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Abstract

Whenever a given Poisson manifold is equipped with discrete symmetries the correspond-

ing algebra of invariant functions or the algebra of functions twisted by the symmetry group

can have new deformations, which are not captured by Kontsevich Formality. We consider

the simplest example of this situation: R2 with the reflection symmetry Z2. The usual quan-

tization leads to the Weyl algebra. While Weyl algebra is rigid, the algebra of even or twisted

by Z2 functions has one more deformation, which was identified by Wigner and is related

to Feigin’s glλ and to fuzzy sphere. With the help of homological perturbation theory we

obtain explicit formula for the deformed product, the first order of which can be extracted

from Shoikhet–Tsygan–Kontsevich formality.
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1 Introduction

The essence of the deformation quantization problem is to deform the usual point-wise product of

smooth functions on a Poisson manifold P; in so doing, the first order deformation is supposed to

be given by the Poisson bracket, f ⋆ g = fg + i~{f, g}+ · · · , and the problem is to complete the

series in such a way that the new ⋆-product be associative. The solution to this problem was given

by Kontsevich [1] and was shown to result from the perturbative expansion of the path integral for

the Poisson sigma-model [2]. It was also proved in [1] that non-equivalent quantizations of the same

Poisson manifold are in one-to-one correspondence with formal (non-equivalent) deformations of

the underlying Poisson bracket. In particular, if the Poisson bracket happens to be rigid (e.g. a

symplectic manifold with trivial second de Rham cohomology), then the deformation quantization

of P is essentially unique and the corresponding ⋆-product algebra, called the algebra of quantum

observables, is rigid as well.

What if a given Poisson manifold P has some group Γ of (discrete) symmetries? There are two

more natural algebras in this situation. Instead of C∞(P) one can consider the algebra C∞(P)Γ of

Γ-invariant functions, that is, ‘smooth’ functions on the orbifold P/Γ. Alternatively, one can form

the crossed product algebra C∞(P)⋊ Γ, extending C∞(P) with the elements of Γ. A remarkable

fact, see e.g. [3–5], is that either algebra may admit new deformations! In particular, the quantized

algebra C∞(P) can have new non-trivial deformations when it is extended or quotiented by Γ.

Therefore, there can be a few independent directions of quantization in the presence of symmetries,

only one of which being captured by the Formality theorem.

The general problem of deformation quantization of Poisson orbifolds is ‘easy’ to solve: one

just needs to quantize the Poisson sigma-model on a given Poisson orbifold, like it was done in [2]

for a Poisson manifold that is topologically R
n. It is difficult, however, to give the general recipe

leading to concrete expressions. It is also not clear if the problem can be solved in full generality

or it is doomed to the case by case study.

A rich class of examples of deformation quantization on Poisson orbifolds is provided by Sym-

plectic Reflection Algebras [6], [7]. These algebras were shown to implement the deformation

quantization of the crossed product algebra C∞(R2n)⋊ Γ, where R
2n is a linear symplectic space.

The proof given in [6] (see also [8]) does not lead, however, to explicit formulas, appealing to the

PBW property of symplectic reflection algebras. On the other hand, all the algebras C∞(R2n)⋊Γ

fall into the class captured by the general approach of [9] that leads to explicit formulas for defor-

mations. In this paper, we exemplify the approach by the simplest Poisson orbifold R
2/Z2. Apart

from Deformation Quantization, our interest is in the fact that this problem is related to the

3d bosonization duality in the large-N limit, see [10–12] and references therein. We first briefly
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review a number of different contexts where such an algebra showed up in the literature in Section

2 and present our results in Section 3, which are supported by three technical Appendices.

2 Deformed canonical commutation relations

The simplest example of a Poisson orbifold appeared in the physics literature long ago [13]; since

then it has reappeared in several other topics over the years, see e.g. [14–18]. Wigner addressed

the question to which extent the canonical commutation relations [q, p] = i~ follow from the

equations of motion in the case of a single particle in the harmonic potential:

i
~
[H, q] = p , i

~
[H, p] = −V ′(q) , H = 1

2
p2 + V (q) , V (q) = 1

2
q2 . (2.1)

He argued that since the Heisenberg equations of motion are more fundamental than the relation

[q, p] = i~ it makes sense to postulate the former and investigate to which extent they determine

the latter. He found that q, p should satisfy a weaker relation ([q, p] − i~)2 = −u2 for some real

constant u (the notation is adapted to the discussion below). One can take the ‘square root’ of

this relation to get [14, 15, 17]

[q, p] = i~+ iuR , RqR = −q , RpR = −p , R2 = 1 . (2.2)

In other words, the quantum mechanical system is equipped with a parity operator2 R, which

performs the reflection on q, p. Therefore, Wigner’s result is that the canonical commutation

relations can be deformed (2.2) without affecting (2.1).

