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Université de Mons, 20 place du Parc, 7000 Mons, Belgium

c Lebedev Institute of Physics,

Leninsky ave. 53, 119991 Moscow, Russia

Abstract

Chiral Higher Spin Gravity with cosmological constant is constructed as a Free Differ-

ential Algebra, i.e. at the level of equations of motion, which is a smooth deformation of

its flat space cousin arXiv:2205.07794. Chiral Higher Spin Gravity is a unique class of local

higher spin theories; its very existence implies that there is a closed and, most likely, in-

tegrable sub-sector of Chern–Simons Matter Theories, which has important consequences

both for the theories themselves and for three-dimensional bosonization duality.
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1 Introduction

Higher Spin Gravities (HiSGRA) are theories [1] that synthesize several fruitful ideas in quest

of solving the quantum gravity problem: (a) higher spin states are very likely to be present in

any viable model of quantum gravity as suggested by (super)string theory and by AdS/CFT

correspondence [2–4]; (b) extensions of gravity with higher symmetries, e.g. supergravities,

should have better quantum behaviour; (c) in the high energy regime, where the perturbative

quantum gravity problems are coming from, it should be possible to neglect masses. All together

(a,b,c) suggest it can be instructive to look for extensions of gravity with massless higher spin

fields, whose dynamics are controlled by infinite-dimensional gauge symmetries. It comes as no

surprise that HiSGRA are not easy to construct and face numerous problems already at the

classical level since the masslessness makes them sensitive to genuine quantum UV problems.

There is a handful of classes of HiSGRA’s that have been constructed so far, all of which

are quite peculiar. In 3d there is one class with a plenty of topological higher spin theories

with massless, partially-massless and conformal higher spin fields [5–11]. In 4d (and all even

dimensions) it is possible to construct conformal HiSGRA [12–14] that is a higher spin extension

of (conformal) Weyl gravity. As far as HiSGRA with propagating massless fields are concerned,

there is a unique class of such theories in 4d – Chiral HiSGRA [15–19] and its contractions

[20, 21]. Chiral HiSGRA is closely related to self-dual theories [20]. Its contractions can be

understood as higher spin extensions of SDYM and SDGR [21].

Originally, Chiral Theory was constructed in the light-cone gauge and in flat space [15–

17]. Thanks to a deep interrelation between the light-cone gauge and spinor-helicity formalism

[22–26] Chiral Theory can easily be defined without having to make explicit reference to the

light-cone gauge. As is well-known, for any triplet of helicities λ1,2,3 such that λ1 + λ2 + λ3 > 0

there is a unique light-cone vertex and the corresponding three-point amplitude [27, 28]:

Vλ1,λ2,λ3

∣∣∣
on-shell

∼ [12]λ1+λ2−λ3 [23]λ2+λ3−λ1 [13]λ1+λ3−λ2 . (1.1)

Chiral Theory is a unique local Lorentz invariant theory that contains at least one higher spin

field with a nontrivial self-interaction. This simple input forces one to introduce massless fields

of all spins (at least even), thereby, adding graviton and a scalar field. The coupling constants

are uniquely fixed to be

VChiral =
∑

λ1,λ2,λ3

Cλ1,λ2,λ3Vλ1,λ2,λ3 , Cλ1,λ2,λ3 =
κ (lp)

λ1+λ2+λ3−1

Γ(λ1 + λ2 + λ3)
, (1.2)
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where lp is a constant of dimension length and κ is an arbitrary dimensionless constant.

Chiral Theory was shown to be one-loop finite in flat space [18, 19, 29] directly in the

light-cone gauge. Its extension to AdS4 was envisaged in [30, 31], again in the light-cone

gauge. Nevertheless, it had remained unclear if Chiral Theory admits a manifestly Lorentz-

invariant formulation before it was shown in [21] that contractions of Chiral Theory, which can

be understood as higher spin extensions of SDYM and SDGR, do have a manifestly Lorentz-

invariant formulation both in flat and (A)dS4 spaces. In addition, contrary to the old folklore,

it was shown that the interactions have a smooth deformation to (anti)-de Sitter space.

A manifestly Lorentz-invariant formulation of Chiral Theory in flat space was found in

[32, 33] at the level of equations of motion. The equations were constructed in the form of

a Free Differential Algebra [34–36], thereby, fulfilling the old ideas [37]. An important new

feature of the FDA language [38–41] is that it can be understood as the minimal model of the

BV-BRST formulation of a given theory and, hence, contains the same information as local

BRST cohomology [42–46], e.g. one can study counterterms and anomalies. This is also a very

useful first step towards a Lorentz-invariant action.

HiSGRA in (anti)-de Sitter background are, on the first sight, very well supported by

AdS/CFT correspondence, where HiSGRA should be duals of free/critical (Chern–Simons)

vector models [47–50]. On the second thought, however, the duality itself implies that HiS-

GRA must be too nonlocal for standard field theory methods to be applicable and for the

theories themselves to exist in any sensible way as field theories [51–54]. At present, there is no

construction of AdS/CFT duals of (Chern–Simons) vector models that makes concrete, system-

atic, and meaningful predictions for bulk interactions and allows one to compute holographic

correlation functions.2 It seems that AdS/CFT uncovers the same problems as with HiSGRA

in flat space, see e.g. [20, 61–63], but they can be identified much quicker thanks to AdS/CFT

duality. In this vein HiSGRA are closer to string theory than to field theories [52].

In the view of the notorious nonlocality problem described above, Chiral Theory seems to

be the only local class of HiSGRA with propagating massless fields in four dimensions.3 In this

2The first steps [55, 56], while generally positive, revealed some puzzles already at the three-point level,
which were shown [57] to result from the incompleteness of [58]. The latter is in full agreement with the basic
non-existence of such theories [51–54]. It is worth mentioning an interesting approach developed in [59, 60],
which, to some extent, allows one to rewrite the CFT partition function as a path integral with a (very nonlocal)
quasi-action for some fields in the bulk. It would be interesting to extend this construction to Chern–Simons
vector models. In the same vein [51] one can try to reconstruct the dual theory by “inverting” the correlation
functions. However, such vertices are too nonlocal for the standard field theory tools to work [51, 53, 54].

3Any model of quantum gravity should be nonlocal in some sense. Therefore, the nonlocality of HiSGRA is
not unexpected. What is lacking at the moment are concrete rules to deal with it. It is clear that the standard
field theory tools are inapplicable. Therefore, it is encouraging that there exist some local HiSGRA that can be
treated as useful approximations or starting points. Locality comes at a price, of course.
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paper we construct a manifestly covariant form of equations of motion for Chiral Theory with

cosmological constant. The equations are found in the form of a Free Differential Algebra by a

smooth deformation of those proposed recently in [32, 33]. This FDA can also be interpreted

as the dual of an L∞-algebra. Chirality makes the theory local both in flat and (anti)-de Sitter

spaces, which follows immediately from our construction.

Since the bulk of the paper is mostly devoted to the technical aspects of the FDA, it

makes sense to discuss conceptual consequences of the results for Chern–Simons Matter The-

ories and three-dimensional bosonization duality [50, 64–68] right now. Let us recall that the

Chern-Simons Matter Theories

AdS/CFT

C
hiral

full HiSGRA

an
ti
-C
hi
ra
l
free

cubic

quartic

spectrum of Chiral Theory, massless fields with spins

s = 0, 1, 2, 3, ... or s = 0, 2, 4, ...,4 is the right one to be the

dual of Chern–Simons vector models. At the free level,

(anti)-Chiral theories and the dual of Chern–Simons vec-

tor models coincide. Chiral Theory is smaller than this

hypothetical dual HiSGRA in that only the chiral inter-

actions are kept (those where the sum of the helicities on

external lines is, say, positive).5

The first consequence of the very existence of a com-

plete, local, Lorentz-covariant theory in AdS4 is that

Chern–Simons vector models must have a closed subsec-

tor as well. Indeed, one can recover this subsector by

computing the holographic correlation functions in Chiral Theory. It would be very interesting

to identify this closed subsector directly on the CFT side, which is perhaps hard to achieve at

the action level.

Secondly, the chiral and anti-chiral interactions cover all possible cubic vertices. Now, it

is very important that the (anti-)Chiral Theory is rigid and can be thought of as a rock hard

building block (all couplings are fixed by higher spin symmetry). Therefore, if one wishes to

get all possible three-point functions in the complete unitary HiSGRA dual of Chern–Simons

matter theories one just needs to study how to glue chiral and anti-chiral parts together. It

turns out that this gluing depends on one additional parameter [31], which can be introduced via

U(1) electromagnetic duality transformation in the bulk. This immediately proves the three-

4Gauging Yang–Mills groups is also possible [19]. They, however, come in a very restricted Chan-Paton
pattern, which is implied by the AdS/CFT duality with vector models.

5Chiral Theory shares many features with self-dual theories. Some key properties of any self-dual theory
include: all solutions of self-dual theories are solutions of the full ones; the same is true for amplitudes. Therefore,
self-dual theories are very useful for understanding the complete ones. What is missing at present for the Chiral
Theory case is an explicit construction of the complete one.
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dimensional bosonization duality at this order since the bulk considerations are insensitive

to whether the dual operators are built out of bosonic or fermionic matter. This also gives

explicitly the three-point functions [31], which are consistent with [64] and explain in a simple

way the general structure observed in [64].

Thirdly, despite the lack of control over nonlocalities in the full HiSGRA dual to Chern–

Simons vector models, existence of its Chiral truncations supports the bosonization duality

beyond three-point level. Indeed, the main idea of [31] is to decompose correlation functions

(equivalently, bulk interactions) into parts with definite helicity structure. After the surgery,

these building blocks can be rotated with a U(1)-phase and sewed back into unitary, but parity

violating, correlation functions. The very existence of one-parameter families of conformal

field theories that interpolate between parity-preserving bosonic/fermionic vector models can

be attributed to the existence of Chiral Theory. It allows one to interpret correlation functions

of gauge invariant operators in Chern–Simons vector models as perturbations of the chiral

subsector, which effectively introduces one more parameter on top of 1/N . This is very similar

to how Yang-Mills theory can be recast as perturbation of SDYM, likewise for gravity vs. SDGR,

the main difference being in that Chiral Theory has its own coupling constant. Eventually these

ideas should merge with the pure CFT considerations based on the concept of the slightly-

broken higher spin symmetry [64], where it is possible to prove that there exists a unique class

of invariants of this symmetry to serve as correlation functions [69–71].

