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Abstract: We assessed immune cell infiltrates to develop an immunoscore for prognosis and to
investigate its correlation with the clinical data of patients with head and neck cancer. CD8, FoxP3,
and CD68 markers were evaluated by immunohistochemistry in 258 carcinoma samples and positive
cells were counted in stromal and intra-tumoral compartments. The RStudio software was used to
assess optimal cut-offs to divide the population according to survival while the prognostic value
was established by using Kaplan–Meier curves and Cox regression models for each immune marker
alone and in combination. We found with univariate analysis that the infiltration of immune cells in
both compartments was predictive for recurrence-free survival and overall survival. Multivariate
analysis revealed that CD8+ density was an independent prognostic marker. Additionally, the
combination of CD8, FoxP3, and CD68 in an immunoscore provided a significant association with
overall survival (p = 0.002, HR = 9.87). Such an immunoscore stayed significant (p = 0.018, HR = 11.17)
in a multivariate analysis in comparison to tumor stage and histological grade, which had lower
prognostic values. Altogether, our analysis indicated that CD8, FoxP3, and CD68 immunoscore was a
strong, independent, and significant prognostic marker that could be introduced into the landscape
of current tools to improve the clinical management of head and neck cancer patients.

Keywords: immunoscore; CD8; FoxP3; CD68; head and neck cancer; prognosis; tumor microenvironment;
tumor infiltration

1. Introduction

Head and neck squamous cell carcinomas (HNSCC) are among the most prevalent
cancers worldwide, setting them in the sixth place [1]. In Belgium, their incidences are
higher and such cancers arise at the fourth position in men [2]. Despite advances in
therapeutic approaches, the mortality rate has remained relatively constant in recent years,
with a 5-year survival rate around 50% and recurrences occurring in 40–60% of treated
patients [3]. This poor response to treatment can be explained in part by a late diagnosis
and a lack of efficient drugs in the case of tumor recurrence. However, it appears that
the cell composition of the tumor microenvironment (TME) is likely to influence patient
outcome [4]. The well-known risk factors of HNSCC are the consumption of alcohol
and tobacco, as well as infection with the human papillomavirus (HPV), which is known
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to be associated with a better prognosis for the youngest patients with oropharyngeal
carcinoma [5]. In this context, several studies suggest that HPV+ patients with HNSCC
have a specific TME that may influence the response to treatment [6–9].

Macrophages, and more specifically tumor-associated macrophages (TAMs), are the
most abundant cells within the TME and they are able to stimulate regulatory T lymphocyte
(Treg) cells to switch to a pro-tumor environment [10,11]. Regarding macrophages, we
previously showed that CD68+ infiltration arises during HNSCC progression in the intra-
tumoral (IT) compartment and is associated with the tumor stage. We also highlighted
that CD68+ recruitment is higher in HPV+ patients than in HPV− ones. Moreover, a high
infiltration of CD68+ cells was related to a short recurrence-free survival (RFS) as well as a
short overall survival (OS) [8].

Immune surveillance is also governed by the tumor-infiltrating T lymphocytes (TILs) [12].
Among them, the CD8+ T lymphocytes act specifically on the cancer cells in order to elimi-
nate them [13]. In HNSCC, a high density of CD8+ is correlated with a good prognosis [14].
Concerning Treg cells, which are characterized by the transcription factor forkhead box P3
(FoxP3) [15], we previously showed that FoxP3+ Treg infiltration increased during HNSCC
progression (from dysplasia to carcinoma) and that tumors with high Treg infiltration were
associated with a longer RFS and OS [9,16].

