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1 Introduction

Various No-go theorems in flat space [3, 4] and AdS space [5] have been the main arguments
obstructing the construction of viable massless interacting higher-spin theories using field
theory approaches.1 Building toy models of higher-spin theories which can avoid No-
go theorems usually requires to give up at least one of the important features of field
theory, notably unitarity and locality. A few examples of higher-spin theories with local

1See [6] for a review.
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interactions are (quasi-)topological theories [1, 7–16], or higher-spin extensions of Weyl
gravity [17–19]. In any case, the (holographic) S-matrix turns out to be trivial or simple,
which indicates that possible interactions are severely constrained by higher-spin symmetry
(an infinite-dimensional symmetry), and are forced to cancel each other out in the physical
amplitudes.

Nevertheless, various attempts during recent years towards a construction of interact-
ing higher-spin theories using Fronsdal fields as the main objects [20–25] taught us some
lessons on how to build up toy models for higher-spin theories:

• First of all, if we willingly forgo covariance, then the light-front approach [15, 16, 26–30]
is the very first approach that provides positive results on perturbatively local interact-
ing higher-spin theories with propagating degrees of freedom. The chiral higher-spin
theories [15, 29–32] are the first theories that can avoid No-go theorems in both flat
and AdS spaces. The flat space chiral theories were shown to be integrable in [16] and
proven to be UV finite at one-loop in [33–35]. We expect that the chiral theories are
one-loop exact.

• Secondly, one can start with an auxiliary space where non-locality is under control,
and find a map to spacetime with the requirement that the interacting vertices in
spacetime should not be too non-local. In particular, twistor space provides such a
framework to construct (covariant) theories of interacting higher-spin fields in space-
time. For instance, by deforming the complex structure on twistor space, one can
obtain conformal higher-spin gravity in AdS4 [36, 37]. The higher-spin extensions of
(self-dual) Yang-Mills (HS-(SD)YM) [1, 2] and self-dual gravity (HS-SDGRA) [1] were
obtained recently, using also some methods with deep roots in twistor theory. The
main advantage of constructing higher-spin theories using twistor theory is that we
can carefully maintain the covariance.

On the other hand, the IKKT-matrix model [38] — which can be viewed as an alterna-
tive and constructive description of type IIB superstring theory — was recently shown to
induce a higher-spin gauge theory on a fuzzy 4-sphere/hyperboloid S4

N/H
4
N in the large-N

(semi-classical) limit [39–42]. We shall refer to this higher-spin gauge theory as HS-IKKT
for short. In four dimensions, the HS-IKKT contains N = 4 super-symmetric Yang-Mills
(SYM) as a subsector. Therefore, it can be thought of as a higher-spin extensions of N = 4
SYM on a fuzzy manifold. However, the interactions of the HS-IKKT are of gravitational
type, since its vertices can contain more than two-derivatives. Fuzzy S4

N or H4
N can be

understood as quantized S2
N -bundle over the base manifold, which is either S4 or H4. Since

S2 is isomorphic to CP1, the total space is nothing but a fuzzy twistor space CP3
N . Being

related to both type IIB string theory and twistor theory, the IKKT-matrix model offers a
remarkable opportunity to construct a complete higher-spin theory in spacetime with inter-
actions reaching up to the quartic. In particular, previous analysis [43] showed that there
is no ghost (no physical mode with negative norm) in the HS-IKKT, albeit on a slightly
different background. Therefore, it is reasonable to expect that the higher-spin gauge the-
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ory that emerges from the IKKT-matrix model is a rare example of a local higher-spin
theory that may avoid the No-go theorems in some way.

Up to now, the HS-IKKT-matrix model on the fuzzy 4-sphere has been mostly studied
using the representation of so(5) algebra, where 5 is the dimensions of the ambient space
of the 4-dimensional spacetime manifold. The rotational symmetry is recovered through
the extra structure of covariant background geometries which induces a higher-spin theory,
see [44] for a review. One noteworthy feature of the HS-IKKT model is that the tower of
highes spin modes is truncated, due to the non-commutativity of the coordinates. However,
one can recover the usual spectrum of higher-spin theories in the large N limit where
matrices are effectively commutative. The space of functions is then taking value in a
higher-spin algebra associated to so(5). The cases of the fuzzy 4-sphere and 4-hyperboloid
were studied in [40, 41]. Instead of using so(5) to study the HS-IKKT on S4

N , it may
be more suggestive to consider sp(4) ' so(5) as an alternative realization.2 Noting that
Sp(4) ⊂ SU(4), and therefore, we can refer to Sp(4)-vectors as twistors, which we will
denote as ZA. Since Sp(4) ⊃ SU(2)L × SU(2)R, we can write the space of functions on a
fuzzy sphere as polynomials in terms of spinors. This will significantly simplify the analysis
of higher-spin modes arising from the IKKT model.

In this work, we will study the HS-IKKT on a fuzzy 4-sphere using the spinorial
representation SU(2)L × SU(2)R of Sp(4). All the higher-spin modes described by spinors
are said to live in balanced weight representation (BWR) on fuzzy twistor space. Upon
integrating out all fiber coordinates, which are the auxiliary spinors on fuzzy twistor space,
we end up with a spacetime description of the HS-IKKT model. These spacetime higher-
spin fields live in the maximally unbalanced representation (MUR) of the Lorentz group [1]
— a representation inspired by twistor theory [45–47]. It has a crucial property of allowing
us to control spins and derivatives in the interactions almost independently. Written in
terms of spinorial indices, the (HS)-IKKT model can be further decomposed into a self-dual
sector and a non-self-dual one. We exhibit the similarity between the (self-dual) IKKT and
(self-dual) N = 4 SYM in 4d. Moreover, the higher-spin extensions of (self-dual) Yang-
Mills HS-(SD)YM obtained in [1, 2] can be understood as the deformed gauge sectors of
the (self-dual) HS-IKKT in the semi-classical and flat (SCF) limit, after integrating out
fibre coordinates. We also show that the action of the self-dual Yang-Mills sector of the
(HS)-IKKT can be rewritten as a deformed BF action on commutative twistor space.
As a consequence, it is natural to conjecture that the self-dual N = 4 HS-IKKT is a
deformed Chern-Simons theory on super twistor space CP3|4, along the lines of [48, 49].
From a geometrical perspective, the self-dual HS-IKKT should be integrable. Finally,
the action of the HS-IKKT model written in terms of spinorial indices shows that it has
higher-derivative vertices, where the interactions at the lowest order are of gravitational
(two-derivative) type due to the Poisson brackets. It is plausible that even though the
HS-IKKT has higher-derivative interactions at the quartic, it should be a local interacting
higher-spin theory.

2We will be somewhat cavalier on the real structure in this paper. Most considerations will be restricted
to the Euclidean case, but might be extended by some sort of analytic continuation. sp(4) is understood as
the appropriate real sector of sp(4)C.
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The paper is organized as follows. In section 2, we will give a brief review of the
fuzzy 4-sphere and explain how spacetime emerges from it. We also discuss an alternative
realization of S4

N using the representation theory of sp(4), and briefly discuss the space of
functions on S4

N in terms of sp(4). In section 3, we describe how the incidence relations of
twistor theory can be understood in terms of a projection of fuzzy twistor space CP3

N to S4
N

via the Hopf fibration followed by a stereographic projection, in the large N limit. We also
briefly study the complex structure of CP3

N . Next, we describe the spinorial representations
for higher-spin valued functions, fermionic modes and vector modes on S4

N . The spinorial
effective vielbein, metric and torsion are also discussed. Section 4 is dedicated to rewriting
the IKKT-matrix model in terms of spinorial indices. As a result, one can write the IKKT
model as a self-dual sector plus a non-self-dual one. We then study the twistorial higher-
spin theory induced from the IKKT model and perform the Penrose transform to obtain
the spacetime action for the HS-IKKT model. In the SCF limit, we study the simplest
example of the 3-point scattering amplitude for the Yang-Mills sector of the HS-IKKT in
section 5. Next, in section 6, the self-dual gauge sector of the HS-IKKT in spacetime is
shown to be a deformed BF theory on commutative twistor space. Finally we conclude in
section 7. Various technicalities are collected in the appendix.

Conventions. Let us briefly introduce our convention of indices used in this paper. First
of all, we will use the Latin letters a, b as SO(5)-indices and the capital letters A,B for
SO(6). The Greek indices µ, ν are used as spacetime indices, while α, β (and their primes)
are spinorial indices. We will use the curly Latin indices A,B as sp(4)- and twistor indices.
The background vielbein contain spacetime indices µ, ν and typewriter type font letters
a, b stand for tangent space indices. We note that a, b = 1, 2, 3, 4 in our paper. Next,
indices that are symmetrized are denoted by the same Greek letters, e.g. AαBα denotes
1
2(Aα1Bα2 + Aα2Bα1). Fully symmetric rank-s tensor will be denoted by Tα(s) = Tα1...αs .
Lastly, we denote the Poisson bracket as {, } and the anti-commutator as {, }+. We will
write non-commutative coordinates as capital letters, e.g. Y,X, P,Q while we will denote
them as lower-case letters, e.g. y, x, p, q, in the semi-classical limit. Coordinates with
vectorial indices, for example Y a, have dimension of length ,while coordinates with spinorial
indices are dimensionless, e.g. Y αα′ . We denote the dimensionless coordinates in the semi-
classical limit by lower-case typewriter font letters y, x.

2 Preliminaries

2.1 The IKKT model, matrix backgrounds and emergent gauge theory

To set up the stage, we briefly recall how the IKKT matrix model leads to a gauge theory
on emergent space(time) backgrounds. The SO(10)-invariant action of the Euclidean IKKT
model reads

S = Tr
(
[Y I , Y J ][YI , YJ ] + Ψ̄AγI

AB[YI ,ΨB]
)
, I = 1, . . . , 10 . (2.1)
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Here the Y I are N × N hermitian matrices, and ΨB are matrix-valued spinors.3 For our
purpose, the most important feature of IKKT-type matrix models is that they define a
gauge theory on suitable matrix backgrounds. Such a background is defined by a set of 10
“almost-commutative” matrices Ȳ I , and typically defines a noncommutative or quantized
space(time) as follows [50–53]: One can define optimally localized quasi-coherent states
|y〉 ∈ H, which are approximate common eigenstates of the Y a, localized at some point in
target space

yI = 〈y|Y I |y〉 ∈ R9,1 . (2.2)

These yI sweep out some varietyM in target space, and

Y I ∼ yI : M ↪→ R9,1 (2.3)

is interpreted as quantized embedding of some “brane” M in target space R9,1. More
generally, one can then associate classical functions to the matrices via

Mat(H) ∼ C(M)
Φ ∼ 〈y|Φ|y〉 = φ(y) ,

(2.4)

and the matrix algebra Mat(H) generated by the Y I is interpreted as quantized algebra of
functions onM. The non-commutativity

[Y I , Y J ] =: iθIJ (2.5)

amounts to a quantized Poisson structure on M. In this way, a fuzzy notion of geometry
is extracted from nearly-commuting matrix configurations in the matrix model. A priori,
such a Poisson structure breaks Lorentz invariance. This is mitigated on covariant quantum
spaces such as S4

N which carry a collection of such the Poisson structures

[Y a, Y b] = iθab = ir2Mab , a = 1, . . . , 5 , (2.6)

which form an S2 bundle; in the case of fuzzy S4
N under consideration, the Mab are the

generators of so(5), and r > 0 is a natural length scale. We will be related to twistor space
in section 3.

Adding fluctuations Ȳ a+Aa to the background, the action defines a non-commutative
Yang-Mills-type gauge theory onM [54], with the gauge transformations U−1(Ȳ a +Aa)U .
On the S4

N background, this was elaborated in [40], leading to a tower of 4 tangential
(off-shell) higher-spin modes. We will reconsider this in the following using a spinorial
approach, which considerably simplifies the analysis in the flat limit.

3Strictly speaking the model should be considered in Minkowski signature, where the fermions are
Majorana-Weyl spinors of SO(9, 1). Then the S4

N background should be replaced by H4
n [41]. Since we

focus on the bosonic sector, there is no obstacle going to the Euclidean case.
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2.2 Fuzzy 4-sphere S4
N and so(5) representations

We recall the definition of a fuzzy 4-sphere S4
N , using so(5) representation theory [55, 56].

A 4-dimensional sphere of radius R living in a 5-dimensional flat ambient space R5 obeys
to the following constraint

YaY
a = R2 , a = 1, . . . , 5 . (2.7)

Here, Y a are the N ×N Hermitian matrices and are the coordinates of the ambient space
endowed with the metric ηab = diag(+,+,+,+,+). By requiring Y a to transform as
vectors under SO(5) equipped with the generators Mab, we have the following algebra

[Mab,Mcd] = i(Madδbc −Macδbd −Mbdδac +Mbcδad) , (2.8a)
[Mab, Yc] = i(Yaδbc − Ybδac) , (2.8b)

[Ya, Yb] = ir2Mab . (2.8c)

The relations (2.7) and (2.8) define a S4
N . The above algebra of so(5) can be embedded

into an so(6) algebra

[JAB, JCD] = i(JADδBC − JACδBD − JBDδAC + JBCδAD) , A = (a, 6) , (2.9)

by the following identifications

Mab = Jab , Ya = rJa6 , (2.10)

where the “6” is an additional direction. To obtain a 4-sphere, we must choose the highest
weight irreducible representation of so(6) ∼= su(4), say Ξ = (N, 0, 0), denoted by HN
henceforth. Then the following relations hold

YaY
a = R2

N = r2

4 N(N + 4) , εabcdeM
abM cd = 4

r
(N + 2)Ye . (2.11)

which provide the basis for the interpretation as fuzzy 4-sphere.

2.3 so(5) ' sp(4) as subalgebra of su(4)

There is another way to describe S4
N in term of sp(4) instead of so(5) as in [39, 40], which

is more natural from the spinorial point of view. We note that our realization is slightly
different with the previous literature [57–59]. Consider first the so(5) ' sp(4) gamma
matrices γa, a = 1, . . . , 5, which satisfy the Clifford algebra

({γa, γb}+)AB = 2δabδAB , A,B = 0, 1, 2, 3 . (2.12)

One useful realization for the γ matrices is the chiral representation. Explicitly,

(γm)AB = −i
(

0 (σm)αβ′
−(σm)α′β 0

)
, (γ4)AB =

(
0 1l2
1l2 0

)
, (γ5)AB =

(
1l2 0
0 −1l2

)
. (2.13)
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There is a unique so(5)-invariant tensor in (4)⊗ (4), given by

CAB = −CBA =
(
εαβ 0
0 εα′β′

)
, (2.14)

which we can use to raise and lower A,B indices as

UAC
BA = UB , UACAB = UB . (2.15)

Then the γ-matrices are anti-symmetric and traceless, i.e.

