)C(y2, y2)

∣

∣

∣

y1,2=y1,2=0
, (4.6b)

V(e, e, C) ∼ q13q23p12 e
q03 (eBB′

y1By
1
B′)(eCC′

y2Cy
2
C′)C(y3, y3)

∣

∣

∣

y1,2,3=y1,2,3=0
, (4.6c)

where the ∼ sign means that in the actual FDA we only care about reproducing these structures

up to an overall coefficient. The last boundary condition, if satisfied, ensures the nontriviality

of the full vertex. We will also give a rigorous proof of this fact.

13Note that this locality is just a requirement for V to imply some contraction of Lorentz indices (hidden by
y) on the arguments, which is a type of locality used in [62]. The locality in the field theory sense is more subtle
— one has to control the number of derivatives in interactions. The interactions in the present paper are local
as in Chiral Theory, i.e. vertices contain a finite number of derivatives provided the helicities of the fields at a
given vertex are fixed.
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Higher spin algebra. The L∞-relations or the formal consistency of (4.2) at order ω3 imply

the Jacobi identity for V(•, •)

V(V(ω, ω), ω)− V(ω,V(ω, ω)) = 0 . (4.7)

The presence of the matrix factors reduces the Jacobi identity to a much simpler and more

restrictive associativity condition, i.e V(a, b) must define an associative product, where a, b ∈

C[y, y]. Given the nonlinear pieces of various (sub)theories there are not so many associative

algebras one can think of. In fact, the only option [52] is to define14

V(f, g) = c exp [q01 + q02 + q12] exp [p01 + p02]f(y1, y1) ∧ g(y2, y2)
∣

∣

∣

yi=yi=0
≡ f ⋆ g , (4.8)

with c an undetermined prefactor. In words V(f, g) ≡ f ⋆ g is the commutative product on y

and the star-product on y. Therefore, as the higher spin algebra hs we take the tensor product

of the Weyl algebra in y and of the commutative algebra of function in y, hs = A1 ⊗ C[y]. In

addition we assume the matrix factor MatN . This choice for V(ω, ω) is also consistent with the

boundary conditions in equation 4.6a:

V(e, ω) + V(ω, e) = 2c eBB′

y′B∂Bω , (4.9)

which encourages us to set c = 1
2
, so that

V(f, g) = 1
2
exp [q01 + q02 + q12] exp [p01 + p02] (4.10)

Coadjoint module. Similarly, the formal consistency implies that U(•, •) defines a repre-

sentation of the higher spin algebra:

U(V(ω, ω), C)− U(ω,U(ω,C)) = 0 . (4.11)

The actions of HS-SDYM and HS-SDGR strongly suggest that C(0, y) lives in the space dual to

ω(0, y). The action on the dual space (dual to the commutative algebra of functions in y) can

be defined via yA → α∂A′ , where α is any number. In other words, the commutative algebra

of functions in y acts on the dual space via differential operators.15 In terms of symbols of

14A very similar algebra in the same context, but in the light-cone gauge, appeared even before [16].
15Since understanding that C lives in the dual module has been important for the present paper and this idea

is slightly different from the folklore in the literature, we elaborate on it more in Appendix B.
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operators we can write

ω(f) = exp [p02 + αp12]ω(y1)f(y2)
∣

∣

∣

yi=0
. (4.12)

With indices explicit we find

ω(f) =
∑

i,n

αi

n!
ωB′(i)fA′(n)B′(i) y

A′

...yA
′

. (4.13)

It is plausible to extend the idea with the dual space to the complete space C(y, y), it is unclear

how to induce the module structure, otherwise. Now it is time to remember about the matrix

factors. We consider functionals based on their ordering of ω and C:

U(ω,C) = U1(ω,C) + U2(C, ω) . (4.14)

The consistency condition splits into the following equations.

U1(V(ω, ω), C)− U1(ω,U1(ω,C)) = 0 ,

U2(U1(ω,C), ω)− U1(ω,U2(C, ω)) = 0 ,

U2(U2(C, ω), ω) + U2(C,V(ω, ω)) = 0 .

(4.15)

In words, we have a right and a left actions of the higher spin algebra on C(y, y). The actions

must be compatible with each other, which is the middle equation. Given that C should be in

the dual module, the structure maps U1,2 are easy to fix to be:

U1(ω,C) = +1
2
exp [q01 + q02 + q12] exp [p02 + p12]ω(y1, y1)C(y2, y2)

∣

∣

∣

yi=yi=0

U2(C, ω) = −1
2
exp [q01 + q02 + q12] exp [p01 − p12]C(y1, y1)ω(y2, y2)

∣

∣

∣

yi=yi=0

(4.16)

It is easy to check that boundary condition (4.6b) is satisfied with coefficient 1.