In advanced HNSCC, the gold standard treatment remains concomitant chemora-
diotherapy (CCR), but the emergence of immunotherapy over the last years has changed
the landscape of HNSCC treatment [17,18]. However, using anti-cancer drugs such as
immunotherapy is challenging due to the heterogeneity of the TME composition [19].
Importantly, HPV status is now included in the tumor-node-metastasis (TNM) staging
system [20], indicating the importance of additional prognostic information to propose the
most appropriate treatment for patients. Currently, there is no immune-based classification
of head and neck cancer. However, the evaluation of immune cell recruitment to classify
HNSCC patients in different immunologic subgroups depending on the TME composition
could be helpful to improve patient prognosis. As such, a new classification model for
colorectal cancers (CRC) has been already established by Galon et al. and validated in
clinical trials [21]. It is based on the evaluation of the density of CD3+ and CD8+ T cells
in two distinct compartments (tumor and invasive margins) resulting in a high or low
immunoscore (IS). This consensus IS has been shown to outperform the TNM system in
predicting the survival and recurrence of patients with stage I-III CRC. Specifically, a high
IS was significantly associated with a longer survival and a lower risk of recurrence. Given
the reproducibility and accuracy of this IS, it is now easily applied routinely to guide the
treatment regimen of these patients [22]. The value of IS has also been highlighted in other
cancers, such as cervical cancer [23], hepatocellular carcinoma [24], melanoma [25], gastric
cancer [26], pancreatic cancer [27], and lung cancer [28], and it is starting to draw attention
in HNSCC. On this point, Zhang et al. recently showed the interest of CD3+ and CD8+ cell
infiltration scoring in combination with the TNM staging system in HNSCC patients [29],
and our group reported that a high stromal FoxP3+ T cell number combined with tumor
stage improved prognosis in HNSCC patients [16].

In this study, we propose an immune signature based on CD8+, FoxP3+, and CD68+
count in IT and/or stromal (ST) compartments in a large clinical series of 258 patients with
HNSCC. The IS is compared to tumor stage and histological grade using multivariate analyses.

2. Materials and Methods
2.1. Patients and Clinical Data

A total of 258 patients presenting HNSCC were enrolled in our study. Table 1 describes
the clinicopathological characteristics, treatment, and follow-up data. Formalin-fixed
paraffin-embedded (FFPE) specimens obtained after surgical resection at Saint-Pierre Hos-
pital (Brussels, Belgium), Jules Bordet Institute (Brussels, Belgium), EpiCURA Baudour
Hospital (Baudour, Belgium), and CHU Sart-Tilman (Liège, Belgium) between 2002 and
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2019 were used for immunohistochemical labeling. This retrospective study has been
approved by the Institutional Review Board (Jules Bordet Institute, number CE2319).

Table 1. Patient population characteristics.

Variables Number of Cases Relapse-Free Survival Overall Survival

n = 258 p-Value HR (95% CI) p-Value HR (95% CI)

Age (years)
Median (range) 61 (29–90)
Recurrence-free survival (RFS) (months)
Median (range) 22 (1–245)
Yes 104
No 120
Unknown 34
Overall survival (OS) (months)
Median (range) 33 (1–294)
Alive 124
Dead 102
Unknown 32
Gender 0.048 # 0.67 (0.45–0.99) 0.943 0.98 (0.66–1.48)
Male 177
Female 81
Anatomic site
Oral cavity 113
Oropharynx 80
Larynx 44
Hypopharynx 19
Nasopharynx 2
Tumor stage 0.041 1.548 (1.018–2.353) 0.001 2.175 (1.404–3.371)
I-II 84
III-IV 130
Unknown 44
Histological grade 0.225 0.76 (0.45–0.99) 0.029 0.62 (0.40–0.95)
Poorly differentiated 112
Well differentiated 89
Unknown 57
Treatment
Surgery 73
Radiotherapy 14
Combination surgery and
chemo-radiotherapy 28

Unknown 142
Risk factors
Tobacco 0.326 1.32(0.76–2.29) 0.366 1.29 (0.74–2.24)
Smoker 181
Non-Smoker 36
Unknown 41
Alcohol 0.811 1.05 (0.69–1.60) 0.445 1.18 (0.77–1.81)
Drinker 129
Non-Drinker 78
Unknown 51
HPV status 0.131 0.65 (0.37–1.14) 0.562 0.86 (0.51–1.44)
Positive 65
Negative 138
Unknown 55
p16 status 0.103 0.57 (0.29–1.12) 0.152 0.62 (0.32–1.19)
Positive 37
Negative 121
Unknown 100