Lastly, there are good reasons to expect Chiral Theory to be integrable [20], finite and even

one-loop exact [29], and to admit a simple twistor formulation, see [72] for the first steps in

this direction. Therefore, it should be possible to obtain all-loop results in Chiral Theory and,

as a consequence, in the corresponding subsectors of Chern–Simons vector models. Note that

the bulk coupling is of order 1/N . Since the results are exact, they should be valid for small

values of N , which are of phenomenological significance. Hopefully, Chiral Theory can give an

example of a bulk theory that is completely solvable.

While it would be very interesting to explore the ideas outlined above in the future, we

proceed now to bitter technicalities of constructing the FDA of Chiral Theory, which is necessary

to support them. After a brief overview of the formalism in Section 2 we proceed to the main

results in Section 3, which are supported by a number of technical Appendices. The main

conclusions of the paper have already been given above and a more technical summary and

discussion of the results can be found in Section 4.
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2 Initial data

As it was discussed, in the light-cone gauge there is a complete action for Chiral Theory that

terminates at cubic interactions in flat space. Different parts (contractions in the language of

[20]) of the covariant action for Chiral Theory, both in flat and (A)dS4, were constructed in

[21]. The covariant version of Chiral Theory can be defined as a unique Lorentz invariant and

local completion of the free action6

S =

∫
ΨA(2s) ∧HAA ∧∇ωA(2s−2) , (2.1)

whereHAB ≡ eAC′ ∧eBC′
is the basis of self-dual two-forms built out of vierbein eAA

′ ≡ eAA
′

µ dxµ.

The completion is unique provided a genuine higher spin interaction is turned on. For simple

Yang–Mills and gravitational interactions of higher spin fields the completion is not unique,

but admits very simple actions [21]. The dynamical fields are zero-form ΨA(2s) and one-form

ωA(2s−2) ≡ ω
A(2s−2)
µ dxµ. The action can be shown to describe a massless spin-s particle, where

the (conventionally) positive helicity, +s, mode belongs to ωA(2s−2) and the negative heliticy,

−s, resides in ΨA(2s). On flat, (A)dS and, more generally, any self-dual background the action

enjoys the gauge symmetry

δωA(2s−2) = ∇ξA(2s−2) + eAC′ ηA(2s−3),C′
, δΨA(2s) = 0 , (2.2)

where ξA(2s−2) and ηA(2s−3),C′
are zero-forms.

We refer the reader to [32, 33] for a detailed discussion of the formalism as well as to the

original papers [37, 74] which correctly identify the free data and bits of interactions. We will

be looking for covariant equations of motion in the form of a Free Differential Algebra. This

implies the well-known extension [37, 74] of the dynamical fields with some auxiliary ones. It

is convenient to package all the auxiliary and dynamical fields into a pair of master fields: the

one-form

ω(y, y) =
∑

n+m=even

1
n!m!

ωA(n),A′(m) y
A...yA yA

′
...yA

′

6As always, we use the same letter to denote a group of symmetric or to be symmetrized indices, e.g.
A1...Ak ≡ A(k). The indices are raised and lowered with the help of εAB = −εBA as in the classical book [73].
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and the zero-form

C(y, y) =
∑

n+m=even

1
n!m!

CA(n),A′(m) y
A...yA yA

′
...yA

′
.

The restriction that the sum n+m be even is the bosonic projection. The (generating functions

of) dynamical fields of (2.1) are identified with Ψ(y) = C(y, y = 0) and ω(y) = ω(y, y = 0).

The zero-form C also contains the scalar field C(0, 0), which is necessarily present in Chiral

Theory. With this field content the most general FDA reads

dω = V(ω, ω) + V(ω, ω, C) + V(ω, ω, C,C) + ... , (2.3a)

dC = U(ω,C) + U(ω,C,C) + ... . (2.3b)

The formal consistency of the equations, resulting from the nilpotency of the exterior differential

d, implies that the multilinear maps on the r.h.s. satisfy the L∞-relations. These equations

must have (A)dS4 as an exact solution with C = 0 and

ω0 = 1
4
ωAB yAyB + 1

2
eAA

′
yAyA′ + 1

4
ωA

′B′
yA′yB′ , (2.4)

where ω’s are (anti-)self-dual parts of the spin-connection. Expanding (2.3) over ω0 and picking

up the linear terms, one gets the free equations

dω = V(ω0, ω) + V(ω, ω0) + V(ω0, ω0, C) , dC = U(ω0, C) . (2.5a)

The parts of V(ω0, ω), V(ω, ω0) and U(ω0, C) that contain the spin-connection must act canon-

ically, i.e. they should transform the components of ω and C as spin-tensors. Therefore, they

can be moved to the l.h.s. and combined with d into the Lorentz covariant derivative7 ∇. The

free equations must read

∇ω = eBB
′
(λ yB′∂B + yB∂B′)ω +HB′B′

∂B′∂B′C(y = 0, y) , (2.6)

∇C = eBB
′
(λ yByB′ − ∂B∂B′)C . (2.7)

Here we introduced the parameter λ associated with the cosmological constant. At λ = 0 we

recover the free equations of Chiral Theory in flat space [32, 33].

7It should be noted that in the flat limit ωAB does not play the role of the spin-connection anymore, but
ωA

′B′
does.
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3 FDA

We first summarize the known results about the leading order, then discuss the next-to-leading

order vertices, which are still easy to find by hand, and finally explain how to systematically

generate all higher vertices.

3.1 LO

Higher spin algebra. The L∞-relations, or the formal consistency of (2.3), imply that

V(f, g) satisfies the Jacobi identity and, thereby, ω takes values in some Lie algebra. As it was

understood in different contexts by many authors [75–80] this Lie algebra originates, in fact,

from an associative algebra Ae2, which is the even subalgebra of the second Weyl algebra. In

other words, we can start with the four generators Ŷ A = (ŷA, ŷA
′
) subject to the commutation

relations [Ŷ A, Ŷ B] = 2CAB, with CAB being the matrix of the canonical symplectic form.

The second Weyl algebra A2 is then the associative algebra of polynomials f(Ŷ ) in Ŷ ’s. A

useful realization of A2 is via deformation quantization: one considers polynomials f(Y ) in the

commutative variables Y A that are equipped with the star-product

(f ? g)(Y ) = exp[Y · ∂1 + Y · ∂2 + CAB∂1
A∂

2
B] f(Y1)g(Y2)

∣∣∣
Y1,2=0

, (3.1)

where Q · P ≡ QAPA. The higher spin algebra is then the even subalgebra Ae2 of A2. It is also

convenient [37] to tensor it with the matrix algebra MatN and define hs = Ae2 ⊗MatN . The

trick with the matrix extension is well-justified by AdS/CFT correspondence and by the fact

that one can introduce Yang–Mills-type interactions into Chiral Theory [19].

At the technical level, the matrix extension implies that the L∞-algebra we are looking for

results from an A∞-algebra via the symmetrization map. For example, the Lie bracket is the

commutator in associative algebra hs. As we will see, for technical reason, it is better to define

hs = A1 ⊗ B, where A1 is the (star-product) Weyl algebra in yA and B is another associative

algebra, which is A1⊗MatN in our case (supplemented at the end with the projection onto the

even subalgebra of hs). Therefore, we will treat ω and C as function of y’s that take values

in some associative algebra and the order of the arguments in vertices is important. With this

convention in mind the product in the higher spin algebra can be written as

V(f, g) = exp [p01 + p02 + λ p12]f(y1) g(y2)
∣∣∣
yi=0
≡ (f ? g)(y) , (3.2)

where we introduced yA ≡ pA0 , ∂yiA ≡ piA. Contractions pij ≡ pi · pj ≡ −εABpAi pBj = pAi pjA are

8



such that exp[p0 · pi]f(yi) = f(yi + y) is the translation operator. More generally, vertices can

be represented as poly-differential operators

V(f1, ..., fn) = V(y, ∂1, ..., ∂n) f1(y1)...fn(yn)
∣∣∣
yi=0

, (3.3)

where the f ’s stand either for ω’s or C’s. Occasionally, we will use q’s for poly-differential

operators in y, e.g. yA
′ ≡ qA

′
0 , ∂

yi
A′ ≡ qiA′ . Most of the time, we omit |yi=0 as well as the

arguments of the vertices and write down only the corresponding symbols.

Coming back to (3.2), we introduced λ in order to have a smooth deformation that starts

from Chiral Theory with vanishing cosmological constant. Basically, λ is the cosmological

constant. In the flat limit (λ→ 0) the first Weyl algebra A1 turns back into the commutative

algebra of polynomial functions C[y], whose quantization A1 is. Now, we can check that the

boundary conditions imposed by the free equations (2.6) are indeed satisfied:

V(e, f)− V(f, e) = 2ep02+q02 (λ q01p12 + p01q12) (eCC
′
y1
Cy

1
C′)f(y2, y2)

∣∣∣
yi,yi=0

, (3.4a)

V(ω, f)− V(f, ω) = 2λ p01p12 e
p02+q02(ωABy1

Ay
1
B)f(y2, y2)

∣∣∣
yi,yi=0

, (3.4b)

V(ω, f)− V(f, ω) = 2q01q12 e
p02+q02(ωA

′B′
y1
A′y1

B′)f(y2, y2)
∣∣∣
yi,yi=0

, (3.4c)

where f is a zero-form. Here an unimportant factor of 2 appears as a result of our normalization

of the higher spin algebra product. The minus in between the terms is due to the fact that

argument f corresponds to the one-form ω which anti-commutes to e. It is also clear that

(2.4) is an exact solution that defines (A)dS4 since LAB = −1
2
yAyB, LA′B′ = −1

2
yA′yB′ and

PAA′ = −1
2
yAyA′ form (A)dS4 algebra with the most important relation being

[PAA′ , PBB′ ]? = LABεA′B′ + λεABLA′B′ . (3.5)

Dual module. With the help of the matrix trick the next A∞-algebra relation implies that

U(a, u) and U(u, a) define a bimodule M over hs, a ∈ hs, u ∈ M . It is easy to see that M

should be dual to the algebra hs, viewed as a bimodule over itself, with respect to the following

non-degenerate paring:

〈a|u〉 = exp[p12] a(y1)u(y2)
∣∣
yi=0

. (3.6)

9



The trace over the matrix and, possibly, other factors is understood. The induced bimodule

structure is given by the relations

U1(ω,C) = + exp [λ p01 + p02 + p12]ω(y1)C(y2)
∣∣∣
yi=0

,

U2(C, ω) = − exp [p01 − λ p02 − p12]C(y1)ω(y2)
∣∣∣
yi=0

.
(3.7)

At this point one might want to introduce a reflection operator R, R2 = 1, RyAR = −yA,

so that we can redefine U2 to have only + in the second exponent at the price of having CR

everywhere instead of C (when R is dragged through ω it effectively flips the sign of all ( · p2)-

terms. For λ = 1 the bimodule structure above coincides with the twisted-adjoint action [81],

but the latter does not have the flat limit. At λ 6= 1 the left/right actions are different, but are

coordinated to give a bimodule. In this sense the right action is derivable from the left one.