Cubic Vertex V(ω, ω,C). As a next step we turn to the cocycle V(ω, ω, C). It has a right

to be called a cocycle. Indeed, the bilinear structure maps of any FDA (more generally, of any

L∞-algebra) define a graded Lie algebra. Let us pack them into Q0, (Q0)
2 = 0. Next we look

for the first order deformation Q1 of Q0. It is clear that Q1 must be in the cohomology of

Q0. The action of Q0 on Q1 is that of the Chevalley-Eilenberg differential, according to which

V(ω, ω, C) is a two-cocycle with values in hs⊗ hs: it takes values in hs and C is in hs∗. To find
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the equation for V(ω, ω, C) we evaluate the ω3C terms after applying d to 4.2, which leads to

V(V(ω, ω, C), ω)− V(ω,V(ω, ω, C)) + V(V(ω, ω), ω, C)

− V(ω,V(ω, ω), C) + V(ω, ω,U(ω,C)) = 0 . (4.17)

Like we did for U(ω,C), we can split V(ω, ω, C) into three vertices, with different ordering of

ω and C:

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (4.18)

The consistency condition should now be evaluated for each ordering of ω and C separately,

which leads to

V1(V(ω, ω), ω, C)− V(ω,V1(ω, ω, C)) + V1(ω, ω,U1(ω,C))− V1(ω,V(ω, ω), C) = 0 ,

V(V1(ω, ω, C), ω) + V1(ω, ω,U2(C, ω)) + V2(V(ω, ω), C, ω)− V(ω,V2(ω,C, ω))

− V2(ω,U1(ω,C), ω) = 0 ,

V(V2(ω,C, ω), ω)− V2(ω,C,V(ω, ω))− V2(ω,U2(C, ω), ω)− V(ω,V3(C, ω, ω))

+ V3(U1(ω,C), ω, ω) = 0 ,

V (V3(C, ω, ω), ω)− V3(C, ω,V(ω, ω)) + V3(C,V(ω, ω), ω) + V3(U2(C, ω), ω, ω) = 0 .

(4.19)

In Appendix D we rewrite the equations here-above in terms of symbols of operators. In

Appendix E we find a nontrivial solution. The idea is to look for regular vertices in the form of

singular field-redefinitions. In other words, if the cocycle is formally trivial but the coboundary

does not belong to the required functional class, the cocycle is nontrivial. The final result can

be written as

V1(ω, ω, C) : + p12 S

∫

∆2

exp[(1− t1) p01 + (1− t2) p02 + t1p13 + t2p23] ,

V2(ω,C, ω) :

−p13 S

∫

∆2

exp[(1− t2) p01 + (1− t1) p03 + t2p12 − t1p23]+

−p13 S

∫

∆2

exp[(1− t1) p01 + (1− t2) p03 + t1p12 − t2p23] ,

V3(C, ω, ω) : + p23 S

∫

∆2

exp[(1− t2) p02 + (1− t1) p03 − t2p12 − t1p13] .

(4.20a)

(4.20b)

(4.20c)
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Here, ∆n is an n-dimensional simplex t0 = 0 ≤ t1 ≤ ... ≤ tn ≤ 1. The nontriviality of the

solution is proved in Appendix E. There is an overall factor S

S = exp[q01 + q02 + q03 + q12 + q13 + q23] (4.21)

that computes the star-product over all y variables. In other words, the vertex factorizes

V1(a(y)⊗ a(y), b(y)⊗ b(y), c(y)⊗ c(y)) = a ⋆ b ⋆ c⊗ v1(a, b, c) , (4.22)

and similarly for the other vertices.

Remark. As it was pointed out in [81–83], constructing FDA’s of higher spin gravities calls

for an extension of the deformation quantization of Poisson manifolds to Poisson orbifolds,

which is an open problem. Nevertheless, the traces of Kontsevich and of Shoikhet-Tsygan-

Kontsevich formality are sometimes visible [84]. The key point in the proof of the formality

theorems is to find the right configuration space and the right closed form on it, so that the

proof amounts to a simple application of the Stokes theorem. As we show in Appendix E, one

can find a closed two-form Ω, dΩ = 0, on ∆3 such that its integral over the four boundaries of

the simplex reduces to the four terms in the equation for V1 and similarly for other vertices.

In this regard let us note that the integral form is not unique. It arises as an integral over the

configuration space of ordered points on a circle. With the help of translation invariance one

can (gauge) fix the times of different points and also use the reflection symmetry of the circle.

Altogether there are six different forms.

Remark. The cubic vertex has an interesting property: if we remove for a moment the

matrix factors MatN , make y commutative (by taking the ~ = 0 limit after introducing ~ into

the Moyal-Weyl star-product) and bring ω’s and C to the same ωωC-ordering, we get zero:

V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω)
∣

∣

∣

~=0 ,N=1
≡ 0 . (4.23)

This does not have to be the case. However, erasing matrix factors together with the com-

mutative limit in y must give a trivial vertex. Indeed, there is no such truncation of Chiral

Theory. Therefore, the vertices we found enjoy some kind of minimality, giving zero whenever

they should.

