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Finite automata

A finite automaton M is a finite state machine given by
(Σ,Q, q0,F ,T ), where Σ is a finite alphabet, q0 an initial state, Q
a finite set of states, F ⊂ Q a set of accepting states and T a
transition function from Q × Σ→ Q with the convention that
T (q, λ) = q for λ the empty word.

Let Σ∗ be the set of all finite words on Σ. Let σ ∈ Σ∗ and a ∈ Σ,
one extends T to T : Q × Σ∗ → Q by setting
T (q, σa) := T (T (q, σ), a).

The automaton accepts σ ∈ Σ∗ if T (q0, σ) ∈ F . (We will say that
M works on Σ.)

A subset L ⊂ Σ∗ is recognized/accepted by M if
L = {σ ∈ Σ∗ : T (q0, σ) ∈ F}.



Definability and finite automata in the natural numbers

Each natural number n can be written in base d ≥ 2, so as a finite
word in the alphabet Σ := {0, . . . , d − 1}. A subset of N is
d-automatic if it is recognized by a finite automaton M working on
Σ.

Let d = 2. The study of 2-automatic subsets of N has been
marked by a result of R. Buchi who showed that the sets definable
in (N,+,V2), where V2(n) is the highest power of 2 dividing n, are
exactly the 2-automatic sets.



Example



Definability and finite automata in the natural numbers

In fact the original statement of R. Buchi is about (N,+,P2),
where P2 is the set of powers of 2, which is incorrect as observed,
for instance, by Semenov.

Also, in his review, McNaughton suggested to consider instead the
structure (N,+, ε2), where ε2(n,m) holds iff n is a power of 2
which occurs in the binary expansion of m.

This last structure is interdefinable with (N,+,V2).

A proof of the corrected result may be found in the master thesis
of V. Bruyère.



Regular languages

The class R of regular languages is the smallest class of languages
on Σ that contains all finite languages and closed under the
following operations: if L1, L2 ∈ R, then

1 L1 ∪ L2 ∈ R,

2 L1L2 := {στ : σ ∈ L1, τ ∈ L2} ∈ R,

3 L∗1 := {σ1 . . . σn : n ∈ N, σi ∈ L1, 1 ≤ i ≤ n} ∈ R.
Fact: A subset L ⊂ Σ∗ is regular iff it is accepted by an
automaton M working on Σ.

Using that correspondence, one can show that indeed a subset of
(N,+, 0) is recognized by a finite automaton working on {0, 1} iff
it is definable in (N,+, 0,V2). Furthermore that last structure is
decidable. Also one can easily replace (N,+, 0) by (Z,+,−, 0, <).



Finite-automaton presentable structures, following B.
Hodgson and A. Nies

Let L be a finite language. A first-order (countable) L-structure
M is FA-presentable (Finite Automaton) if there is a finite
alphabet Σ and a regular language D ⊂ Σ∗ such that the elements
of the domain can be represented by D and some finite automata
can check whether the atomic relations hold in M.

Theorem (Hodgson, 1976)

If a countable structure is FA-presentable, then it is decidable.

One uses that the emptiness problem for finite automata is
decidable.

Remark: One can extend results on the ring Z to other Euclidean
rings, for instance polynomial rings or rings of formal power series
over a finite field. (To treat that last example one needs to work
with finite automata accepting infinite words).



Expansions of (Z,+, <) and of (R,+, ·, <)

The theory of (Z,+, 0, <) satisfies different notions of minimality.
Its theory is NIP, dp-minimal, coset-minimal and quasi-o-minimal.
Recall that an ordered group G (non necessarily abelian) is
coset-minimal if every definable subset of G is a finite union of
cosets of definable subgroups intersected with intervals.
A totally ordered structure is quasi-o-minimal if in every
elementarily equivalent structure every definable set is a boolean
combination of intervals and ∅-definable sets. It is essentially
quasi-o-minimal if it has an expansion by constants which is
quasi-o-minimal.
Fact: (Point-Wagner) Let G be an ordered group. Then the
following is equivalent:

1 Th(G ) is essentially quasi-o-minimal.

2 Th(G ) is coset-minimal.

3 Every definable subset of a model G of Th(G ) is a finite union
of cosets of nG intersected with intervals, for some n < ω.



