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We propose a new, chiral description for massive higher-spin particles in four spacetime dimen-
sions, which facilitates the introduction of consistent interactions. As proof of concept, we formulate
three theories, in which higher-spin matter is coupled to electrodynamics, non-Abelian gauge theory
or gravity. The theories are chiral and have simple Lagrangians, resulting in Feynman rules analo-
gous to those of massive scalars. Starting from these Feynman rules, we derive tree-level scattering
amplitudes with two higher-spin matter particles and any number of positive-helicity photons, glu-
ons or gravitons. The amplitudes reproduce the arbitrary-multiplicity results that were obtained
via on-shell recursion in a parity-conserving setting, and which chiral and non-chiral theories thus
have in common. The presented theories are currently the only examples of consistent interacting
field theories with massive higher-spin fields.

I. INTRODUCTION

The study of higher-spin fields is a formidable sub-
ject. In the massless case, such fields possess rich gauge
symmetry, starting from the familiar case of electromag-
netism, see e.g. [1, 2] for recent reviews. The standard
approach is to introduce fields of spin s as symmetric
traceless tensors Φµ1...µs or spinors Ψµ1...µs−1/2 . Massive
higher-spin fields [3–6] are more subtle and require a host
of auxiliary fields that prevent propagation of unphysical
degrees of freedom in interacting theories [7, 8].

Massive higher-spin particles do exist in nature as com-
posite states of elementary particles (see e.g. [9]). One
should therefore be able to describe their physics by suit-
able effective field theories involving an infinite hierarchy
of higher-dimensional operators. Although only a finite
subset of such operators contribute at any given order in
the energy-scale cutoff, it is a laborious task to even list
them in a manner consistent with no ghost propagation.

For these reasons, the space of massive higher-spin the-
ories seems vast and ridden with obstacles. It seems
plausible, however, that there are hidden gems among
such theories, as indicated by recent on-shell studies. For
instance, at the level of 3-point scattering amplitudes,
various possible on-shell spinor structures for an electro-
magnetically interacting higher-spin particle of mass m
have been classified by Arkani-Hamed, Huang and Huang
(AHH), and one out of them was singled out [10] due to
its relatively tame behavior in the massless limit, namely

A(1{a}, 2
{b}, 3+) =

〈1(a12(b1〉 · · · 〈1a2s)2b2s)〉
m2s

A(1, 2, 3+).

(1)
Here A(1, 2, 3+) is the positive-helicity photon emission
amplitude in scalar quantum electrodynamics (QED),
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whereas all higher-spin information is encoded into two
sets of SU(2) little-group indices, {a1, . . . , a2s} and
{b1, . . . , b2s}, via 2s copies of the same chiral product
〈1a2b〉 := εαβ〈1a|α〈2b|β of massive-momentum spinors.

Interestingly, the AHH amplitude may be extended
[11, 12] to include (n−2) positive-helicity photons, gluons
or gravitons instead of one, while still having the same
massive-spin structure as Eq. (1), see e.g. Eq. (32) be-
low for gauge theory. These amplitudes can be derived
from mere knowledge of their factorization limits by näıve
use of on-shell (BCFW) recursion [13, 14] — in exactly
the same way that is known to work for their spin-1/2
counterparts in quantum chromodynamics (QCD) [15].
Unlike mixed-helicity configurations, where the same ap-
proach produces answers afflicted by unphysical poles
[10, 16], the like-helicity amplitudes involving a pair of
higher-spin particles seem absolutely healthy. Another
argument in favor of the like-helicity results is that they
can be derived [12] using two distinct BCFW construc-
tions: either complex-shifting two massless momenta [14]
or one massless and one massive [17, 18].

It is well-known that on-shell recursion fails when the
desired amplitudes have bad boundary behavior, i.e. they
do not vanish as the complex BCFW-shift parameter z
is taken to infinity. This is something that should abso-
lutely be expected from generic effective theories, where
the action is built out of higher-dimensional vertex oper-
ators, typically with a growing number of derivatives.
However, the existence of healthy n-point amplitudes
that are constructible from their factorization limits (al-
beit in a restricted helicity sector) suggests that they
should belong to a well-defined massive higher-spin the-
ory — one that is intimately related to the minimally
coupled scalar theory and thereby satisfies the boundary-
behavior condition allowing for on-shell recursion.