# Bold p-values indicated significant correlations (Cox regression).

2.2. HPV Status

DNA extractions were performed on FFPE tissue (10 slices of 5 µm) with the QIAmp
DNA Mini Kit (Qiagen, Benelux, Antwerp, Belgium), according to the manufacturer’s
recommended protocol. The HPV status of some patients was established by qPCR at the
Algemeen Medisch Laboratorium (Antwerp, Belgium). Moreover, to determine the tran-
scriptional activity of HPV, p16 immunostaining was performed using the recommended
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mouse monoclonal antibody (CINtec p16, clone E6H4, Ventana, Tucson, AZ, USA) on
an automated immunostainer (BenchMark Roche, Ventana, AZ, USA at the Jules Bordet
Institute (Brussels, Belgium) as previously described [7]. The expression of p16 was defined
as positive only when both the nucleus and cytoplasm were stained and over 70% of the
tumor cells were stained.

2.3. Immunohistochemistry

The 5 µm thick slices of HNSCC were deparaffinized in toluene and rehydrated in a
graded series of alcohols, then peroxidase was blocked using H2O2 and finally slices were
rinsed with water for 7 min. Antigen retrieval was processed by immersing the samples in
10% EDTA/H2O or in 10% citrate/H2O followed by heating in a pressure cooker or in a
microwave (buffer and timing are dependent on antibodies, see Supplementary Table S1).
Non-specific sites were blocked with 0.5% caseine for 15 min. Slices were incubated with
primary antibody (anti-human CD68 monoclonal mouse, dilution 1:200, and anti-human
CD8 monoclonal mouse, dilution 1:200, both from Dako (Uden, The Netherlands)) for
1 h at room temperature or overnight at 4 ◦C. Kit PowerVision Poly-HRP IgG were used
for the second antibody. For FoxP3 immunostaining, the anti-human FoxP3 monoclonal
mouse (dilution 1:200, from Invitrogen, MA, USA) was used and the detection of this
primary antibody was performed with the CSAII kit (Dako, Uden, The Netherlands). For
each immunohistochemistry, tonsil tissue was used as positive (and negative (no primary
antibody)) controls.

2.4. Calculation of an IS

The number of each immune cell type was counted in 5 fields in the IT and ST com-
partments with an Axio-Cam MRC5 optical microscope (Zeiss, Hallbergmoos, Germany)
at 400× magnification by two investigators (S.F. and G.D.). The mean of each counting
was calculated for each patient and normalized in 1 mm2 area. For each marker in IT and
ST, the cut-off value giving the best separation between two groups (HR and p for OS)
was evaluated using the RStudio software. Then, if the mean density of the 5 fields was
greater than the cut-off, the case was considered as “high” and if it was lower, the case was
considered as “low”. Based on such cut-offs, the prognostic value of each immune marker
was examined regarding RFS and OS. From these analyzes, an IS was defined combining
the most significant immune markers.

2.5. Statistical Analyses

The optimal cut-off points of the population for each immuno-biomarker were calcu-
lated by using RStudio software (package from Cutoff Finder web application). Collected
data were analyzed with IBM SPSS software (version 23) (IBM, Ehningen, Germany). RFS
and OS analyses were performed using Kaplan–Meier curves. Univariate and multivariate
Cox regression models were applied to calculate the hazard ratio (HR), 95% confidence
interval and significance. p-values < 0.05 were statistically significant.

3. Results
3.1. Correlations between Clinical Characteristics and RFS or OS

Our clinical series included a total of 258 HNSCC patients, among which 177 (68.6%)
were men and 81 (31.4%) were women, with a median age of 61 years old (range, 29–90).
Among these patients, 104 patients presented tumor recurrence and 102 died. The clinico-
pathologic characteristics are provided in Table 1.