NIP expansions

Note that (Z,+, <,V2) has IP (one can define any finite subset of
P2 using ε2).

(Z,+, <,P2) is NIP (see later).

(van den Dries, 1985) Th(Z,+, <,P2) is model-complete in the
language {+,−, <, mod n, λ2 : n ∈ N \ {0, 1}}, where λ2(x) is
the largest power of 2 smaller than x .

(Moosa-Scanlon, 2004) Th(Z,+,P2) is stable and its definable
subsets can be described as follows.



(Z,+,P2)

Let (Γ,+,−, 0) a finitely generated abelian group and F an
injective endomorphism of Γ. Let Σ be a finite symmetric subset of
Γ containing 0 and denote by Σ∗ the set of finite words on Σ.
We say that the finite word σ := a0 · · · an represents a ∈ Γ if
a = a0 + F (a1) + . . .+ F n(an). We use the notation a = [σ]F .

Definition (Bell-Moosa/Hawthorne)

Let Σ be as above. Then Σ is a F -spanning set for Γ if

1 any element of Γ can be represented by an element of Σ∗,

2 if a1, a2, a3 ∈ Σ, then a1 + a2 + a3 ∈ Σ + F (Σ),

3 if a1, a2 ∈ Σ are such that for some b ∈ Γ, a1 + a2 = F (b),
then b ∈ Σ.

PROPOSITION (Hawthorne)

The structure (Γ,+,F ) is FA-presentable.



Let L ⊂ Σ∗, then L is sparse if L is regular and if the set of words
in L of length smaller than or equal to x is bounded by a
polynomial function of x . A subset A ⊂ Γ is F -sparse if A = [L]F r

for some sparse L ⊂ Σ∗ with Σ a F r -spanning set, r > 0.

Let a ∈ Γ, then set K (a,F ) := {a + F (a) + · · ·+ F n(a) : n ∈ N}.

An elementary F -set is a subset of Γ of the form
a0 + K (a1,F

n1) + . . .+ K (am,F
nm), for some a0, . . . , am ∈ Γ and

n1, . . . , nm ∈ N.
Example: the F -orbit of a
FN(a) = {F n(a) : n ∈ N} = a + K (Fa− a) is an elementary F -set.

Theorem (Moosa-Scanlon 2004/Hawthorne 2021)

Let A ⊂ Γ be F -sparse. Then A is stable in Γ iff A is a boolean
combination of elementary F -sets.



Back to expansions of (Z,+,−, 0)

As a consequence, one obtains:

Theorem (Hawthorne 2021–case d = 2)

Let A ⊂ Z. Then A is 2-automatic and stable in (Z,+) iff A is a
boolean combination of elementary 2-sets and cosets of subgroups
of Z iff A is definable in (Z,+,P2). In particular the theory of
(Z,+,P2) is stable.

Independently, Poizat (2014) and then Palacin-Sklinos (2018)
proved that:

Theorem (Poizat/Palacin-Sklinos)

The theory of (Z,+,P2) is superstable of U-rank ω.



Expansions of fields by multiplicative subgroups

The result of L. van den Dries on the expansion Th(Z,+,≤,P2)
was proven using a similar analysis as for (R,+, ·, 0, 1,≤,P2)
(adding a multiplicative group to the field structure) which was
extended later by van den Dries and Gunaydin to expansions of the
form (R,+, ·, 0, 1,≤,P2.P3).

Theorem (van den Dries, Gunaydin, 2006, Theorem 1.3)

Let Γ be a dense subgroup of (R>0) and suppose it has the Mann
property. Then one can (explicitely) axiomatize the theory of
(R, Γ) := (R,+,−, ·, 0, 1, Γ, {γ : γ ∈ Γ}).