This is precisely the kind of theories that we present
in this paper. We start with Sec. II, where we review the
common difficulties in higher-spin field theory and show
how they are avoided by a new chiral Lagrangian descrip-
tion of a free massive higher-spin field in four dimensions.
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Minimal gauge interactions are then added to this the-
ory in Sec. III. After that, we present the corresponding
chiral theory of gravitationally interacting higher-spin
field Sec. IV. Finally, we conclude by discussing some
implications of our theories in Sec. V.

II. FREE HIGHER-SPIN THEORY

In this section we discuss the basics of describing a
free higher-spin particle. For simplicity, let us temporar-
ily concentrate on integer-spin particles.1 In the stan-
dard approach [4], integer-spin fields constitute symmet-
ric traceless rank-s tensors Φµ1...µs . For instance, in elec-
tromagnetism, i.e. the theory of a free massless spin-
1 boson, the off-shell field is Aµ, and its connection to
the on-shell particle description relies on the notion of
polarization vector ε±p,µ, which converts the Lorentz in-
dex into the helicity label. Helicity governs the particle’s
irreducible representation of the little group U(1) for a
given massless momentum pµ and is additive in the sense
that the polarization tensor of e.g. massless spin-2 boson
(graviton) is simply ε±p,µν := ε±p,µε

±
p,ν .

For p2 = m2 6= 0, one can employ symmetric rank-2s
tensors as irreducible representations of the massive little
group SU(2) with exactly (2s + 1) degrees of freedom.
For s = 1, we therefore use polarization vector εa1a2p,µ =
εa2a1p,µ , where ai are fundamental SU(2) indices, whereas
free higher-spin fields are naturally expanded in terms of
the polarization tensors

εa1...a2sp,µ1...µs := ε(a1a2p,µ1
· · · εa2s−1a2s)

p,µs . (2)

Symmetry in the Lorentz indices is then obvious, and
tracelessness ηµiµjεp,µ1...µs = 0 follows from the spin-1
orthonormality

εp,ab ·εcdp = −δ(c(aδ
d)
b) , εp,µab := εacεbdε

cd
p,µ = (εabp,µ)∗, (3)

where have used the fact that SU(2) indices are lowered
and raised with the two-dimensional Levi-Civita tensor.

The crucial element of this approach is transversality

p · ε{a}p = 0, which is required, roughly speaking, to ad-
just the number of degrees of freedom on the Lorentz-
index side to that on the little-group side (3 in the spin-1
case). In other words, the transversality is required to
ensure the irreducibility of the traceless symmetric ten-
sor representation of the Lorentz group under Wigner’s
little group {L ∈ SO(1, 3) : Lµνp

ν = pµ}.2

1 The extension of the discussion of the first few paragraphs of
Sec. II to half-integer spins is straightforward and can be found
e.g. in [16].

2 More concretely, for a generic Lorentz transformation L ∈
SO(1, 3) we have

Lµ
νεabp,ν = Uac(L)Ubd(L)εcd(Lp),µ, (4)

where U(L) ∈ SU(2) in principle depends on the choice of the
spin quantization axis for any given p.

Therefore, the free field equations that one needs to
impose on (s, s)-representation tensors are

(∂2 +m2)Φµ1...µs = 0, ∂µΦµµ2...µs = 0. (5)

We have referred to the symmetric traceless tensor rep-
resentation by the numbers of its chiral and antichiral
SL(2,C) indices upon the application of the spinor map

Φα1...αsβ̇1...β̇s
:= Φµ1...µsσ

µ1

α1β̇1
· · ·σµs

αsβ̇s
, (6)

where σµ = (1, σ1, σ2, σ3) are the Pauli matrices. In fact,
it is easy to see in this spinor language that, although
(s, s) is irreducible under SL(2,C) ∼= SO(1, 3), it is highly
reducible under SU(2) ⊂ SL(2,C) and decomposes into
symmetric SU(2) tensors of rank 0, 2, . . . , 2s.

The Klein-Fock-Gordon equation in Eq. (5) can be ob-
tained from a simple Lagrangian. However, there is no
action principle for s > 1 that also generates the sec-
ond equation in Eq. (5), which is required to ensure ir-
reducibility under Wigner’s little group, unless a host of
auxiliary fields is introduced [3]. For instance, the Singh-
Hagen approach [4, 5] relies on introducing (s− 1) sym-
metric traceless tensor fields of rank 0, 1, . . . , s − 2. Al-
ternatively, Zinoviev’s approach [6] involves s such fields
of rank 0, 1, . . . , s−1, that are also subject to the double-
trace condition Φλµλµµ5...µs−k = 0. All these fields van-
ish on shell but serve to ensure the free-field expansion of
Φµ1...µs in terms of the physical polarization tensors (2).