We can again check that the boundary conditions provided by (2.6) are satisfied:

U(e, f) + U(f, e) = 2ep02+q02 (λ p01q01 + p12q12) (eCC
′
y1
Cy

1
C′)f(y2, y2)

∣∣∣
yi,yi=0

, (3.8a)

U(ω, f) + U(f, ω) = 2λ p01p12 e
p02+q02(ωABy1

Ay
1
B)f(y2, y2)

∣∣∣
yi,yi=0

, (3.8b)

U(ω, f) + U(f, ω) = 2q01q12 e
p02+q02(ωA

′B′
y1
A′y1

B′)f(y2, y2)
∣∣∣
yi,yi=0

, (3.8c)

with f being a zero-form. The action of the Lorentz subalgebra, i.e. the terms with ωAB and

ωA
′B′

are exactly the same as in (3.4).

3.2 NLO

The cubic vertices satisfy simple linear equations and can be solved by brute-force, see e.g.

[32, 37, 82], which we closely follow below.

Cubic Vertex V(ω, ω,C). In accordance with different orders of the arguments there are

three A∞-maps to be found:

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (3.9)

10



The defining relations of an A∞-algebra requre then

V1(V(ω, ω), ω, C)− V(ω,V1(ω, ω, C)) + V1(ω, ω,U1(ω,C))− V1(ω,V(ω, ω), C) = 0 ,

V(V1(ω, ω, C), ω) + V1(ω, ω,U2(C, ω)) + V2(V(ω, ω), C, ω)− V(ω,V2(ω,C, ω))

− V2(ω,U1(ω,C), ω) = 0 ,

V(V2(ω,C, ω), ω)− V2(ω,C,V(ω, ω))− V2(ω,U2(C, ω), ω)− V(ω,V3(C, ω, ω))

+ V3(U1(ω,C), ω, ω) = 0 ,

V(V3(C, ω, ω), ω)− V3(C, ω,V(ω, ω)) + V3(C,V(ω, ω), ω) + V3(U2(C, ω), ω, ω) = 0 .

(3.10)

Here one should replace the three ω’s with three different elements of hs while keeping the order

the same in all terms. One can rewrite these relations in terms of the corresponding symbols,

which reduces them to simple algebraic equations. For example, the first relation gives

0 = −V1(p0 + λ p1, p2, p3, p4)ep01 + V1(p0, p1 + p2, p3, p4)eλ p12

− V1(p0, p1, p2 + p3, p4)eλ p23 + V1(p0, p1, p2, λ p3 + p4)ep34 .

A nontrivial solution to these equations that is consistent with the λ→ 0 limit of [33] reads

V1(ω, ω, C) = +p12

∫
∆2

exp[(1− t1) p01 + (1− t2) p02 + t1p13 + t2p23 + λ(1 + t1 − t2)p12] ,

V2(ω,C, ω) = −p13

∫
∆2

exp[(1− t2) p01 + (1− t1) p03 + t2p12 − t1p23 + λ(1− t1 − t2)p13]

− p13

∫
∆2

exp[(1− t1) p01 + (1− t2) p03 + t1p12 − t2p23 + λ(1− t1 − t2)p13] ,

V3(C, ω, ω) = +p23

∫
∆2

exp[(1− t2) p02 + (1− t1) p03 − t2p12 − t1p13 + λ(1 + t1 − t2)p23] .

Hereinafter we let ∆n denote the n-dimensional simplex t0 = 0 ≤ t1 ≤ ... ≤ tn ≤ 1. This vertices

deform smoothly those of Chiral Theory in flat space [33] and are simple λ-modifications of

what can be extracted from [81].

It is significant that all U -vertices can be obtained from V-vertices by the following duality

relation:

〈V(ω, ω, C, . . . , C)|C〉 = 〈ω|U(ω,C, . . . , C)〉 . (3.11)

It can be shown that this recipe gives consistent U -vertices provided one carefully keeps track
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of the ordering. For example, at the cubic order we still need three U -vertices

U(ω,C,C) = U1(ω,C,C) + U2(C, ω, C) + U3(C,C, ω) . (3.12)

By duality we find

U1(p0, p1, p2, p3) = +V1(−p3, p0, p1, p2) , (3.13)

U2(p0, p1, p2, p3) = −V2(−p1, p2, p3, p0) , (3.14)

U3(p0, p1, p2, p3) = −V3(−p1, p2, p3, p0) . (3.15)

It is interesting to have a look at least at one of them:

U1 = p01

∫
∆2

exp [λ (t1 − t2 + 1) p01 + t1p02 + (1− t1) p03 + t2p12 + (1− t2) p13] . (3.16)

The most important observation is that this vertex is local, as it will be explained in more

detail below.8 This is thanks to it not having p23 inside the exponent.

3.3 NkLO

Set up. Following the original ideas of [58, 81], but with important modifications of [33] that

make the construction to yield local interactions,9 we define an extended algebra of polynomial

functions C[y, z], Y a ≡ (yA, zA), that is equipped with the star-product defined by the matrix

(Ωab) = −

(
λε ε

−ε 0

)
, ε ≡ εAB . (3.17)

The symbol of µ(f, g) ≡ (f ? g)(y, z) is

exp [p01 + p02 + r01 + r02 + p1 · r2 − r1 · p2 + λ p12] . (3.18)

8As a historical comment, let us point out that at λ = 1 there is a well-known twisted-adjoint interpretation
[81] of the bilinear U-maps. From this viewpoint, it is possible to generate all U-vertices from the V-vertices by
the schematic formula U = CRδV/δω, R being the reflection operator. This, however, leads to nonlocal vertices
immediately.

9In the L∞-language the idea of [58, 81] is to construct an anti-minimal model, i.e. a differential graded Lie
algebra, whose minimal model gives the sought-for L∞. This approach faces the usual problems of (non)-locality
[57, 83], see also below. Therefore, it is remarkable that a simple modification proposed in [33] gives well-defined
local vertices of Chiral Theory in flat space and it is possible to turn on the cosmological constant as we show
in the paper. The modifications include: a star-product, dual module structure for C, the duality map to get
U-vertices.
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Hereinafter r for z is the same as p for y. The integral representation reads10

(f ? g)(y, z) =

∫
du dv dp dq f(y + u, z + v)g(y + q, z + p) exp [v · q − u · p+ λ p · v] . (3.19)

The vertices are generated via the standard Homological Perturbation Theory. We refer to [33]

for a detailed description and to Appendix A for the necessary modifications. Below, we just

explain the algorithm and illustrate it with some examples. The generators of the algebra yA,

zA act as follows:

yA ? f = (yA − λ ∂yA − ∂
z
A)f ,

f ? yA = (yA + λ ∂yA − ∂
z
A)f ,

zA ? f = f ? zA = (zA + ∂yA)f . (3.20)

With these relations one can see that the function κ = exp[zCyC ] obeys the identities

{yA,κ}? = zA ? κ = κ ? zA = 0 .

We will need a further extension of the above algebra to the algebra of differential forms in dz.

The corresponding exterior differential will be denoted by dz. We will use the Poincaré lemma

in the following form:

f (1) = h[f (2)] = dzA zA

∫ 1

0

t dt f (2)(tz) , f (0) = h[f (1)] = zA
∫ 1

0

dt f
(1)
A (tz) , (3.21)

see e.g. [84]. The first expression is a particular solution to dzf
(1) = f (2) for a one-form

f (1) ≡ dzAf
(1)
A (z) and a two-form f (2) ≡ 1

2
f (2)(z)εABdz

AdzB. The second formula is a particular

solution to dzf
(0) = f (1) for a closed one-form f (1) and a zero-form f (0) ≡ f (0)(z). We also define

h[f (0)] = 0 for any zero-form f (0).

The aforementioned Homological Perturbation Theory generates all trees that have ω and C

as leaves. The trivalent vertices of trees are provided by the ?-product µ, while the contracting

homotopy h defines the internal branches. Given a zero-form C(y), we denote

δC = 1
2
C(z)ez

ByBdzAdz
A . (3.22)

10As in [33] we define the integral in such a way that
∫
d2u exp[u · q] = δ2(q).
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The zero-form C enters the trees via the combination Λ[C] = hδC, that is,

Λ[C] = dzAzA

∫ 1

0

t dt C(tz)etz
ByB = dzAzA

∫ 1

0

t dt exp[tz · (y + pi)]C(yi)
∣∣∣
yi=0

, (3.23)

where the last expression is the symbol of the previous one that we use in practice. All trees

that make sense can in principle contribute. It should be remembered that h2 = 0 and forms of

degree higher than two vanish identically. Each subtree of a given tree must be an admissible

tree. As was shown in [33], and remains to be true here, there are certain classes of trees that

vanish thanks to an interplay between specific µ and h we have defined. It is instructive to give

some examples.