Mann property

Let K be a field and G a subgroup of the multiplicative group of
K . Consider equations of the form:

r1x1 + ...+ rnxn = 1,

withri ,1 ≤ i ≤ n, in the prime field of K and its solutions in G . A
tuple (g1, ..., gn) ∈ Gn is called a non-degenerate solution if for all
proper subsets J of of {1, ..., n},

∑
j∈J rjgj 6= 0. The group G has

the Mann property in K if such equations have only finitely many
non-degenerate solutions.

Fact [van der Poorten-Schlickewei, Evertse, Laurent] Any
multiplicative group of finite rank in a field of characteristic 0 has
the Mann property.



Theorem

Let K be an algebraically closed field of characteristic 0 and let Γ
be a finitely generated subgroup of the K-points of some
semi-abelian variety defined over K, then the theory of (K , Γ) is
stable (Γ is stably embedded).

Theorem (Scanlon-Moosa, 2004)

Consider the structure (K ,+, ·, Γ), where K is an algebraically
closed field of characteristic p and Γ is a finitely generated
Frobenius submodule of a semi-abelian variety X defined over a
finite field. Then the induced structure on Γ is stable and so the
theory of (K , Γ) is stable.



How special is P2?

Let A ⊂ N, A infinite. Enumerate A as a strictly increasing
sequence A = (an)n≥0.
Consider the expansions (Z,+,A), or (Z,+,−A ∪ A), or
(Z,+, 0, <,A). Which ones are tame?

How does the sequence grows?
Consider the sequence (an+1

an
)n∈N and lim supn∈N

an+1

an
.

If it is > 1, say that A is lacunary. If limn∈N
an+1

an
exists in

R ∪ {+∞}, denote it by θ and call it the Kepler limit.

Recall that (an) is a linear recurrence sequence if there are
r0, . . . , rk−1 ∈ Q, with k ∈ N≥1 minimal, such that for all n ∈ N,

an+k =
k−1∑
i=0

rian+i .

The polynomial PA defined by PA(X ) = X k −
∑k−1

i=0 riX
i is called

the characteristic polynomial and the elements a0, . . . , ak−1 the
initial conditions.



Lacunary sequences (G. Conant)

A subset B ⊂ R>0 is geometric if { ab : a ≥ b & a, b ∈ B} is closed
and discrete.
The sequence A = (an) ⊂ Z is a geometric sparse sequence if

1 there is a function f : A→ R>0 such that f (A) is geometric,
and

2 sup {|a− f (a)| : a ∈ A} ∈ R.

Theorem (G. Conant, 2019)

Let A be a geometric sparse sequence (in Z). Then, the theory of
(Z,+,A) is superstable of Lascar rank ω.



Lacunary sequences: the Kepler limit is > 1

Let A := (an)n∈N ⊂ N. Then A is a regular (sparse) sequence if it
has a Kepler limit exists and θ > 1 and either

1 θ is transcendental or

2 θ is algebraic (over Q) and (an) is a linear recurrence sequence
whose characteristic polynomial is the minimal polynomial of θ

Theorem (Semenov(1979) /P.(2000); P.-Lambotte(2020))

Suppose A is a regular (sparse) sequence. Then,
the theory of (Z,+, <,A) is model-complete and NIP,
the theory of (Z,+,A) is superstable of Lascar rank ω and
model-complete.

Decidability issues.



Sparse sequences following A.L. Semenov

Let S be the successor function on A and consider
Q(S(x)) :=

∑n
i=0 riS

i (x) with ri ∈ Z, 0 ≤ i ≤ n. We associate to
such term a polynomial in Z[S ].

Definition (A.L. Semenov)

A ⊂ N is a sparse sequence if for any Q(S) ∈ Z[S ] \ {0}, either for
all am ∈ A, Q(am) = 0, or Q >pp 0 or −Q >pp 0,
and if Q >pp 0, then there exists a natural number ` such that
Q(S`)− Q > 0.

One shows that if A is regular, then A is sparse following Semenov
and that the theory T of (Z,+,−, 0,A, <) admits q.e. in the
language of ordered abelian groups, together with
{modn; n ∈ N∗, λA,S , S−1}. One can give an explicit
axiomatisation and in case A is a linear recurrence sequence give
conditions under which T is decidable.