Here, our radically simple proposal, as inspired by
the higher-spin amplitudes (1) and by chiral higher-spin
gravity [19–27], is to take basic fields Φα1...α2s

in the
chiral (2s, 0) representation of the Lorentz group instead
of (s, s). As we will shortly see, this essentially trivial-
izes the transition between the off-shell symmetry group
SL(2,C) and the on-shell little-group SU(2).

To be more specific, we employ the massive spinor-
helicity formalism [10, 28, 29], which provides perfect
building blocks for this construction. Namely, we use chi-
ral and antichiral on-shell spinors |p〉 and [p|, such that3

m = 0 ⇒ |p〉α[p|β̇ := pµσ
µ

αβ̇
, (7a)

m 6= 0 ⇒ |pa〉α[pa|β̇ := pµσ
µ

αβ̇
. (7b)

All external wavefunctions of quantum fields can be built
out of these spinors. For instance, the massive polariza-
tion vector can be constructed as [30, 31]

εabp,µ =
i〈p(a|σµ|pb)]√

2m
(8)

3 The Weyl spinor indices are raised and lowered with two-

dimensional Levi-Civita tensors εαβ = εα̇β̇ = εab =
(

0 1
−1 0

)
=

−εαβ = −εα̇β̇ = −εab, just as SU(2) indices. Spinor products

like [12] := εα̇β̇ [1|α̇[2|β̇ or 〈1a2b〉, which appeared in Eq. (1),

are hence antisymmetric. The spinors obey an array of proper-

ties [10, 15], e.g. the Weyl/Dirac equation pµσ
µ

αβ̇
|p]β̇ = m|p〉α.
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and all of the desired properties, such as Eq. (3) and
transversality, follow automatically.4

For a higher-spin field in representation (2s, 0), the free
field equations reduce to the Klein-Fock-Gordon equation

(∂2 +m2)Φα1...α2s
= 0, (11)

required to define the mass shell. Indeed, the number
of degrees of freedom no longer needs to be artificially
reduced, so the only thing that we need from the cor-
responding external wavefunctions is converting the off-

shell Weyl-spinor indices into the on-shell little-group in-
dices. This is precisely what the massive spinors (7b) are
good for, so the external higher-spin wavefunctions are

p, a1, . . . , a2s← =
1

ms
|p(a1〉α1 · · · |pa2s)〉α2s . (12)

Here the mass prefactor is needed to absorb the mass
dimension, which is 1/2 for momentum spinors. The free-
field expansion is therefore

Φα1...α2s(x) =

∫
d̂3p

2p0

[ |p(a1〉α1 · · · |pa2s)〉α2s

ms
aa1...a2s(~p)e

−ip·x + (−1)2s
|p(a1〉α1

· · · |pa2s)〉α2s

ms
a†a1...a2s(~p)eip·x

]∣∣∣∣
p0=
√
~p2+m2

,

(13)

where d̂3p = (2π)−3d3p. We have fixed the signs above
so that the outgoing external wavefunctions

p, a1, . . . , a2s→ =
(−1)2s

ms
|p(a1〉α1 · · · |pa2s)〉α2s (14)

are consistent by crossing with their incoming counter-
parts (12), given the momentum-reversal convention

|−p〉 = −|p〉, |−p] = |p]. (15)

In particular, the expansion for the spin-1/2 field Φα(x)
coincides with the chiral part of the Majorana field
ΨM(x) as written e.g. in [16]. The standard properties

〈papb〉 = −mεab, |pa〉α〈pa|β = −mδβα (16)

of the massive spinors are then equivalent to the or-
thonormality and completeness relations for spin 1/2.5

4 In particular, the relationship (4) between Lorentz and little-
group transformations for εabp,µ is now a simple consequence of
the analogous relations for spinors:

Sα
β |pa〉β = Uab(S)|(Lp)b〉α, (9a)

[pa|β̇(S†)β̇ α̇ = Uab(S)[(Lp)b|α̇. (9b)

Here the little-group transformation U depends on S instead of L,
but they are of course subject to the two-to-one correspondence
SL(2,C) ∼= SO(1, 3):