Remark. It can be shown that V1,2,3 6= 0. In all the cases considered before C takes values in

the (twisted)-adjoint representation of a higher spin algebra. This allows one to set V2,3 = 0 and

choose V1(a, b, c) = φ(a, b) ⋆ c, where φ(a, b) is a certain Hochschild two-cocycle that deforms
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the higher spin algebra. Indeed, assuming V2,3 = 0 we find

V(V1(a, b, c), d) + V1(a, b,U2(c, d)) = 0 . (4.24)

Here, U2(c, d) = −c ⋆ d and V(a, b) = a ⋆ b in the previously studied cases. Therefore, setting

c = 1 leads to V1(a, b, d) = V1(a, b, 1) ⋆ d. Moreover, φ(a, b) = V1(a, b, 1) turns out to be a

Hochschild two-cocycle. For Chiral Theory this cannot be true. Indeed, it is easy to see that

while in the second term of (4.24) d has all of its indices contracted with c, the same indices are

free in the first term, i.e. (4.24) cannot be satisfied. Therefore, we have to look for a solution

with all V1,2,3 6= 0, as we did.

Cubic Vertex U(ω,C,C). The previously found vertex V(ω, ω, C) serves as a source for

U(ω,C, C). As before, we split it according to different orderings:

U(ω,C, C) = U1(ω,C, C) + U2(C, ω, C) + U3(C,C, ω) . (4.25)

There are six equations that can be obtained as various ω2C2-terms after applying d to (4.2).

We rewrite them in terms of symbols of operators in Appendix D and solve in Appendix E.

The final form of the solution reads:16

U1(ω,C, C) : + p01 S

∫

∆2

exp[(1− t2) p02 + t2p03 + (1− t1) p12 + t1p13] ,

U2(C, ω, C) :

−p02 S

∫

∆2

exp[t2p01 + (1− t2) p03 − t1p12 + (1− t1) p23]+

−p02 S

∫

∆2

exp[t1p01 + (1− t1) p03 − t2p12 + (1− t2) p23] ,

U3(C,C, ω) : + p03 S

∫

∆2

exp[(1− t1) p01 + t1p02 + (t2 − 1) p13 − t2p23] ,

(4.26a)

(4.26b)

(4.26c)

where S is the star-product over y’s, (4.21).

16A resemblance to some of the formulas in the literature [62] is striking, of course. However, as different
from [62], all vertices in the present paper are local and do not contain infinite (divergent) sums over different
representations of the same interactions [66, 67]. Therefore, we are constructing an actual theory rather than
the most general ansatz for interactions compatible with symmetries.
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4.3 Summary and Discussion

The main result of this paper are the boxed formulas above that define vertices V(ω, ω), U(ω,C),

V(ω, ω, C), U(ω,C, C). Altogether they satisfy the L∞-relations up to order O(C2). These

vertices determine both the free equations and the essential interactions of Chiral Theory. By

essential we mean those that contribute to the cubic amplitude and which fully determine

Chiral Theory. Let us recall that one can switch on very few higher-spin interactions and it

is the consistency of the theory that will enforce the unique completion [11–13]. However, the

covariantization may require more contact vertices, which is an interesting problem for the

future.

In Chiral Theory there is one dimensionful coupling constant, lP , which is needed to com-

pensate for higher powers of momenta in the vertices. The power of momenta equals the sum

of the helicities, λ1 + λ2 + λ3, of the fields that meet at the vertex. Given that the action of

SDGR (with cosmological constant) contains dωA′B′

+ ωA′

C′ ∧ ωC′B′

, it makes sense to assign

mass dimension 1 to all ωA′(2s−2) and, hence, mass dimension zero to all ΨA′(2s). Similarly,

eAA′

has dimension one. All ωA′(2s−2−k),A(k) are expressed as derivatives of ωA′(2s−2). It is then

tempting to extend this to the whole ω and C. To recover lP we need to introduce it into eAA′

,

e.g. eAA′

µ ∼ l−1
P σAA′

µ in Cartesian coordinates.

The dimensionless coupling κ simply counts the orders of ω and C in the perturbative

expansion. In the light-cone gauge the expansion stops at the cubic terms. This does not have

to be the case after covariantization. Let us compare the general structure of interactions in

the light-cone gauge and in the FDA expanded over Minkowski vacuum ω0 = e. We will be

sketchy here. It is convenient to pack all positive helicity fields into Φ and all negative helicity

fields plus scalar into Ψ. The action reads (very schematically)

L = Ψ�Φ + c+++ΦΦΦ + c++−ΦΦΨ + c+−−ΦΨΨ , (4.27)

where we drop the helicity labels and omit the detailed structure of interactions. The equations

of motion would be

�Φ = c++−ΦΦ + c+−−ΦΨ , �Ψ = c+++ΦΦ + c++−ΦΨ+ c+−−ΨΨ . (4.28)