Comparison between regular sequence and geometrically
sparse sequences.

Again one can show that the theory of (Z,+,−, 0,A) admits q.e.
in {+,−, 0,A} ∪ {S , S−1, c0} ∪ {ΣQ̄ : Q̄ ∈ Z[S ]n}, where ΣQ̄ are
predicates that express that a tuple belongs to the images of Q̄(S).

(See the thesis of Q. Lambotte). There are regular sequences (an)
which are not geometrically sparse. And among the linear
recurrence sequences with a Kepler limit, one can characterize
those which are geometrically sparse.



Non-lacunary sequences

Theorem (Conant, 2018)

Let Γ be a finitely generated monoid of (N, ·) and A ⊂ Γ be
infinite. Then the theory of (Z,+,A) is superstable of U-rank ω.

If there are a, b ∈ Γ with loga(b) is irrational, then Γ is
non-lacunary (Furstenberg).



Non-lacunary sequences

Let r ∈ R \Q, r > 1 and let Br := (bnrc)n∈N∗ be a Beatty
sequence.

Theorem (Gunaydin-Ozsahakyan, 2021)

(Z,+,−, 0, 1,Br ) is NIP (unstable), decidable, admits q.e. adding
countably many predicates Dn,1,Dn,0, n ∈ N \ {0, 1}, and there is
no intermediate structure betwen (Z,+) and (Z,+,Br ), where
Dn,1(x) := ∃y ∈ Br ny = x and Dn,0(x) := ∃y /∈ Br ny = x .

They use the following tool. Let

e : Z→ S1 : z 7→ e
i2πz
r ,

where S1 is the circle of center (0, 0) and radius 1 in R2. Let C be
the (anti-clockwise) cyclic order on S1 and Zr := e(Z). Denote by
(e(−1) 1) the (cyclic) interval in S1.

Gunaydin and Ozsahakyan show that (Z,+,−, 0, 1,Br ) is
isomorphic to (e(Z), ·, −1, 1, e(1), (e(−1) 1) ∩ e(Z)).



A detour: cyclically ordered groups

Let G be any dense subgroup of (R,+, 0, <), for instance take a
subgroup generated by 〈Z,Z/r〉, where r ∈ R \Q.
Robinson and Zakon showed that the theory of (G ,+,−, 0, <) can
be axiomatized as an ordered abelian group which is regularly
dense, namely for each positive integer n, x < y implies that there
is an element z such that x < nz < y , and where for each n ≥ 2,
the indices [G : nG ] (finite or infinite), are specified.

Theorem (Giraudet, Leloup, Lucas; Bélair, P.)

Let G := (G ∩ [0 1[,+1, <). Then Th(G) is model-complete (in
some extension of the language by infinitely many constants
symbols), NIP and decidable if is r.e.



Non-lacunary sequences

Let P be the set of prime numbers. Recall Dickson hypothesis (or
the linear Schnitzel hypothesis):
(D) Let f1(x), . . . , fn(x) be irreducible linear polynomials over Z,
each having a positive leading coefficient. Suppose that there is no
prime p which divides

∏n
i=1 fi (x) for all x ∈ N. Then there exist

infinitely many x ∈ N such that such that f1(x), . . . , fn(x) are all
prime.

Theorem (Bateman-Jockusch-Woods, 1993)

(Z,+, 0, <,P) is undecidable if Dickson hypothesis holds.

The proof shows that multiplication is definable, using a theorem
of Buchi on the undecidability of (Z,+, <, 0, {g(n) : n ∈ N}),
where g(x) ∈ N[x ] is a polynomial of degree at least 2.

Theorem (Bateman-Jockusch-Woods, 1993)

(Z,+, 0, <,V2, {2n : n ∈ P) is decidable if Dickson hypothesis
holds.



Theorem (Kaplan-Shelah, 2017)

(Z,+, 0, 1,−P ∪ P) is unstable, supersimple of rank 1 and
decidable if Dickson hypothesis holds.

Note that in (Z,+,P) one may define the order (since any
sufficiently large positive integer is a sum of at most 4 prime
numbers).