NLO. There are four nontrivial trees that can be drawn at NLO. For example, V(ω, ω, C) is

built from

V(ω, ω, C) = ω(y) ? h[ω(y) ? Λ[C]] =

µ

ω µ

ω Λ[C]

h

Evaluation of this tree is almost identical to that of [33]. It is easy to compute the other three

trees, two of which contribute to V(ω,C, ω) and the mirror copy of the one above to V(C, ω, ω).

This gives exactly the analytical expressions of Section 3.2.

NNLO. There are many more trees at NNLO, which correspond to quartic vertices from the

equations of motion vantage point. Nevertheless, there are only two nontrivial topologies:11

G1 = a ? h[h[b ? Λ[u]] ? Λ[v]] =

µ

a µ

µ Λ[v]

b Λ[u]

h

h

11Note that, as different from [33], the ?-product µ is non-commutative. Therefore, one cannot obtain all the
vertices by simple permutations of the branches of a few basic trees.
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and

G2 = h[a ? Λ[u]] ? h[b ? Λ[v]] =

µ

µ µ

a Λ[u] b Λ[v]

h h

Here we keep abstract arguments a, b, u, and v instead of ω and C. The first tree is the only

contribution to V(ω, ω, C,C). Explicit analytical expressions for G1 and G2 can be found in

Appendix B. They have the following structure:

G1 = ∗(p12)2 exp [∗p01 + ∗p02 + ∗p13 + ∗p23 + ∗p14 + ∗p24 + ∗λ p12] , (3.24)

G2 = ∗(p13)2 exp [∗p01 + ∗p03 + ∗p12 + ∗p23 + ∗p14 + ∗p34 + ∗λ p13] . (3.25)

Hereinafter ∗ stands for unimportant prefactors that depend on t’s. The vertices are smooth

deformations of those from [33]. Most importantly, they are still local, as will be explained

below in more detail. The locality of G1 implies that it does not depend on p34 and the locality

of G2 means its independence of p24. Out of curiosity we compute a quintic (N3LO) vertex in

Appendix C and its higher order cousins.

Locality. It is important to engineer the vertices that are local. Locality is a crucial difference

between the formal deformation procedure and an actual field theory. Indeed, it is well-known

that Noether procedure (constructing interactions order by order in the fields, which is usually

applied to gauge theories) always admits an all order solution once the locality is abandoned

[85]. An equivalent statement is even simpler to make in the light-cone gauge: any function

can be taken as a Hamiltonian H (provided simple kinematical constraints are imposed) unless

we care about locality of the boost generators J i−. Within the FDA approach, where the

equations dΦ = Q(Φ) are determined by an odd nilpotent vector field Q, the r.h.s. of the

equations can easily lead to meaningless interactions from the field theory point of view, while

Q gives a well-defined L∞-algebra. The problem is that fields Φ(x) (as maps from spacetime to

the target space supermanifold N where Q is defined) can be expressed as derivatives of each

other by virtue of the equations of motion. Therefore, nonlinearities in Q(Φ) can form infinite

series in derivatives.12

12A vague statement is that in any reasonable measure on the space of Q for a given N , most of Q lead to
nonsensical equations of motion due to nonlocalities. Lucky exceptions to this situation are topological field
theories where N is finite-dimensional. For field theories, and certainly for our case, N is infinite dimensional.

15



More specifically, nonlocality can develop in any vertex with two or more C-fields since they

contain auxiliary fields that are expressed as derivatives of the dynamical ones:

CA(2s+k),A′(k) ∼ ∇AA′
...∇AA′

CA(2s) , k = 0, 1, 2, ... . (3.26)

Here CA(2s) ≡ ΨA(2s) is one of the dynamical fields. The same is true for CA(k),A′(2s+k), where

CA′(2s) is s derivatives further removed from ωA(2s−2). For definiteness let us concentrate on

V(ω, ω, C, ..., C)-type vertices with n fields C. Nonlocality is present once one has an infinite

series of the form13

∑
k

ak

k︷ ︸︸ ︷
∇BB′ ...∇BB′ CA(2s)∇BB′

...∇BB′
CM(2s)... ∼

∑
k

akC
A(2s)

B(k),B′(k) C
M(2s)B(k),B′(k)... ,

where we singled out two C-arguments and ignored the rest ones. In terms of the symbols of

operators, nonlocality manifests itself as an infinite series in w = qijpij where i, j correspond

to any pair of C-arguments in V(ω, ω, C, ..., C).

The vertices we construct here (and the same is true for those of Chiral Theory without

cosmological constant [33]) have a very special form:

V(ω, ω, C, ..., C) = ∗ exp[∗p01 + ∗p02 + ∗λ p12 +
∑

2<i≤n+2

∗p1i +
∑

2<i≤n+2

∗p2i] . (3.27)

Recall that for every vertex there is an overall star-product factor for another copy of A1, in y:

exp[
∑

0≤i<j≤n+2

qij] . (3.28)

Therefore, locality is equivalent to not having pij inside exp[...] with 2 < i < j ≤ n + 2, which

is indeed the case. Applying now the duality relation (3.11), we find immediately

U(p0, p1, ..., pn+2) = V(−pn+2, p0, p1, ..., pn+1) =

∗ exp[∗p0,n+2 + ∗p1,n+2 + ∗λ p01 +
∑

1<i≤n+1

∗p0,i +
∑

1<i≤n+1

∗p1,i] .

It is a local vertex as well! The argument that proves locality to all orders is exactly the same

13Not every infinite series in derivatives is ill-behaved as long as ak decay to zero fast enough, see e.g. examples
in [57, 83]. Nevertheless, for Chiral Theory, which is known to be local, having an infinite series in derivatives
must be avoided.
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as in [33]. Therefore, we conclude that all the vertices are local and, thereby, define a theory

rather than just an L∞-algebra. It is worth clarifying that by a local theory we mean a theory

where every vertex has a finite number of derivatives provided the helicities on all external legs

are fixed.

4 Summary and discussion

In this paper, we constructed Chiral Theory with cosmological constant, whose existence was

anticipated already in [17] and supported further in [30, 31] with the help of the light-cone

gauge techniques. Technically, the theory is constructed as classical equations of motion in the

form of FDA. The FDA emerges from the homological perturbation theory in a standard way.

The theory is a straightforward and smooth deformation of Chiral Theory’s FDA in flat space

[32, 33], the deformation parameter λ ∼ 1/R being the ‘inverse radius’ of (anti-)de Sitter space.

It is still remarkable that the self-evident deformation of [33] leads to a local theory.14 Despite

the conceptual simplicity of the result, it is of significant importance in view of the duality to

Chern–Simons Matter Theories, discussed in Introduction.

In view of footnote 2, which recaps the main problems of holographic HiSGRA’s, it is

worth summarizing what is already known about interactions of these hypothetical HiSGRA’s.

A nonlocal quartic vertex was holographically reconstructed in [51], followed by a complete

cubic action [86]. Within the FDA approach the local form of U(ω,C,C), which corrects [37],

was found in [87]. The best available result is a holomorphic subsector of V(ω, ω, C,C)-type

interactions [88] and parts of V(ω,C,C,C)-type interactions [89, 90], which contains some of

the vertices found previously in [30, 31] within the light-cone approach. Note that none of

the FDA vertices found so far addresses the genuine nonlocality/non-existence problem [51–

54], the simplest one being to reproduce [51] by genuine bulk methods without inverting the

holographic correlators. Another problem is that each order requires a separate analysis even

for the vertices that must be local.

Since the papers above and our deal with higher spin interactions in (A)dS4 and we used

the notation close to those of [37, 58, 74, 81], it is easy to discuss the main differences that

14Even if we are given a local theory to begin with, it is possible to perform nonlocal field-redefinitions that
change physical observables and render them nonsensical [57, 83], while still having a well-define L∞-algebra.
A (non)local field-redefinition that admits a series expansion in derivatives is just a change of a basis at the
level of the L∞-algebra. Therefore, it is not guaranteed that switching on the cosmological constant the way
we did leads to a local theory. There are higher spin examples [57, 83] where this does not happen. Within the
homological perturbation theory one deforms a differential of a strong deformation retract and however simple
the deformation is it may be hard to predict the structure of the resulting L∞-algebra.
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allowed us to make progress and to construct an actual theory. Let us recall that the spectrum

of ω and C is the same, since it is determined by the free limit and all higher spin theories,

loosely speaking, contain massless fields of all spins. The challenge is to construct interaction

vertices, i.e. A∞/L∞-maps as poly-differential operators, that obey locality. There are several

ingredients: (a) y − z star-product and contracting homotopy; (b) dual bimodule structure

of C; (c) duality map. (a) Our star-product (3.20) is different from [58] and [88]: it is fixed,

well-defined and does not require any subtle limits, cf. [88], it works as it is. An invariant

characteristic of every star-product is the rank of the underlying Poisson tensor: it is 4 for

[58] and [88], 0 for Chiral Theory in flat space [33] and 2 for its (A)dS4-deformation of the

present paper (which is exactly what is needed to turn on the cosmological constant (3.5) and

it closely related to the infinity twistor). It is interesting that the star-product of [88], while

different from ours, gives a local V(ω, ω, C,C)-vertex in the limit where the star-product itself

is ill-defined. We use the standard contracting homotopy for the de Rham complex of a linear

space. Ingredients (b) and (c) are completely new [33] and play the most important part. (b)

Our zero-form C takes values in the bimodule dual to the higher spin algebra, rather than in

the twisted-adjoint one [81]. In other words, C is not an element of the higher spin algebra and,

for this reason, it should be treated differently and we use the general homological perturbation

theory, which cannot be captured by [58, 88]. In particular, this ensures the smooth flat limit

or deformation to (A)dS4, which is a counterexample to the general folklore [81]. (c) It is of

crucial importance that U -vertices are obtained via the duality map from V-vertices, which is

an original idea born for flat space Chiral Theory [33], otherwise they emerge nonlocal as in

[37, 58] and require a separate treatment [89, 90]. To conclude, while one can play with different

(a) more or less successfully, it is (b)+(c) that are crucial for constructing a local theory. An

even stronger difference is that our main result is a smooth deformation of Chiral Theory in flat

space that is already known and well-defined, the deformation having λ as a free parameter.