This should be compared with (D ≡ d − ω0 is the background covariant derivative in the
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appropriate representations of the higher spin algebra)

Dω = V(ω, ω) + V(ω0, ω, C) + V(ω0, ω0, C, C) , (4.29a)

DC = U(ω,C) + U(ω0, C, C) , (4.29b)

where we indicated all terms that can potentially contribute to the cubic amplitude. We

recall that ω carries positive helicity and, hence, is a cousin of Φ, while C contains both Ψ

and descendants of ω. We show in appendix A that V(ω, ω) and U(ω,C) give the correct

amplitudes. There is a unique theory that has such amplitudes, which is a consistency check.

Another valuable consistency check is to restrict interactions to the spin-two and to the

spin-one sectors to reproduce the recently obtained FDA’s of SDYM and SDGR [77]. To be

precise, the restriction has to give FDA’s that are quasi-isomorphic to those of SDYM and

SDGR. Luckily, this exercise directly leads to the interactions of [77]. The latter were found in

the most minimal form, i.e. we have not introduced any nonlinear terms into the FDA beyond

what is necessary, which fixes all field redefinitions. It is encouraging that the FDA of Chiral

Theory is also minimal in this sense.

By the same token the higher spin extensions of SDYM and SDGR [17], which were previ-

ously discovered as contractions of Chiral Theory in [16], must be consistent contractions of the

present FDA as well. We note that in the latter two cases the FDA of this paper should provide

a complete solution of the problem. Indeed, the actions of these two theories are schematically

L = Ψ�Φ+ ΦΦΨ , (4.30)

which is much simpler than the structure of interactions of Chiral Theory. Therefore, it is

tempting to argue that we have determined all interaction vertices in these theories since this

is the case for SDYM and SDGR.

A very interesting observation made in [16] is that the coupling constants of Chiral Theory

determine a certain (kinematic) algebra in the light-cone gauge and the product in this algebra

is a remnant of the star-product. This statement covers all vertices. For the FDA at hand, it

is the ΦΦΨ-vertex where the star-product structure is manifest. The other vertices correspond

to the Chevalley-Eilenberg cocycles of the higher spin algebra. Nevertheless, according to [16],

what survives of these vertices in the light-cone gauge is the same star-product. It would be

interesting to clarify this statement.

20



5 Conclusions

The main result of this paper is the covariant form that incorporates some essential interactions

of Chiral Theory which was previously known in the light-cone gauge only. By essential we

mean those interactions that, if present, unambiguously fix the theory. Technically, the result is

the minimal model of Chiral Theory — a Free Differential Algebra consistent to order O(C2).

The FDA of the present paper contains FDA’s of SDYM, SDGR [77] and of the higher spin

extensions thereof [17]. For these four cases the FDA should be complete. For Chiral Theory

certain higher order vertices may still be required for formal consistency and covariantization.

One can also look for supersymmetric extensions that would combine SDYM and SDGR and

higher spin extensions thereof [85] as well as for the full supersymmetric Chiral Theory [86, 87].

Even though we found a covariant form for the essential interactions of Chiral Theory, there

might still be an obstruction to getting the complete theory in a manifestly Lorentz invariant

form if some of the interactions cannot be written with the help of the new field variables

(ωA′(2s−2) and ΨA′(2s) as compared to the old Φµ1...µs
) . In Appendix A we also show that the

most problematic V +−− amplitudes can also be reproduced. Independently of that, a simple

extension [88] of the cohomological arguments along the lines of [80] indicates that there are no

obstructions to the FDA of this paper. Therefore, the complete Chiral Theory can be written

in a manifestly Lorentz invariant form as an FDA.

As is well-understood [51, 57, 58], the minimal model of a (gauge) field theory contains all the

essential information about the theory (local BRST cohomology), e.g. actions/counterterms,

anomalies, conserved charges, deformations, etc. It is a very encouraging statement given that

the differential Q can be extracted from classical field equations rewritten as a Free Differential

Algebra. Therefore, the results of this paper should help to address the problems where having

a covariant form of the theory is an advantage, i.e. all of them. Chiral Theory was shown to be

one-loop finite in the light-cone gauge [14, 15, 32], but extending these results to higher loop

orders should be simpler within a covariant approach. It would also be interesting to look for

exact solutions where generalizations of Ward/Penrose/ADHM [89–91] constructions to Chiral

Theory together with its twistor formulation should be of great help.
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A Cubic Amplitude

A useful check for a given interaction is to compute the amplitude. The amplitudes of Chiral

HiSGRA are known up to one-loop [14, 15, 32]. We do not have to go that far and should just

check if the cubic amplitude is nontrivial. Let us first construct the plane wave solutions. We

recall that the free equations in Minkowski space read

dω = eBB′

yB′∂Bω +HBB∂B∂BC(y, y = 0) , dC = eBB′

∂B∂B′C , (A.1a)

where Ψ(0, y) = C(0, y) describes negative helicity and ω(0, y) describes positive helicity:17