It is instructive to interpret this result from the deformation quantization vantage point. Let

us start with the undeformed case, i.e., no R and u = 0. Classical observables form a commutative

algebra A0 = C∞(R2) of functions f(q, p) on the phase space. It is convenient to pack q, p into a

democratic two-component vector yα =
√
2(q , ip), α, β, ... = 1, 2. As is well-known, the passage

to the algebra of quantum observables, aka quantization, can be interpreted as a deformation of

A0 along the classical Poisson bracket. In other words, one is seeking for an associative product

(f ⋆ g)(y) = (f · g)(y) + ~{f, g}+O(~2) = (f · g)(y) +
∑

k>0

~
kBk(f, g) (2.3)

that (i) starts with the usual point-wise multiplication on A0; (ii) is given by a formal series in ~

with coefficients Bk being bi-differential operators; (iii) the first-order deformation is determined

2Similar operators appeared in the context of parastatistics and were called Klein operators, e.g. [19–23].
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by (or is equivalent to) the Poisson bracket. Up to equivalence, the general solution to this problem

is provided by the Moyal–Weyl star-product:

(f ⋆ g)(y) = exp

[

−~ ǫαβ
∂2

∂yα1 ∂y
β
2

]

f(y1)g(y2)
∣

∣

∣

yi=y
. (2.4)

In particular, [yα, yβ]⋆ = −2~ǫαβ .
3 This algebra is also known as the Weyl algebra A~. The Weyl

algebra is rigid, meaning that it cannot be further deformed as an associative algebra. Therefore,

the deformation found by Wigner relies crucially on adding a new element R, such that

f(y, R) : RyαR = −yα , R2 = 1 . (2.5)

We denote the algebra of functions f(y, R) by A0,0. Unlike A~, the algebra A0,0 admits another

non-trivial deformation.

In order to understand better what is going on it makes sense to review the general problem

of deformation quantization (while in our case the Poisson bi-vector ǫαβ is constant and non-

degenerate). An explicit construction of the deformed product on the initially commutative algebra

C∞(P) of functions on a Poisson manifold P is a consequence of the Kontsevich formality theorem

[1], of which the Moyal–Weyl star-product is an even simpler consequence. More generally, Poisson

manifolds often come equipped with some (discrete) symmetries, e.g. reflections. Given a discrete

group Γ of symmetries of P, one can be interested in two complementary algebras. First is the

commutative algebra of Γ-invariant functions C∞(P)Γ, which can also be viewed as the algebra of

‘smooth’ functions on the orbifold P/Γ. Second is the crossed product algebra C∞(P) ⋊ Γ. The

latter is generated by sums
∑

i fi ⊗ γi, where fi ∈ C∞(P) and γi ∈ Γ. The product is defined as

(f⊗γ)⋄(f ′⊗γ′) = (fγ(f ′), γγ′), where γ(f) denotes the action of γ ∈ Γ on a function f ∈ C∞(P).

This algebra is already non-commutative even if Γ is abelian.

Now, one can formulate a yet unsolved problem: how to quantize a general Poisson orbifold?

Based on a number of simple cases [4, 5, 24], one can argue that a given Poisson orbifold admits

new deformations on top of the usual Kontsevich’s one, the latter is always present. Wigner’s

example is the simplest instance of this additional deformation available.

Coming back to the algebra A0,0 of functions f(y, R), which is slightly non-commutative due

to R, we can treat it as a crossed product A0,0 = A0 ⋊ Z2. There is also a closely related algebra

Ae
0 = A0/Z2 of even functions f(y) = f(−y), i.e., functions on the orbifold R

2/Z2.

Now, let us summarize interpretations of various deformations of A0, A
e
0 and A0,0 since the

deformations can also be understood in a number of different ways.

3A somewhat strange normalization here will pay back later.
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Algebra A0. Algebra A0 = C∞(R2) admits a single deformation A~, which is along the Poisson

bi-vector ǫαβ and with a parameter ~, the result being given by the Moyal–Weyl start product

and is equivalent to the Weyl algebra.

Algebra A
e

0
. The orbifold algebra C∞(R2)/Z2 of even functions f(y) enjoys two deformations.

The first one is just the restriction A~/Z2 of the Weyl algebra A~ to even functions. In

order to describe the second one, which is consistent with the first, it is useful to recall that

bilinears tαβ = −1
2
yαyβ form sp2-algebra under the star-commutators

1
~
[tαβ , tγδ]⋆ = ǫβγtαδ + 3 more . (2.6)

Since the even subalgebra of the Weyl algebra A~ can also be identified with functions f(tαβ)

of tαβ , it has to be some quotient U(sp2)/I of the universal enveloping algebra U(sp2) of

sp2 by a certain two-sided ideal I. This ideal is generated [25] by C2 − const, where C2 =

−1
2
tαβt

αβ is the Casimir operator of sp2. In [25], Feigin considered a one-parameter family

of algebras glλ = U(sp2)/Iλ, where Iλ is generated by C2 + ~
2(1 − λ2). For λ = 1/2, glλ is

isomorphic to A~. It is this one-parameter family that corresponds to the second deformation

of Ae
~
. Feigin’s glλ is also closely related to the non-commutative sphere/hyperboloid, whose

quantization was studied in [26]. Its name, glλ originates from the fact that at λ = ±l,

l = 2, 3, 4, . . ., the algebra acquires a further two-sided ideal, the quotient being gl(l). Hence,

glλ interpolates between different matrix algebras.

Algebra A0,0. The crossed product algebra A0,0 of functions f(y, R) admits the usual Moyal-

Weyl deformation that turns it into A~,0. The product is defined by

(f(y) + f ′(y)R) ⋆ (g(y) + g′(y)R) = f ⋆ g + f ′ ⋆ g̃′ + (f ⋆ g′ + f ′ ⋆ g̃)R , (2.7)

where f̃(y) ≡ f(−y) = Rf(y)R realizes the action of reflection on f . Effectively, we find

under the star-product that [yα, yβ]⋆ = −2~ǫαβ . The algebra admits one more deformation

A~,u that can be described as the algebra of functions f(q, R) in the generators qα obeying

[14, 15, 17]

[qα, qβ] = − 2ǫαβ(~+ uR) , RqαR = −qα , R2 = 1 . (2.8)

A~,u is a ‘parent’ algebra for the other two algebras. Indeed, A~ = A~,0. We can also restrict

ourselves to the even subalgebra Ae
~,u, f(q, R) = f(−q, R), which splits into two copies of

glλ with the help of idempotents

Π± = 1
2
(1± R) , (Π±)

2 = Π± , Π±Π∓ = 0 , Π+ +Π− = 1 .
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We would like to construct an explicit deformation quantization of A0,0 that results in A~,u.