Lµν =
1

2
tr(σ̄µSσνS

†), (10)

where σ̄µ = (1,−σ1,−σ2,−σ3).
5 For spin s, the orthonormality and completeness relations are

explicitly

(−1)2s

m2s
〈p(a1p(b1 〉 · · · 〈pa2s)pb2s)〉 = δ

(b1
a1 · · · δ

b2s)
a2s , (17a)

(−1)2s

m2s
|p(a1 〉α1 · · · |pa2s)〉α2s 〈p(a1 |β1 · · · 〈pa2s)|β2s

= δ
(β1
α1 · · · δ

β2s)
α2s .

(17b)

Note that the propagator numerator in Eq. (19) is consistent
with the completeness relation above.

The Lagrangian implying the free field equation (11)
is

L0 =
1

2
(∂µΦα1...α2s)(∂µΦα1...α2s)−

m2

2
Φα1...α2sΦα1...α2s .

(18)
where we treat Φ as a real/hermitian field. The real-
ity has a literal meaning in Euclidean or split signature
and should be understood in the sense of Eq. (13) in
Minkowski spacetime. The corresponding propagator is

Φ{α1...α2s} Φ{β1...β2s}
p =

iδ
(β1
α1 · · · δβ2s)

α2s

p2 −m2
. (19)

Note that, when all indices are raised, the propagator
is automatically antisymmetric for half-integer spins and
symmetric for integer spins. Indeed, the spin-statistics
theorem is also automatically implemented at the level
of (classical) fields:

Φ{α}(x)Φ{α}(y) = (−1)2sΦ{α}(x)Φ{α}(y)

= Φ{α}(y)Φ{α}(x),
(20)

so they can be manipulated much like scalars.

III. GAUGE THEORY

In this section we include minimal gauge interactions
in the chiral higher-spin theory (18). Since complex con-
jugation switches between the chiral and antichiral rep-
resentations of the Lorentz group, we choose O(N) as the
generic gauge group, which encompasses other interest-
ing cases, such as SU(N) ⊂ O(2N).

We take the Lagrangian to be simply

Lg =
1

2
(DµΦ{α})i(D

µΦ{α})i −
m2

2
Φ
{α}
i Φi{α}, (21)

where the covariant derivative

Dµ := ∂µ+gAµ, Aµ = AAµ t
A, [tA, tB ] = fABCtC. (22)



4

involves antisymmetric O(N) generators in the antiher-
mitian convention tAij = −tAji. The higher-spin field in-
teracts with the gauge field via the 3-point vertex

AAµ
3

Φ1i{α1...α2s} Φ
{β1...β2s}
2j

= gtAijδ
(β1
α1
· · · δβ2s)

α2s
(p1 − p2)µ,

(23a)
and the 4-point vertex

AAµ
3 ABν

4

Φ1i{α1...α2s} Φ
{β1...β2s}
2j

= −ig2[tAikt
B
kj + tBikt

A
kj ]

×δ(β1
α1
· · · δβ2s)

α2s
ηµν .

(23b)

The crucial feature of these vertices is that they equal
those of a scalar minimally coupled to a gauge field times
the (2s, 0)-identity operator. This guarantees that all of
the tree-level scattering amplitudes in this theory will
essentially factorize onto those of massive scalar QCD.
For a single pair of higher-spin particles, we have

A(1{a}, 2
{b}, 3h3, . . . , nhn) =

〈1a2b〉�2s
m2s

A(1, 2, 3h3, . . . , nhn).

(24)
Here A(1, 2, 3h3, . . . , nhn) is the (n − 2)-photon emis-
sion amplitude in scalar QED, and � denotes the sym-
metrized tensor product for massive spinors:

〈1a2b〉�2s := 〈1(a12(b1〉〈1a22b2〉 · · · 〈1a2s)2b2s)〉. (25)

Since there are no vertices with more than two massive
fields, we can easily write similar relations for amplitudes
with multiple pairs of higher-spin particles. For instance,

A(1{a}, 2
{b}, 3{c}, 4

{d}, 5h5, . . . , nhn)

=
〈1a2b〉�2s〈3c4d〉�2s

m4s
A(1, 2, 3, 4, 5h5, . . . , nhn) (26)

+ (−1)2s
〈1a4d〉�2s〈3c2b〉�2s

m4s
A(1, 4, 3, 2, 5h5, . . . , nhn),

where the amplitudes on the right-hand side involve dis-
tinctly flavored scalars with one flavor shown in green.