γABa = −γBAa , γABa CAB = 0 . (2.16)

Our convention for the ε tensor is εαβ = εαβ is that ε01 = −ε10 = 1. Spinorial indices are
raised and lowered as follows

uα = uβε
αβ , uα = uβεβα . (2.17)

Then the generators

ΣABab = −ΣABba = ΣBAab = i

4[γa, γb]AB (2.18)

provide the spinorial representation of so(5) ' sp(4). We, then, consider the following
identifications that map so(6) generators to su(4) ones

Y AB = −Y BA = r−1Y aγABa , LAB = LBA = 1
2M

abΣABab . (2.19)

Note that the Y AB satisfy the hermiticity relations

(Y AB)† = −(C−1Y C)BA , (2.20)

where † denotes the hermitian conjugation of the matrices. Roughly speaking, we have
changed the symmetries of the generators Y and M as

Y a ∼ 7→ Y AB ∼ , Mab ∼ 7→ LAB ∼ . (2.21)

The su(4) algebra reads [60]

[LAB, LCD] = i(LACCBD + LADCBC + LBDCAC + LBCCAD) , (2.22a)
[LAB, Y CD] = i(Y ACCBD + Y BCCAD − Y ADCBC − Y BDCAC) , (2.22b)
[Y AB, Y CD] = i(LACCBD − LADCBC − LBCCAD + LBDCAC) . (2.22c)

Here, we recognize the LAB as sp(4) generators, and Y AB as “vectors” that transform
under sp(4).

– 7 –
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2.4 Higher-spin modes on S4
N

The space of functions C consists of higher-spin modules which are polynomials in LAB

and Y AB. Using (B.5), we can write C as

C =
∑
k,m

fA(k)B(2m)|C(k)Y
AC . . . Y ACLBB . . . LBB =

⊕
k,m

k
k + 2m . (2.23)

Note that the spectrum looks similar to C (so(5)) in [40] in terms of Young diagrams.
Consider a subspace ths ⊂ C with the following higher-spin modules

ths =
∑
m

ψB(2m)L
BB . . . LBB =

⊕
m

2m , (2.24)

where the coefficients ψB(2m) are totally symmetric and traceless. Then, the above subspace
ths defines a truncated higher-spin algebra. Compare with the case of so(5), we have the
following dictionary

ths(so(5)) =
⊕
m

m− 1
m− 1 ←→ ths(sp(4)) =

⊕
m

2m . (2.25)

Relation with hs(sp(4)). We note that, at large N limit, the above truncated higher-
spin algebra is identical with the usual higher-spin algebra defined by the quotient of the
universal enveloping algebra of sp(4) by the two-sided Joseph ideal [61–63] generated by

C2 = −1
2WABW

AB , (2.26a)

= {W[AM,W
M
B] }+ −

5
4CAB , (2.26b)

= {W [B
[A ,W

D]
C] }+ −

1
4{W[AM,W

M
C] }+C

BD − 1
4{W

[B
M ,WMD]}+CAC − trace ,

(2.26c)

in the units of the cosmological constant that is 1. Here, W are generators of sp(4) algebra
in 4-dimensional target space that obey

[WAB,W CD] = WADCBC +WACCBD +WBDCAC +WDCCAD . (2.27)

The higher-spin algebra generated by the sp(4) generators WAB is defined as

hs(sp(4)) = U(sp(4))
〈I〉

=
⊕
m

2m , (2.28)

where the universal enveloping algebra U(sp(4)) reads

U(sp(4)) = • ⊕ ⊕
(

⊗
)
S
⊕ . . .

= • ⊕ ⊕
(
• ⊕ ⊕ ⊕

)
⊕ . . . .

(2.29)
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Here, ()S denotes the symmetrized tensor product of WAB,4 and the first bullet • is the
singlet of U(sp(4)) while the second is the quadratic Casimir operator C2. The two-sided
Joseph ideal is defined as

〈I〉 = U(sp(4))⊗
(
(C2 − λ) ⊕ ⊕

)
⊗ U(sp(4)) , λ = −5

2 . (2.30)

The main difference between ths(sp(4)) and hs(sp(4)) is that ths(sp(4)) is defined on the
ambient space R5 while hs(sp(4)) is defined on spacetime S4. Moreover, the latter is infinite-
dimensional while the former is not. However, these two higher-spin algebras coincide in
the large N limit.

We note that the above realization of ths(sp(4)) allows us to make a connection with
fuzzy twistor space CP3

N . Roughly speaking, CP3 ⊂ C4 is spanned by sp(4) or su(4) vectors
ZA and their dual vectors ẐA. These are known as twistors. Then, functions on CP3

N are
represented by “balanced” polynomials of ZA, ẐA with cutoff at N . In particular, the
space of functions on CP3

N reads (cf. (3.31))

CP3
N = End(HN ) = (0, 0, N)su(4) ⊗ (N, 0, 0)su(4) =

N∑
n=1

(n, 0, n)su(4)

=
N∑
n=0

fA(n)B(n)Z
A . . . ZAẐB . . . ẐB .

(2.31)

It is clear from (2.31) that the spectrum of higher-spin modes on CP3
N is bounded from

above, which is an appealing feature of the IKKT-matrix model compared to usual higher-
spin theories (see further discussion in [64]).

2.5 Spacetime geometry in the semi-classical limit

From the relation (2.11), we see that the natural length scale r scales as r2 ∼ R2

4N2 . In
the semi-classical (large N) limit, the coordinates can be considered as commutative. In
this limit, we replace capital letters to the normal ones, namely Y a 7→ ya, and replace the
commutator (2.6) with the Poisson bracket i{ , }

{ya, yb} = r2mab . (2.32)

The Poisson bracket is the only structure which exhibits the non-commutativity of the ge-
ometry in the semi-classical limit, while the functions are considered as commutative. This
is in contrast to the fuzzy or noncommutative case, where the functions do not commute
and the higher spin modes discussed in section 2.4 are truncated. In the following, we will
use yµ with µ = 1, 2, 3, 4 to represent spacetime coordinates and write (2.7) as

yµy
µ + y2

5 = R2 . (2.33)

To describe a 4-dimensional sphere in the target space, we can choose the following stere-
ographic parametrization

yµ = 2R2xµ

(R2 + x2) , y5 = R(R2 − x2)
(R2 + x2) , x2 = xµx

µ . (2.34)

4Any anti-symmetrization between the generatorsW will reduce to lower orders due to the algebra (2.27).
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The background metric is therefore

ds2 =
(
∂ya

∂xµ
∂yb

∂xν
ηab

)
dxµdxν := gµνdx

µdxν = 4R4dxµdx
µ

(R2 + x2)2 . (2.35)

The vielbein reads

ēa
µ = 2R2

(R2 + x2)δ
a
µ , a = 1, 2, 3, 4 . (2.36)

Note that the typewriter type font indices a, b are different with the indices a, b on ambient
space. They are used to describe tangent space of the S4 in the semi-classical limit. The
above is also known as the affine patch of the S4. We note that the metric is conformally
flat, which is a nice feature of the stereographic projection. Clearly the SO(4) which
stabilizes y5 acts linearly on the xµ, leaving dxµdxµ invariant, while SO(5) acts as part of
the conformal group of the flat 4-dimensional metric dxµdxµ.

Flat limit. From (2.35), it is obvious that at the limit where R→∞, we obtain the flat
metric as

ds2 = dxµdx
µ , (2.37)

where we have rescaled xµ with a factor of 1/2. In this limit, the SO(5) isometry of S4

reduces to the ISO(4) isometry of flat R4. We will often take the semi-classical (large
N) limit first before considering the flat limit. The combination of both limits, i.e. the
semi-classical and flat limit, will be denoted as SCF limit. The SCF limit will be useful to
study scattering amplitudes of the HS-IKKT in spacetime in section 6.

Higher-rank tensors. In the ambient space formulation, a tangential, traceless and
divergence-free symmetric rank-s tensor on S4

N is characterized by [39, 40]

ybT
ba(s−1) = 0 , (2.38a)

Tcda(s−2)η
cd = 0 , (2.38b)

ðbTba(s−1) = 0 , (2.38c)

where derivations ða are defined through [41]

r2mabðb• := {ya, •} . (2.39)

To obtain a rank-s covariant tensor Tµ1...µs on S4 from an SO(5)-tensor Ta1...as , we can use
the following pullback

π∗ : Ta1...as 7→ Tµ1...µs = ∂ya1

∂xµ1
. . .

∂yas

∂xµs
Ta1...as . (2.40)

3 Fuzzy twistor space and spinors

In this section, we first give a brief review on commutative twistor space. Then, we describe
what is a quantized (or fuzzy) twistor space using the Hopf fibration and spinors. Next, we
define the complex structures of the fuzzy twistor space in the semi-classical limit where
we have S4 as a classical base manifold and the S2 ' CP1 as the fibers at each point
on the manifold S4. We also study spinorial effective vielbein, metric and torsion in the
semi-classical limit as a preparation for the next section.
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3.1 Commutative twistor space

Consider homogeneous coordinates on the usual complex projective space CP3

ZA = (Z1, Z2, Z3, Z4) = (λα, µα′) ∈ C4 , Zi 6= 0 (i = 1, 2, 3, 4) . (3.1)

Here λα, µα′ are Weyl spinors of opposite chirality. We note that the twistor ZA transforms
in the fundamental representation of su(4), which will be useful to define quantized or fuzzy
twistor space in the following. Let us consider the complex conjugation of the twistor ZA
denoted as Z̄A. Then,

Z̄A = (λ̄α, µ̄α′) , (3.2)

and it transforms in the anti-fundamental representation of su(4). By restricting ourselves
to sp(4) ⊂ su(4), we can use the anti-symmetric matrix CAB to define the dual twistor ẐA
of ZA as

ẐA = Z̄BC
AB . (3.3)

In terms of spinors, the dual twistor ẐA reads

ẐA = (λ̂α, µ̂α′) . (3.4)

Here,

λ̂α = λ̄βε
αβ , µ̂α

′ = µ̄β′ε
α′β′ . (3.5)

The above is also known as the quaternionic conjugation in twistor literature. Note that
the inner product between the twistor Z and its complex conjugate (or dual) twistor is
SU(4)-invariant

N := Z̄AZ
A = −〈λ̄λ〉 − [µ̄µ] ,

= −〈λ̂λ〉 − [µ̂µ] = −ẐAZA ,
(3.6)

and defines an S7 ⊂ C4. The angle and square brackets are defined as

〈uv〉 = uαvα , [uv] = uα
′
vα′ . (3.7)

Here N is a dimensionless number, which will be quantized in the fuzzy case. We define
twistor space PT as the open subset of CP3 where5

PT = {ZA ∈ CP3|λα 6= 0 and N 6= 0} , (3.8)

with the projective line {λα = 0} removed.6 The radius of S4 is obtained using the Fierz
identity as

yay
a = R2 =

(
rN

2

)2
⇒ R = rN

2 . (3.9)

5See, e.g. [65, 66], for a nice review on twistor theory.
6From the point of view of the Hopf map (3.13) this amounts to removing the South pole, which is

mapped to infinity by the stereographic projection.
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Beside the SU(4)-invariant product (3.6), we also have an inner product that is Sp(4)-
invariant7 by considering another twistor Z2 6= Z1

ZA1 Z
B
2 CAB = −[µ1µ2]− 〈λ1λ2〉 . (3.10)

Now we can understand the correspondence between twistor space and spacetime through
the following incident relation:

µα
′ = xαα

′
λα . (3.11)

The inverse of the above reads

xαα
′ = λ̂αµα

′ − λαµ̂α′

〈λ̂λ〉
. (3.12)

This can be understood in terms of the Hopf map

CP1 ↪−→ CP3 ' S7/U(1) → S4 ,

ZA 7→ ya := r

2 Z̄A(γa)ABZB = −r2 Ẑ
A(γa)ABZB ,

(3.13)

cf. (B.2) and (3.33). We can make the Hopf map more explicit by using the chiral basis
of the γ-matrices in (2.13). They become manifestly anti-symmetric if the first index is
lowered with the sp(4)-invariant matrix CAB. Explicitly,

(γm)AB =
(

0 (σ̃m)αβ′
−(σ̃m)β′α 0

)
, (γ4)AB =

(
0 −εαα′
εαα′ 0

)
, (γ5)AB =

(
−εαβ 0

0 εα′β′

)
(3.14)

where σ̃mαα′ = −i(σm)•α′ε•α. This allows us to define a new basis of Pauli’s matrices as

σ̂µαα′ = (σ̃mαα′ , εαα′) = (iσ3, 1l2,−iσ1, iσ2) . (3.15)

Comparing with (3.12), we recognize

yµ = −r2 Ẑ
A(γµ)ABZB = r

2〈λλ̂〉(σ̂
µ)αα′xαα

′
, µ = 1, . . . , 4 , (3.16)

and,

y5 = −r2 Ẑ
A(γ5)ABZB = r

2([µ̂µ]− 〈λ̂λ〉) = −(R+ r〈λ̂λ〉) ≥ −R . (3.17)

using (3.12) and (3.6). The relation (3.17) implies

〈λλ̂〉 = N

2

(
1 + y5

R

)
= NR2

R2 + x2 , (3.18)

where we have used the stereographic parametrization (2.34). From (3.6), we can deduce
that

[µµ̂] = Nx2

R2 + x2 . (3.19)

7This relation corresponds to (2.11) from the S4
N point of view.
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Note that we can further rewrite (3.16) as

yµ = Nr

4

(
1 + y5

R

)
(σ̂µ)αα′xαα

′ = NrR2

2(R2 + x2)(σ̂µ)αα′xαα
′ = 2R2xµ

(R2 + x2) (3.20)

which is in agreement with (2.34) where we have defined

xµ = rN

4 (σ̂µ)αα′xαα
′ = R

2 (σ̂µ)αα′xαα
′
. (3.21)

Therefore, the incidence relation (3.11) of the twistor construction corresponds precisely
to the Hopf map followed by a stereographic projection. By denoting x2 = xµx

µ, and
x2 = xαα′xαα

′ , we see that

x2 = R2

4 x2 . (3.22)

In other words, by moving from Lorentz indices to spinorial indices, the coordinates xµ is
automatically rescaled with a factor of R

2 . Phrased differently, xµ has dimension of length
while xαα

′ is dimensionless. In the following, we will let λ, λ̂ be the coordinates of CP1.
Then, the equation (3.18) allows us to parametrize the spinors λ, λ̂ in a projective way as

λα 7→
R√

R2 + x2
λα := R√

R2 + x2

(
weiθ

−1

)
, λ̂α 7→

R√
R2 + x2

λ̂α := R√
R2 + x2

(
1

we−iθ

)
,

(3.23)

where (1 + w2) = N and w ∈ R∗, θ ∈ [0, 2π]. On the other hand, from (3.19), we can
parametrize the spinors µ, µ̂ as

µα
′ 7→ |x|√

R2 + x2
µα
′ := |x|√

R2 + x2

(
a

b

)
, µ̂α

′ 7→ |x|√
R2 + x2

µ̂α
′ := |x|√

R2 + x2

(
−b̄
ā

)
,

(3.24)

where |a|2 + |b|2 = N for a, b ∈ C∗. As we will see, it will be convenient to perform the
Penrose transform with the above quaternionic parametrization. Henceforth, all spinors
are weightless (without conformal factor) unless otherwise stated.