It is remarkable that the algebra A~,u enjoys the PBW property [6]. Therefore, as a matter of

principle, one can find out how to multiply two polynomials f(q, R), g(q, R) by repeatedly using

Rels. (2.8). We assume here, as always, that some ordering was chosen once and for all, otherwise

one can multiply just by juxtaposition, fg, but it would be hard to tell if two differently looking

expressions are the same or not unless an ordering is chosen. It is worth mentioning that the

structure constants of A~,u were obtained in the literature in a number of different forms [26–31].

This and more general algebras, known as symplectic reflection algebras, were extensively studied

in the mathematical literature, see e.g. [6], [7]. Our result is obtained via a different technique

and reveals links to Shoikhet–Tsygan–Kontsevich formality [32–34].

3 Quantization of the simplest Poisson Orbifold

Our approach to deformation quantization of the simplest Poisson orbifold follows the idea of

multiplicative resolutions [9, 35] and gives all bi-differential operators determining the deformation

of the Moyal–Weyl star-product:

(f ◦ g)(y) = (f ⋆ g)(y) + u φ1(f, g)R+O(u2) = (f ⋆ g)(y) +
∑

k>0

ukφk(f, g)R
k , (3.1)

f and g being polynomials in y’s. Here we explicitly indicate the dependence of R. Let us note that

any deformation of the crossed product algebra reduces to a certain deformation of the algebra of

invariant functions. Therefore, we consider A~,0 as a starting point. It also makes sense to start

with A0,0 and consider a two-parameter deformation

f ◦ g = f · g + ~{f, g}+ u{f, g}N.C. + . . . , (3.2)

where the second term is the usual Poisson bracket and the third one gives a certain non-

commutative Poisson bracket which exists thanks to R.

The first order deformation φ1(•, •)R has a special meaning. First of all, it is a Hochschild

two-cocycle of A~,0, i.e., an element of HH2(A~,0, A~,0). Since A~,0 is the crossed product A~⋊Z2,

it also has a clean interpretation as a Hochschild two-cocycle of the Weyl algebra with values in

the dual module [34], that is, as an element of HH2(A~, A
⋆
~
). Indeed, if we identify the dual space

A∗
~
with the Weyl algebra A~ itself by means of the non-degenerate inner product

g(f) = (f ⋆ g)|y=0 , f ∈ A~ , g ∈ A∗
~
, (3.3)
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we can transfer the canonical bimodule structure of the Weyl algebra over itself – Lf(g) = f ⋆ g,

Rf (g) = −g ⋆ f – to its dual space to get f ⋆ g and −g ⋆ f̃ for f ∈ A~ and g ∈ A∗
~
. A Hochschild

two-cocycle φ1 of HH2(A~, A
⋆
~
) is then a nontrivial solution to

a ⋆ φ1(b, c)− φ1(a ⋆ b, c) + φ1(a, b ⋆ c)− φ1(a, b) ⋆ c̃ = 0 , a, b, c ∈ A~ . (3.4)

Extending A~ with R to get A~,0 allows one to represent both the adjoint and the dual actions

of A~ as the adjoint action of A~,0 on itself. Therefore, any non-trivial cocycle of A~,0 can be

represented as φ1R.

While the existence of a non-trivial φ1 is easy to see [34, 36, 37], its explicit form emerges [34]

from Shoikhet–Tsygan–Kontsevich formality theorem [33]. In fact, it gives a non-trivial 2n-cocycle

for each An, where An is the Weyl algebra in n pairs of generators. The construction of all φk

below is such that it does reproduce φ1 in its original form [34].

3.1 Deformation via a resolution

The multiplicative resolution is based on the extension of algebra A~,0 = C∞(R2) ⋊ Z2 with

further coordinates zα and associated anti-commuting differentials dzα.4 The additional relations

are RzαR = −zα, RdzαR = −dzα. This algebra is equipped with a variant of the star-product

that is defined via its symbol (it suffices to define it on R- and dz-independent functions)

m(f, g) ≡ (f ∗ g)(y, z) = exp[~p12 + 2p1 · q2]f(y + y1, z + z1)g(y + y2, z + z2)
∣

∣

∣

yi=zi=0
, (3.5)

where we used a shorthand notation for symbols of poly-differential operators y ≡ p0, ∂y1 ≡ p1,

∂y2 ≡ p2, q1 ≡ ∂z1 , q2 ≡ ∂z2 ; indices are contracted q ·p ≡ qαpα in such a way that exp[p0 ·p1]f(y1) =
f(y + y1); pij ≡ pi · pj; we often omit the arguments and the projection |yi,zi=0. In terms of the

generators we find

yα ∗ f = (yα − ~∂y
α − 2∂z

α)f , zα ∗ f = zαf ,

f ∗ yα = (yα + ~∂y
α)f , f ∗ zα = (zα + 2∂y

α)f .