We evaluated the association between tumor stage, histological grade, or risk factors
with RFS or OS. Cox regression models highlighted that among such parameters only tumor
stage correlated with RFS and OS, and histological grade with OS. Evaluating Kaplan–
Meier survival curves, patients with tumor stage I-II were associated with both a longer
RFS (p = 0.041) and OS (p = 0.001) compared to patients with tumor stage III–IV. Moreover,
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well differentiated tumors were also associated with a longer OS (p = 0.029) compared to
poorly differentiated ones (Figure 1).
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Figure 1. Association between tumor stage and differentiation and patient survival. Kaplan–Meier
curves comparing (A) recurrence-free survival (RFS) and (B) overall survival (OS) of tumor stage and
(C) RFS and (D) OS of tumor differentiation.

3.2. Immune Cell Density and Patient Survival

In the HNSCC surgical specimens, immune cells were detected by using specific anti-
bodies against CD8, FoxP3, and CD68 within the ST and the IT compartments (Figure 2A–C).
Lymphocytes T (CD8+), Treg (FoxP3+), and macrophages (CD68+) were counted in five
random fields (magnification 400×) in both ST and IT compartments (Figure 2D–I).
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Figure 2. ((A–C), respectively) General view of CD8, FoxP3, and CD68 immunohistochemical staining
(100×, scale = 500 µm). Purple oblong represents stromal (ST) area and orange oblong represents
intra-tumoral (IT) area. ((D–F), respectively) Representative images of CD8, FoxP3, and CD68
immuno-marker (400×, scale = 100 µm) in the ST and ((G–I), respectively) CD8, FoxP3, and CD68
immuno-marker in the IT.

Cut-offs were calculated using RStudio software regarding optimal HR and p-values
for OS and patients were classified as expressing a low or high density of immune cells. The
cut-off values were 308.3 cells/mm2 (CD8, ST), 295.9 cells/mm2 (CD8, IT), 328.7 cells/mm2
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(FoxP3, ST), 63.5 cells/mm2 (FoxP3, IT), 792.8 cells/mm2 (CD68, ST), and 122.1 cells/mm2

(CD68, IT). Additionally, univariate and multivariate analyses (Cox regression) were per-
formed for the three immuno-markers CD8, FoxP3, and CD68 in the two compartments
for RFS and OS (Table 2). Multivariate analysis showed that the CD8+ cell density was a
strong and independent prognostic marker.

Table 2. Univariate and multivariate Cox regression models evaluating the influence of stromal (ST)
or intra-tumoral (IT) of CD8, FoxP3, and CD68 on RFS and OS. Zero and one are related to the cutoff.

Univariate Analysis Relapse-Free Survival Overall Survival

p-Value HR (95% CI) p-Value HR (95% CI)

CD8 ST 0-1 $ 0.958 0.98 (0.48–2.02) 0.026 # 3.19 (1.15–8.90)
CD8 IT 1-0 0.011 3.73 (1.35–10.31) 0.025 3.20 (1.16–8.84)
FoxP3 ST 1-0 0.002 1.97 (1.28–3.04) 0.002 1.95 (1.29–2.96)
FoxP3 IT 1-0 0.008 1.84 (1.17–2.87) 0.001 2.16 (1.36–3.41)
CD68 ST 1-0 0.206 1.56 (0.78–3.11) 0.076 2.12 (0.93–4.85)
CD68 IT 0-1 0.004 1.86 (1.21–2.85) 0.005 1.79 (1.19–2.69)

Multivariate Analysis Relapse-Free Survival Overall Survival

p-Value HR (95% CI) p-Value HR (95% CI)