3.2 Quantized twistor space

Poisson structure and functions on CP3. To understand the quantization of twistor
space, we must first describe the space of functions on CP3. It acquires a Poisson structure
from the su(4)-invariant canonical brackets

{ZA, Z̄B} = −iδAB , {ZA, ẐB} = −iCAB . (3.25)

Then the “number” generator

N̂ := Z̄AZ
A = −[µ̂µ]− 〈λ̂λ〉 = −ẐAZA (3.26)
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defines a gradation via

{N̂ , ẐA} = +iẐA , {N̂ , ZA} = −iZA . (3.27)

Then functions on CP3 are spanned by polynomials in Ẑ, Z that have total grade zero:

C :=
{
P (Ẑ, Z)| {N̂ , P (Ẑ, Z)} = 0

}
. (3.28)

It is worth to emphasize that only polynomials that are balanced in Z, Ẑ will respect the
definition of CP3

N . This property will be “forwarded” to the quantization space. Due to
our definition of the twistor ZA = (λα, µα′), (3.27) implies that (λ, µ) have grade plus one
while (λ̂, µ̂) have grade minus one in the quantized case where we have i{, } 7→ [, ].

Quantized twistor space. In the non-commutative case, we can define the following
relations that describes quantized (or fuzzy) twistor space [57, 67–69]

[ZA, Z̄B] = δAB , [ZA, ẐB] = CAB (3.29)

which arise from the above Poisson structure. The second relation above follows directly
from the definition of the dual twistor ẐA = Z̄BC

AB, and CAB is given explicitly in (2.14).
Henceforth, we will use explicitly ZA and its dual ẐA to describe quantized twistor space.
Let us impose the following su(4)-invariant constraint

N̂ = Z̄AZ
A = −ẐAZA = N (3.30)

which holds on the N -particle Fock space

HN = (0, 0, N)su(4) = (0, 0, 1)⊗symN . (3.31)

We can understand HN as the space generated by N creation operators ẐAm for m =
1, . . . , N , i.e. HN = Ẑ1 . . . ẐN |0〉 . Then the algebra

C := End(HN ) (3.32)

is recognized as quantized space of functions on CP3, which is known as fuzzy
CP3

N [39, 40, 70, 71]. We once again emphasize that C comprises only balanced poly-
nomials in Ẑ, Z. This reflects the classical definition CP3 ∼= S7/U(1) (3.13). Because any
polynomial with more than N annihilation operators will vanish identically upon normal
ordering, C is a finite-dimensional space. For this reason, the fuzzy CP3

N is nothing but
quantized twistor space, or more precisely it is a quantization of compactified twistor space.
An uncompactified version of the fuzzy twistor space can be defined similarly in terms of
CP2,1, see for example [41].

The fuzzy twistor space can be understood in terms of the following non-commutative
version of the Hopf fibration

CP1
N ↪−→ CP3

N ' S7/U(1) → S4 ,

ZA 7→ Y a = r

2 Ẑγ
aZ .

(3.33)
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Consider a point x0 ∈ S4 as a reference point. Then the fiber over x0 is determined by [64]

Ẑγ5Z = 1 . (3.34)

The above defines S3, which can be reduced to S2 by quotienting out U(1). Hence, the
fuzzy S4

N can be understood as projection of fuzzy twistor space CP3
N . We note that

in the non-commutative case, the incident relation (3.11) does not have a well-defined
inverse. Moreover, since there is not a geometry in the usual sense, differential forms and
complex structures are not defined a priori. We will therefore restrict ourselves mostly
to the semi-classical or large N regime, where the non-commutative structure reduces to
classical Poisson geometry.

The above construction can also be described in terms of two spinorial creation- and
anihilation operators, noting that (3.29) implies the commutation relations

[λα, λ̂β ] = εαβ , [µα′ , µ̂β′ ] = εα
′β′ , (3.35)

which are quantizations of the Poisson structure

{λα, λ̂β} = −iεαβ , {µα′ , µ̂β′} = −iεα′β′ . (3.36)

Hence, the fuzziness of twistor space is encoded by the non-commutativity of the spinors
λ and µ.8 The space of functions can also be described in terms of these spinors

C =
∑
n

$α(n)β(n),α′(n)β′(n)λα . . . λαµα′ . . . µα′ λ̂β . . . λ̂βµ̂β′ . . . µ̂β′ . (3.37)

Here, any normal ordering can be chosen, and we have spelled out the balance condition
explicitly. For convenience, we note the following useful relations

{〈λ̂λ〉, λα} = +iλα , {〈λ̂λ〉, λ̂α} = −iλ̂α . (3.38)

We also find

{[µ̂µ], µα′} = iµα , {[µ̂µ], µ̂α′} = −iµ̂α . (3.39)

As a consequence,

{N̂ , xαα′} = 0 , (3.40)

which means xαα
′ has grade zero, as it must.

Balanced weight representations (BWR) for higher-spin modes. Using the inci-
dent relation (3.11) in the semi-classical limit, we can cast any function ω(λ, µ; λ̂, µ̂) into
ω(x, λ, λ̂). In particular, the space of functions on twistor space comprises of polynomials
purely in terms of the spinors λ, λ̂,

C =
∑
n

fα(n)β(n)(x)λα . . . λαλ̂β . . . λ̂β . (3.41)

8The spinors λ, µ are also known as doubletons [72–74].
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In the semi-classical limit, the coefficient fα(n)β(n)(x) becomes a tensorial field in spacetime,
which for irreducible modes is totally symmetric in all 2n indices;9 this provides the link
to the maximally unbalanced (MUR) representation in section 4.4. Besides the space of
functions C , we also need to have the notion of the space of higher-spin valued vector modes,
which we will denote A . Using the same argument about balanced weight representation
(BWR), our space of vector-modes reads

A =
∑
m=n

Aα(m)β(n)γ,γ′(x)λα . . . λαλ̂β . . . λ̂β . (3.42)

Here, γ, γ′ are two independent indices which can be converted into the usual Lorentz
index µ by Pauli’s matrices. In spacetime, the coefficient Aα(m),α′ is a tensorial field that is
symmetric in the first group of unprimed indices and represent generalized gauge potentials.
We also need the spaces of higher-spin valued (fermionic) spinor modes,

F =


∑
m=n χ

α(m)β(n)γ(x)λα . . . λαλ̂β . . . λ̂β ,∑
m=n χ̃

α(m)β(n),γ′(x)λα . . . λαλ̂β . . . λ̂β ,
(3.43)

To this end, let us make the following remark. Due to the condition of balancing the weight
in twistors (or spinors) oscillators, we have the BWR on fuzzy twistor space. However, after
integrating out all fibre coordinates (λ, λ̂), we end up with the MUR in spacetime. It is
astonishing how the Penrose transform can help us move from one to another representation
(see section 4).

3.3 Complex structures of the fuzzy twistor space in the semi-classical limit

At large N , where coordinates are effectively commutative, we can define a symplectic form
Ω on fuzzy twistor space as [67, 75]

Ω = dẐA ∧ dZA = (1 + x2)
[
Dλ̂α ∧Dλα + λ̂α

dxαα
′ ∧ dxβα′

(1 + x2)2 λβ

]
, (3.44)

where we have used the incident relation (3.11) and x2 := xαα
′
xαα′ . This is nothing but

the Kirillov-Kostant symplectic form on CP3, which is underlying fuzzy CP3
N . Here,

Dλ̂α = dλ̂α + dxββ′xαβ
′

(1 + x2) λ̂
β , Dλα = dλα + xαβ′dxββ

′

(1 + x2) λβ . (3.45)

We note that for K = ẐAZ
A,

Ω = ∂̄∂K , ∂ = dZA
∂

∂ZA
, ∂̄ = dẐA

∂

∂ẐA
. (3.46)

Hence, in the semi-classical limit, we have the following fibration

CP1
N ↪−→ CP3

N → S4 ,

Here, S4 is the base space and CP1
N are the fibers. Moreover, we will take ∂̄ as our definition

of integrable complex structure on CP3
N since ∂̄2 = 0.

9Note that any anti-symmetric combination of α and β reduces to 〈λλ̂〉, which would have lower spin
due to (3.18).
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3.4 Background kinetic term in semi-classical limit

For the S4 background, the kinetic term of the matrix model arises from the Poisson
brackets with the background configuration Y a ≡ ya, which acts on the fields φ ∈ C as

{ya, φ} = r2mabðbφ , a = 1, 2, 3, 4, 5 . (3.47)

In terms of components, the above reduces to

{yµ, φ} =
{ 2R2

R2 + x2xµ, φ

}
, µ = 1, 2, 3, 4 , (3.48a)

{y5, φ} =
{
R(R2 − x2)
R2 + x2 , φ

}
, (3.48b)

where xµ ≡ R
2 σ

αα′
µ xαα′ and we have used (2.34). As discussed above, the twistor corre-

spondence is equivalent to a Hopf map followed by a rescaling of 2R2

(R2+x2) . We note that in
the flat limit,

{yµ, φ} 7→ 2{xµ, φ} , {y5, φ} 7→ 0 . (3.49)

Spinorial effective vielbein and derivativation. To evaluate the Poisson bracket
{yµ, φ} in terms of spinorial indices, namely {yαα′ , φ(x|λ, λ̂)}, we can use (3.16) to see that

yαα
′ = −(λ̂αµα′ − λαµ̂α′) , yµ = r

2(σµ)αα′yαα
′
. (3.50)

Then, we first evaluate

{yαα′ , yββ′} = 2i(λ(αλ̂β)εα
′β′ + µ(α′ µ̂β

′)εαβ) , (3.51)

where A(αBβ) = 1
2(AαBβ +AβBα) as explained in the convention. Next, we find

{yαα′ , λβ} = +iεαβµα′ , (3.52a)
{yαα′ , λ̂β} = −iεαβµ̂α′ . (3.52b)

Now, we make a crucial observation that follows directly from (3.16). Instead of working
with hs-valued functions on S4 where the fibers depend on coordinates xαα

′ ∈ S4, we
can also work with hs-valued functions ϕ(y) on the ambient space R4 ⊂ R5 and make a
conformal transformation that maps ϕ(y) to φ(x) later. The reason is that the fibers will
be the same everywhere on R4. Hence, CP3 = CP1 × R4 as in the flat limit. It is an
important difference to the S4

N point of view in [39, 40], where the internal fiber depends
on x ∈ S4. The total space is now an (infinite-dimensional) bundle K = C (CP1) × R4.
Since it is now a Cartesian product, our bundle is a trivial one. It, then, makes sense to
consider ϕ(y) as a section of the bundle of hs-valued functions over R4. Using the above
information, we can compute {yαα′ , ϕ} where ϕ(y|λ, λ̂) ∈ C as

{yαα′ , ϕ} : =
(
{yαα′ , yββ′} ∂

∂yββ′
+ {yαα′ , λβ} ∂

∂λβ
+ {yαα′ , λ̂β} ∂

∂λ̂β

)
ϕ

= Eαα′|ββ′∂ββ′ϕ+ Eαα′|β ∂

∂λβ
ϕ+ Êαα′|β ∂

∂λ̂β
ϕ .

(3.53)
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The Poisson bracket for the fifth coordinate reads

{y5, ϕ} :=
(
{y5, yββ

′} ∂

∂yββ′
+ {y5, λα} ∂

∂λα
+ {y5, λ̂α} ∂

∂λ̂α

)
ϕ

= E5|ββ′∂ββ′ϕ+ E5|β ∂

∂λβ
ϕ+ Ê5|β ∂

∂λ̂β
ϕ ,

(3.54)

where

{y5, yαα
′} = −i(λ̂αµα + λαµ̂α

′) , (3.55a)
{y5, λα} = +iλα , (3.55b)
{y5, λ̂α} = −iλ̂α . (3.55c)

We will refer E to as the effective spinorial vielbeins. Explicitly,

Eαα′|ββ′ : = {yαα′ , yββ′} = 2i(λ(αλ̂β)εα
′β′ + µ(α′ µ̂β

′)εαβ) , (3.56a)
E5|αα′ : = {y5, yαα

′} = −i(λ̂αµα′ + λαµ̂α
′) . (3.56b)

We note that in the flat limit where R →∞, the effective vielbein Eαα′|ββ′ coincides with
the tensor Jαα′|ββ′ in [47] up to a conformal rescaling. It is an important fact that can
help us obtain the action of the HS-IKKT in flat space, see section 4.

On higher-spin valued derivation. The above suggests a natural way to define a frame
and a derivation ð for the hs-valued functions ϕ on R4 as

{yαα′ , ϕ} := E ββ′

αα′ ðββ′ϕ = E ββ′

αα′

(
∂ββ′ + Σββ′

)
ϕ , (3.57)

where

Eαα′ββ′Σββ′ϕ :=
(
{yαα′ , λβ} ∂

∂λβ
+ {yαα′ , λ̂β} ∂

∂λ̂β

)
ϕ . (3.58)

The above Poisson brackets will be the same for Aαα
′(y|λ, λ̂) ∈ A and

{χα(y|λ, λ̂), χ̃α′(y|λ, λ̂)} ∈ F (cf. (3.42), (3.43)). Here, it is clear that the Σ operator
acts only on the fibre and can be thought of as “spin” operator. By contracting with
Eκκ′αα′ , we obtain the following expression

gκκ
′ββ′Σββ′ϕ = Eκκ′αα′

(
Eαα′|• ∂

∂λ•
+ Êαα′|• ∂

∂λ̂•

)
ϕ

= −i
(
λκλ̂α + λαλ̂

κ
)(
µκ
′ ∂

∂λα
− µ̂κ′ ∂

∂λ̂α

)
ϕ+ i[µ̂µ]

(
µκ
′ ∂

∂λκ
+ µ̂κ

′ ∂

∂λ̂κ

)
ϕ .

(3.59)

Here, gαα′ββ′ is the effective metric in the tangential direction that will be defined in (C.2).
Due to the parametrization (3.24), we see that the r.h.s. vanishes in the flat limit. Hence,
to a good approximation, the contribution of Σ can be neglected when the radius R is large
enough. This observation will be useful when we study the scattering amplitudes of the
HS-IKKT model in the semi-classical and flat limit.
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The effective metric. Combining (3.53) and (3.54), the effective metric is obtained as
follow

{yζζ′ , ϑ}{yζζ′ , ϑ}+ {y5, ϑ}{y5, ϑ} = Eζζ′|αα′∂αα′ϑ Eζζ′|ββ′∂ββ
′
ϑ+ E5|αα′∂αα′ϑE5|ββ′∂

ββ′ϑ

=: gαα′ββ′ + %αα
′ββ′

=: Gαα′ββ′∂αα′ϑ∂ββ′ϑ ,
(3.60)

where ϑ(y) is some scalar field. Explicitly, the effective metric is (see the derivation in
appendix C)

Gαα
′ββ′(y) = N2εαβεα

′β′ − yαα
′
yββ

′
. (3.61)

It is remarkable that the total effective metric depends only on the coordinates yαα
′ of R4

and not on the “internal” spinors, which is in consistent with (2.33) in [76]. In terms of
xαα

′ , the effective metric reads

Gαα
′ββ′(x) = 〈λ̂λ〉2

(
N2

〈λ̂λ〉2
εαβεα

′β′ − xαα
′
xββ

′
)
. (3.62)

It is clear from (3.18) and (3.62) that 〈λ̂λ〉 plays the role of the conformal factor.