This is clearly a very chiral theory on the matter side.
Indeed, the 3-point amplitudes that follow from the ver-
tex (23a) are explicitly6

A(1
{a}
i , 2

{b}
j , 3±A) = 2gtAij

〈1a2b〉�2s
m2s

(p1 · ε±3 ). (28)

6 As usual, massless polarization vectors can be constructed from
massless momentum spinors (7a) as

ε+p,µ =
〈q|σµ|p]√

2〈qp〉
, ε−p,µ =

〈p|σµ|q]√
2[pq]

. (27)

In contrast to Eq. (8), the presence of extraneous reference
spinors 〈q| and |q] encodes the linearized gauge freedom εp,µ →
εp,µ + fpµ.

Comparing with the original parity-conserving AHH am-
plitudes [10] for gauge theory,7

AAHH(1
{a}
i , 2

{b}
j , 3+A) = 2gtAij

〈1a2b〉�2s
m2s

(p1 · ε+3 ), (29a)

AAHH(1
{a}
i , 2

{b}
j , 3−A) = 2gtAij

[1a2b]�2s

m2s
(p1 · ε−3 ), (29b)

we observe agreement for positive helicity and mismatch
for negative helicity. This reflects the intrinsic chirality of
the higher-spin theory (21), see Sec. V for the discussion
of how parity could be restored. Here we concentrate
on the (incoming) positive-helicity gluons. Such states
correspond to the self-dual sector of Yang-Mills theory
in the sense that the part of the linearized field strength

Fαα̇,ββ̇ := Fµνσ
[µ
αα̇σ

ν]

ββ̇
= F−αβεα̇β̇ + F̃+

α̇β̇
εαβ , which gets

Wick-contracted with them, is

F̃+

α̇β̇
(p) = i2

√
2π[p|α̇[p|β̇

[
δ+(p2)a+(~p)− δ−(p2)a†−(−~p)

]

(30)
and satisfies 1

2εµνρσF
+ρσ = iF+

µν . Much is known about
the self-dual sector [32–39]. Strictly speaking, self-dual
Yang-Mills theory (SDYM) includes both gluonic helici-
ties, and in the on-shell approach one may deal with it
simply by switching off one of the 3-gluon amplitudes:

A(1+A, 2
+
B , 3

−
C) = −

√
2gfABC

[12]3

[23][31]
, (31a)

A(1−A, 2
−
B , 3

+
C) =

√
2gfABC

〈12〉3
〈23〉〈31〉 ⇒

SDYM
0. (31b)

In full Yang-Mills theory, LYM = − 1
4F

A
µνF

Aµν , both
amplitudes (31) appear in factorization limits. Even if
we couple it to our chiral higher-spin matter (21), the
existence of BCFW shifts with good boundary behavior
is guaranteed [17] by the scalar version of this theory
e.g. if we choose to shift only gluonic momenta.8 The
ensuing on-shell recursion relations [13, 14] allow to build
up the entire tree-level scattering matrix, which will by
construction be related to that of scalar QCD via such
identities as Eqs. (24) and (26).

In this theory, there is a subset of amplitudes such that
only amplitudes (29a) and (31a) appear in their factor-
ization limits. Such amplitudes coincide with those in

7 In [12, 16] spin-s amplitudes, such as (28) and (32), carried an
additional prefactor (−1)bsc due to the massive polarization vec-
tor (8) being conventionally spacelike, which is irrelevant for our
chiral theories here.

8 The simplest argument in favor of good boundary behavior in
massive scalar QCD starts with pure Yang-Mills theory in higher
dimensions, for which such shifts do exist, as discussed e.g. in
[40]. After reducing it to four dimensions and leaving only the
massless spectrum, the extra-dimensional gluonic states behave
as adjoint-representation scalars, whereas the low-energy manip-
ulation of introducing masses in their propagators cannot change
their boundary behavior, which is a high-energy feature.
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SDYM coupled to our massive higher-spin matter (21).
In this chiral theory, all purely gluonic amplitudes auto-
matically vanish at tree level except for Eq. (31a). Am-
plitudes with matter do not vanish but are significantly
simpler than those in the full theory due to the integra-
bility of the self-dual gauge interaction. The non-trivial
overlap of the full and the self-dual theories consists of the
amplitudes involving a single pair of massive higher-spin
particles, to which we have referred in the introduction.
Their color-ordered9 versions are explicitly [12]

A(1{a}, 2+, 3+, . . . , (n− 1)+, n{b}) =
i〈1anb〉�2s
m2s−2

×
[2|∏n−3

j=2

{
6P 12...j 6pj+1 + (s12...j −m2)

}
|n−1]

∏n−2
j=2 〈j|j+1〉(s12...j −m2)

.