ΨA′(2s) = a−s k
A′

...kA′

exp [±xAA′

kAkA′] , (A.2)

ωA′(2s−2) = a+s

1

(qC′kC′)2s−1
eBB′

kBqB′qA
′

...qA
′

exp [±xAA′

kAkA′ ] . (A.3)

Here aλ is a normalization factor. Eq. (A.1) is solved by

ω(x|y, y) = eBB′ kBq
′
B

qk + yq
exp(±xAA′

kAk
′
A + yk) , C(x|y, y) =

1

2
exp(±xAA′

kAk
′
A + yk + yk) .

Laplace transform allows us to rewrite the solution for ω(x|y, y) as

ω(x|, y, y) = eBB′

kBq
′
B

∫ ∞

0

dω exp(±xAA′

kAk
′
A + yk − (qk + y q)ω) .

In order to compute cubic amplitudes we can isolate the equation for ωA′(2s−2) and ΨA′(2s):

Dω = V(ω, ω)
∣

∣

∣

y=0
, DC = U(ω,C)

∣

∣

∣

y=0
. (A.4)

17Note that we use the Moyal-Weyl star-product without i. Therefore, the fields need to obey less natural
reality conditions. This is not an obstacle to compute the amplitude. In particular, the plane wave exponents
are taken without i (for appropriate x). What matters is the helicity structure.
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Let us have a look at the first term V (ω, ω) contracted with ΨA′(2s1−2)HA′A′ to get an on-shell

cubic vertex:

1

l!

∫

ΨA′(2s1)H
A′A′

ωB(l),A′(n) ∧ ωB(l)
,A′(m) . (A.5)

Here we assume l+n = 2s2−2, m+ l = 2s3−2 and, of course, m+n = 2s1−2. The coefficient

in front of the action originates from the star-product. Plugging in the on-shell plane-wave

values for Ψ and ω we find

V−s1,+s2,+s3 ∼
1

Γ[−s1 + s2 + s3]
[12]−s1+s2−s3[23]s2+s3+s1[13]−s1+s3−s2 , (A.6)

which, up to normalization of each of the plane-waves, is the right structure for Chiral Theory.

It corresponds to ΨΦΦ-vertex of sketch (4.27). The presence of the simplest self-interaction

V−s,+s,+s leads unambiguously to the Chiral Theory class since it requires all other spins (at

least even) together with all other possible interactions that enter with weight 1/Γ[λ1+λ2+λ3].

Similarly, we can extract the amplitudes corresponding to ΦΦΦ and ΦΦΨ vertices from

U(ω,C). Note that since C contains both positive and negative (as well as zero) helicities, we

get an access to two types of vertices. The final amplitude is

V+s1,λ2,+s3 ∼
1

Γ[s1 + λ2 + s3]
[12]s1+λ2−s3[23]−s1+λ2+s3[13]s1−λ2+s3 .

Let us also comment on the possibility to reproduce V+s1,−s2,−s3 amplitudes, s1 − s2 − s3 > 0.

From the standard covariant approach vantage point, where the dynamical variables are Φµ1...µs
,

these vertices are the most problematic ones [44]. They cannot be written at all as local

expressions. Fortunately, it is easy to write down the candidate on-shell cubic vertices in terms

of the new variables, where the dynamical fields are ωA′(2s−2) and ΨA′(2s). For example, any of

the following two expressions

ωA′(s1−2)ΨA(k)B,A′(m),B′ΨA(k)
A′(n) ĥ

BB′

, ωA′(s1−2)ΨA(k)B,A′(m)Ψ
A(k)

A′(n)B′ ĥBB′

,

leads to the correct amplitude

[12]s1−s2+s3 [13]s1+s2−s3[23]−s1−s2−s3

Therefore, all possible types of cubic vertices/amplitudes present in Chiral Theory can be

written in a manifestly Lorentz invariant way. This eliminates the very last obstruction and we
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can claim that Chiral Theory admits a manifestly Lorentz invariant formulation.