CD8 ST 0-1 0.847 1.10 (0.43–2.78) 0.028 5.03 (1.19–21.31)
CD8 IT 1-0 0.024 3.36 (1.17–9.67) 0.038 3.08 (1.06–8.94)
FoxP3 ST 1-0 0.255 1.87 (0.64–5.49) 0.147 2.46 (0.73–8.28)
FoxP3 IT 1-0 0.056 1.88 (0.98–3.57) 0.109 1.63 (0.90–2.98)
CD68 ST 1-0 0.13 1.63 (0.86–3.09) 0.961 1.02 (0.56–1.83)
CD68 IT 0-1 0.6 1.22 (0.58–2.55) 0.080 1.98 (0.92–4.27)

$ Zero and one are groups related to the cut-offs (see Figures 3 and 4). # Bold p-values indicated significant
correlations (Cox regression).

Using these cut-offs, Kaplan–Meier curves were established for each immune cell
in each compartment for RFS and OS. Regarding the ST compartment, a longer RFS was
significantly associated with a high FoxP3+ cell density, while a longer OS correlated with
a low CD8+ and a high FoxP3+ cell density (Figure 3). In ST, the CD68+ cell density did
not correlate with RFS or OS. In the IT compartment, a high CD8+, a high FoxP3+, and a
low CD68+ cell density were significantly linked to a longer RFS as well as a longer OS
(Figure 4).

3.3. IS and Patient Survival

The Figure 5A describes how we calculated our IS. Each tumor of the patients was
categorized into a low (Lo) or high (Hi) density for each immune cell in each tumor
region according to the cut-off values. Depending on the type of immune cells and the
tumor compartment, the Lo and Hi classes were associated to the blue and red groups
corresponding to the 0 and 1 scores, respectively. The IS was created by adding the
individual score (0/1) of each marker, which was significant for OS. Based on univariate
analyses (Table 2), we included CD8 ST/IT, FoxP3 ST/IT, and CD68 IT in the IS. The CD68+
cell density in the ST did not correlate with the RFS or OS and were therefore not included
in the IS. Thus, the scoring system ranged from 0 to 5. Kaplan–Meier curves were drawn
for each value of the IS and a cut-off discriminating good and poor patient prognosis was
chosen at three (Supplementary Figure S1). Thus, each patient was classified in the blue
group (good prognosis, low immune score < 3, n = 23) or in the red group (poor prognosis,
high immune score > 3, n = 97).
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Figure 4. Association between intra-tumoral immune cells and patient survival. Kaplan–Meier
curves comparing ((A–C), respectively) recurrence-free survival (RFS) and CD8, FoxP3, and CD68
and ((D–F), respectively) overall survival (OS) and CD8, FoxP3, and CD68 in the intra-tumoral
compartment (IT).
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Very significant differences were observed between the blue and red IS. Kaplan–
Meier curves using our IS showed a significant correlation for RFS (p = 0.007) and OS (p = 

Figure 5. IS and patient survival. (A) Establishment of the IS in HNSCC tissues based on the immune
cells infiltration in the ST and IT compartment. Each tumor is categorized into low (Lo) or high
(Hi) density for each immune cell in each tumor region according to the calculated cutoff values.
Depending on the immune cells and the tumor compartment, the Lo and Hi classes are associated to
the blue or red group that correspond to 0 or 1 score, respectively. According to the total number of the
score, each patient is classified in the blue group (low IS) or the red group (high IS). (B) Kaplan–Meier
curves comparing recurrence-free survival (RFS) and IS and (C) overall survival (OS) and IS.

Very significant differences were observed between the blue and red IS. Kaplan–Meier
curves using our IS showed a significant correlation for RFS (p = 0.007) and OS (p = 0.002)
(Figure 5B,C, respectively) with a high IS (>3) being associated with a shorter RFS and
OS, compared with a low IS (<3) that was associated with a better prognosis for RFS
and OS. Nevertheless, we are aware of the heterogeneity of our clinical cohort, but, as a
first approach, we wished to obtain a global immunoscore for all head and neck cancers
combined. However, we performed univariate and multivariate Cox regression models
for CD8, FoxP3, and CD68 in the two compartments (ST and IT), for RFS and OS, and
for six patient subtypes of our cohort. Then, we evaluated our IS in each population
(Supplementary Figure S2).