(32)

Here we have written P12...j = p1 + . . . + pj for mo-
mentum sums and s12...j for their Lorentz squares. The
factors involving slashed matrices in the numerator are{

(Pµ12...j σ̄
α̇γ
µ )(pνj+1σν,γβ̇)+(s12...j−m2)δα̇

β̇

}
, and their or-

der of multiplication is such that j increases from left to
right. The amplitudes (32) are consistent with those for
massive scalars first derived in [42], as well as with those
for massive quarks [15, 43] and gauged spin-1 matter
obtained from Yang-Mills theory via the Higgs mecha-
nism [44]. We have also performed additional numerical
checks through 8 points that the Feynman rules (23a)
and (23b), in combination with the standard 3- and 4-
gluon vertices, give the same answers as the formula (32).

In the important special case of SO(2), for which
fABC = 0 and tA=1

ij = εij , we combine the fields into

Φ{α} := 1√
2

(
Φ
{α}
j=1 + iΦ

{α}
j=2

)
, Φ̃{α} := 1√

2

(
Φ
{α}
j=1− iΦ

{α}
j=2

)
,

(33)
where the charge conjugation avoids the chirality switch.
The resulting chiral higher-spin QED Lagrangian is

LQ = ˜(DµΦ{α})(DµΦ{α})−m2Φ̃{α}Φ{α}, (34)

where the covariant derivative Dµ := ∂µ− iQAµ involves
the coupling constant renamed to Q. A straightforward
application of the resulting Feynman rules

Aµ
3

Φ̃1{α1...α2s} Φ
{β1...β2s}
2

= iQδ(β1
α1
· · · δβ2s)

α2s
(p2 − p1)µ,

(35)

Aµ
3 Aν

4

Φ̃1{α1...α2s} Φ
{β1...β2s}
2

= 2iQ2δ(β1
α1
· · · δβ2s)

α2s
ηµν ,

9 Color ordering used in Eq. (32) assumes the standard conven-
tion [41] favoring hermitian generators TA := i

√
2tA = (TA)†,

which additionally absorb factors of
√

2. As usual with color
ordering, we have relied on the possibility to put all particles in
the adjoint representation of an su(N) (sub)algebra.

leads to the explicit amplitudes (see e.g. [45])

A(1{a}, 2+, 3+, . . . , (n− 1)+, n{b}) = −i(2Q)n−2 (36)

× 〈1
anb〉�2s
m2s

∑

σ∈Sn−2({2,3,...,n−1})

∏n−1
j=2 (P1σ(2)...σ(j) · ε+σ(j))∏n−2
j=2 (s1σ(2)...σ(j) −m2)

.

We have checked numerically through 8 points that they
are consistent with the color-dressed analogue of Eq. (32)
under the usual QCD-to-QED projection

A(1{a}, 2, 3, . . . , n− 1, n{b})

=
(√

2Q
)n−2 ∑

σ∈Sn−2({2,3,...,n−1})

A(1{a}, σ, n{b}). (37)

Note that all gluonic factorization channels non-trivially
cancel here, leaving only the massive ones as in Eq. (36).

IV. GRAVITY

In this section we minimally couple our chiral higher-
spin theory to gravity. The Lagrangian is

LG =
√−g

{
1

2
(∇µΦ{α})(∇µΦ{α})−

m2

2
Φ{α}Φ{α}

}
, (38)

where we have included the metric dependency of the
integration measure. The covariant derivatives may in
general act on the Lorentz indices via the spin connection:

∇µΦα1...α2s
= ∂µΦα1...α2s

+ 2sωµ,(α1

βΦα2...α2s)β . (39)

This prevents the vertices from factorizing onto those
of the massive-scalar theory. So unlike in the gauge-
theoretic case, we cannot make helicity-independent
statements of the type (24).