In general, it would be interesting to see what is a maximal local closed sub-sector of the

holographic dual of Chern–Simons Matter Theories. We expect that Chiral Theory covers all

of it. In this sense, the relation between our results and particular vertices of [87–90] is not

clear beyond the lowest orders.15 It may well be that there are well-defined, in the sense of

being local, holomorphic subsectors of [81] and the question is whether they are smaller/larger

than Chiral Theory. One way or another, Chiral Theory in (A)dS4 is directly constructed as a

15Cubic vertices decompose into chiral and anti-chiral parts [30], and hence, different truncations –
holomorphic/chiral/self-dual – mean essentially the same at this order. Note that the usual cubic vertices
from the Lagrangian vantage point appear in V(ω, ω,C), U(ω,C,C) and V(ω, ω,C,C). There is an infinite-
parameter ambiguity at higher orders [81, 91], but this analysis does not take locality into account, which may
eliminate some parameters as well as to introduce new ones.
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smooth and local deformation of its flat space cousin [33].16

The vertices we obtained turn out to be much simpler than they come out of the homological

perturbation theory we use and it would be very interesting to find all of them explicitly as well

as to make this hidden simplicity manifest. An all order result can be found in Appendix C. It

would also be important to make contact with the Shoikhet–Tsygan–Kontsevich formality and

its possible extension to Poisson Orbifolds, which is visible [71, 82] in HiSGRA applications.

In particular, it is a challenge to identify the configuration space of the integrals that define

vertices and reduce the proof of the A∞/L∞-relations to Stokes theorem [92, 93].

The explicit construction of covariant HiSGRA with massless propagating fields – Chiral

Theory with or without cosmological constant and its contractions [21] – opens up new research

directions. Among these are (i) computing (higher) holographic correlation functions; (ii)

exploring quantum corrections; (iii) constructing exact solutions via the general techniques

developed over the years, see e.g. [94–96] and [97, 98] for the careful treatment of locality. One

might also expect the existence of a simple twistor action for Chiral Theories, see [72, 99, 100]

for the twistor results that deal with a contraction of Chiral Theory [72] and with conformal

HiSGRA [99, 100].

In the light of our results and AdS/CFT duality, there should also exist Chiral Theories with

partially-massless fields that are truncations of the holographic duals of higher derivative vector

models [101]. Such theories should still admit a smooth flat limit where a free partially-massless

field becomes a reducible non-unitary representation of Poincare group. Closely related theory

is the self-dual truncation of conformal HiSGRA, which admits a twistor description [99, 100].

The latter construction should have a simple generalization to conformal HiSGRA’s that are

based on higher order singletons [101]. It would also be interesting to construct these two

(conjectured) new classes of HiSGRA explicitly in the FDA form. It is also obvious that the

FDA we constructed contains contractions [20, 21] of Chiral Theory.
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of Theoretical Physics and Mathematics “BASIS”.

A Some algebra

Throughout this section, we deal with partial algebras of different types. Recall that a partial

algebra is just a nonempty set X equipped with a collection P of partial operations on X, see

e.g. [102, Ch.2 ], [103]. We will always assume that X is a complex vector space, so that

P includes the addition of vectors and multiplication them by complex numbers. The other

operations, which we all assume to be multilinear over C, may be defined only for some elements

of X. If p ∈ P is an n-ary operation, then the domain of p, is a subset Dom(p) ⊂ X × · · · ×X
in the n-th Cartesian power of X such that p is defined for all the elements of Dom(p). In the

case that the domain of each operation of P coincides with the whole Cartesian power of X,

the pair (X,P ) is just an ordinary (or total) algebra. In the rest of this section we will omit

the adjective ‘partial’.

Let A = C[[y, z]] be the space of formal power series in four indeterminates yA and zA,

A = 1, 2. We make it into an algebra over C for the Weyl–Moyal ?-product17

a ? b = exp
[
∂y1 · ∂z2 − ∂z1 · ∂y2 + λ ∂y1 · ∂y2

]
a(y1, z1) b(y2, z2)

∣∣∣y1,2 = y
z1,2 = z

, (A.1)

λ being a complex parameter. Notice that the ?-product is strongly associative in the sense of

[103, Ch.1.5] and its domain includes the Cartesian square of the subspace C[y, z] ⊂ A, i.e., the

space of complex polynomials in y’a and z’s.

As usual, one may regard the algebra A as a bimodule over itself. The complex vector space

A enjoys a C-linear involution τ : A→ A defined by

a(y, z) 7→ aτ (y, z) = a(z, y)ez·y . (A.2)

Clearly, τ 2 = 1. Using this involution, we give the space A another structure of A-bimodule,

denoted by Aτ . By definition,

a ◦m ◦ b = (a ? mτ ? b)τ ∀a, b ∈ A , ∀m ∈ Aτ . (A.3)

The bimodule axioms are verified immediately. Let us introduce the subspace M = C[[y]] ⊂ Aτ .

We claim that M is actually an A-submodule. This is enough to check only for the generators.

17As in the main text, the index A is raised and lowered with the help of the ε-symbol and y · z ≡ yAzA.
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We find
yA ◦m = (−∂Ay + λyA)m(y) ,

m ◦ yA = (−∂Ay − λyA)m(y) ,
zA ◦m = m ◦ zA = 0 . (A.4)

Notice that the left and right actions of A on M are different unless λ 6= 0. As usual, one can

regard the A-bimodule M as a graded algebra A⊕M w.r.t. the product

(a,m)(ã, m̃) = (aã, am̃+ ãm) . (A.5)

The elements of the subspaces A and M are prescribed the degrees 0 and 1, respectively.

A map δ : M → A will define a differential of the algebra A ⊕M of degree −1, making it

into a dg-algebra, iff the following relations are satisfied:

δ(a ◦m ◦ b) = a ? δm ? b , δm ◦ m̃ = m ◦ δm̃ . (A.6)

Let us set δm = mτ . Then the first relation takes the form

(a ◦m ◦ b)τ = a ? mτ ? b , (A.7)

which is equivalent to the definition (A.3). The second relation boils down to the identity

mτ ◦ m̃ = (mτ ∗ m̃τ )τ = m ◦ m̃τ . (A.8)

As a next step, we introduce the Grassmann algebra Λ on two generators dzA,

dzAdzB = −dzBdzA , (A.9)

both in degree 1, and define the tensor product algebra B = A⊗ Λ. Assuming the generators

dzA act trivially in M, i.e.,

dzA ◦m = m ◦ dzA = 0 , (A.10)

we endow M with the structure of B-bimodule and define the graded algebra B⊕M with the

product (A.5), where now (a,m) ∈ B⊕M. The differential δ above gives rise to a differential

δ of degree +1 on B⊕M. The latter is defined as

δa = 0 , δm = mτdz1dz2 ∈ B (A.11)

for all a ∈ B and m ∈M. It easy to see that relations (A.6) hold true for A replaced with B
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and δ replaced with δ. Hence, we may regard B⊕M as a dg-algebra with differential δ.

Considering now the elements a(y, z, dz) ∈ B as exterior differential forms in z’s, we endow

the dg-algebra B ⊕M with another differential denoted by d. This is given by the exterior

differential on B and extends trivially to M:

da = dzA
∂a

∂zA
, dm = 0 (A.12)

for all a ∈ B and m ∈ M. It is clear that the operator d has degree 1, squares to zero, and

differentiates the product (A.5) in B⊕M. Furthermore, the differentials d and δ commute to

each other, which allows one to combine them into the total differential D = d+ δ of degree 1.

In such a way we arrive at the dg-algebra (B⊕M, D).

Given the dg-algebra (B⊕M, D), one may ask about its cohomology and the minimal model.

Since δ has form degree 2, one may regard it as a ‘small perturbation’ of d; the differential d

increases the form degree only by 1. Then the standard spectral sequence arguments coupled to

the Poincaré lemma for the exterior differential (A.12) show that H(B⊕M) ' C[[y]]⊕C[[y]]. (It

is isomorphic to the space of z-independent elements of A⊕M, which are obviously nontrivial

d-cocycles.) The graded space H(B ⊕M) generates the full spectrum of fields – ω and C –

in Chiral HiSGRA. It turns out that the dg-algebra B ⊕M is not formal, meaning that the

cohomology space H(B⊕M) enjoys higher multiplication operations, in addition to the binary

product induced by (A.5), making it into a minimal A∞-algebra. Denoting this A∞-algebra

by A and tensoring it with the associative algebra A1 ⊗ MatN , we get a bigger A∞-algebra

A⊗A1⊗MatN . Applying the standard symmetrization map to A⊗A1⊗MatN gives finally a

minimal L∞-algebra. It is this L∞-algebra that defines the r.h.s. of field equations (2.3).

Since the unperturbed differential d admits an explicit contracting homotopy h – that from

the Poincaré lemma (3.21) – there is a systematic method for constructing the minimal model

of the dg-algebra (B ⊕M, D). The method results in explicit expressions for the higher mul-

tiplication operations in A, see e.g. [104], [105]. For more details we refer the reader to [106]

and to our recent paper [33], where such a minimal model is constructed for the limiting case

λ = 0. (All basic steps and formulas are precisely the same.) This provides a rationale for the

integrals and their diagrammatic representation in the main text.

Finally, let us recall that the A∞-algebra A, being constructed in terms of the partially

defined ?-product (A.1), is actually a partial algebra. However, a closer examination [33, App.

C] shows that all the multiplication operations entering the definition of A are well defined for

the elements of the subspace C[y]⊕C[[y]] ⊂ H(B⊕M). Upon restriction to this subspace we

get a total A∞-algebra that governs the interaction in Chiral HiSGRA.
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B NNLO vertices

Straightforward evaluation of G1 gives

G1 = (p12)2 exp
[

(1− u1 − u2) p01 + (1− u3 − u4) p02 + u1p13 + u2p14 + u3p23 + u4p24+

+ λ (u4u1 + u1 + u2 − u2u3 − u3 − u4 + 1) p12

]
,

where the original integration variables ti, i = 1, 2, 3, 4 that are integrated over [0, 1] can be

identified as

u1 =
t1 (t2 − 1) t3t4
t1t2t3 − 1

, u2 =
t2 (t1t3 − 1) t4
t1t2t3 − 1

, u3 =
t1 (t2t3 − 1)

t1t2t3 − 1
, u4 =

(t1 − 1) t2
t1t2t3 − 1

.