The deformed product (3.1) is obtained via homological perturbation theory (HPT), see Appen-

dices A and B. In few words, the initial algebra A~,0 can be identified with the cohomology of

the exterior differential dz = dzα∂z
α in z-space. We then introduce a specific deformation of this

differential, where a key role is played by a closed central two-form λ = exp[z · y]Rdzαdz
α. The

homological perturbation theory generates a certain deformed product. Technically, φk are given

4For this particular case this construction is very similar to the one of [38].
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by all trees with two leaves, we call a, b, representing the arguments of φk(a, b) and k leaves

corresponding to a special element (a gauge potential of a certain magnetic field in z-space):

A = dzνzν

∫ 1

0

t dt exp[tz · y]R = h[dz2 exp[z · y]R] = h[λ] . (3.6)

Here, h is the standard contracting homotopy for the de Rham complex in z-space:

h[dz2f(z)] = dzαzα

∫ 1

0

t dt f(zt) , h[dzαgα] = zα
∫ 1

0

dt gα(zt) , (3.7)

and we complete the definition by setting h[q(z)] = 0 for any zero-form q(z). The trees have only

one type of a vertex — a trivalent one corresponding to m (two arguments in, one out).

First order. There are four trees one can draw at the lowest order and only one of them survives

to give a non-vanishing contribution thanks to our choice of the star-product and of the homotopy:5

φ1(a, b) = a(y) ∗ h[b(y) ∗ A] =
m

a m

b A

h

This graph gives

φ1(a, b) = 4p12

∫

t exp[p01(1− 2tt′) + p02(1− 2t) + ~ p12(1− 2t+ 2tt′)] , (3.8)

where t and t′ should be integrated over [0, 1]. One can reduce the integral over the square to the

one over the 2d simplex ∆2 = {0 < u1 < u2 < 1}:

φ1(a, b) = 4p12

∫

∆2

exp[p01(1− 2u1) + p02(1− 2u2) + ~ p12(1− 2u2 + 2u1)] . (3.9)

Here, we explicitly see propagators G(u, v) = 1 + 2(u − v) that emerge from Shoikhet-Tsygan-

Kontsevich Formality, see [34], so that

φ1(a, b) = 4p12

∫

∆2

exp[p01G(0, u1) + p02G(0, u2) + ~ p12G(u1, u2)] . (3.10)

5See Appendix B for more detail. In short: all graphs that have h[...], i.e. h as the last operation vanish upon

z = 0 projection; all graphs that have h(... ∗ a) vanish because zαzα = 0.
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The integral can be taken to give [34] (p01 = x, p02 = y, p12 = z and with ~ = 1)

φ1 =
ze−x−y+z

(x+ y)(x− z)
+

zex+y+z

(x+ y)(y + z)
− zex−y−z

(x− z)(y + z)
. (3.11)

In terms of symbols the cocycle condition for φ1 reads

φ1(p0 + ~p1, p2, p3)e
p01 − φ1(p0, p1 + p2, p3)e

~p12 + φ1(p0, p1, p2 + p3)e
~p23 − φ1(~p3 + p0, p1, p2)e

−p03 = 0 .

Associated to this Hochschild two-cocycle there is also a cyclic cocycle, see [39] for an explicit

formula.

Second order. At the second order there is again only a single tree that contributes:

a(y) ∗ h[h[b(y) ∗ A] ∗ A] =

m

a m

m A

b A

h

h

which, after a straightforward algebra, gives

φ2(a, b) = 16p212

∫

(1− 2t1) t1t3t4 exp
[

p01(−2t1t2t4 + 4t1t2t3t4 − 2t3t4 + 1)+

+p02(4t3t1 − 2t1 − 2t3 + 1)+

+~ p12(4t3t1 + 2t2t4t1 − 4t3t4t1 − 2t1 − 2t3 + 2t3t4 + 1)
]

.

Here, all times t1,2,3,4 should be integrated over [0, 1]. The associativity of the product (3.1) breaks

down to (mind the reflection automorphism on one of the arguments):

−a ⋆ φ2(b, c) + φ2(a ⋆ b, c)− φ2(a, b ⋆ c) + φ2(a, b) ⋆ c− φ1(φ1(a, b), c̃) + φ1(a, φ1(b, c)) = 0 .

It is the associativity of a ⋆ b+φ1(a, b)R+φ2(a, b)+ ... to the second order and R results in c̃. We

can also simplify the integral a bit by extracting a 2d-simplex out of the integration domain, see

below.

General formula. It can be shown that the parameters of the resolution are fine-tuned in such

a way that with the standard homotopy h[...] only a single tree survives at each order to give

φk(a, b) = a ∗ h[h[· · ·h[b ∗ A] ∗ A · · · ] ∗ A]
∣

∣

∣

z=0
. (3.12)
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It is easy to get a formula for any n, see Appendix B for a proof. After some change of integration

variables as to reveal the simplex associated with the nested homotopy operation we find

φn(f, g) = φn(p0, p1, p2)f(y1) g(y2)
∣

∣

∣

yi=0
,

φn = 4n
∫

Bn

n
∏

j=1

vj (1− 2vj)
n−j × (p12)

n exp
[

p01a01 + p02a02 + ~ p12a12

]

,

a01 = 1− 2

n
∑

j=1

ujvj

n
∏

k=j+1

(1− 2vk) ,

a02 =
n
∏

j=1

(1− 2vj) ,

a12 = a02 + 2
n
∑

j=1

ujvj

j−1
∏

k=1

(1− 2vk) ,

where the integration is over Bn that is a product of the n-simplex ∆n = {0 < u1 < u2 < ... <

un < 1} and n-cube vi ∈ [0, 1]. It is important to remember about R, which is present as the

rightmost overall factor φn(a, b)R
n. The formula here-above is one of the main results of this

paper.