However, much like in gauge theory, there is a clear
connection between positive-helicity gravitons and the
self-duality condition of the Riemann tensor. Moreover,
it is equally true for the spin connection: the chiral part
of the spin connection is known to vanish in self-dual
gravity (SDGR) [37, 46–48]:

ωµ,α
β :=

1

2
ωµ

ν̂ρ̂σν̂,αγ̇ σ̄
γ̇β
ρ̂ ⇒

SDGR
0, (40)

where the frame indices are displayed with hats. So re-
stricting to the self-dual gravitational sector, we can eas-
ily write the 3-point interaction vertex

hµν3+

Φ1{α1...α2s} Φ
{β1...β2s}
2

= iκδ(β1
α1
· · · δβ2s)

α2s

×
[
p
(µ
2 p

ν)
2 +

m2

2
ηµν
]
,

(41)

e.g. in terms of the perturbation of the “gothic inverse
metric”

√−g gµν = ηµν − κhµν [49, 50] and the cou-
pling constant κ =

√
32πG(Newton). In this formulation
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of self-dual gravitational perturbation theory, all vertices
involving two massive fields and multiple gravitons come
exclusively from the mass term due to

√−g = 1− κ

2
h +

κ2

8

(
h2 − 2hµνhµν

)
+O(κ3), (42)

where h := hµνηµν . In any case, in view of the vanishing
anti-self-dual spin connection (40), all of the Feynman
rules clearly factorize onto those for a massive scalar.

Therefore, for positive-helicity gravitational ampli-
tudes involving two higher-spin matter particles, we do
have the factorization property

M(1{a}, 2
{b}, 3+, . . . , n+) =

〈1a2b〉�2s
m2s

M(1, 2, 3+, . . . , n+).

(43)
Equivalently, these amplitudes are constructible [11] from
their factorization limits via on-shell recursion starting
from the two 3-point amplitudes

M(1{a}, 2{b}, 3+) = −iκ 〈1
a2b〉�2s
m2s

(p1 · ε+3 )2 (44)

and

M(1+, 2+, 3−) = − iκ
2

[12]6

[23]2[31]2
, (45a)

but with no reference to the second 3-graviton amplitude

M(1−, 2−, 3+) = − iκ
2

〈12〉6
〈23〉2〈31〉2 ⇒

SDGR
0. (45b)

However, perhaps the easiest way to express the am-
plitudes (43) is by using the Kawai-Lewellen-Tye-style
double copy [51, 52], which is known [53–55] to hold for
minimally coupled massive scalars. The gravitational all-
plus amplitudes are thus given as a bilinear combination
of their gauge-theoretic color-ordered counterparts (32):

M(1{a}, 2{b}, 3+, . . . , n+) = −i
(κ

2

)n−2 〈1a2b〉�2s
m2s

×
∑

σ,τ

A(1, 2, 3+, σ)A(2, 1, 3+, τ)

n−3∏

i=1

∑

j∈Xiσ,τ

sσ(i)j .
(46)

Here the outer summation is over σ, τ ∈
Sn−3({4, . . . , n}), ti is defined as the position of
σ(i) within permutation τ , i.e. τ(ti) = σ(i), and
Xi
σ,τ := {3, σ(1), . . . , σ(i − 1)} ∩ {3, τ(1), . . . , τ(ti − 1)}.

This expression is also consistent with the double copy
for massive matter with spin [16, 56–59].

V. SUMMARY AND DISCUSSION

We have presented a chiral approach to massive higher-
spin fields and formulated three theories, in which such

fields interact strongly, electromagnetically or gravita-
tionally. We have focused on the self-dual sectors of these
interactions, where scattering amplitudes coincide with
those derived previously assuming parity conservation.
On the one hand, all three theories may be consistently
truncated down to their respective self-dual sectors. On
the other hand, they may be extended by introducing
additional vertex operators to their Lagrangians.

The problem of healthy interactions for higher-spin
fields is important for various reasons. Higher-spin
states might be indispensable for building consistent
quantum gravity models, as indicated by string theory,
the AdS/CFT correspondence and higher-spin gravities.
Moreover, massive higher-spin particles can model many
real physical systems within the effective field theory ap-
proach. A suitable implementation of the classical limit
[11, 30, 31, 60–65] even allows to model gravitational dy-
namics of spinning black holes or other compact objects.