Torsion. On the fuzzy S4 background, the torsion related to the Witzenböck connection
can be computed as [77]

{{yββ′ , yζζ′}, y••′}∂xαα
′

∂y••′
= 1
〈λ̂λ〉

(
εαζεβ

′ζ′yβα
′ + εα

′β′εβζyαζ
′ + εβζεα

′ζ′yαβ
′ + εαβεβ

′ζ′yζα
′)

= 2
〈λ̂λ〉

[
εβ
′ζ′εα(βyζ)α′ + εβζεα

′(β′yαζ
′)] .

(3.63)

We would like to emphasize that the Weitzenböck connection only makes sense for 4 dimen-
sional frames Eαα′ββ′ . However, as shown above, the 5th direction is crucial for obtaining
the effective metric. Hence, it would be interesting to develop further the definition of tor-
sion and covariant derivative in [77] for the decomposition of fuzzy twistor space considered
in this paper. We will return to this question in a future work.

4 A twistorial description of the (HS)-IKKT

In this section, we first rewrite the IKKT-matrix model using sp(4)-indices which can be
reduced further down to spinorial indices. By dropping some terms in the interactions with
the requirement that the action is still gauge invariant and has the same degrees of freedom,
we obtain the self-dual sector of the IKKT-matrix model. In the semi-classical limit, we
perform the Penrose transform to obtain an effective spacetime action for the (self-dual)
IKKT model. As discussed in the previous sections, all functions, fermionic spinor modes
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and vector modes of the IKKT model takes values in C ,F ,A , respectively, which can be
thought of as quantized functions on twistor space or as hs-valued functions on R4 in the
SCF limit. Therefore, the spacetime action for the IKKT model is a higher-spin theory
that exhibits many twistorial features. We will also briefly discuss about the maximally
unbalanced representation (MUR) in 4d. It is interesting to note that the Penrose transform
will move fields from BWR on CP3

N to MUR in spacetime.

4.1 Spinorial representation for the action of the IKKT model

We have learnt that the S4
N generators Ya can be mapped to Y AB = PAB +QAB. Due to

the realization of the so(5) γ-matrices, we can decompose

Y AB = PAB +QAB =
(

0 Pαβ
′

−P β′α 0

)
+
(
Qαβ 0

0 Qα
′β′

)
, (4.1)

where P are off-diagonal, and Q represents the fifth direction and is diagonal. In particular,

Pαα
′ = Pµσ̂αα

′
µ , σ̂αα

′
µ = (iσ3, 1l2,−iσ1, iσ2) (4.2a)

Qαβ = −Y5ε
αβ , Qα

′β′ = +Y5ε
α′β′ . (4.2b)

The remaining 5 coordinates of SO(10) in (2.1) that SO(5) does not act on will be denoted
as Ỹi for i = 6, 7, 8, 9, 10. They will be treated as scalar fields. The γ-matrices that associate
to these extra coordinates will form another so(5) ' sp(4) algebra. Hence, we can write
them as

Ỹ iγIJi 7→ φIJ , I,J = 1, 2, 3, 4 . (4.3)

Here, the I,J indices are understood as the indices that associates to the internal symmetry
group SU(4) of N = 4 SYM. In principle, we would like to have 6 scalar fields transform in
the adjoint of SU(4). However, since the external SO(5) acts on one of the scalar fields, it
breaks the internal group SU(4) explicitly. Therefore, we cannot treat QAB and φIJ on the
same footing at this stage. Note that the internal group SU(4), can be recovered in the flat
limit, see e.g. [78]. Hence, in the flat limit the IKKT is said to be higher-spin extensions
of N = 4 SYM. After the substitution of (4.1) and (4.3), the IKKT model becomes

S = Tr
(
[PAC , PBD][PAC , PBD] + 2[PAC , QBD][PAC , QBD] + 2[PAC , φIJ ][PAC , φIJ ]

)
+ Tr

(
Ψ̄A[PAB,ΨB] + Ψ̄A[QAB,ΨB] + Ψ̄I [φIJ ,ΨJ ]

)
+ Tr

(
[QAC , QBD][QAC , QBD] + 2[QAC , φIJ ][QAC , φIJ ] + [φIJ , φMN ][φIJ , φMN ]

)
.

(4.4)

Using (4.1), we can further write the IKKT-model in terms of spinorial indices as

S = Tr
(
4[Pαα′ , P κκ′ ][Pαα′ , Pκκ′ ] + 8[Pαα′ , Qββ′ ][Pαα′ , Qββ′ ] + 16[Pαα′ , φIJ ][Pαα′ , φIJ ]

+ 32χ̄α[Pαβ′ , χ̃β
′ ] + 16˜̄χα′ [Qα′β′ , χ̃β′ ]+16χ̄α[Qαβ , χβ ]+16χ̄I [φIJ , χJ ]+16˜̄χI′ [φI′J ′ , χ̃J ′ ]

+ 4[Qαβ , Qγδ][Qαβ , Qγδ] + 8[Qαβ , φIJ ][Qαβ , φIJ ] + 16[φIJ , φMN ][φIJ , φMN ]
)
. (4.5)
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where ΨA = (χα, χ̃α′) and ΨI = (χI , χ̃I′) for I, I ′ = 1, 2. From the discussion in the
subsection 2.3, we note that φIJ = −φJI can be written in terms of 2× 2 block matrices
φIJ and φI′J ′ = −φIJ .10 Note that we have rescaled Ψ→ 4Ψ for later convenience. Let us
explicitly compute the Yang-Mills part of the above action. First of all,

[Pαα′ , P κκ′ ] = εακ[P γ(α′ , P κ′)
γ ] + εα

′κ′ [P (αγ′ , P
κ)
γ′ ] = εακFα

′κ′ + εα
′κ′Fακ . (4.6)

where our definition of the field strength F is

Fακ = [P (α
γ′ , P

κ)γ′ ] , (4.7)

which is symmetric in α and κ. Since Pαα′ = −Pα′α, we obtain

[Pαα′ , P κκ′ ][Pαα′ , Pκκ′ ] = 4FακFακ . (4.8)

Now, we can consider the following fluctuation(
Pαα

′

Qαβ

)
=
(

Yαα
′

Y5εαβ

)
+
(
Aαα

′

φ̂εαβ

)
, (4.9)

where Y describes the background and (A, φ̂) stand for fluctuations. Note that φ̂ is the
scalar field that SO(5) ∼ Sp(4) acts on. The above action can be simplified further to

S =Tr
(1

2FααF
αα + 1

2[Pαα′ , φ̂][Pαα′ , φ̂] + 1
2[Pαα′ , φIJ ][Pαα′ , φIJ ] + χ̄α[Pαβ′ , χ̃β

′ ]

+ 1
2[Y5, P

αα′ ][Y5, Pαα′ ] + 1
2[Y5, φ̂][Y5, φ̂] + 1

4[Y5, φ
IJ ][Y5, φIJ ]− 1

2
˜̄χα′ [Y5, χ̃

α′ ]

+ 1
2 χ̄α[Y5, χ

α]− 1
2
˜̄χα′ [φ̂, χ̃α′ ] + 1

2 χ̄α[φ̂, χα] + 1
2 χ̄

I [φIJ , χJ ] + 1
2
˜̄χI′ [φI′J ′ , χ̃J ′ ]

+ 1
2[φ̂, φ̂][φ̂, φ̂] + 1

2[φ̂, φIJ ][φ̂, φIJ ] + 1
2[φIJ , φMN ][φIJ , φMN ]

)
.

(4.10)

We note that the commutator [φ̂, φ̂] is non-trivial since φ̂ takes value in hs. In terms of the
fluctuations, the field strength takes the explicit form

Fακ = [Y(α
γ′ , Y

κ)γ′ ] + [Y(α
γ′ , A

κ)γ′ ] + [A(α
γ′ , Y

κ)γ′ ] + [A(α
γ′ , A

κ)γ′ ]

= [Y(α
γ′ , Y

κ)γ′ ] + 2[Y(α
γ′ , A

κ)γ′ ] + [A(α
γ′ , A

κ)γ′ ]
(4.11)

where lifting and lowering a pair of spinorial indices comes with a minus sign. Then

Tr(FακFακ) = 4Tr[Y(α
γ′ , A

κ)γ′ ][Y(αζ′ , A
ζ′

κ) ] + 2[Y(α
γ′ , Y

κ)γ′ ][A(αζ′ , A
ζ′

κ) ]

+ 4Tr[Y(α
γ′ , A

κ)γ′ ][A(αζ′ , A
ζ′

κ) ] + Tr[A(α
γ′ , A

κ)γ′ ][A(αζ′ , A
ζ′

κ) ] .
(4.12)

Due to symmetrization, the above includes terms of the form

4Tr[Y(α
γ′ , A

κ)γ′ ][Y(αζ′ , A
ζ′

κ) ] = 2[Yα γ′ , Aκγ
′ ][Yαδ′ , A δ′

κ ] + 2Tr[Yα γ′ , Aκγ
′ ][Yκδ′ , A δ′

α ] (4.13)

10These block matrices can be diagonal or off-diagonal inside the 4× 4 φIJ matrices but the detail does
not effect the computation below.
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etc. which is in complete analogy to the field strength in non-commutative gauge theory,
cf. [40, 79]. To shorten the expressions, we shall use the convention Fαα = F (ακ) to express
the symmetrization over unprimed spinorial indices. Then, the Yang-Mills part of the
IKKT action reads

1
2Tr

(
FααF

αα
)

= S̄FBG + Tr
(

2[Yακ′ , A κ′
α ][Yαζ′ , Aαζ

′ ] + [Yακ′ , Y κ′
α ][Aαζ′ , Aαζ

′ ]

+ 2[Yακ′ , A κ′
α ][Aαζ′ , Aαζ

′ ] + 1
2[Aακ′ , A κ′

α ][Aαζ′ , Aαζ
′ ]
)
,

(4.14)

where S̄FBG consists of terms that are 0th order or 1st order in fields. It can be considered
as the background action for the Yang-Mills part of the IKKT-matrix model. Notice that
in the present spinorial formalism, there is no explicit “gauge-fixing” term of the form
[Yαα′ , Aαα

′ ]2 which appears in [39, 40]. The term [Yακ′ , Y κ′
α ][Aαζ′ , Aαζ

′ ] looks non-standard
but is familiar in non-commutative gauge theory and matrix models. We can avoid to deal
with this troublesome term as follow.

First-order formulation. By introducing an auxiliary field Bαα, we can absorb the term
[Yακ′ , Yακ

′ ][Aατ ′ , A τ ′
α ] into the background and write the Yang-Mills part as

SYM = Tr
(
BααFαα −

1
2BααB

αα
)
. (4.15)

The above action is invariant under

U−1FααU , U−1BααU , (4.16)

where U = eiξ for ξ is some hs-valued gauge parameter. Next, we consider a fluctuation of
the B field as

Bαα = B̄αα +Bαα , (4.17)

where B̄ can be understood as the background of the B field. Then, in terms of components,
the Yang-Mills action in first order can be written as

SYM = SYM
BG [A, B̄,B, Y] + Tr

(
2Bαα[Yαα′ , Aαα

′ ] +Bαα[Aαα′ , Aαα
′ ]− 1

2BααB
αα
)
, (4.18)

where the background Yang-Mills action SYM
BG [A, B̄,B, Y] is 0th order or 1st order in fluc-

tuation modes. Observe that there is no gauge fixing term or the troublesome term
[Y, Y][A,A] since they are absorbed by the background. Therefore, the total action
S = SBG + S2 + S3 + S4 consists of:
(1) the quadratic action

S2 =Tr
(

2Bαα[Yαγ′ , Aαγ
′
]− 1

2BααB
αα + χ̄α[Yαβ , χ̃β

′
] + 1

2 [Yαα
′
, φ̂][Yαα′ , φ̂] + 1

2 [Yαα
′
, φIJ ][Yαα′ , φIJ ]

+ 1
2 [Y5, A

αα′
][Y5, Aαα′ ] + 1

2 [Y5, φ̂][Y5, φ̂] + 1
2 [Y5, φ

IJ ][Y5, φIJ ]− 1
2
˜̄χα′ [Y5, χ̃

α′
] + 1

2 χ̄α[Y5, χ
α]
)
,

(4.19)
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(2) the cubic action

S3 = Tr
(
Bαα[Aαγ′ , Aαγ

′ ] + [Yαα′ , φ̂][Aαα′ , φ̂] + [Yαα′ , φIJ ][Aαα′ , φIJ ]

+ χα[Aαβ′ , χ̃β
′ ]− 1

2
˜̄χα′ [φ̂, χ̃α′ ] + 1

2 χ̄α[φ̂, χα] + 1
2 χ̄

I [φIJ , χJ ] + 1
2
˜̄χI′ [φI′J ′ , χ̃J ′ ]) ,

(4.20)

and (3) the quartic action

S4 = Tr
(1

2[Aαα′ , φ̂][Aαα′ , φ̂] + 1
2[Aαα′ , φIJ ][Aαα′ , φIJ ]

+ 1
2[φ̂, φ̂][φ̂, φ̂] + 1

2[φ̂, φIJ ][φ̂, φIJ ] + 1
2[φIJ , φMN ][φIJ , φMN ]

)
.

(4.21)

The self-dual sector. Similar to the story of N = 4 SYM in [80], we can also obtain
the self-dual sector of the IKKT-matrix model by dropping some of the terms in the
action (4.18) with the requirement that the reduced action is still gauge-invariant and has
the same degrees of freedom as before. The self-dual sector of the IKKT-model reads

SSD = Tr
(
BααF

αα + 1
2[Pαα′ , φ̂][Pαα′ , φ̂] + 1

2[Pαα′ , φIJ ][Pαα′ , φIJ ] + χ̄α[Pαβ′ , χ̃β
′ ]

+ 1
2[Y5, A

αα′ ][Y5, Aαα′ ] + 1
2[Y5, φ̂][Y5, φ̂] + 1

2[Y5, φ
IJ ][Y5, φIJ ]

− 1
2
˜̄χα′ [Y5, χ̃

α′ ]− 1
2
˜̄χα′ [φ̂, χ̃α′ ] + 1

2
˜̄χI′ [φI′J ′ , χ̃J ′ ]) .