Finally, we performed univariate and multivariate Cox regression analyses to compare
our IS with the conventional tumor stage and histological grade. Our IS correlated more
significantly, and with a greater separation of the two groups, regarding OS (p = 0.002,
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HR = 9.87) compared to tumor stage (p = 0.005, HR = 1.91) and histological grade (p = 0.029,
HR = 0.62) (Table 3). Multivariate analyses revealed that the IS was the only parameter
associated with a strong and independent prognosis value.

Table 3. Univariate and multivariate Cox regression models evaluating the tumor stage, the histologi-
cal grade and the IS and the OS.

Univariate Analysis Overall Survival

p-Value HR (95% CI)

Tumor stage 0.005 # 1.91 (1.22–3.00)
Histological grade 0.029 0.62 (0.40–0.95)

ImmuneScore 0.002 9.87 (2.38–40.99)

Multivariate Analysis Overall Survival

p-Value HR (95% CI)

Tumor stage 0.373 1.36 (0.69–2.69)
Histological grade 0.401 1.31 (0.70–2.46)

ImmuneScore 0.018 11.17 (1.52–82.12)
# Bold p-values indicated significant correlations (Cox regression).

4. Discussion

To the best of our knowledge, this study assessed, for the first time, the abundance
and distribution of innate and adaptive cellular elements according to CD8 T cells, FoxP3,
Treg, and CD68 macrophages in a series of 258 patients with HNSCC in order to define a
more global immune contexture. Then, we investigated their potential prognostic value
separately and in combination to stratify patients using a low IS corresponding to a longer
RFS and OS, whereas a high IS was related to a poorer prognosis. Our results confirm that
the establishment of an IS has a higher prognostic value than those of the TNM staging
system and histological grade.