B Coadjoint vs. twisted-adjoint

Let us make a historical remark on representations of higher spin symmetries. It was known

since [71] that the FDA of free massless fields in (anti)-de Sitter space contains the following

subsystem

∇C = eAA′

(yAyA′ − ∂A∂A′)C(y, y) . (B.1)

It splits according to spin into an infinite set of (still infinite) subsystems. For a given s > 0

the subsystem splits further into one for helicity +s and another one for helicity −s. The very

first equations in these subsystems are equivalent to [68]

∇B
A′

CBA(2s−1) = 0 , ∇A
B′ CB′A′(2s−1) = 0 . (B.2)

Operator PAA′ = (yAyA′ − ∂A∂A′) realizes the action of (A)dS4 translations, which commute

to a Lorentz transformation. Since the equations are assumed to be derived by linearizing a

nonlinear theory, where the higher spin symmetry is manifest, it is important to understand

where such PAA′ can come form. It originates from the twisted-adjoint action [92]:

a(f) = a ⋆ f − f ⋆ ã , (B.3)

where ã is an automorphism of the Weyl algebra that flips the sign of y, ã(y) = a(−y). In

fact, the action arises as a typical coadjoint action. Indeed, there is a nondegenerate pairing

between A1 and A⋆
1: 〈a|f〉 = tr[a ⋆ f ] = tr[f ⋆ ã], where tr[a] = a(y = 0). The canonical

bimodule structure of the higher spin algebra on itself (left/right actions) induces the twisted-

adjoint representation (B.3) on the dual module. What the results of the present paper show

is that the coadjoint interpretation seems to be correct even for such a strange case as Chiral

Theory, while the twisted-adjoint interpretation is no longer valid.

C Operator calculus

As was already sketched at the beginning of Section 4, we work with poly-differential operators

that are represented as symbols. Let us illustrate all operations with y and ∂
yi
A′ ≡ piA′. The
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translation operator is exp [y · pi]f(yi) = f(yi + y). Operators acting on n functions ai(y) are

understood as functions of p0 = y, p1 = ∂1, ..., pn = ∂n:

V (a1, ..., an) = v(y, ∂1, ..., ∂2)a1(y1)...an(yn)
∣

∣

∣

yi=0
(C.1)

Therefore, the commutative product f(y)g(y) and the Moyal-Weyl star-product f(y) ⋆ g(y) are

represented by the following symbols:

exp[p0 · p1 + p0 · p2] ≡ exp[p01 + p02] , (C.2a)

exp[q0 · q1 + q0 · q2 + q1 · q2] ≡ exp[q01 + q02 + q12] . (C.2b)

Then we need the following identifications for symbols of the operators:

a1 ⋆ V (a2, ..., an+1) → v(q0 + q1, q2, ..., qn+1)e
+q0·q1 ,

V (a1, ..., an) ⋆ an+1 → v(q0 − qn+1, q1, ..., qn)e
+q0·qn+1 ,

V (a1, ..., ak ⋆ ak+1, ..., an+1) → v(q0, ..., qk−1, qk + qk+1, qk+2, ..., qn+1)e
+qk·qk+1 ,

a1V (a2, ..., an+1) → v(p0, p2, ..., pn+1)e
+p0·p1 ,

V (a1, ..., an)an+1 → v(p0, p1, ..., pn)e
+p0·pn+1 ,

V (a1, ..., akak+1, ..., an+1) → v(p0, ..., pk−1, pk + pk+1, pk+2, ..., pn+1) ,

u1(a1, V (a2, ..., an+1)) → v(p0 + p1, p2, ..., pn+1) ,

u1(V (a1, ..., an), an+1) → v(−pn+1, p1, ..., pn)e
+p0·pn+1 ,

V (a1, ..., u1(ak, ak+1), ..., an+1) → v(p0, ..., pk−1, pk+1, pk+2, ..., pn+1)e
+pk·pk+1 ,

u2(a1, V (a2, ..., an+1)) → v(−p1, p2, ..., pn+1)e
+p0·p1 ,

u2(V (a1, ..., an), an+1) → v(p0 + pn+1, p1, ..., pn) ,

V (a1, ..., u2(ak, ak+1), ..., an+1) → v(p0, ..., pk−1, pk, pk+2, ..., pn+1)e
−pk·pk+1 ,

where we defined

u1(a, b) = exp [p02 + p12] , u2(a, b) = exp [p01 − p12] . (C.3)
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D Cochain complex

For completeness let us rewrite the L∞-relations in terms of symbols of operators. We do so

for the y-part only since the dependence on y is captured by the star-product and factorizes
out. The l.h.s. of the equations for V1,2,3 read:

− ep01V1 (p0, p2, p3, p4)− V1 (p0, p1, p2 + p3, p4) + V1 (p0, p1 + p2, p3, p4) + ep34V1 (p0, p1, p2, p4) ,

− ep01V2 (p0, p2, p3, p4) + ep04V1 (p0, p1, p2, p3)− e−p34V1 (p0, p1, p2, p3) + V2 (p0, p1 + p2, p3, p4)− ep23V2 (p0, p1, p3, p4) ,

− ep01V3 (p0, p2, p3, p4) + ep04V2 (p0, p1, p2, p3)− V2 (p0, p1, p2, p3 + p4) + e−p2·p3V2 (p0, p1, p2, p4) + ep12V3 (p0, p2, p3, p4) ,

ep04V3 (p0, p1, p2, p3)− e−p12V3 (p0, p1, p3, p4)− V3 (p0, p1, p2, p3 + p4) + V3 (p0, p1, p2 + p3, p4) .