(4.22)

We note that unlike the case of 4d self-dual N = 4 SYM, the action for self-dual IKKT
on the S4 has extra contributions from [Y5, ·]. These contributions, however, vanish in the
semi-classical and flat (SCF) limit.11

The SCF limit. From (2.34), we see that at large R, y5 scales as R. Hence, {R, ·} = 0
as expected. To make sure the contribution from {x2, ·} does not contribute in the SCF
limit, let us compute it explicitly,{

Rx2

R2 + x2 , •
}

= Rxαα′{xαα
′
, yκκ

′} ∂

∂yκκ′
• = − R

〈λ̂λ〉
xαα′Eαα

′κκ′ ∂

∂yκκ′
• ∼ O(r) (4.23)

where we have use (3.18). Since it scales as O(r), all of the Poisson brackets involving y5
in the SCF limit can be neglected, i.e. {y5, ·} ∼ 0. Hence, the (4.22) action reduces to

SSD '
∫ (

BααF
αα + i

2{P
αα′ , φ̂}{Pαα′ , φ̂}+ i

2{P
αα′ , φIJ}{Pαα′ , φIJ}

+ χ̄α{Pαβ′ , χ̃β
′} − 1

2
˜̄χα′{φ̂, χ̃α′}+ 1

2
˜̄χI′{φI′J ′ , χ̃J ′}) , (4.24)

which is reminiscent of self-dual N = 4 SYM in 4d [48, 69, 80]. However, the interactions
are gravitational due to the Poisson brackets.

11See also the work of [69] from a different perspective.
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4.2 The HS-IKKT on twistor space in the semi-classical limit

As mentioned, at large N where functions are effectively commutative, one can replace the
commutators by the Poisson brackets, i.e. [, ] 7→ i{, } . We also replace

Yαα
′ 7→ yαα

′ = −〈λ̂λ〉xαα′ . (4.25)

by using eq. (3.50). Since there is an emergence of geometry in this limit, see discussion in
sections 2 and 3, we can consider fields with smooth enough distribution. Hence, we can
insert an integral as to average out these distribution. Therefore, the action for the IKKT
model on the infinite dimensional bundle K = C (CP1)× R4 becomes

S=
∫

K

[
2Bαα{yαα′ , Aαα

′}+Bαα{Aαα′ , Aαα
′}+ i

2BααB
αα

+ i

2{P
αα′ , φ̂}{Pαα′ , φ̂}+ i

2{P
αα′ , φIJ}{Pαα′ , φIJ}+ i

2{y5, A
αα′}{y5, Aαα′}

+ i

2{y5, φ̂}{y5, φ̂}+ i

2{y5, φ
IJ}{y5, φIJ}+ χ̄α{yαβ′ , χ̃β

′}+ χ̄α{Aαβ′ , χ̃β
′}

− 1
2
˜̄χα′{y5, χ̃

α′}+ 1
2 χ̄α{y5, χ

α} − 1
2
˜̄χα′{φ̂, χ̃α′}+ 1

2 χ̄α{φ̂, χ
α}+ 1

2 χ̄
I{φIJ , χJ}

+ 1
2
˜̄χI′{φI′J ′ , χ̃J ′}+ i

2{φ̂, φ̂}{φ̂, φ̂}+ i

2{φ̂, φ
IJ}{φ̂, φIJ}+ i

2{φ
IJ , φMN}{φIJ , φMN}

]
.

(4.26)

As discussed above, since fields are hs-valued, all of the Poisson brackets are non-trivial.
Next, we want to have a measure that is SU(4)-invariant and have complex form degree 3
since the total space is a CP3

N . A nature candidate for the measure is [48]

D3Z = εABCDZ
AdZBdZCdZD = R4〈λdλ〉 ∧ [dµ ∧ dµ]

(R2 + x2)2 = R4λαλβ〈λdλ〉 ∧ dxαα
′ ∧ dxβα′

(R2 + x2)2 .

(4.27)

The above define a holomorphic measure on our fuzzy twistor space. We also have an
anti-holomorphic measure which is D3Z̄ that is also invariant under SU(4) and has form
degree (0, 3). In terms of spinors, we just need to replace λ by λ̂ and µ for µ̂ to describe
D3Z̄. Notice that we have a conformal factor of R4

(R2+x2)2 from the parametrization (3.23)
and (3.24), which addresses the fact that our target space is a 4-sphere. It is easy to see
that we can have a smooth flat limit when R → ∞. The total measure for the above
integral reads

∆ := D3Z ∧D3Z̄ . (4.28)

Note that the measure ∆ is unique and is a (3, 3)-form. The above action (4.26) reveals an
interesting feature of the fuzzy twistor construction. Specifically, the spacetime action of
the IKKT model is already recognized in (4.26) without the need of referring to the twistor
cohomology. Therefore, we can have the same measure for both the self-dual sector and
the non-self-dual one. This is different from the usual twistor construction of non-self-dual
theories, see e.g. [81].
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By varying the action (4.26) with respect to B, we obtain the free equations of motion
for Aαα′ as

{yαα′ , Aαα
′} = 0 . (4.29)

The free equation of motion for the B field reads

2{yαα′ , Bαα}+ i�5Aαα′ = 0 , (4.30)

where �5 • = {y5, {y5, •}}. Let us also list the free equations of motion for the scalar fields
and the fermions. The free EOMs for the scalar fields reads

(� + �5)φ̂ = 0 , (4.31a)
(� + �5)φIJ = 0 , (4.31b)

where � • = {yαα′ , {yαα′ , •}}. The free EOMs for the fermions are

{yαα′ , χ̃α
′}+ 1

2{y5, χ
α} = 0 , (4.32a)

{yαα′ , χ̄α} −
1
2{y5, ˜̄χα′} = 0 . (4.32b)

It may seem strange that a (gravitational) Yang-Mills theory is described in terms of
first-order equations of motion. However, there is no contradiction since the missing “mo-
mentum” degrees of freedom of the gauge field A are encoded in the B modes. It is also
interesting to note that even though our target space is a 4-sphere, the free equations of
motion for higher-spin fields are also coupled to the transversal modes on the 5th direction.

The semi-classical and flat (SCF) limit of IKKT-matrix model. The contribu-
tions from the 5th direction will vanish in the flat limit as discussed above. In the SCF
limit, the free equations of motion read

{yαα′ , Aαα
′} = 0 , {yαα′ , Bαα} = 0 , (4.33a)

� φ̂ = 0 , �φIJ = 0 , (4.33b)
{yαα′ , χ̃α

′} = 0 , {yαα′ , χ̄α} = 0 . (4.33c)

The equation of Aαα′ is invariant under

δAαα
′ = {yαα′ , ξ} , (4.34)

where ξ is some hs-valued section on K . Let us prove the above statement by computing
explicitly

{yαα′ ,{yαα
′
, ξ(x)}}∼ 1

2{{y
α
α′ , y

αα′}, xκκ′} ∂

∂xκκ′
ξ= Tα αα′κκ′

α′
∂

∂xκκ′
ξ = 4
〈λ̂λ〉

εκαyακ
′ ∂

∂xκκ′
ξ .

(4.35)

Here, the torsion T is defined in (3.63) and we have used Jacobi identity. The torsion
vanishes in the flat limit since it scales at 1/R. We note that the contribution from the
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spin operator Σ (cf. subsection 3.4) can be neglected in the same limit. Moreover, the
external SO(5) group is degenerated in this limit and no longer acts on φ̂. Together, φ̂ and
φIJ will become the usual six adjoint scalars φIJ = −φJI of the internal symmetry group
SU(4). Hence, the action for the IKKT-matrix model in this limit becomes

SSCF =
∫

K

[
BααF

αα + i

2BααB
αα + i{Pαα′ , φIJ }{Pαα′ , φIJ }+ 2χ̄α{Pαβ′ , χ̃β

′}

+ χ̄I{φIJ , χJ }+ ˜̄χI{φIJ , χ̃J }+ i

2{φ
IJ , φMN }{φIJ , φMN }

]
,

(4.36)

where we have rescale φ→ 2φ and χ→
√

2 for convenience.

4.3 hs-valued eigenmodes of the first-order equations

In this section, we will provide the explicit solutions of the first-order equations of mo-
tion (4.33a) as functions on twistor space, or equivalently as hs-valued functions (or 1-
forms) on R3,1. This is analogous to the tower of hs solutions found in [41] translated to
the spinor formalism, which simplifies in the flat limit as some extra terms in the equations
of motion disappear as discussed above. Recall that the gauge fields A can be expanded in
terms of

Aα,α
′(x) =

∑
s

Aκ(s)τ(s)|α,α′(x)λκ . . . λκλ̂τ . . . λ̂τ . (4.37)

We can again assume that Aκ(s)τ(s)|α,α′(x) is totally symmetric in κ(s)τ(s), but the (α, α′)
are independent indices. Therefore, there are 4 independent (off-shell) A modes, cor-
responding precisely to the 4 tangential modes identified in [41]. The present spinorial
formalism allows a more transparent organization of these modes in terms of the following
two modes (in the maximally unbalanced representation):

Aαα
′

(1) = Aκ(2s)α,α′λsκλ̂
s
κ , (4.38a)

Aαα
′

(2) = εακAκ(2s−1),α′λsκλ̂
s
κ = λαAκ(2s−1),α′λs−1

κ λ̂sκ + λ̂αAκ(2s−1),α′λsκλ̂
s−1
κ . (4.38b)

Here Aκ(2s)α,α′ is totally symmetric in κ(2s)α. We shall sometime use the notation ' to
denote the SCF limit, and

λsα = λα . . . λα︸ ︷︷ ︸
s times

, (4.39)

to shorten our expressions. To check completeness, we note that Aαα′(1) provides 2(2s + 2)
components, and Aαα′(2) provides other 2(2s) ones. Taken together, this provides 4(2s + 1)
components, which is the correct number of components in (4.37) and is consistent with [40].
Similarly, we also have 2 eigenmodes of the Bαα, they are

Bα•
(1) = Bκ(2s)α•λsκλ̂

s
κ , (4.40a)

Bα•
(2) = ε•κBκ(2s−1)αλsκλ̂

s
κ . (4.40b)
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Here, • is the index of B that contract with the index of the coordinate y•α′ . Now, let
us discuss about the symmetry of the free action. Besides the usual gauge transformation
{yαα′ , ξ} where ξ is some section on K , the tensorial fields Aκ(2s)|α,α′ also have an algebraic
gauge symmetry. The gauge transformation for δAκ(2s)|α,α′ reads

δξ,ϑA
κ(2s)|α,α′ = {yαα′ , ξκ(2s)}+ εκαϑκ(2s−1),α′ . (4.41)

The algebraic symmetry ϑ ensures that the (unwanted) second eigenmode A(2) does not
propagate. Indeed, as a simple exercise, one can check that

δϑS2 =
∫

∆ (λζ)n(λ̂ζ)nεαβ Bζ(2n)α|•{y•α′ , ϑβ(2m−1),α′} (λβ)m(λ̂β)m

∼
∫

∆Bν
να(2n){y

α
α′ , ϑ

α(2n−1),α′} = 0 ,
(4.42)

since B is traceless when we consider it as element in the MUR. Here, we have used (C.1)
to derive the above expression. The second mode of B plays the role of a Lagrangian
multiplier and provides us the usual generalized Lorenz gauge condition of the form∫

∆ Bα(2n−1){yαα′ , Aα(2n),α′} . (4.43)

Therefore, only the first eigenmodes of Aαα′ and Bαα propagate.

Equations of motion. Now, we consider the equations of motion. Since non-trivial
solutions exist only in Minkowski signature, the following considerations are somewhat
formal, assuming a suitable analytic continuation. For the Aαα′(1) modes, we have

{yαα′ , Aαα
′

(1) } = {yαα′ , Aκ(2s)α,α′(x)λκ . . . λκλ̂κ . . . λ̂κ}

= {yαα′ , Aκ(2s)α,α′(x)}λκ . . . λκλ̂κ . . . λ̂κ

= − 1
〈λ̂λ〉

Eα |ββ
′

α′
∂

∂xββ′
Aκ(2s)α,α′(x)λκ . . . λκλ̂κ . . . λ̂κ ,

(4.44)

where we have used (4.25) and

Aκ(2s)α,α′{yαα′ , λκ . . . λκλ̂κ . . . λ̂κ} = isAκ(2s−1)α(2),α′(µα′λs−1
κ λ̂sκ − µ̂α′λsκλ̂s−1

κ

)
= is xκα′Aκ(2s−1)α(2),α′λs−1

κ λ̂s−1
κ ' 0 .

(4.45)

This leads to the first-order equation of motion

Eα |ββ
′

α′
∂Aκ(2s)α,α′

∂xββ′
' λ(αλ̂β)∂A

κ(2s)α,α′

∂xβα′
= 0 (4.46)

in the flat limit, cf. (3.56a). Note that the fields Aκ(2s)α,α′ does not depend on the fibre
coordinates. The above equation admits the following plane-wave solution:

Aα,α
′

(1) = Aκ(2s)α,α′λsκλ̂
s
κ ,

Aα(2s+1),α′ = ζα . . . ζαυ̃α
′

〈ζυ〉2s+1 eiυ
αxαα′ υ̃

α′
(4.47)
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in terms of 2s+ 1 auxiliary spinors ζ, which generates the monomials of degree 2s+ 1. It
is easy to check that this ansatz indeed satisfies (4.44):

{yαα′ , Aαα
′

(1) } ' λ
(αλ̂β) ∂

∂xβα′
Aκ(2s)α,α′λκ . . . λκλ̂κ . . . λ̂κ

= iλ(αλ̂β)ζκ . . . ζκλκ . . . λκλ̂κ . . . λ̂κυ̃
α′ υ̃α′υβe

iυαxαα′ υ̃
α′ = 0

(4.48)

in the SCF limit. For later use, we note that A(1) also satisfies the gauge-fixing condition

∂

∂xαα′
Aα,α

′

(1) = 0 . (4.49)

This solution encodes 2(2s + 2) components, and therefore provides all components of
the first eigenmode Aαα

′

(1) . We will show that after the Penrose transform, the above
ansatz (4.47) is indeed the plane-wave solution for positive helicity (gauge) fields in space-
time, see subsection 4.5. Similarly, we find the following solution for the Bαα

(1) mode as

Bα(2s) = υα . . . υαeiυ
κxκκ′ υ̃

κ′
. (4.50)

Therefore we have obtained the most general solutions of the first-order equations of motion
for the A and B fields.

Finally, to count the propagating degrees of freedom for the A and B fields, we can
follow the instruction in [82]. There are in total 2s+ 1 equations in {yαα′ , Aα(2s−1),α′} and
there are 2s−1 number of components in the gauge symmetry generator ξ. Hence, we have

2s+ 1− (2s− 1)
2 = 1 (4.51)

propagating degree of freedom for the A field. For the B field, there are in total 4s equations
in {yγα′ , Bγα(2s−1)} and there are 2s− 1 fuzzy Bianchi identities12

{yγα′ , {yγα′ , Bγγα(2s−2)}} ' 0 . (4.52)

These are 2nd order identities. Therefore, we have

4s− 2(2s− 1)
2 = 1 (4.53)

propagating degree of freedom for the B field. Together, A and B (which correspond to
positive/negative helicity fields) describe massless higher-spin fields that have two dof as
they must. The factor of 1/2 accounts for the fact that we are counting the degrees of
freedom on phase space, where the fields (A,B) play the roles of coordinates. It may seem
strange that the B-field carries one degree of freedom, since it is an auxiliary field. This can
be explained as follows. In the original Yang-Mills term FααF

αα, the A field should carry
2 dof. However, after the introducing of the B field, extra relations and gauge symmetries
arise. As a consequence the B field takes away 1 dof from the A field, to describe the
negative helicity mode.