For many years, clinical research around head and neck cancers has been constantly
asking for new prognostic biomarkers to better guide patient management. Given the
complexity of the interactions between immune infiltrates within the TME, the tumor must
no longer be considered as a single entity but must be studied in relation to its microen-
vironment and the host immune response in order to bring clinical relevance and value
in determining the tumor progression and the patient prognosis. As such, clinicians and
researchers have been interested in the infiltration of immune cells in several types of
cancer. The most widely studied and established IS is for colorectal cancers, so it is now
used by clinicians, along with TNM stage, as a predictive and prognostic marker. In fact,
many studies have highlighted that CD8+/CD3+ cytotoxic T cells infiltration in tumors
or in invasive margins will classify patients with a low or high IS that can predict patient
prognosis [21,30,31]. In gastric cancer, IS with eight immune cell types (dendritic cells, mast
cells, activated CD4+ T cells, effector memory CD8+ T cells, type-17 T helper cells, CD56+
natural killer cells, activated B cells, and memory B cells) revealed that patients with a low
IS are associated with a longer DFS and OS. In the same study, they have demonstrated
that the combination of the eight IS markers with the TNM was superior to the TNM stage
alone, pointing out the interest of using an immune signature [32]. Moreover, in cervical
cancer, increasing CD45RA+/CD45RO+ and decreasing CCL20+/CCR6+ expression cor-
related with neoplasia severity [33]. Additionally, lung cancer is also reported as another
immune infiltrated cancer. Besides, Feng et al. demonstrated that completely resected stage
IIIA(N2) non-small cell lung cancer with high CD45RO+ and CD8+ cells infiltration in
the tumor center and invasive margin can predict longer distant metastasis-free survival
and OS [34]. Concerning head and neck cancer, in most cases, massive infiltration of
CD8+ T lymphocytes in HPV− as well as in HPV+ oropharyngeal carcinomas correlates
positively with patient prognosis [35–41]. CD8+ TILs have also been established as an
independent prognostic marker in patients diagnosed with oropharyngeal squamous cell
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carcinoma [42]. Recently, Echarti et al. confirmed these findings by quantifying CD8+ and
FoxP3+ T lymphocytes in epithelial and ST compartments [43]. The relationship between
tumor infiltrating Treg and patient prognosis has been evaluated in many malignancies and
is associated with a different prognostic response according to the sites of primary cancer.
The prognostic significance of FoxP3+ Tregs has been extensively studied [44] and high Treg
cell recruitment is reported to be correlated with poor prognosis in breast, liver, pancreatic,
ovarian, cervical, and renal cancer [45–50], whereas it may also correlate with a longer
survival as demonstrated in colorectal, bladder cancer, HNSCC, and lymphoma [9,51–54].
The meta-analysis of Shang et al. compares 76 datasets that highlight the prognostic role
of FoxP3+ in 17 cancer types [44]. For HNSCC, Treg infiltration is highly controversial
with conflicting results. While several studies underline the deleterious impact of massive
infiltration by Tregs on prognosis, we and others have already showed the opposite [53,55].
Indeed, we previously reported that FoxP3+ infiltration was associated with a longer RFS
and OS of patients suffering from HNSSC [9,16,44]. The concomitance that is often ob-
served between Treg and cytotoxic T infiltrates could tip the balance towards a favorable
immune orientation and consequently participate in the good paradoxical prognostic value
of this population. In addition, HNSCCs are heterogeneous tumors located in certain
anatomical sites rich in lymphoid tissue such as oropharynx, which may explain a greater
recruitment of Treg in this site. Importantly, a crucial point of the debate was elucidated
in 2016 when Saito et al. demonstrated the existence of two populations of FoxP3+ Tregs
in colorectal cancers [56]. The first one was the immunosuppressive Foxp3high-expressing
cells classically associated with a poor prognosis and the second was characterized by
non-suppressive capacities and the absence of the expression of CD45 (FoxP3low CD45RA-),
the naïve T cell marker. These two populations are significantly correlated with opposing
prognoses in colorectal cancer. While the first is associated with a poor prognosis, the
infiltration of FoxP3low, which secrete pro-inflammatory cytokines such as IL-12 and TGFβ,
is characteristic of better patient survival [56]. In addition, we suggest another hypothesis
that could explain the infiltration of FoxP3+ Tregs in head and neck cancers. Indeed, they
grow in a septic environment in contact with a resident microbiota, just like colon cancers
that are also associated with a better prognosis when the density of Treg is high. This
microbiota interacts and may modulate the host oral immune cells and such alterations
in Treg functions have already been observed in oral infections [57,58]. Moreover, stud-
ies demonstrated the protective effects of oral FoxP3+ Treg in some local infections [59].
Given the crosstalk between these immunosuppressive regulatory cells and the cytotoxic
lymphocytes, which are the anticancer mediators of the immune system, it seems crucial to
consider these two entities in combination in order to better understand the reasons for the
contradictory results reported in the literature.