Note that going to u’s instead of t’s generates a Jacobian that kills a t-dependent prefactor,

which is the same as in [33]. The corresponding U -vertex is obtained via the duality map:

U(ω,C,C,C) : U(p0, p1, p2, p3, p4) = V(−p4, p0, p1, p2, p3) .

Similarly, the second tree gives

G2 = −(p13)2 exp
[

(1− u1 − u2) p01 + (1 + u3 − u4) p03 + u1p12 + u2p14 + u3p23 + u4p34+

+ λ (u4u1 − u1 + u2 + u2u3 + u3 − u4 + 1) p13

]
,

where

u1 =
t1 (t2t3t4 − 1)

t1t2t3t4 − 1
, u2 =

(t1 − 1) t2t4
t1t2t3t4 − 1

, u3 = −t1 (t2 − 1) t3
t1t2t3t4 − 1

, u4 =
t2 (t1t3t4 − 1)

t1t2t3t4 − 1
.

While not immediately obvious the integrals converge and are over the compact domain in u’s.

We have also checked directly up to the first few orders that G1 = V1(ω, ω, C,C) satisfies the

L∞-algebra relation

−ω ? V1(ω, ω, C,C) + V1(ω ? ω, ω, C,C)− V1(ω, ω ? ω,C,C) + V1(ω, ω,U1(ω,C), C)

+V1(ω, ω,U1(ω,C,C))− V1(ω,V1(ω, ω, C), C) = 0 .

The other U -vertices are obtained exactly as in [33] via the duality map.
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C NNNLO vertex and beyond

It is very easy to go to the next level and evaluate a single tree that contributes to the quintic

vertex V(ω, ω, C,C,C). The tree grows as

G =

µ

a µ

µ Λ[w]

µ Λ[v]

b Λ[u]

h

h

h

The answer is a six-fold integral over the ‘times’ ti, i = 1, ..., 6:

G = (p12)3 exp
[
(1− u1 − u2 − u3)p01 + (1− u4 − u5 − u6)p02 + u1p13 + u2p14+

+ u3p15 + u4p23 + u5p24 + u6p25+

+ λ (− ((u3 + 1) (u4 + u5 − 1))− u6 + u2 (1− u4 + u6) + u1 (u5 + u6 + 1)) p12

]
,

where the integration variables are expressed as

u1 =
t1 (t2 − 1) (t3 − 1) t4t5t6

−t2t3t5 + t1t4 ((2t2 − 1) t3t5 − t2) + 1
, u2 =

t2 (t3 − 1) (t1t4 − 1) t5t6
−t2t3t5 + t1t4 ((2t2 − 1) t3t5 − t2) + 1

,

u3 =
t3 (−t2t5 + t1t4 (t2 (2t5 − 1)− t5) + 1) t6
−t2t3t5 + t1t4 ((2t2 − 1) t3t5 − t2) + 1

, u4 =
t1 (−t2t4 + t3 (t2 (2t4 − 1)− t4) t5 + 1)

−t2t3t5 + t1t4 ((2t2 − 1) t3t5 − t2) + 1
,

u5 =
(t1 − 1) t2 (t3t5 − 1)

−t2t3t5 + t1t4 ((2t2 − 1) t3t5 − t2) + 1
, u6 =

(t1 − 1) (t2 − 1) t3
−t2t3t5 + t1t4 ((2t2 − 1) t3t5 − t2) + 1

.

It is again pleasing how local the vertex is: there are no p34, p45 and p35. The corresponding

U -vertex is obtained via the duality map:

U(ω,C,C,C,C) : U1(p0, p1, p2, p3, p4, p5) = V1(−p5, p0, p1, p2, p3, p4) .
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It is easy to iterate the tree and find the all order result for V(ω, ω, C, ..., C):

G = (p12)n exp
[
(1−

∑
i

ui)p01 + (1−
∑
i

vi)p02 +
∑
i

uip1,i+2 +
∑
i

vip2,i+2+

+ λ
(

1 +
∑
i

(ui − vi) +
∑
i,j

uivj sign(j − i)
)
p12

]
.

Here all sums are from 1 to n and n is the number of C-fields. By definition, we set sign(0) = 0.

This also gives U(ω,C,C, ..., C) via the duality map. Other trees lead to similar expressions.

Bibliography

[1] X. Bekaert, N. Boulanger, A. Campoleoni, M. Chiodaroli, D. Francia, M. Grigoriev, E. Sezgin, and

E. Skvortsov, “Snowmass White Paper: Higher Spin Gravity and Higher Spin symmetry,”

arXiv:2205.01567 [hep-th].

[2] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Adv. Theor.

Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.

[3] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from non-critical string

theory,” Phys. Lett. B428 (1998) 105–114, arXiv:hep-th/9802109.

[4] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291,

arXiv:hep-th/9802150.

[5] M. Blencowe, “A Consistent Interacting Massless Higher Spin Field Theory in D = (2+1),”

Class.Quant.Grav. 6 (1989) 443.

[6] E. Bergshoeff, M. P. Blencowe, and K. S. Stelle, “Area Preserving Diffeomorphisms and Higher Spin

Algebra,” Commun. Math. Phys. 128 (1990) 213.

[7] A. Campoleoni, S. Fredenhagen, S. Pfenninger, and S. Theisen, “Asymptotic symmetries of

three-dimensional gravity coupled to higher-spin fields,” JHEP 1011 (2010) 007, arXiv:1008.4744

[hep-th].

[8] M. Henneaux and S.-J. Rey, “Nonlinear W∞ as Asymptotic Symmetry of Three-Dimensional Higher

Spin Anti-de Sitter Gravity,” JHEP 1012 (2010) 007, arXiv:1008.4579 [hep-th].

[9] C. N. Pope and P. K. Townsend, “Conformal Higher Spin in (2+1)-dimensions,” Phys. Lett. B225

(1989) 245–250.

[10] E. S. Fradkin and V. Ya. Linetsky, “A Superconformal Theory of Massless Higher Spin Fields in D =

(2+1),” Mod. Phys. Lett. A4 (1989) 731. [Annals Phys.198,293(1990)].

[11] M. Grigoriev, I. Lovrekovic, and E. Skvortsov, “New Conformal Higher Spin Gravities in 3d,” JHEP 01

(2020) 059, arXiv:1909.13305 [hep-th].

[12] A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B664 (2003) 59–130, arXiv:hep-th/0207212

[hep-th].

25

http://arxiv.org/abs/2205.01567
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/1008.4744
http://arxiv.org/abs/1008.4744
http://arxiv.org/abs/1008.4579
http://arxiv.org/abs/1909.13305
http://arxiv.org/abs/hep-th/0207212
http://arxiv.org/abs/hep-th/0207212


[13] A. A. Tseytlin, “On limits of superstring in AdS5 × S5,” Theor. Math. Phys. 133 (2002) 1376–1389,

arXiv:hep-th/0201112 [hep-th]. [Teor. Mat. Fiz.133,69(2002)].

[14] X. Bekaert, E. Joung, and J. Mourad, “Effective action in a higher-spin background,” JHEP 02 (2011)

048, arXiv:1012.2103 [hep-th].

[15] R. R. Metsaev, “Poincare invariant dynamics of massless higher spins: Fourth order analysis on mass

shell,” Mod. Phys. Lett. A6 (1991) 359–367.

[16] R. R. Metsaev, “S matrix approach to massless higher spins theory. 2: The Case of internal symmetry,”

Mod. Phys. Lett. A6 (1991) 2411–2421.

[17] D. Ponomarev and E. D. Skvortsov, “Light-Front Higher-Spin Theories in Flat Space,” J. Phys. A50

no. 9, (2017) 095401, arXiv:1609.04655 [hep-th].

[18] E. D. Skvortsov, T. Tran, and M. Tsulaia, “Quantum Chiral Higher Spin Gravity,” Phys. Rev. Lett. 121

no. 3, (2018) 031601, arXiv:1805.00048 [hep-th].

[19] E. Skvortsov, T. Tran, and M. Tsulaia, “More on Quantum Chiral Higher Spin Gravity,” Phys. Rev.

D101 no. 10, (2020) 106001, arXiv:2002.08487 [hep-th].

[20] D. Ponomarev, “Chiral Higher Spin Theories and Self-Duality,” JHEP 12 (2017) 141,

arXiv:1710.00270 [hep-th].

[21] K. Krasnov, E. Skvortsov, and T. Tran, “Actions for Self-dual Higher Spin Gravities,”

arXiv:2105.12782 [hep-th].

[22] G. Chalmers and W. Siegel, “Simplifying algebra in Feynman graphs. Part 2. Spinor helicity from the

space-cone,” Phys. Rev. D59 (1999) 045013, arXiv:hep-ph/9801220 [hep-ph].

[23] D. Chakrabarti, J. Qiu, and C. B. Thorn, “Scattering of glue by glue on the light-cone worldsheet. I.

Helicity non-conserving amplitudes,” Phys. Rev. D72 (2005) 065022, arXiv:hep-th/0507280

[hep-th].

[24] D. Chakrabarti, J. Qiu, and C. B. Thorn, “Scattering of glue by glue on the light-cone worldsheet. II.

Helicity conserving amplitudes,” Phys. Rev. D74 (2006) 045018, arXiv:hep-th/0602026 [hep-th].

[Erratum: Phys. Rev.D76,089901(2007)].

[25] A. K. H. Bengtsson, “Notes on Cubic and Quartic Light-Front Kinematics,” arXiv:1604.01974.

[26] D. Ponomarev, “Off-Shell Spinor-Helicity Amplitudes from Light-Cone Deformation Procedure,” JHEP

12 (2016) 117, arXiv:1611.00361 [hep-th].