12We call them Bianchi identities in the sense of (4.35).
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To compare these modes with the results in [41], we recall that the present spinorial
approach is geared towards the on-shell modes. A systematic account of off-shell modes
in a Euclidean second-order formulation was given in [40, 41] without using the spinor
formalism, which leads to 4 towers of off-shell hs modes. This is consistent with the above
counting of 4(2s + 1) modes in (4.38). The discussion of on-shell modes strictly speaking
makes sense only in Minkowski signature, which is done here formally by assuming a
suitable analytic extension of the spinors. A different way to carry over the higher-spin
structures to Minkowski signature within the IKKT model was discussed in [42, 43], which
is not equivalent to the present approach. A spinorial re-formulation of that approach
would certainly be very useful, and is postponed to future work.

4.4 Maximally unbalanced representation in spacetime

Before performing the Penrose transform to obtain the effective spacetime action for the
IKKT-matrix model in the semi-classical limit, we would like to discuss briefly about the
maximally unbalanced representation (MUR). In 4d spacetime, a field that lives in an
irreducible finite dimensional representation can be characterized by two numbers (m,n).
These two numbers represent for the number of unprimed and primed indices in a tensorial
field Tα(m),α′(n), respectively. Here, the tensorial fields Tα(m),α′(n) are totally symmetric in
each group of indices. Then, instead of dealing with general objects in S(m,n), we would
like to locate ourselves at one “corner” of S(m,n), say S(m, 0) and S(m, 1). Together,
S(m, 0) and S(m, 1) define MUR [1].

The fundamental objects in S(m, 0) are the higher-spin generalization of Maxwell- and
Weyl- tensors, denoted as Bα(m). On the other hand, the fundamental objects in S(m, 1)
are the higher-spin generalizations of the gauge potential Aα,α′ which we will denote as
Aα(m),α′ . The free equations of motion for B and A are known long ago from twistor
theory [46, 47, 83, 84]. We will simply quote them here

∇βα′Bβα(m−1) = 0 , (4.54a)
∇αα′Aα(m−1),α′ = 0 , δAα(m−1),α′ = ∇αα′ξα(m−2) . (4.54b)

The gauge invariance of the equations above requires half of the Weyl tensor to vanish. In
this case, it is the component Bα(4) of the Weyl tensor. There are two remarkable features
of the MUR:

• It allows us to treat spins and derivatives in the interactions almost independently.
This is not possible in the approaches using Fronsdal fields as the main objects to
construct toy models for higher-spin theories. There, the number of derivatives rise
with spins and there is no standard 2-derivatives interaction that is important to
describe gravitational interactions of higher-spin fields [85–92].

• It is closely related to twistor cohomology. Hence, one can employ techniques
used in twistor theory to construct spacetime action for higher-spin theories, see
e.g. [2, 36, 37]. However, the twistor construction using MUR is mainly designed for
chiral theories, see e.g. [36, 37, 81, 93].
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4.5 Spacetime actions for the (self-dual) HS-IKKT model

HS-IKKT on twistor space. As mentioned, in the large-N regime, there is an emer-
gence of higher-spin modes from the IKKT-matrix model. From the analysis in section 3
and 4.3, the higher-spin extensions of the fields in (4.26) reads

Bαα 7→
∑
s

Bαακ(s)τ(s)λ
κ . . . λκλ̂τ . . . λ̂τ , Aα,α

′ 7→
∑
s

Aκ(s)τ(s)α,α′λκ . . . λκλ̂τ . . . λ̂τ ,

(4.55a)
χ̄α 7→

∑
m

χ̄ακ(m)τ(m)λκ . . . λκλ̂τ . . . λ̂τ , χ̃α
′ 7→

∑
m

χ̃κ(m)τ(m)α′λκ . . . λκλ̂τ . . . λ̂τ ,

(4.55b)

φ̂ 7→
∑
n

φ̂κ(n)τ(n)λκ . . . λκλ̂τ . . . λ̂τ , φIJ 7→
∑
n

φ
κ(n)τ(n)
IJ λκ . . . λκλ̂τ . . . λ̂τ , (4.55c)

for s,m, n ≥ 0. Note that at s = 0 we have Bαα. Since fields on fuzzy twistor space live
in the BWR, their higher-spin extensions result in a remarkable simple action of the HS-
IKKT matrix model where there is an equal in the numbers of λ and λ̂. Note that due to
the balance of weights between λ and λ̂, the higher-rank tensors will increase with integers
in spins. Therefore, the higher-spin version of the IKKT model schematically reads

S =
∑
s

∫
K

∆ λα . . . λαλ̂
β . . . λ̂β

〈λ̂λ〉s
(higher-rank tensors) α(s)

β(s) . (4.56)

The integral over the fibres in (4.56) can be done with the help of the Penrose transform.
Here, we insert the conformal factors 〈λ̂λ〉 so that the integrals over CP1 are weightless in
fibre coordinates. It can be understood as some suitable field re-definitions.

One of the intriguing features of the HS-IKKT is that the Poisson brackets provide
more structures that mix left- and right-handed spinors (cf. subsection 3.4) through the
spin operator Σ. For this reason, the spacetime action resulting from the Penrose transform
of the HS-IKKT model is not standard compared to usual field theories even in the SCF
limit where the contribution from Σ is approximately negligible. However, the “asymptotic
states” for the HS-IKKT model in SCF limit are identical with the usual ones of free higher-
spin theory in [1]. Another intriguing feature of the HS-IKKT model is that the cubic and
quartic vertices in the IKKT model are naturally higher-spin extensible since we just need
to contract all unprimed indices in all possible way. We will elaborate this fact below.

The Penrose transform and spacetime actions. Using the incident relations (3.11),
we can rewrite the measure D3Z ∧D3Z̄ as

D3Z ∧D3Z̄ = R8d4x
(R2 + x2)4

〈λdλ〉 ∧ 〈λ̂dλ̂〉
〈λ̂λ〉2

= 16d4x
(1 + x2)4

〈λdλ〉 ∧ 〈λ̂dλ̂〉
〈λ̂λ〉2

, (4.57)

which is just another way of writing the symplectic volume form on CP3. Note that we
have used (3.22) and rescaled x → 2x to obtain the second equality. In the following, we
will denote

dX = 16d4x
(1 + x2)4 , K = 〈λdλ〉 ∧ 〈λ̂dλ̂〉

〈λ̂λ〉2
, (4.58)
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for convenience. Next, we will integrate out fibre coordinates using the following inte-
gral [47, 49, 94]13 ∫

CP1
K
λ̂α . . . λ̂α λβ . . . λβ

〈λ̂λ〉m
δm,n = − 2πi

(m+ 1)ε
α
β . . . ε αβ . (4.59)

Loosely speaking, the above integral simply tells us that all fibre coordinates will transform
into the Van der Waerden symbols ε in spacetime. It is the “vehicle” that allows us to move
from BWR on twistor space to MUR on spacetime. The spacetime action for the self-dual
HS-IKKT then reads

SSD =
∫
dX

〈〈(
BααF

αα + χ̄α{Pαβ′ , χ̃β
′}+ i

2{P
αα′ , φ̂}{Pαα′ , φ̂} −

1
2
˜̄χα′{φ̂, χ̃α′}

+ i

2{P
αα′ , φIJ}{Pαα′ , φIJ}+ 1

2
˜̄χI′{φI′J ′ , χ̃J ′})〉〉 . (4.60)

Here, the doubled angle bracket 〈〈. . .〉〉 means all possible contractions between un-
primed indices from higher-spin extensions of the fields in (4.55). The action for the
non-self-dual part reads

Sn.SD =
∫
dX

〈〈(
i

2BααB
αα + 1

2 χ̄α{φ̂, χ
α}+ 1

2 χ̄
I{φIJ , χJ}+ i

2{φ̂, φ̂}{φ̂, φ̂}

+ i

2{φ̂, φ
IJ}{φ̂, φIJ}+ i

2{φ
IJ , φMN}{φIJ , φMN}

)〉〉
.

(4.61)

After integrating out the higher-spin fields B, we obtain spacetime action for the HS-IKKT
model on S4 as

S =
∫
dX

〈〈(
i

2FααF
αα + χ̄α{Pαα′χ̃α

′}+ i

2{P
αα′ , φ̂}{Pαα′ , φ̂} −

1
2
˜̄χα′{φ̂, χ̃α′}

+ i

2{P
αα′ , φIJ}{Pαα′ , φIJ}+ 1

2
˜̄χI′{φI′J ′ , χ̃J ′}+ 1

2 χ̄α{φ̂, χ
α}+ 1

2 χ̄
I{φIJ , χJ}

+ i

2{φ̂, φ̂}{φ̂, φ̂}+ i

2{φ̂, φ
IJ}{φ̂, φIJ}+ i

2{φ
IJ , φMN}{φIJ , φMN}

)〉〉
.

(4.62)

It is noteworthy to mention that the action of the HS-IKKT in spacetime has minimally two
derivative in the interactions. Hence, the HS-IKKT is a gravitational higher-spin theory
as pointed out previously in [41, 43, 95].

The flat limit of HS-IKKT. As discussed above, together with 5 other scalar fields
associated to the remaining extra dimensions, we have in total 6 scalar fields that transform
in the adjoint representation of SU(4)R — the R-internal symmetry group. Moreover, χ, χ̃
also carry internal indices and transform in the fundamental representation of SU(4)R. The
spacetime effective action of the HS-IKKT in the SCF limit reads

S =
∫
dX

〈〈[
BααF

αα + i

2BααB
αα + i{Pαα′ , φIJ }{Pαα′ , φIJ }+ 2χ̄α{Pαβ′ , χ̃β

′}

+ χ̄I{φIJ , χJ }+ ˜̄χI{φIJ , χ̃J }+ i

2{φ
IJ , φMN }{φIJ , φMN }

]〉〉
,

(4.63)

13This averaging operator was previously used in the semi-classical limit of the fuzzy geometry S4
N and

H4
N with different notation denoted as [·]0, see [41] for more information.
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for I,J ,M,N = 1, 2, 3, 4. This is reminiscent of the action for N = 4 SYM in
4d [48, 49, 80]. Therefore, we can view the (self-dual) HS-IKKT as higher-spin extension
of N = 4 (self-dual) SYM in the SCF limit but with gravitational interactions.

Yang-Mills sector. In this work, we will consider only the Yang-Mills sector of the HS-
IKKT model in the SCF limit while saving other sectors for future work. Namely, we will
consider only the following action

S =
∫

K
dX K

〈〈(
2Bαα{yαα′ , Aαα

′}+Bαα{Aαα′ , Aαα
′}+ i

2BααB
αα
)〉〉

. (4.64)

We recall that the contribution from the spin operator Σ can be neglected in the SCF
limit, hence all fibre dependence drops out from the Poisson brackets in the kinetic term.
From (4.33a), the kinetic action reads

S2 =
∑
m,n

∫
2λβ . . . λβλ̂γ . . . λ̂γλζ . . . λζ λ̂τ . . . λ̂τ

(
Bααβ(m)γ(m)Eα ••

′
α′ ∂••′A

ζ(n)τ(n)α,α′) , (4.65)

where we have shown in the subsection 4.3 that A and B are totally symmetric in their
unprimed indices. Using (3.56), (4.49) and (4.59), we end up with the following free
spacetime action

S2 = 2
∫
d4xBα(2s)∂

α
α′A

α(2s−1),α′ . (4.66)

Note that we have discarded all terms that look like the generalized Lorenz gauge condition,
and we have used the fact that µ ∼ O(R− 1

2 ) cf. (3.24). The free action (4.66) is precisely
the one obtained in [1]. Moreover, it can be shown that the solutions for the free equations
of motion for the spacetime fields A and B are exactly the ones in (4.47) and (4.50). It
is remarkable that even though the free equations of motion for the higher-spin gauge
potentials A and Lagrangian multiplier fields B in the HS-IKKT model on K are more
complicated compared to those of [1], the spacetime EOMs are exactly the same with the
standard EOMs of free higher-spin fields in flat space after the Penrose transform. We also
stress once again that the solutions (4.47) and (4.50) belong to MUR.14 Next, the term B2

on twistor space reduces to15

i

2

∫
K
dX K (BααBαα) 7→ −1

2

∫
dX Bα(2s)B

α(2s) , (4.67)

on spacetime. It can be understood as a perturbation around the self-dual sector that
contributes to the full Yang-Mills structure in the HS-IKKT model.

Now we move on to the cubic interaction term for the Yang-Mills sector of the HS-
IKKT.16 Recall that the Poisson bracket of {Aαα′ , Aα,α

′} involves both the fibre and space-
time derivatives on K . Therefore, there will be two types of contributions in the B{A,A}

14The free spacetime action for hs-valued scalar fields φIJ and fermionic fields χ, χ̃ can also be obtained
similarly.

15The coefficients resulting from the Penrose transform can always be absorbed via an appropriate field
redefinition.

16We will study the other interaction terms in the action (4.63) in a later work.
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vertex. The leading contribution is the one which arises from pure spacetime derivatives,
where all fibre coordinates factor out from the {, } bracket. Explicitly,

(λβ)s(λ̂ρ)sBααβ(s)ρ(s)λ
m
γ λ̂

m
δ λ

n
κλ̂

n
τ {A

γ(m)δ(m)α,
α′(x), Aκ(n)τ(n)α,α′(x)}

∼ (λβ)s(λ̂ρ)sBααβ(s)ρ(s)λ
m
γ λ̂

m
δ λ

n
κλ̂

n
τ E◦◦

′••′∂◦◦′A
γ(m)δ(m)α,

α′ ∂••′A
κ(n)τ(n)α,α′ .

(4.68)

We note that the spacetime fields are traceless with respect to ε tensors since they arise
from the first eigenmodes (4.47) and (4.50) of the twistor field A and B. Hence, using the
Penrose transform (4.59) i.e. integrating over the CP1 fibre space, we obtain the following
spacetime vertex

V lead
3 =

∑
m+n=2s−2

Bα(2s)∂α•′A
α(m),

α′∂
•′
α Aα(n),α′ + V irrelevant . (4.69)

Due to the restriction on the contraction between unprimed indices, the α indices in the
derivatives will be contracted with the α indices of the fields As in all possible way. However,
because of the plane-wave solution (4.47) we will receive only the contribution of type
〈ζi〉〈ζj〉 for i〉 ≡ υi being the external spinors associated to the external fields Ai (see
section 5). For this reason, we do not need to specify how the α indices of the derivatives
contract to the ones of the A fields. In (4.69), V irrelevant denotes other contributions of
V lead

3 that vanish when we compute the 3pt-scattering amplitudes using the asymptotic
states (4.47) and (4.50). It is remarkable that the cubic vertex (4.69) is closely related to
the one of the higher-spin extension of self-dual gravity (HS-SDGRA) in [1]. Hence, even
though the HS-IKKT looks like a higher-spin extension of N = 4 SYM, it behaves like a
gravitational theory of higher spins!