We note that the exponent is linear in the simplex variables, which was the main reason to

introduce them. Just as an example for n = 1 we have

a01 = 1− 2u1v1 , a02 = 1− 2v1 , a12 = a02 + 2u1v1 .

In this case one can join 1-simplex, 0 < u1 < 1, and the interval v1 ∈ [0, 1] (which are the same)

into a 2-simplex, as we did for φ1 above.

Another comment is that the prefactor (p12)
n tells us that as the order n increases the de-

formation does not affect polynomials of order less than n, which can be easily seen from the

deformed commutation relations (2.8). vi appear in a more and more non-linear way, while the

exponent is always linear in ui. Therefore, the u-integral can be explicitly evaluated, if needed.

There is a simple formula that does that, see below. It might also be useful to replace vj with

10



wi = (1− 2vi) ∈ [−1, 1], then

φn =

∫

Cn

n
∏

j=1

(1− wj) (wj)
n−j × (p12)

n exp
[

p01a01 + p02a02 + ~ p12a12

]

,

a01 = 1−
n
∑

j=1

uj(1− wj)

n
∏

k=j+1

wk ,

a02 =

n
∏

j=1

wj ,

a12 = a02 +

n
∑

j=1

uj(1− wj)

j−1
∏

k=1

wk ,

where Cn = ∆n × [−1, 1]n.

Weyl deformation switched off, Dunkl derivative. We can set ~ = 0 and get an interesting

deformation of A0,0 along the reflection operator R direction, which leads to A0,u. In this limit,

the deformation can also be realized [40] via the Dunkl derivative [41]. However, a polarization

has to be chosen for yα to do that, which breaks manifest sp2-symmetry that φk enjoy. On the

other hand, the Dunkl derivative is quite simple, while infinitely many φk are needed to maintain

sp2-invariance. It would be interesting to see if, at least for ~ = 0, φk can be resummed. Following

[40], one introduces complex coordinates w and w̄ instead of yα to write

f ◦ g = fg +
~

2

f(w, w̄)− f(−w, w̄)

2w

g(−w, w̄)− g(−w,−w̄)

2w̄
R . (3.13)

At least for φ1 the commutative limit gives a simple expression after evaluating the integral (it is

non-singular despite its appearance, recall that p01 = x, p02 = y, p12 = z)

φ = z

(

e−x−y

x(x+ y)
+

ex+y

y(x+ y)
− ex−y

xy

)

, (3.14)

which obeys (a · b is the point-wise product, which is commutative)

−a · φ1(b, c) + φ1(a · b, c)− φ1(a, b · c) + φ1(a, b) · c̃ = 0 ,

or in terms of symbols

φ1(p0, p2, p3)e
p01 − φ1(p0, p1 + p2, p3) + φ1(p0, p1, p2 + p3)− φ1(p0, p1, p2)e

−p03 = 0 . (3.15)
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Localization formula for an integral over a simplex. Suppose that we need to integrate

exp[f ] over the n-dimensional simplex ∆n:

Ω =

∫

∆n

exp[f ] du1 ∧ ... ∧ dun .

Suppose now that f =
∑

i aiui is some linear form. Then, the integral is given by the following

localization formula

∫

∆n

1

Ω =
∑

v∈V

exp
[

f
∣

∣

v

]

×





∏

e∈E(v)

∇~ef





−1

, (3.16)

i.e. it is a sum over the vertices v ∈ V with the exponent given by its value at a vertex v times

the inverse of the product of directional derivatives with the respect to all the edges e meeting at

this vertex. Since every body can be cut into/approximated by the simplest simplices, the range

of application of this formula can be broader.

Result for general A. Let us assume that we have some functions of (yi, zi) i = 3, 4, ... instead

of our specific A. We also assume that these functions are of the form zνdz
ν exp[y ·pi+z ·qi]f(yi, zi),

i = 3, 4, ..., i.e. we have some one-forms and, hence, exactly the same trees will contribute as for

φk. Then, the general formula for what can be denoted φn(a, b, f3, ..., fn) reads

φn = 4n
n+1
∏

i=2

i
∑

j=2

p1 · pj exp
[

n+2
∑

i=0

n+2
∑

j=i+1

pi · pj + 2
n
∑

j=1

ujp1 · qj+2 + 2
n+2
∑

i=2

n+2
∑

j=i+1

pi · qj
]

,

where ui belong to the simplex. Now we can apply it to fj = exp[tjzj · yj]R to get φk quoted

above. The change of variables that is required reads (there are 2n times ti at order n):

t2k−1 = vn+1−k , t2n = u1 , t2n−2k = uk+1/uk .

This result can be useful if one wishes to represent φk as a correlation function in some auxiliary

quantum mechanics (similarly to how the Poisson sigma model that implements [2] Kontsevich’s

formula reduces to a quantum mechanics on a circle for a non-degenerate Poisson structure). The

results already obtained can be extended further to get a certain A∞/L∞-algebra, see Appendix

C.
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A HPT and deformation

Let (V, dV ) and (W, dW ) be a pair of complexes. A strong deformation retract (SDR) associated

to them is given by chain maps p : V → W and i : W → V such that pi = 1W and ip is homotopic

to 1V . The last property implies the existence of a map h : V → V such that

dh+ hd = ip− 1V .