Similarly, for U1,2,3 we find

U1 (p0, p1 + p2, p3, p4)− U1 (p0 + p1, p2, p3, p4)− ep23U1 (p0, p1, p3, p4) + ep04V1 (−p4, p1, p2, p3) ,

e−p23U1 (p0, p1, p2, p4)− U2 (p0 + p1, p2, p3), p4)− ep34U1 (p0, p1, p2, p4) + ep12U2 (p0, p2, p3, p4) + ep04V2 (−p4, p1, p2, p3) ,

e−p34U1 (p0, p1, p2, p3)− U1 (p0 + p4, p1, p2, p3)− U3 (p0 + p1, p2, p3, p4) + ep12U3 (p0, p2, p3, p4) ,

− e−p12U3 (p0, p1, p3, p4) + e−p34U2 (p0, p1, p2, p3)− U2 (p0 + p4, p1, p2, p3) + ep23U3 (p0, p1, p3, p4)− ep01V2 (−p1, p2, p3, p4) ,

− e−p12U2 (p0, p1, p3, p4) + U2 (p0, p1, p2 + p3, p4)− ep34U2 (p0, p1, p2, p4)− ep01V1 (−p1, p2, p3, p4) + ep04V3 (−p4, p1, p2, p3) ,

− e−p23U3 (p0, p1, p2, p4) + U3 (p0, p1, p2, p3 + p4)− U3 (p0 + p4, p1, p2, p3)− ep01V3 (−p1, p2, p3, p4) .

When looking for nontrivial solutions, it is important to understand which ones are trivial. The

latter are given by field redefinitions that act as follows on V1,2,3

δV1 = ep01g1 (p0, p2, p3)− g1 (p0, p1 + p2, p3) + ep23g1 (p0, p1, p3) ,

δV2 = ep01g2 (p0, p2, p3) + ep03g1 (p0, p1, p2)− e−p23g1 (p0, p1, p2)− ep12g2 (p0, p2, p3) ,

δV3 = ep03g2 (p0, p1, p2) + e−p12g2 (p0, p1, p3)− g2 (p0, p1, p2 + p3) ,

and on U1,2,3

δU1 = h (p0 + p1, p2, p3)− ep12h (p0, p2, p3) + ep03g1 (−p3, p1, p2) ,

δU2 = e−p12h (p0, p1, p3)− ep23h (p0, p1, p3)− ep01g1 (−p1, p2, p3) + ep03g2 (−p3, p1, p2) ,

δU3 = e−p23h (p0, p1, p2)− h (p0 + p3, p1, p2)− ep01g2 (−p1, p2, p3) ,

It can easily be checked that the redefinitions lead to solutions of the equations. The expressions

above define a particular realization of the Chevalley-Eilenberg complex, but we do not extend
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the action of the differential to cochains with more arguments. At the bottom level we find

δg1 = ep12ξ (p0, p2)− ep01ξ (p0, p2) ,

δg2 = ep02ξ (p0, p1)− e−p12ξ (p0, p1) ,

δh = ep02ξ (−p2, p1)− ep01ξ (−p1, p2) ,

which leads to redefinitions that yield vanishing vertices.

E Vertices

In order to find nontrivial cubic vertices we employ a number of ideas, see also [62, 84] that were

used for inspiration. Firstly, Lorentz symmetry has to be preserved, i.e., in practice, we cannot

mix primed and unprimed indices. The higher spin algebra is the tensor product of two algebras,

which via the Künneth theorem suggests to look for the two-cocycle as a tensor product of two,

one of them being trivial. The free equations, in particular the boundary condition for V(e, e, C),

reveal that something interesting should happen on the y side. Therefore, for homogeneous

arguments a(y, y) = a(y) ⊗ a(y), etc. we assume that all vertices have the star-product over

the y-dependent factors:

V1(a(y)⊗ a(y), b(y)⊗ b(y), c(y)⊗ c(y)) = a ⋆ b ⋆ c⊗ v1(a, b, c) . (E.1)

As a result, all terms in the cocycle equations have the same overall factor for the y-dependence

and we can concentrate on y only. The cocycle conditions for the y-part are collected in

Appendix D.

Now, we need to solve the equations in Appendix D. It is clear that the solution should

contain some exp[pij ]-factors, otherwise they cannot cancel the exp [pij] already present in the

cocycle condition. The boundary condition for V(ω, ω, C) restrict the exponents a little bit.