Let us now consider the subleading terms that result from {λα, λ̂β} = −iεαβ in (3.36).
Observe that we will get contributions that have a pair of unprimed spinorial indices
contracted between the gauge potentials Aα(2s−1),α′ . We first compute

{λα . . . λα︸ ︷︷ ︸
n times

λ̂β . . . λ̂β︸ ︷︷ ︸
n times

, λγ . . . λγ︸ ︷︷ ︸
m times

λ̂δ . . . λ̂δ︸ ︷︷ ︸
m times

}= imn εγβλ
n
αλ

m−1
γ λ̂n−1

β λ̂mδ −imn εαδλn−1
α λmγ λ̂

m−1
δ λ̂nβ .

(4.70)

In spacetime, the subleading vertex read

V sub
3 = 2

∑
m+n=2s−2

mnBα(2s−2)A
α(m)

•,•′A
α(n)•,•′ . (4.71)

Their contributions to the scattering amplitudes vanish due to the plane-wave solu-
tions (4.47). Note also that the vertex (4.71) vanishes identically in the light-cone gauge.
Hence, the only non-vanishing contribution of the Poisson bracket between two higher-spin
gauge potentials A is the one that has all fibre coordinates outside of the {, } bracket. As
a remark, although the Poisson brackets will provide more structures compared to higher-
spin interactions in field theory approaches on twistor space, the spacetime action is simple
thanks to the Penrose transform (4.59).
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5 Scattering of the HS-IKKT in the flat limit

We are now in a position to study the 3-pt tree-level amplitude of the SDYM sector of the
HS-IKKT in the flat limit where S4 → R4. The action for this sector is

S =
∑
s

∫
d4xBα(2s)G

α(2s) , (5.1)

where

Gα(2s) = ∂αα′A
α(2s−1),α′ +

∑
m+n=2s+2

∂α•′A
α(m),

κ′∂
•′
α Aα(n),κ′ . (5.2)

The above action is closely related to the action of HS-SDGRA in [1]. Indeed, the light-
cone action for the above is identical with the one of HS-SDGRA. It can be seen as follow.
First of all, we can impose Aα(2s−2)0,0′ = 0 in the light-cone gauge. Then, the physical
component of the higher-spin gauge potential is A1(2s−1),0′ = Φ+s. We recall that α = 0, 1
and α′ = 0′, 1′. Similarly, the physical component of the B field is B0(2s) = ∂+Φ−s. We
will split the partial derivative in spacetime as ∂µ = (∂+, ∂−, ∂, ∂̄). Upon integrating out
auxiliary components of the gauge fields , we end up with the following action

S =
∑
s

∫
d4x

1
2(Φ−s�Φ+s)−

∑
s2,s3

(
Φ−(s2+s3−2)∂

0
α′∂

0
β′Φ+s2∂

0α′∂0β′Φ+s3

)
. (5.3)

In momentum space the above reduces to

S = −1
2
∑
s

∫
d4p(Φ−sΦ+s)p2 +

∑
s2,s3

∫
d4p1,2,3δ

4
(∑

pi

)
P2(Φ−(s2+s3−2)Φ+s2Φ+s3) , (5.4)

where p := (β, p−, p, p̄) and Pij = p̄iβj − p̄jβi for pi being the 4-momenta of the external
field Φsi .

Next, it is well-known that the 3-pt amplitude vanishes for real momenta. Hence,
we will work in a complexified setting to compute the 3-pt amplitude and we will not
discuss reality/positive energy conditions explicitly. To address momentum conservation,
we choose a convention such that the sum of momenta entering a vertex is zero. To this
end, let us compute the simplest tree-point amplitudes between (B−s1

1 , As2
2 , A

s3
3 ). Using

the plane-wave solutions (4.47) and (4.50), we obtain

M−s1|s2,s3 = δ(2− (s2 + s3 − s1))[23]2 〈ζ1〉2s1+2s2−4

〈ζ2〉2s2−2〈ζ3〉2s3−2 . (5.5)

Due to conservation of momentum p1 + p2 + p3 = 0, we have
〈ζ1〉
〈ζ2〉 = [23]

[31] ,
〈ζ1〉
〈ζ3〉 = [23]

[12] . (5.6)

Therefore, the three-point amplitude reads

M−s1|s2,s3 = δ(2− (s2 + s3 − s1)) [23]2s2+2s3−2

[31]2s2−2[12]2s3−2 . (5.7)

We obtain the usual result for gravity at s = 2. Note that the action (5.1) can be viewed
as a closed subsector of the HS-IKKT model. We shall refer this theory as gravitational
HS-SDYM or gravHS-SDYM for short. In the next section, we will reconstruct this theory
from a different point of view.
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6 Twistor construction for gravHS-SDYM

Let us summarize what we have done so far. We started with the IKKT model on a
background given by fuzzy CP3, which is recognized as quantized twistor space. In the
semi-classical limit, higher-spin fields emerge naturally in the BWR. After integrating out
the fibres using the Penrose transform, we end up with the spacetime description of the HS-
IKKT, with fields in the MUR. Since the resulting system is a field theory on spacetime,
it is natural to ask whether we can arrive at the same spacetime action in a different,
more commutative manner. We will propose how this can be achieved using the twistor
construction for higher-spin fields in [2, 36, 37]. For the twistor constructions of lower-spin
theories, we shall refer the readers to e.g. [81, 93, 96] for further details.

Our goal is to arrive at the gravHS-SDYM action that gives the same scattering ampli-
tudes as in (5.7). Hence, it is appropriate to consider a curved/deformed projective twistor
space PT [97] associated to flat Eulidean space R4. Since no confusion can arise, we will
simply call PT as twistor space. The twistor action has the form of “gravitational” BF
action on the uncompactified twistor space and is closely related to the twistor action of
SDGRA studied in [93]. Our derivation follows closely to the references [2, 81, 96].

To begin, recall that the twistor space corresponding to R4 is isomorphic to the pro-
jectivisation of the unprimed spinor bundle denoted as PS ∼= CP1 × R4. Hence, as before,
we can use λα as coordinates on the CP1 fiber while the spinors µα′ are coordinates up the
fibers of the normal bundle17

T (PT )|CP1/T (CP1) = O(1)⊕O(1) , (6.1)

in the view of the fibration π : PT → CP1. It is convenient to define the following basis
for the (0, 1)-vector fields on the projectivisation of the unprimed spinor bundle PS [81]

∂̄0 = −〈λ̂λ〉λα
∂

∂λ̂α
, ∂̄α′ = −λα ∂

∂xαα′
. (6.2)

Their dual (0, 1)-forms read

ē0 = 〈λ̂dλ̂〉
〈λ̂λ〉2

, ēα
′ = λ̂αdx

αα′

〈λ̂λ〉
. (6.3)

It is easy to check that ∂̄ = ē0∂̄0 + ēα
′
∂̄α′ = dẐA ∂

∂ẐA
. Essentially, the above basis is

based on the fact that T (CP1) ∼ O(2) and T ∗(CP1) ∼ O(−2), where O(n) is the line
bundles whose sections are polynomials of homogeneity n in λ. The above basis provides
a convenient way to work with Penrose transform in the Woodhouse’s gauge (also known
as harmonic gauge).

Since the vertices of gravHS-SDYM involve derivatives, it is convenient to define the
following (1, 0)-vector fields and their dual (1, 0)-forms on PS:

∂0 := − λ̂α

〈λ̂λ〉
∂

∂λα
, ∂α′ := λ̂α

〈λ̂λ〉
∂αα′ , (6.4a)

e0 := 〈λdλ〉 , eα
′ := λαdx

αα′ . (6.4b)

Notice that e0 is the holomorphic top-form of the fiber CP1.
17See e.g. [75, 97–99] for an explanation.
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Now, let us consider the following action on deformed projective twistor space PT

SSD =
∫
PT

D3Z BF + Sc , (6.5)

where B is a (0, 1)-form Lagrangian multiplier and F is a curvature (0, 2)-form. Here, Sc
is the correction part of the action that addresses the non-gauge-invariance of the measure
D3Z under higher-spin diffeomorphism on PT viz.

δZ = {Z, ξ}h , (6.6)

where ξ is some hs-valued (gauge parameter) section on PT . Furthermore, { , }h with the
subscript h is the holomorphic Poisson bracket on PT that has the following property

{a, b}h = −{b, a}h . (6.7)

The gauge transformations for B and F read

δF = {F , ξ}h , δB = {B, ξ}h . (6.8)

We observe that if we work with PS ∼= CP1 × R4 instead of PT , the correction Sc to
the higher-spin diffeomorphism can be dropped since we can write the anti-holomorphic
measure D3Z̄ as

D3Z̄ = ē0 ∧ [ēα′ ∧ ēα′ ] , (6.9)

using the basis (6.3). We, then, have

D3Z ∧D3Z̄ = d4x
〈λ̂dλ̂〉 ∧ 〈λdλ〉
〈λ̂λ〉2

, (6.10)

when the base manifold is R4. The holomorphic Poisson bracket on PS is defined as

{f, g}h := ∂α′ f ∧ ∂α
′
g = λ̂αλ̂β

〈λ̂λ〉2
∂αα′f ∧ ∂βα

′
g , (6.11)

where ∂α′ is defined in (6.4).18 Here, f and g are holomorphic forms/sections on PS ∼= PT .
Hence, the holomorphic Poisson bracket preserves the holomorphicity of the wedge product
between f and g. One can check that (6.11) satisfies the property (6.7). Moreover, the
action (6.5) on PS is now gauge invariant under (6.8) since we can freely move the ∂α′
derivatives around without creating additional terms when ∂α′ acting on the measure.

Let us now define our fundamental fields on PT by recalling that a free massless spin-s
field on 4d spacetime corresponds to a twistor cohomology representative in the Dolbeault
cohomology group H0,1(PT,O(2s−2)) if it has positive helicity, and H0,1(PT,O(−2s−2))
otherwise [45–47, 102], where19

H0,1(PT,O(n)) := {ω ∈ Ω0,1(PT)(n)|∂̄ω = 0}
{ω|ω = ∂̄β}

. (6.12)

18This deformation was previously used in the context of non-linear graviton construction,
see e.g. [100, 101].

19See [94, 103] for a nice review.
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Here, Ω0,1(PT)(n) is the space of (0, 1)-forms on PT of weight n, i.e. f(tZ) = tnf(Z). Note
that PT is the twistor space where there is no deformation of the complex structures, and
we will take the spinors λ to be our reference of weight.

Now, to address interactions between higher-spin fields, we can consider the following
twistor representatives [2] in the Woodhouse gauge

ω ≡ ēα′ωα′ =
∑
s

ωsα′ ē
α′ =

∑
s

λα · · ·λα︸ ︷︷ ︸
2s−1 times

Aα(2s−1),α′ ē
α′ , (6.13)

and

B =
∑
s

(
Bs0ē0 + Bsα′ ēα

′) =
∑
s

(2s+ 1) λ̂α · · · λ̂α︸ ︷︷ ︸
2s times

Bα(2s)
〈λ̂dλ̂〉
〈λ̂λ〉2s+2

+
∑
s

Bsα′ ēα
′
. (6.14)

Note that ēα′ and ē0 are defined in (6.3). We will refer ω to as the generalized connection
that is a twistor representative of ⊕s Ω0,1(PT ,O(2s− 2)). On the other hand, the B field
is referred to as the generalized Lagrangian multiplier twistorial field that belongs to the
following group ⊕s Ω0,1(PT ,O(−2s− 2)) . Note that the above twistor representatives of
ω and B allows us to get HS-SDYM in spacetime [2] through the Penrose transform (4.59).
Furthermore, we will assume that all deformations are sufficiently small so that they will
not affect the complex structures on twistor space to avoid the complication arise from
Kodaira’s theory [104].

Next, the field strength F is defined as20

0 = F := ∂̄ω + 1
2{ω, ω}h . (6.15)

By varying the action

S =
∫
PS
e0 ∧ [eα′ ∧ eα′ ]B

(
∂̄ω + 1

2{ω, ω}h
)
, (6.16)

with respect to ω, we obtain the equation of motion for B as

D̄B = ∂̄ + {ω,B}h = 0 . (6.17)

The above equation is invariant under B → B+ D̄χ due to Bianchi identity. Therefore, the
gauge transformations for ω and B read

δω = ∂̄ξ + {ω, ξ} , δB = {B, ξ}h + ∂̄χ+ {ω, χ} . (6.18)

To obtain spacetime description of the above BF theory, we will rewrite the field strength
F as

F = (∂̄0ωα′ − D̄α′ω0)ē0 ∧ ēα′ + D̄α′ωβ′ ēα
′ ∧ ēβ′ = 0 , (6.19)

20A derivation for this field strength will appear elsewhere.
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where we have used the basis (6.3) to decomposed D̄, B and ω in terms of coefficients of
ē0 and ēα′ . The above can be understood as the integrability condition with the deformed
complex structure D̄. We note that

D̄α′ω0 = ∂̄α′ω0 + {ωα′ , ω0}h , D̄α′ωβ′ = ∂̄α′ωβ′ + {ωα′ , ωβ′}h , (6.20)

according to (6.15). Since, D̄α′ω0ē
0 ∧ ēα′ = D̄(ω0ē

0), we can remove this contribution by
the gauge transformation (6.18). Namely, we can set ω0 = 0 as a natural gauge fixing
condition on commutative twistor space. This particular gauge is the aforementioned
Woodhouse gauge or harmonic gauge. It indeed agrees with various theorems [45–47, 102]
that tightly constrain twistor cohomology representatives which are harmonic on the fibres.
In the end, we only have to consider the following decomposition of B and ω:

B =
∑
s

(
ē0Bs0 + ēα

′Bsα′
)
, ω =

∑
s

ēα
′
ωsα′ , (6.21)

where the letter s indicates the spins of fields that take value in hs.
The integrability condition (6.15) contains two sub-equations∑

s

∂̄0ω
s
α′ = 0 ,

∑
s

∂̄α′ω
s
β′ +

∑
m+n=s

{ωmα′ , ωnβ′}h . (6.22)

The first equation does not contain spacetime derivative and is solved by (6.13). It tells us
that ωsα′ are holomorphic in λ. The second equation, which contain spacetime derivatives,
addresses interactions and can be written as

0 = εα′β′
∑
s

λα . . . λα
[
∂α•′A

•′
α(2s−1), +

∑
m+n=2s−2

{Aα(m),•′ , A
•′

α(n), }h
]
. (6.23)

After integrating out the fibre, we will obtain the two-derivative vertices for higher spins
as in (4.69) without the V irrelevant terms. On spacetime, it is interesting to note that
the gauge transformation of higher-spin fields contain two derivatives in the holomorphic
Poisson bracket { , }h after the Penrose transform. It is somewhat similar to the case of
Moyal-like higher-spin theories studied in [105].