Without loss in generality, one may also assume the following annihilation properties:

hi = 0 , ph = 0 , h2 = 0 .

All these data are summarized by the following diagram:

(V, dV )h
77

p
// (W, dW )

i
oo . (A.1)

A particular case of SDR is W = H(V ) and dW = 0.

Perturbation Lemma [42]. Given SDR data (A.1) and a small perturbation δ of dV such that

(dV + δ)2 = 0 and 1− δh is invertible, one can define a new SDR

(V, dV + δ)h′

77

p′
// (W, d′W )

i′
oo ,

where the maps are given by

p′ = p+ p(1− δh)−1δh , i′ = i+ h(1− δh)−1δi ,

h′ = h+ h(1− δh)−1δh , d′W = dW + p(1− δh)−1δi .

In many practical cases one can think of the operator (1 − δh)−1 as being defined by the

geometric series

(1− δh)−1 =
∞
∑

n=0

(δh)n ,

13



whose convergence is ensured by a suitable filtration in V .

Among basic applications of homological perturbation theory are the transference and defor-

mation problems for various algebraic structures. Here we are concerned with the structure of an

associative algebra on V . Therefore, consider an associative dg-algebra (A, d) over a ground field

k with differential d : A → A and product m : A⊗A → A. Regarding A[1] as just a graded vector

space,6 we can also define the tensor coalgebra T cA[1] for the Alexander–Whitney coproduct

∆ : T cA[1] → T cA[1]⊗ T cA[1] .

∆(a1 ⊗ · · · ⊗ an) = 1⊗ (a1 ⊗ · · · ⊗ an) +

n−1
∑

i=1

(a1 ⊗ · · · ⊗ ai)⊗ (ai+1 ⊗ · · · ⊗ an)

+(a1 ⊗ · · · ⊗ an)⊗ 1 .

The coproduct is coassociative in the sense that ∆(∆ ⊗ 1) = ∆(1 ⊗∆). The differential and the

product in A extend then canonically7 to coderivations on T cA[1]:

d̂(a1 ⊗ · · · ⊗ an) =

n
∑

k=1

±a1 ⊗ · · · ⊗ dak ⊗ · · · ⊗ an ,

m̂(a1 ⊗ · · · ⊗ an) =

n−1
∑

k=1

±a1 ⊗ · · · ⊗m(ak, ak+1)⊗ · · · ⊗ an .

Here ± is the usual Koszule sign. Notice that d̂ defines the canonical differentials in the tensor

powers of the complex A. It is straightforward to check that both the coderivations square to zero

and commute to each other, i.e., d̂2 = 0, m̂2 = 0, and [d̂, m̂] = 0. Hence, either of them makes

T cA[1] into a codifferential coalgebra. Let H(A) denote the cohomology algebra of the dg-algebra

(A, d).

Tensor Trick [44, 45]. With any SDR

(A, d)h
77

p
// (H(A), 0)

i
oo

one can associate new SDR data

(ĥ 99 T
cA[1], d̂)

p̂
// (T cH(A)[1], 0)

î

oo , (A.2)

6By definition, A[1]n = An+1. On shifting degree by one unit, the product m acquires degree 1, while d retains

its degree 1.
7Recall that a linear map F : T cA[1] → T cA[1] is called a coderivation, if it obeys the co-Leibniz rule ∆F =

(F ⊗1+1⊗F )∆. It is well known (see e.g. [43]) that the space of coderivations is isomorphic to Homk(TA[1], A[1]),

so that any homomorphism f : TA[1] → A[1] defines and is defined by a coderivation f̂ : T cA[1] → T cA[1]. Notice

that T 0A[1] = k and f : T 0A[1] → A[1] is determined by an element λ ∈ A[1].

14



where

p̂ =
∞
∑

n=1

p⊗n , î =
∞
∑

n=1

i⊗n , ĥ =
∞
∑

n≥1

n−1
∑

k=0

1⊗k ⊗ h⊗ (ip)⊗n−k−1 .

The operator ĥ is called sometimes the Eilenberg–Maclane homotopy.

Let us apply the Perturbation Lemma above to the following situation:

V = T cA[1] , dV = d̂ , δ = m̂ , W = T cH(A)[1] , dW = 0 .

This gives immediately a new SDR

(ĥ 99 T
cA, d̂+ m̂)

p̂′
// (T cH(A), µ̂)

î′
oo (A.3)

with

µ̂ = p̂(1− m̂ĥ)−1m̂î =

∞
∑

k=0

p̂(m̂ĥ)km̂î . (A.4)

Suppose further that i(H(A)) is a subalgebra in A. This assumptions holds e.g. for the algebra

of Sec. 3.1. Then ĥm̂î = 0 and the last formula simplifies to µ̂ = p̂m̂î, where µ is nothing but

the associative product in H(A) induced by m in A. In such a way we ‘solved’ the transference

problem for the associative product m in A. The result is the associative product µ in the ‘smaller’

space H(A).