For marginal spins, the problem of consistent inter-
actions has a solution for massive spin-1 fields, which
always result from a spontaneously broken Yang-Mills
theory, and consistent massive spin-2 theories are known
as massive gravity [66–69]. For higher spins, this prob-
lem can be roughly subdivided into two: self-interactions
of massive higher-spin fields and their gauge or gravita-
tional interactions. The latter is more important for such
applications as black-hole scattering. No solution to ei-
ther problem has existed beyond spin-2, and the present
paper aims to provide a new way forward.

Let us compare our chiral-field approach to other de-
scriptions of massive higher-spin fields. In the Singh-
Hagen formulation [4, 5], the auxiliary fields are fine-
tuned to give enough differential consequences of the field
equations to guarantee the correct number of physical de-
grees of freedom (p.d.o.f.), which is almost equivalent to
a tedious analysis of Hamiltonian constraints. Zinoviev’s
approach [6] has a more transparent pattern of auxiliary
fields intertwined by gauge symmetries à la Stückelberg,
and the remaining challenge is of a purely technical na-
ture [70–75]. If one is concerned only with field equa-
tions, more economic approaches to control the number
of p.d.o.f. can be applied, see e.g. [76–79]. Further-
more, the light-front approach starts out with the correct
p.d.o.f., see e.g. [80, 81] and especially [82] for the four-
dimensional case, but the study beyond the cubic order
can still be quite laborious. For twistorial constructions
involving mass see e.g. [83] and the references therein.

Our present proposal for massive higher-spin particles
is inspired by the recent attempts to bootstrap their on-
shell amplitudes with as little off-shell input as possible
[10, 16, 84, 85], which works surprisingly well for like-
helicity configurations of the force-carrier bosons [11, 12].
The chiral description of massive higher-spin interactions
is very close in spirit to the ideas originating from twistor
theory [86–90] and from the covariantization of chiral
higher-spin gravity [23, 26, 27, 91], where a chiral field
Φα1...α2s

is used to describe massless spin-s states. It is
also close to the light-cone gauge in not having redundant
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degrees of freedom, the advantage being in maintaining
manifest Lorentz symmetry. For spin-1/2 fields, the chi-
ral description can be understood as integrating out half
of the fermion components out of QCD [92], and likewise
for spin-1 [93] after first integrating in an auxiliary field.
However, no such interpretation is available for higher
spin fields, while a parent action [94] may still exist.

Having presented the three chiral theories, we can al-
ready comment on their extensions. Similarly to the
self-dual theories, our theories, while being consistent
on their own, generate a subset of the amplitudes of
their would-be non-chiral completions. In the case of
SDYM (with matter) and SDGR the completions to full
Yang-Mills theory (with matter) and gravity are known
[35, 93, 95], and it would be interesting to find such com-
pletions for our proposals. Aiming at restoring parity can
also be motivated by the applications to spinning black
holes. Indeed, the gravitational AHH amplitude (44) was
shown [30, 31] to contain the same spin-induced multi-
pole moments as a spinning black hole [96–98], but only
in combination with its antichiral version

MAHH(1{a}, 2{b}, 3−) = −iκ [1a2b]�2s

m2s
(p1 · ε−3 )2. (47)

On the classical-gravity side, the tower of multipole mo-
ments can be extracted directly from the linearized Kerr
solution [31, 99]. For a spin-s particle described by
Eqs. (44) and (47), it appears truncated down to the
2s-pole with correct black-hole multipole coefficients —
even before the classical limit is taken [11, 61–65]. (In-
terestingly, this “spin universality” property [100–102] is
not obeyed by all three-point amplitudes [65], as recently

demonstrated [103] for the leading Regge states of the
open and closed superstring.)

For simplicity, let us consider the gauge-theoretic case,
where the classical analogue of the spinning black hole is
known as the

√
Kerr solution [63]. We can easily write the

general form of the interaction terms that could modify
the 3-point amplitude (29b) without spoiling (29a):

(Dα1γ̇1 · · ·Dαkγ̇kΦα1...α2s)εαk+1βk+1
· · · εα2s−1β2s−1Fα2sβ2s

×(Dβ1

γ̇1 · · ·Dβk
γ̇kΦβ1...β2s). (48)

A single such term ΦαFαβΦβ is in fact known to be suf-
ficient for restoring parity to the entire spin-1/2 theory,
which then constitutes a chiral formulation of QCD with
massive quarks due to Chalmers and Siegel [92]. As for
higher spins, we will explore their gauge and gravitational
interactions in more detail elsewhere.
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