Remarks. We have just shown that the twistor action for the gravitational self-dual
Yang-Mills sector of the HS-IKKT model on commutative twistor space is a gravitational
BF one. Therefore, from the geometrical point of view, it should be integrable in accor-
dance with the light-cone result in [16]. It is then reasonable to conjecture that the twistor
action of the N = 4 self-dual HS-IKKT is a deformed Chern-Simons action on super twistor
space CP3|4. It would be interesting to check whether the non-self-dual (n.SD) part of the
action (4.61) can have a twistor analogue like the one in [49, 106]. Namely,

n.SD =
∫
X
DX log det

(
(∂̄ + A)|(CP1)⊗n

)
=
∫
X
DX Tr

[
log ∂̄ +

∞∑
n=1

1
n

( i

2π
)n ∫ 〈λ1dλ1〉

〈λnλ1〉
A1 . . .

〈λndλn〉
〈λn−1λn〉

An

]
,

(6.24)
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where A is some super field that contains the gauge fields (ω,B), the fermionic fields (χI , χ̃I)
and the scalar fields φIJ . The above action exhibits an interesting feature of twistor space:
the interactions on twistor space can be non-local as long as the effective spacetime vertices
are local. We shall refer the readers to [48, 49, 106] for further discussions.

Recall that by averaging out the fibre on fuzzy twistor space, we obtain a term∑
sBα(2s)B

α(2s) in the action of the HS-IKKT on spacetime. This term can be understood
as a deformation away from the self-dual gauge sector of the HS-IKKT model. Therefore,
it is natural to consider the following action

S =
∑
s

∫
d4xBα(2s)G

α(2s) − 1
2
∑
s

∫
d4xBα(2s)B

α(2s) . (6.25)

By integrating out the B fields, we end up with a gravitational-type HS-YM (gravHS-YM)
action

S = 1
2
∑
s

∫
d4xGα(2s)G

α(2s) . (6.26)

It is easy to see that the above action contains at most 4 derivatives in the interactions.
Hence, it is a local gravitational higher-spin theory. This theory is can be thought of as the
higher-derivative extension version of the HS-YM in [2]. Note that due to the expansion
purely in terms of unprimed indices, the above theory is intrinsically chiral.

7 Discussion

In this work, we established a relation between two different approaches to higher-spin
theories: one based on the IKKT matrix model on covariant quantum spaces [40, 42, 76],
and another based on a Poisson deformation of twistor space with higher-spin symmetry
encoded in the twistor cohomology representatives [2, 36, 37].

More specifically, we clarified the relation between the fuzzy 4-sphere S4
N and (fuzzy)

twistor space, and studied the hs-valued fields which naturally arise in the balanced weight
representation (BWR). This allows for a transparent analysis of higher-spin modes in the
IKKT matrix model on such a background. We have also spelled out the effective vielbein
and metric in spinorial language. This provides us a novel twistorial description for the
IKKT-matrix model on fuzzy twistor space in full non-linearity. We then studied in detail
the higher-spin gauge theory induced by the IKKT model in the large N (semi-classical)
the flat limit. Upon performing the Penrose transform, we obtained the spacetime action
for the HS-IKKT. We also studied the simplest 3-pt scattering tree-level amplitude of
the gravitational self-dual Yang-Mills sector of the HS-IKKT (gravHS-SDYM). The result
matches with the 3-pt amplitude of the HS-SDGRA considered in [1].

Having the spacetime action of gravHS-SDYM, we also show that its twistor action
can also be formulated as a gravitational BF theory on deformed projective twistor space
PT . Therefore, the gravHS-SDYM is integrable. This strongly suggests that the self-dual
sector of the HS-IKKT model is also integrable along the line of [48, 49].

The remarkable feature of the IKKTmodel is that it provides a simple non-perturbative
definition of a higher-spin gauge theory, which appears to have good locality properties,
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and is well suited for quantization. Even though the action is different from the more
standard definitions of gravity, quantum effects are expected to bridge this gap [107]. Due
to this non-standard formulation, the significance of the resulting higher-spin theory is not
evident. The present re-formulation in terms of spinors and the relation to twistor space
should be very useful to clarify its physical significance, as illustrated by the computation
of a simple scattering amplitude.

Some further remarks are in order. First of all, the hs-valued fields in the fuzzy twistor
construction naturally arise in the BWR, while the twistor construction uses MUR. Never-
theless, the higher-spin fields on spacetime always belong to MUR. The main advantage of
the fuzzy twistor construction is that we do not need to rely on twistor cohomology, and it is
more natural to consider higher-spin interactions on twistor space compared to the twistor
construction using MUR. Indeed, one can straightforwardly write down the non-self-dual
interactions involving higher-spin fields in the fuzzy twistor construction. Moreover, we
can maintain locality all the way from twistor space to spacetime in this construction com-
pared to the usual twistor construction in [49, 81]. However, it does not give us a clear
interpretation of why the self-dual sector of HS-IKKT is integrable.21 We believe that
the fuzzy twistor construction considered in this paper and usual the twistor construc-
tion in [2, 36, 37, 49, 81, 93] can complement each other in finding consistent twistorial
higher-spin theories in spacetime.

In the past, it was relatively simple to rule out the existence of higher-spin the-
ories under the requirement that the S-matrix should be Poincare invariant, analytic
and local [3, 4, 109–111]. It turned out that the assumption about higher-spin symme-
tries [86, 112–114], i.e. interactions between higher-spin fields, is crucial for higher-spin
theories to exist. However, it is not always possible. For example, if we use the Frons-
dal approach to tackle the problem of higher-spin interactions, sooner or later we will
once again run into No-go results [5, 22, 24, 25]. The reason is that most of the parity-
invariant higher-spin theories using Fronsdal fields as the main objects in the literature
exhibit non-local features starting from the quartic interactions. Specifically, in the Frons-
dal’s approach, spins and the number of derivatives in the vertices are closely correlated.
In particular, as the spins of the fields increase, so do the numbers of derivatives.

The difficulty of non-locality in the Fronsdal’s approach is overcome by the light-
cone [15, 16, 26, 27, 29, 30, 115, 116] and twistor/spinor formalisms [1]. There, one can
handle the number of derivatives and spins/helicities almost independently. However, the
higher-spin theories constructed by the light-front or twistor/spinor approaches are usually
non-unitary and self-dual. Being tailored for mainly constructing chiral theories, twistor
theory might be an appropriate framework to formulate higher-spin theories that can avoid
No-go theorems/results.

21The spacetime theory of self-dual HS-IKKT matrix model should be a quasi-topological theory. Namely,
it has propagating degrees of freedom and interactions, but has trivial scattering amplitudes. Moreover,
it should be a gravitational supersymmetric extension of HS-SDYM [1, 16]. See also [108] for a recent
development of supersymmetric extension of chiral higher-spin gravities in the light-cone gauge.
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A Spinor algebra

First of all, the Σ-matrices provide a realization of so(5) algebra

[Σab,Σcd] = (Σadδbc − Σacδbd − Σbdδac + Σbcδad) . (A.1)

For γ-matrices, we have the following useful relations (µ = 1, 2, 3, 4)

(γa) BA (γa) DC = −δ BA δ DC + 2(δ DA δ BC + CACC
BD) , (A.2a)

(γµ)A[B(γµ)CD] = 0 , (A.2b)
γµγν1 . . . γνsγµ = (−)s(4− 2s)γν1 . . . γνs . (A.2c)

We use CAB to raise and lower indices as

PA = PBC
AB , PA = PBCBA , CAMC

BM = δ BA . (A.3)

We also have the following relations ε matrices

uβ = uγε
βγ , uβ = uγεγβ , εαγ′ε

βγ′ = δ β
α , (A.4)

from which we can define the angle and square brackets often used in the literature

〈ab〉 = aαbα , [ab] = aα
′
bα′ . (A.5)

We note that for a generic tensor Tαβ , it can be decomposed as

Tαβ = T(αβ) + 1
2εαβT

γ
γ . (A.6)

As a consequence, one can write an sp(4)-tensor TA1B1,...,AsBs as

Tα1α′1β1β′1,...,αsα
′
sβsβ

′
s = Tα(s)β(s)εα

′
1β
′
1 . . . εα

′
sβ
′
s + Tα

′(s)β′(s)εα1β1 . . . εαsβs , (A.7)

where

Tα(2s) = (−)s
2s TA1B1,...,AsBs(σA1)αγ′1(σB1)αγ′1 . . . (σAs)αγ′s(σBs)

αγ′s . (A.8)
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The tensor Tα(2s) and Tα′(2s) are referred to as the self-dual and anti-self-dual components
of the tensor TA1B1,...,AsBs .22 There are also useful relations of σ-matrices

(σa)αα′(σb)βα′ = 1
2η

abεαβ + 1
2[σa, σb]αβ , (A.9a)

(σa)αα′(σb)αα′ = δ b
a , (A.9b)

(σa)αα′(σa)ββ′ = ε αβ ε
α′
β′ , (A.9c)

(σ[a)αα′(σb]) β′
α = −1

2εabcd(σc)αα′(σd) β′
α , (A.9d)

for a, b = 1, 2, 3, 4.

B Relations of S4
N

so(5) relations. Beside (2.11), we also have the following identities [39, 41]:

{Mab, Y
b}+ = 0 , (B.1a)

1
2{Mac,M

c
b }+ = R2

N

r2

(
δab −

1
2R2

N

{Ya, Yb}+
)
, (B.1b)

εabcdeMcdYe = r(N + 2)Mab . (B.1c)

Note that the relation with the εabcde tensor is a self-duality constraint that makes all
possible Young diagrams associated to higher-spin modules in the space of functions on S4

N

into two-row ones [39, 40].
The identities (B.1) follow directly from YaY

a = R2 by acting with [Y b, •]. The
identities in eq. (2.11) which are related to the highest weight Ξ = (N, 0, 0) of so(6) ' su(4)
can be obtained as follow. First of all, the oscillator relations of Ya that satisfy (2.6) reads

Ya = r

2 (ZA)†(γa)ABZB . (B.2)

By putting the dagger, we want to emphasize that Z†A and ZA are non-commutative vari-
ables that obey (3.29).

For convenience we reproduce the computation of the radius:

Y aYa = r2

4 Z
†
A(γa)ABZBZ

†
C(γa)

C
DZ
D

= r2

4 Z
†
A(γa)AB([ZB, Z†C ] + Z†CZ

B)(γa)CDZD

= r2

4 Z
†
A(γa)AB(γb)BDZD + r2

4 Z
†
AZ
†
C(γ

a)AB(γa)CDZBZD

= r2

4 Z
†
A(γa)AB(γa)BCZC + r2

8 Z
†
AZ
†
C(Z

AZC + ZCZA)

= r2

4 N̂(N̂ + 4) ,

(B.3)

22We note that in Lorentzian signature, Tα(2s) are Tα
′(2s) are complex conjugate of each other otherwise

the corresponding field strength of T will be complex.
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where we have used (3.29) and (A.2a). Similarly, using the fact thatMab = (ZA)†(Σab)ABZB
together with (A.1) and (3.29), we arrive at

εabcdeM
bcMde = 12Z†Σa6Z + 4(NZ†Σa6Z − Z†Σa6Z) = 4

r
(N + 2)Ya , (B.4)

where Σa6 = 1
2γ

a. This is the self-duality constraint (B.1b).

sp(4) and su(4) relations. The relations (B.1), which hold on HN , take the following
form in terms of the new generators L and Y :

YABY
AB = LABL

AB = 4R2
N = N(N + 4) , (B.5a)

{L[AM, Y
M
B] }+ = 0 , (B.5b)

{L [B
[A , L

D]
C] }+ = −{Y [B

[A , Y
D]
C] }+ , (B.5c)

εABCDY
AB = −YCD . (B.5d)

In obtaining the above, we have used some useful relations in the appendix A.
The first relation in (B.5) can be obtained directly by the map Y aγABa = Y AB while

others can be obtained by acting with [Y AB, •] on YABY
AB = 4R2. To derive the self-

duality constraint (B.5d), we note the following identification:

Y a = r

4Y
ABγaAB . (B.6)

Now recall the following so(5) Fierz identity from [76]

γa ⊗ γa = 1
2(1l + P )− 3

2(1l− P ) + 8P1 , (B.7)

where P is the permutation operator, and P1 = 1
4C⊗C is the projector on the so(5) singlet

in (4)⊗ (4) = ((10)S ⊕ (5)AS ⊕ (1)AS
)
so(5). In terms of indices, the identity (B.7) reads

(γa)AB(γa)CD = −CABCCD + 2CADCCB + 2CACCBD , (B.8)

which is nothing but the identity (A.2a). This allows us to compute

εABCD(γa)AB(γb)CD = c δab ⇒ εABCD(γa)AB(γa)CD = 5c , (B.9)

which gives

−5εABCDCABCCD = 5c . (B.10)

Therefore, we can fix the normalization constant

c = −4 . (B.11)

The self-dual constraint for sp(4) reads

εABCDY
ABY CD = r−2εABCD(γa)AB(γb)CDY aY b

= c r−2Y aYa = −N(N + 4)
(B.12)
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or equivalently

εABCDY
AB = c

4 YCD = −YCD . (B.13)

Further identities are obtained by noting that

TAB = 1
2Y
AB + LAB (B.14)

satisfies the relations of su(4), as well as the characteristic equation [117]

(T − 3)
(
T + 1 + 4

N

)
= 0 (B.15)

on HN . This is the origin of (B.1b).

C Derivation of effective metric

Let gαα′ββ′ is the effective metric in the tangential direction while %αα′ββ′ is the effective
metric in the transversal one. By using the following identities

λ[αλ̂β] = 1
2ε

αβ〈λ̂λ〉 , µ[α′ µ̂β
′] = 1

2ε
α′β′ [µ̂µ] , (C.1)

we can write the first term gαα
′ββ′ in (3.60) as

gαα
′ββ′ = εαβεα

′β′(〈λ̂λ〉2 + [µ̂µ]2) + 8λ(αλ̂β)µ(α′ µ̂β
′)

= N2εαβεα
′β′ − 2[µ̂µ]〈λ̂λ〉εαβεα′β′ + 8λ(αλ̂β)µ(α′ µ̂β

′)

= N2εαβεα
′β′ + 2(λ̂αλβµ̂β′µα′ + λαλ̂βµβ

′
µ̂α
′) .

(C.2)

The second term %αα
′ββ′ in (3.60) reads

%αα
′ββ′ = −

(
λ̂αλ̂βµα

′
µβ
′ + λ̂αλβµα

′
µ̂β
′ + λαλ̂βµ̂α

′
µβ
′ + λαλβµ̂α

′
µ̂β
′)
. (C.3)

Combine them together, we obtain the full metric in (3.61).
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