Let us now turn to the deformation problem. For this end, we take any central cocycle of the

dg-algebra λ of A, that is,

λ ∈ Z(A) , dλ = 0 . (A.5)

This gives rise to a coderivation λ̂ : T cA[1] → T cA[1] that acts by the rule

λ̂(a1 ⊗ · · · ⊗ an) = λ⊗ a1 ⊗ · · · ⊗ an

+

n−1
∑

k=1

±a1 ⊗ · · · ⊗ ak ⊗ λ⊗ ak+1 ⊗ · · · ⊗ an ± a1 ⊗ · · · ⊗ an ⊗ λ .
(A.6)

With this λ̂ we can perturb the perturbation m̂ above to get a new perturbation δ = m̂ + λ̂. It

is clear that (d̂ + m̂+ λ̂)2 = 0 as a consequence of (A.5). Applying the the Perturbation Lemma

once again, we obtain the SDR

(ĥ 99 T
cA, d̂+ m̂+ λ̂)

p̂′
// (T cH(A), µ̂′)

î′
oo , (A.7)

where

µ̂′ = p̂(1− (m̂+ λ̂)ĥ)−1(m̂+ λ̂)̂i . (A.8)
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If ĥm̂î = 0, then the last formula simplifies to

µ̂′ = µ̂+ p̂(1− (m̂+ λ̂)ĥ)−1λ̂î , (A.9)

µ = pmi being the product in H(A). This gives a deformed associative product in cohomology:

µ′(a, b) = µ(a, b) + p̂(1− (m̂+ λ̂)ĥ)−1λ̂î(a⊗ b) ∀a, b ∈ H(A) .

It is convenient to depict the non-deformed product µ(a, b) in H(A) by the vertex graph

m

p

OO

a

i

>>⑦⑦⑦⑦⑦⑦⑦⑦
b

i

__❅❅❅❅❅❅❅❅

Then the first-order deformation µ1(a, b) is described by the sum of four graphs:

m

p

OO

m

h
==④④④④④④④④

λ

h

>>⑦⑦⑦⑦⑦⑦⑦⑦
a

i

``❇❇❇❇❇❇❇❇

b

i

^^❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

m

p

OO

m

h
==④④④④④④④④

a

i

>>⑦⑦⑦⑦⑦⑦⑦⑦
λ

h

``❇❇❇❇❇❇❇❇

b

i

^^❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂❂

m

p

OO

m

h
aa❈❈❈❈❈❈❈❈

a

i

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁
λ

h

>>⑤⑤⑤⑤⑤⑤⑤⑤
b

i

__❅❅❅❅❅❅❅❅

m

p

OO

m

h
aa❈❈❈❈❈❈❈❈

a

i

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁
b

i

>>⑤⑤⑤⑤⑤⑤⑤⑤
λ

h

``❆❆❆❆❆❆❆❆

In the main text and from now on we will depict trees in a simplified form, omitting the obvious

projections i, p. The second-order deformation is given by the relation

µ2(a, b) = p̂(m̂ĥλ̂ĥm̂ĥm̂ĥ+ m̂ĥm̂ĥλ̂ĥm̂ĥ+ m̂ĥm̂ĥm̂ĥλ̂ĥ)λ̂î(a⊗ b) . (A.10)

As is seen, the only non-zero products are those in which the number of λ’s is one less than the

number of m’s and the number of h’s is twice the number of λ’s. These rules hold true in all

higher orders.
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In our specific situation the data for the HPT are: (a) differential d = dz = dzα∂z
α is the

exterior differential in z-space; (b) multiplication m is defined by (3.5) on functions f(y, z, dz, R);

(c) deformation λ = exp[z · y]Rdzαdz
α is a central, dz-closed two-form.

B Unfolding HPT

After the general procedure is explained in Appendix A, we would like to identify the trees that

contribute to φk and evaluate them explicitly. The star-product (3.5) leads to the following

particular cases, which we need in practice,

g(y, z) ∗ f(y) = exp[ypi]g(y − pi, z)f(yi)
∣

∣

yi=0
,

f(y) ∗ g(y, z) = exp[ypi]g(y + pi, z + 2pi)f(yi)
∣

∣

yi=0
,

where f(y) and g(y, z) are two arbitrary functions of their arguments. The arguments of φk(a, b)

are functions of y only.

We can start building a tree from the bottom of some branch. We cannot have A’s as the two

leaves at the bottom since h[A ∗ A] = 0, as can be verified. Therefore, we have either b ∗ A or

A ∗ b (a ∗ b will not lead to a non-vanishing result after we try to add A’s). We have to apply h

immediately, otherwise we cannot build a tree that is zero-form. Now, we note that h[A ∗ b] = 0

due to zαzα ≡ 0. Indeed, the star-product on y − z is chosen to discriminate between left and

right arguments and A ∗ b is still proportional to dzαzα, while b ∗ A has a z-independent term as

well. Therefore, there is only one way to grow a non-trivial branch: one starts with h[b ∗ A] and
applies h[X ∗ A] to the result X of the previous step; at the end one has to multiply by a from

the left. This way we find a single contribution

φk(a, b) = a ∗ h[h[...h[b ∗ A] ∗ A...] ∗ A]
∣

∣

∣

z=0
. (B.1)

Since the result must be z-independent, one can set z to any value. Our choice of a projection is

z = 0. Now, we derive a recurrence relation for the coefficients in the exponent of φk and for the

prefactor. We first write
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h (h (...h (b ∗ A) ... ∗ A) ∗ A) = 2n
∫ 1

0

dt1t1

∫ 1

0

dt2t2 · · ·
∫ 1

0

dtntn×

×
∫ 1

0

dkn · · ·
∫ k3

0

dk2

∫ k2

0

dk1 b (y2)
(

zβp2β
) (

zβp3β
)

. . .
(

zβpn+1β

)

×

× exp (yν3p2ν (1− 2t1)− t1k1y
ν
3zν + t1k1z

νp2ν)×
× exp (yν4p3ν (1− 2t2)− t2k2y

ν
4zν + t2k2z

νp3ν)×
. . .