[27] A. K. H. Bengtsson, I. Bengtsson, and N. Linden, “Interacting Higher Spin Gauge Fields on the Light

Front,” Class. Quant. Grav. 4 (1987) 1333.

[28] P. Benincasa and E. Conde, “Exploring the S-Matrix of Massless Particles,” Phys. Rev. D 86 (2012)

025007, arXiv:1108.3078 [hep-th].

[29] E. Skvortsov and T. Tran, “One-loop Finiteness of Chiral Higher Spin Gravity,” arXiv:2004.10797

[hep-th].

[30] R. R. Metsaev, “Light-cone gauge cubic interaction vertices for massless fields in AdS(4),” Nucl. Phys.

B936 (2018) 320–351, arXiv:1807.07542 [hep-th].

[31] E. Skvortsov, “Light-Front Bootstrap for Chern-Simons Matter Theories,” JHEP 06 (2019) 058,

arXiv:1811.12333 [hep-th].

26

http://arxiv.org/abs/hep-th/0201112
http://arxiv.org/abs/1012.2103
http://arxiv.org/abs/1609.04655
http://arxiv.org/abs/1805.00048
http://arxiv.org/abs/2002.08487
http://arxiv.org/abs/1710.00270
http://arxiv.org/abs/2105.12782
http://dx.doi.org/10.1103/PhysRevD.59.045013
http://arxiv.org/abs/hep-ph/9801220
http://dx.doi.org/10.1103/PhysRevD.72.065022
http://arxiv.org/abs/hep-th/0507280
http://arxiv.org/abs/hep-th/0507280
http://dx.doi.org/10.1103/PhysRevD.76.089901, 10.1103/PhysRevD.74.045018
http://arxiv.org/abs/hep-th/0602026
http://arxiv.org/abs/1604.01974
http://dx.doi.org/10.1007/JHEP12(2016)117
http://dx.doi.org/10.1007/JHEP12(2016)117
http://arxiv.org/abs/1611.00361
http://dx.doi.org/10.1103/PhysRevD.86.025007
http://dx.doi.org/10.1103/PhysRevD.86.025007
http://arxiv.org/abs/1108.3078
http://arxiv.org/abs/2004.10797
http://arxiv.org/abs/2004.10797
http://dx.doi.org/10.1016/j.nuclphysb.2018.09.021
http://dx.doi.org/10.1016/j.nuclphysb.2018.09.021
http://arxiv.org/abs/1807.07542
http://arxiv.org/abs/1811.12333


[32] E. Skvortsov and R. Van Dongen, “Minimal models of field theories: Chiral Higher Spin Gravity,”

arXiv:2204.10285 [hep-th].

[33] A. Sharapov, E. Skvortsov, A. Sukhanov, and R. Van Dongen, “Minimal model of Chiral Higher Spin

Gravity,” arXiv:2205.07794 [hep-th].

[34] D. Sullivan, “Infinitesimal computations in topology,” Publ. Math. IHES 47 (1977) 269–331.

[35] P. van Nieuwenhuizen, “Free graded differential superalgebras,” in Group Theoretical Methods in

Physics. Proceedings, 11th International Colloquium, Istanbul, Turkey, August 23-28, 1982, pp. 228–247.

1982.

[36] R. D’Auria, P. Fre, and T. Regge, “Graded Lie Algebra Cohomology and Supergravity,” Riv. Nuovo

Cim. 3N12 (1980) 1.

[37] M. A. Vasiliev, “Consistent equations for interacting massless fields of all spins in the first order in

curvatures,” Annals Phys. 190 (1989) 59–106.

[38] G. Barnich and M. Grigoriev, “First order parent formulation for generic gauge field theories,” JHEP

1101 (2011) 122, arXiv:1009.0190 [hep-th].

[39] M. Grigoriev, “Parent formulations, frame-like Lagrangians, and generalized auxiliary fields,” JHEP 12

(2012) 048, arXiv:1204.1793 [hep-th].

[40] M. Grigoriev and A. Kotov, “Gauge PDE and AKSZ-type Sigma Models,” Fortsch. Phys. 67 no. 8-9,

(2019) 1910007, arXiv:1903.02820 [hep-th].

[41] M. Grigoriev, K. Mkrtchyan, and E. Skvortsov, “Matter-free higher spin gravities in 3D:

Partially-massless fields and general structure,” Phys. Rev. D 102 no. 6, (2020) 066003,

arXiv:2005.05931 [hep-th].

[42] F. Brandt, “Gauge covariant algebras and local BRST cohomology,” Contemp. Math. 219 (1998) 53–67,

arXiv:hep-th/9711171.

[43] F. Brandt, “Local BRST cohomology and covariance,” Commun. Math. Phys. 190 (1997) 459–489,

arXiv:hep-th/9604025.

[44] G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in the antifield formalism. 1.

General theorems,” Commun. Math. Phys. 174 (1995) 57–92, arXiv:hep-th/9405109.

[45] G. Barnich, F. Brandt, and M. Henneaux, “Local BRST cohomology in the antifield formalism. II.

Application to Yang-Mills theory,” Commun. Math. Phys. 174 (1995) 93–116, arXiv:hep-th/9405194.

[46] D. Kaparulin, S. Lyakhovich, and A. Sharapov, “Local BRST cohomology in (non-)Lagrangian field

theory,” JHEP 09 (2011) 006, arXiv:1106.4252 [hep-th].

[47] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector model,” Phys. Lett. B550

(2002) 213–219, arXiv:hep-th/0210114.

[48] E. Sezgin and P. Sundell, “Holography in 4D (super) higher spin theories and a test via cubic scalar

couplings,” JHEP 0507 (2005) 044, arXiv:hep-th/0305040 [hep-th].

[49] R. G. Leigh and A. C. Petkou, “Holography of the N=1 higher spin theory on AdS(4),” JHEP 0306

(2003) 011, arXiv:hep-th/0304217 [hep-th].

[50] S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia, and X. Yin, “Chern-Simons Theory with

Vector Fermion Matter,” Eur. Phys. J. C72 (2012) 2112, arXiv:1110.4386 [hep-th].

27

http://arxiv.org/abs/2204.10285
http://arxiv.org/abs/2205.07794
http://arxiv.org/abs/1009.0190
http://dx.doi.org/10.1007/JHEP12(2012)048
http://dx.doi.org/10.1007/JHEP12(2012)048
http://arxiv.org/abs/1204.1793
http://dx.doi.org/10.1002/prop.201910007
http://dx.doi.org/10.1002/prop.201910007
http://arxiv.org/abs/1903.02820
http://dx.doi.org/10.1103/PhysRevD.102.066003
http://arxiv.org/abs/2005.05931
http://dx.doi.org/10.1090/conm/219/03067
http://arxiv.org/abs/hep-th/9711171
http://dx.doi.org/10.1007/s002200050248
http://arxiv.org/abs/hep-th/9604025
http://dx.doi.org/10.1007/BF02099464
http://arxiv.org/abs/hep-th/9405109
http://dx.doi.org/10.1007/BF02099465
http://arxiv.org/abs/hep-th/9405194
http://arxiv.org/abs/1106.4252
http://arxiv.org/abs/hep-th/0210114
http://arxiv.org/abs/hep-th/0305040
http://arxiv.org/abs/hep-th/0304217
http://arxiv.org/abs/1110.4386


[51] X. Bekaert, J. Erdmenger, D. Ponomarev, and C. Sleight, “Quartic AdS Interactions in Higher-Spin

Gravity from Conformal Field Theory,” JHEP 11 (2015) 149, arXiv:1508.04292 [hep-th].

[52] J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk point,” JHEP 01 (2017) 013,

arXiv:1509.03612 [hep-th].

[53] C. Sleight and M. Taronna, “Higher-Spin Gauge Theories and Bulk Locality,” Phys. Rev. Lett. 121

no. 17, (2018) 171604, arXiv:1704.07859 [hep-th].

[54] D. Ponomarev, “A Note on (Non)-Locality in Holographic Higher Spin Theories,” Universe 4 no. 1,

(2018) 2, arXiv:1710.00403 [hep-th].

[55] S. Giombi and X. Yin, “Higher Spin Gauge Theory and Holography: The Three-Point Functions,”

JHEP 1009 (2010) 115, arXiv:0912.3462 [hep-th].

[56] S. Giombi and X. Yin, “Higher Spins in AdS and Twistorial Holography,” JHEP 1104 (2011) 086,

arXiv:1004.3736 [hep-th].

[57] N. Boulanger, P. Kessel, E. D. Skvortsov, and M. Taronna, “Higher spin interactions in four-dimensions:

Vasiliev versus Fronsdal,” J. Phys. A49 no. 9, (2016) 095402, arXiv:1508.04139 [hep-th].

[58] M. A. Vasiliev, “Closed equations for interacting gauge fields of all spins,” JETP Lett. 51 (1990)

503–507.

[59] R. de Mello Koch, A. Jevicki, K. Suzuki, and J. Yoon, “AdS Maps and Diagrams of Bi-local

Holography,” JHEP 03 (2019) 133, arXiv:1810.02332 [hep-th].

[60] O. Aharony, S. M. Chester, and E. Y. Urbach, “A Derivation of AdS/CFT for Vector Models,”

arXiv:2011.06328 [hep-th].

[61] X. Bekaert, N. Boulanger, and S. Leclercq, “Strong obstruction of the Berends-Burgers-van Dam spin-3

vertex,” J.Phys. A43 (2010) 185401, arXiv:1002.0289 [hep-th].

[62] P. Dempster and M. Tsulaia, “On the Structure of Quartic Vertices for Massless Higher Spin Fields on

Minkowski Background,” Nucl. Phys. B865 (2012) 353–375, arXiv:1203.5597 [hep-th].

[63] R. Roiban and A. A. Tseytlin, “On four-point interactions in massless higher spin theory in flat space,”

JHEP 04 (2017) 139, arXiv:1701.05773 [hep-th].

[64] J. Maldacena and A. Zhiboedov, “Constraining conformal field theories with a slightly broken higher

spin symmetry,” arXiv:1204.3882 [hep-th].