For example, we cannot allow for exp p03 in V1(ω, ω, C). The crucial step is to look for V and

U as singular field redefinitions, i.e. we look for g1,2 and h, see Appendix D. For any g1,2 and

h, the vertices solve the cocycle equations. We just need to make sure that (i) the vertices

are regular, i.e. Taylor expandable in pij ; (ii) the redefinitions themselves, i.e. g1,2 and h, are

irregular. Irregular field redefinitions are not allowed. Therefore, if (i) and (ii) are satisfied,

we have a nontrivial cocycle. Let us note that the singularity of g1,2 and h must be essential

and cannot be removed with the help of ”redefinitions for redefinitions” with ξ. Looking for

singular redefinitions is more economic than looking for nontrivial vertices since they depend
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on less arguments. Long story short, we arrived at the following redefinitions:

g1 =
p01e

p12

p02 (p01 − p12)
−

ep01p01
p02 (p01 − p12)

, (E.2a)

g2 =
ep02p02

p01 (p02 + p12)
−

p02e
−p12

p01 (p02 + p12)
, (E.2b)

h =
ep01p01

p12 (p01 − p02)
−

ep02p02
p12 (p01 − p02)

. (E.2c)

The vertices, which we do not write here as fractions, have a similar structure and their reg-

ularity is not obvious. It is very important to take advantage of the Fierz/Schouten/Plücker

identities

(a · b)(c · d) + (b · c)(a · d)− (a · c)(b · d) = 0 , (E.3)

which are a consequence of the fact that any three vectors in two dimensions are linearly

dependent. Still, the regularity is not manifest. One can prove it by showing that the numerator

and denominator have the same zeros.

A more convenient way to make the regularity manifest to write the vertices as integrals

over the 2d-simplex, as in the main text. The nontriviality of the cocycles is then less obvious.

A simple way to check if the cocycle is nontrivial is to extract the boundary condition V(e, e, C)

since this part cannot be redefined away. Therefore, once the boundary condition is satisfied

we can be certain that the cocycle is worthy. It would be interesting to compute the Chevalley-

Eilenberg cohomology following the techniques of [80], which would give a rigorous answer

regarding the number of independent vertices within the covariant approach.

Given the relation between the algebraic structures of higher spin gravities and deformation

quantization and formality, it is also possible to recast the proof into the familiar language of

Stokes theorem. For example, to check that the equation for V1 is satisfied we can construct a

closed two-form Ω1

Ω1 = (p12 dt1 ∧ dt2 + p23 dt2 ∧ dt3 + p13 dt1 ∧ dt3)F1 ,

F1 = exp [(1− t1) p01 + (1− t2) p02 + (1− t3) p03 + t1p14 + t2p24 + t3p34] .
(E.4)

With the help of Stokes theorem we get

0 =

∫

∆3

dΩ1 =

∫

∂∆3

Ω1 . (E.5)

There are four boundaries that correspond to ”collisions of points” on the circle: t1 = 0, t1 = t2,
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t2 = t3 and t3 = 1. It can be seen that Ω1 at these boundaries reduces to exactly the four terms

in the equation for V1. Similar arguments are true for the rest of the equations. The closed

two-form for the other equations are

Ω2 = (p12 dt1 ∧ dt2 + p24 dt2 ∧ dt3 + p14 dt1 ∧ dt3)F2 ,

− (p14 dt1 ∧ dt2 − p12 dt2 ∧ dt3 + p24 dt1 ∧ dt3)F3 ,

F2 = exp [(1− t1) p01 + (1− t2) p02 + (1− t3) p04 + t1p13 + t2p23 − t3p34] ,

F3 = exp [(1− t2) p01 + (1− t3) p02 + (1− t1) p04 + t2p13 + t3p23 − t1p34] ,

(E.6a)

for the second and for the third we need

Ω3 = −(p34 dt1 ∧ dt2 + p13 dt2 ∧ dt3 + p14 dt1 ∧ dt3)F4 ,

+ (p14 dt1 ∧ dt2 − p34 dt2 ∧ dt3 + p13 dt1 ∧ dt3)F5 ,

F4 = exp [(1− t3) p01 + (1− t2) p03 + (1− t1) p04 + t3p12 − t2p23 − t1p24] ,

F5 = exp [(1− t1) p01 + (1− t3) p03 + (1− t2) p04 + t1p12 − t3p23 − t2p24] .

(E.6b)

Note that the 2nd and 3rd equations have more terms since they mix vertices with different

orderings and for this reason two exact forms are required. There is some mutual cancellation

between them. For the last equation we have

Ω4 = −(p34 dt1 ∧ dt2 + p23 dt2 ∧ dt3 + p24 dt1 ∧ dt3)F6 ,

F6 = exp [(1− t3) p02 + (1− t2) p03 + (1− t1) p04 − t3p12 − t2p13 − t1p14] .
(E.6c)

The two-forms can be understood as follows: the first term in Ω2 is Ω1 with the labels 3 and 4

swapped, whereas the second term arises from cyclic permutation of the labels (1234 → 2341).

Subsequently, Ω4 is the mirror image of Ω1, i.e. 1234 → 4321, and Ω3 is the mirror image of

Ω2. This can be understood from the different orderings of ω, ω, ω, C in the equations.
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