× exp
(

yνn+2pn+1ν (1− 2tn)− tnkny
ν
n+2zν + tnknz

νpn+1ν

)

= ... ,

where a number of auxiliary yi, i = 3, ..., n + 2 was introduced and we set yνn+2 ≡ pν0. We also

made the simplex part of the domain of integration explicit. Now we can isolate the last step

... =2n
∫ 1

0

dt1t1

∫ 1

0

dt2t2 · · ·
∫ 1

0

dtntn

∫ 1

0

dkn · · ·
∫ k3

0

dk2

∫ k2

0

dk1×

×b (y2)ωn = 2n
∫ 1

0

dt1t1

∫ 1

0

dt2t2 · · ·
∫ 1

0

dtntn×

×
∫ 1

0

dkn · · ·
∫ k3

0

dk2

∫ k2

0

dk1b (y2)
(

zβpn+1β

)

×

× exp
(

yνn+2pn+1ν (1− 2tn)− tnkny
ν
n+2zν + tnknz

νpn+1ν

)

ωn−1 . (B.2)

Assuming that ωi−1 =
(

zβp2β
)i−1

ci−1 exp
(

yνi+1p2νdi−1 − yνi+1zνei−1 + zνp2νfi−1

)

we find

ωi =
(

zβpi+1β

)

exp
(

yνi+2py+1νd
′
i − yνi+2zνe

′
i + zνpi+1νf

′
i

)

ωi−1 =

=ci−1

(

zβp2β
)i−1 (

zβpi+1β

)

exp
(

yνi+2py+1νd
′
i − yνi+2zνe

′
i + zνpi+1νf

′
i

)

×
× exp

(

yνi+1p2νdi−1 − yνi+1zνei−1 + zνp2νfi−1

)

= di−1ci−1

(

zβp2β
)i×

× exp
(

yνi+2p2ν (di−1d
′
i)− yνi+2zν (ei−1d

′
i + e′i) + zνp2ν (f

′
idi−1 + fi−1)

)

=

=ci
(

zβp2β
)i
exp

(

yνi+2p2νdi − yνi+2zνei + zνp2νfi
)

. (B.3)

The initial data is given by

ω1 =
(

zβp2β
)

exp (yν3p2ν (1− 2t1)− t1k1y
ν
3zν + t1k1z

νp2ν) , (B.4)

and, therefore, we get for any i

ωi = ci
(

zβp2β
)i
exp

(

yνi+2p2νdi − yνi+2zνei + zνp2νfi
)

, (B.5)
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where

c1 = 1 , d1 = (1− 2t1) , e1 = t1k1 , f1 = t1k1 ,

c′i = 1 , d′i = (1− 2ti) , e′i = tiki , f ′
i = tiki ,

ci = di−1ci−1 , di = di−1d
′
i , ei = ei−1d

′
i + e′i , fi = f ′

idi−1 + fi−1 . (B.6)

The latter recurrence relations are easy to solve

di =
i
∏

j=1

(1− 2tj) , (B.7)

ei =
i
∑

j=1

tjkj

i
∏

l=j+1

(1− 2tl) , where
i
∏

l=i+1

(1− 2tl) = 1 , (B.8)

fi =
i
∑

j=1

tjkj

j−1
∏

l=1

(1− 2tl) , where
0
∏

l=1

(1− 2tl) = 1 , (B.9)

ci =

i−1
∏

j=1

(1− 2tj)
i−j , where

0
∏

j=1

(1− 2tj)
i−j = 1 , (B.10)

and the solution is given in the main text.

C Strong Homotopy Algebra

Given the general result for any A, we can substitute f = h[dz2C(y)∗exp[z ·y]R] to get an A∞/L∞-

algebra of the formal higher spin gravity [38]. It does not correspond to physically acceptable

interactions [46], but is still well-defined as an A∞/L∞-algebra. For more detail we refer to [47],

where it is explained that any one-parameter family of associative algebras can be used to construct

a certain A∞-algebra and the associated L∞. Following the same steps as for φk we find for the
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non-trivial structure maps

mn(a, b, c1, ..., cn) = 22n
∫ 1

0

dt1t1

∫ 1

0

dt2t2 · · ·
∫ 1

0

dtntn×

×
∫ 1

0

dkn · · ·
∫ k3

0

dk2

∫ k2

0

dk1

n−1
∏

j=1

(1− 2tj)
n−j (p12)

n ×

× exp

[

n
∏

j=1

(1− 2tj) p02 +

(

1− 2

n
∑

j=1

tjkj

n
∏

l=j+1

(1− 2tl)

)

p01+

+

(

2

n
∑

j=1

tjkj

j−1
∏

l=1

(1− 2tl) +

n
∏

j=1

(1− 2tj)

)

p12+

+
n
∑

i=1

(

2tiki − 4ti

i−1
∑

j=1

tjkj

i
∏

l=j+1

(1− 2tl)

)

p1,i+2+

+
n
∑

i=1

(

2ti

i−1
∏

j=1

(1− 2tj)

)

p2,i+2

]

a (y1) b (y2) c1 (y3) . . . cn (yn+2) , (C.1)

where we took out all R factors and assumed that the empty products equal 1

i
∏

l=i+1

(1− 2tl) =

0
∏

l=1

(1− 2tl) = 1 .
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