[65] O. Aharony, G. Gur-Ari, and R. Yacoby, “Correlation Functions of Large N Chern-Simons-Matter

Theories and Bosonization in Three Dimensions,” JHEP 12 (2012) 028, arXiv:1207.4593 [hep-th].

[66] O. Aharony, “Baryons, monopoles and dualities in Chern-Simons-matter theories,” JHEP 02 (2016) 093,

arXiv:1512.00161 [hep-th].

[67] A. Karch and D. Tong, “Particle-Vortex Duality from 3d Bosonization,” Phys. Rev. X6 no. 3, (2016)

031043, arXiv:1606.01893 [hep-th].

[68] N. Seiberg, T. Senthil, C. Wang, and E. Witten, “A Duality Web in 2+1 Dimensions and Condensed

Matter Physics,” Annals Phys. 374 (2016) 395–433, arXiv:1606.01989 [hep-th].

[69] A. Sharapov and E. Skvortsov, “A∞ algebras from slightly broken higher spin symmetries,” JHEP 09

(2019) 024, arXiv:1809.10027 [hep-th].

28

http://arxiv.org/abs/1508.04292
http://arxiv.org/abs/1509.03612
http://arxiv.org/abs/1704.07859
http://arxiv.org/abs/1710.00403
http://arxiv.org/abs/0912.3462
http://arxiv.org/abs/1004.3736
http://arxiv.org/abs/1508.04139
http://arxiv.org/abs/1810.02332
http://arxiv.org/abs/2011.06328
http://arxiv.org/abs/1002.0289
http://dx.doi.org/10.1016/j.nuclphysb.2012.07.031
http://arxiv.org/abs/1203.5597
http://dx.doi.org/10.1007/JHEP04(2017)139
http://arxiv.org/abs/1701.05773
http://arxiv.org/abs/1204.3882
http://arxiv.org/abs/1207.4593
http://arxiv.org/abs/1512.00161
http://arxiv.org/abs/1606.01893
http://arxiv.org/abs/1606.01989
http://dx.doi.org/10.1007/JHEP09(2019)024
http://dx.doi.org/10.1007/JHEP09(2019)024
http://arxiv.org/abs/1809.10027


[70] P. Gerasimenko, A. Sharapov, and E. Skvortsov, “Slightly broken higher spin symmetry: general

structure of correlators,” JHEP 01 (2022) 097, arXiv:2108.05441 [hep-th].

[71] A. Sharapov and E. Skvortsov, “Integrable Models From Non-Commutative Geometry With

Applications to 3D Dualities,” in 21st Hellenic School and Workshops on Elementary Particle Physics

and Gravity. 4, 2022. arXiv:2204.08903 [hep-th].

[72] T. Tran, “Twistor constructions for higher-spin extensions of (self-dual) Yang-Mills,” JHEP 11 (2021)

117, arXiv:2107.04500 [hep-th].

[73] R. Penrose and W. Rindler, Spinors and Space-Time, vol. 1 of Cambridge Monographs on Mathematical

Physics. Cambridge University Press, 1984.

[74] M. A. Vasiliev, “Free massless fields of arbitrary spin in the de sitter space and initial data for a higher

spin superalgebra,” Fortsch. Phys. 35 (1987) 741–770.

[75] P. A. M. Dirac, “A Remarkable representation of the 3 + 2 de Sitter group,” J. Math. Phys. 4 (1963)

901–909.

[76] M. Günaydin and C. Saclioglu, “Oscillator Like Unitary Representations of Noncompact Groups With a

Jordan Structure and the Noncompact Groups of Supergravity,” Commun. Math. Phys. 87 (1982) 159.

[77] M. Günaydin, “Oscillator like unitary representations of noncompact groups and supergroups and

extended supergravity theories,” in Group Theoretical Methods in Physics. Proceedings, 11th

International Colloquium, Istanbul, Turkey, August 23-28, 1982, pp. 192–213. 1983.

[78] E. S. Fradkin and M. A. Vasiliev, “Candidate to the role of higher spin symmetry,” Ann. Phys. 177

(1987) 63.

[79] M. A. Vasiliev, “Extended higher spin superalgebras and their realizations in terms of quantum

operators,” Fortsch. Phys. 36 (1988) 33–62.

[80] M. Günaydin, “Singleton and doubleton supermultiplets of space-time supergroups and infinite spin

superalgebras,” in Trieste Conference on Supermembranes and Physics in 2+1 Dimensions Trieste,

Italy, July 17-21, 1989, pp. 0442–456. 1989.

[81] M. A. Vasiliev, “Higher spin gauge theories: Star-product and AdS space,” hep-th/9910096.

[82] A. A. Sharapov and E. D. Skvortsov, “Formal higher-spin theories and Kontsevich–Shoikhet–Tsygan

formality,” Nucl. Phys. B921 (2017) 538–584, arXiv:1702.08218 [hep-th].

[83] E. D. Skvortsov and M. Taronna, “On Locality, Holography and Unfolding,” JHEP 11 (2015) 044,

arXiv:1508.04764 [hep-th].

[84] V. Didenko and E. Skvortsov, “Elements of Vasiliev theory,” arXiv:1401.2975 [hep-th].

[85] G. Barnich and M. Henneaux, “Consistent couplings between fields with a gauge freedom and

deformations of the master equation,” Phys. Lett. B311 (1993) 123–129, arXiv:hep-th/9304057

[hep-th].

[86] C. Sleight and M. Taronna, “Higher Spin Interactions from Conformal Field Theory: The Complete

Cubic Couplings,” Phys. Rev. Lett. 116 no. 18, (2016) 181602, arXiv:1603.00022 [hep-th].

[87] V. E. Didenko, O. A. Gelfond, A. V. Korybut, and M. A. Vasiliev, “Homotopy Properties and

Lower-Order Vertices in Higher-Spin Equations,” J. Phys. A 51 no. 46, (2018) 465202,

arXiv:1807.00001 [hep-th].

29

http://dx.doi.org/10.1007/JHEP01(2022)097
http://arxiv.org/abs/2108.05441
http://arxiv.org/abs/2204.08903
http://dx.doi.org/10.1007/JHEP11(2021)117
http://dx.doi.org/10.1007/JHEP11(2021)117
http://arxiv.org/abs/2107.04500
http://dx.doi.org/10.1017/CBO9780511564048
http://arxiv.org/abs/hep-th/9910096
http://arxiv.org/abs/1702.08218
http://arxiv.org/abs/1508.04764
http://arxiv.org/abs/1401.2975
http://arxiv.org/abs/hep-th/9304057
http://arxiv.org/abs/hep-th/9304057
http://arxiv.org/abs/1603.00022
http://dx.doi.org/10.1088/1751-8121/aae5e1
http://arxiv.org/abs/1807.00001


[88] V. E. Didenko, O. A. Gelfond, A. V. Korybut, and M. A. Vasiliev, “Limiting Shifted Homotopy in

Higher-Spin Theory and Spin-Locality,” JHEP 12 (2019) 086, arXiv:1909.04876 [hep-th].

[89] V. E. Didenko, O. A. Gelfond, A. V. Korybut, and M. A. Vasiliev, “Spin-locality of η2 and η2 quartic

higher-spin vertices,” JHEP 12 (2020) 184, arXiv:2009.02811 [hep-th].

[90] O. A. Gelfond and A. V. Korybut, “Manifest form of the spin-local higher-spin vertex Υ ηηωCCC ,” Eur.

Phys. J. C 81 no. 7, (2021) 605, arXiv:2101.01683 [hep-th].

[91] A. Sharapov and E. Skvortsov, “Characteristic Cohomology and Observables in Higher Spin Gravity,”

JHEP 12 (2020) 190, arXiv:2006.13986 [hep-th].

[92] M. Kontsevich, “Deformation quantization of Poisson manifolds. 1.,” Lett. Math. Phys. 66 (2003)

157–216, arXiv:q-alg/9709040 [q-alg].

[93] B. Shoikhet, “A proof of the Tsygan formality conjecture for chains,” Advances in Mathematics 179

no. 1, (2003) 7 – 37.

[94] E. Sezgin and P. Sundell, “An Exact solution of 4-D higher-spin gauge theory,” Nucl.Phys. B762 (2007)

1–37, arXiv:hep-th/0508158 [hep-th].

[95] V. Didenko and M. Vasiliev, “Static BPS black hole in 4d higher-spin gauge theory,” Phys.Lett. B682

(2009) 305–315, arXiv:0906.3898 [hep-th].

[96] R. Aros, C. Iazeolla, J. Noreña, E. Sezgin, P. Sundell, and Y. Yin, “FRW and domain walls in higher

spin gravity,” JHEP 03 (2018) 153, arXiv:1712.02401 [hep-th].

[97] V. E. Didenko and A. V. Korybut, “Planar solutions of higher-spin theory. Nonlinear corrections,”

JHEP 01 (2022) 125, arXiv:2110.02256 [hep-th].

[98] V. E. Didenko and A. V. Korybut, “Planar solutions of higher-spin theory. Part I. Free field level,”

JHEP 08 (2021) 144, arXiv:2105.09021 [hep-th].

[99] P. Hähnel and T. McLoughlin, “Conformal higher spin theory and twistor space actions,” J. Phys. A 50

no. 48, (2017) 485401, arXiv:1604.08209 [hep-th].

[100] T. Adamo, P. Hähnel, and T. McLoughlin, “Conformal higher spin scattering amplitudes from twistor

space,” JHEP 04 (2017) 021, arXiv:1611.06200 [hep-th].

[101] X. Bekaert and M. Grigoriev, “Higher order singletons, partially massless fields and their boundary

values in the ambient approach,” Nucl. Phys. B876 (2013) 667–714, arXiv:1305.0162 [hep-th].

[102] G. Grätzer, Universal Algebra. Springer, 2 ed., 1979.

[103] E. S. Ljapin and A. E. Evseev, The Theory of Partial Algebraic Operations. Mathematics and Its

Applications 414. Springer, 1 ed., 1997.

[104] S. Merkulov, “Strong homotopy algebras of a Kähler manifold,” International Mathematics Research

Notices 1999 (1999) 153–153.

[105] M. Markl, “Transferring A∞ (strongly homotopy associative) structures,” in The proceedings of the 25th
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