Macrophages also constitute an important partner in innate and adaptive inflammatory
responses. Beyond the binary classification of pro-inflammatory M1 and anti-inflammatory
M2 macrophages, it is now accepted that these two phenotypes are only the extremes of a
continuum of polarization, in which there is a spectrum of differentiated macrophages [60].
Among these differentiated macrophages, TAMs are involved in immune tolerance, inflam-
matory disease, and cancer [61] and are considered as pro-tumorigenic immune cells. They
stimulate Treg differentiation and secrete several factors (e.g. TGFβ, TNFα, and IL-10) to
create a favorable environment for tumor progression and to inhibit the anti-tumor effects
of immune cells [11]. Regarding prognosis, tumor infiltration by TAMs is reported to be
an unfavorable parameter for patient survival [62–64]. Our recent study has shown that a
high recruitment of CD68+ macrophages in a population of 110 HNSCC was correlated
with a shorter patient RFS and OS. Moreover, the analysis of the M1/M2 ratio in the TME,
with a double staining using anti-CD68/anti-CD163 antibodies, revealed that 80% of the
macrophage population had an M2 phenotype [8]. Interestingly, it appears that TAMs can
secrete IL-10 in order to induce the differentiation of T lymphocytes into Treg [65] and thus
participate in immune cell evasion.
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The existence of complex regulatory loops between these three major mediators of
the immune system has led us to quantify their recruitment in ST and IT localizations in
a large cohort of head and neck tumors. Indeed, we hypothesized that analyzing each
tumor compartment (ST versus IT) may provide distinct and complementary prognostic
information. This was also supported in the context of rectal cancer where the location of
CD8+ T cells and FoxP3+ Treg cells in distinct compartments (epithelium versus stroma)
result in different prognostic responses [66]. Combining the three markers in an IS signature,
we found that a low IS was significantly associated with a longer RFS and a prolonged
OS. Based on the calculated optimal cut-offs, the IT immune infiltrations associated with
a better prognosis correspond to a high density of CD8 and FoxP3 and a low density of
CD68 macrophages. Conversely, in the ST, a better prognosis was observed in patients
with a low CD8 infiltration but always a high density of FoxP3. Because of the tumor
lysis capacity of CD8 cells, these anticancer actors are strong allies for cancer patients.
On the other hand, despite their antitumor response suppressor characteristics, Tregs
infiltrates have been found to be associated with a favorable outcome, which may be
partially attributed to a downregulation of the inflammatory process [44,53]. A correlation
had also been found between a higher density of Treg in the stroma and an absence of
metastatic lymph nodes, which means that Treg could generate pro-inflammatory processes
in the tumor microenvironment favoring a delay in the tumor evolution and consequently
would generate a better prognosis of the patients [55]. Furthermore, Khoury et al. recently
proposed that IT TILs were distinct from ST TILs in their biological behavior [67]. Indeed,
ST is constituted of many components that can impair host immune responses, such as
fibroblasts, macrophages, or endothelial cells, underlining the difference in CD8 TILs
located in the ST from CD8+ TILs within tumor cells.

Finally, our multivariate analysis, evaluating the tumor stage, the histological grade,
and the IS regarding OS, revealed an impressive HR for IS that can significantly predict the
OS of patients. By contrast, in head and neck cancer, only a few studies have identified an
IS positively correlating with RFS and OS. In two studies, IS only included TILs, and more
precisely CD3+ and CD8+ cells [14,29]. A recent study confirmed the positive prognostic
impact of TILs in oral squamous cell carcinomas by increasing the immune signature to
seven markers that can predict patient survival [68].

5. Conclusions

In conclusion, we have shown for the first time that the differential density and local
distribution of CD8+, FoxP3+, and CD68+ cells associated in an IS can identify patients
with a longer RFS and OS with a stronger significance and a stronger discrimination than
TNM classification. Our IS represents an efficient and independent prognostic signature
that could constitute a novel indicator beyond TNM staging and histological grade to
improve or complement the prediction of clinical outcomes in head and neck cancer
patients. Nevertheless, it seems important to note that further studies should be conducted
on additional cohorts to validate this promising new IS and to evaluate how it can be
applied to predict the response to treatment in head and neck cancer patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11132050/s1, Figure S1: IS included CD8 ST/IT, FoxP3
ST/IT and CD68 IT. (A) Kaplan Meier curves comparing recurrence-free survival (RFS) and (B)
overall survival (OS) of our scoring system (range 1 to 5), Figure S2: Immunoscore included CD8
ST/IT, FoxP3 ST/IT and CD68 IT. Kaplan Meier curves comparing recurrence-free survival (RFS) and
overall survival (OS) of our scoring system (range 1 to 5) in oropharyngeal and oral cavity cancers
(A,B), in oropharyngeal cancers (C,D), in oral cavity cancers (E,F), in laryngeal cancers (G,H), in p16+
HNSCC (I-J), p16− HNSCC (K,L). Table S1: Description of immunostaining experimental condition.
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