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Finite automata

A finite automaton M is a finite state machine given by

(X,Q, qo, F, T), where ¥ is a finite alphabet, go an initial state, Q
a finite set of states, F C @ a set of accepting states and T a
transition function from @ x ¥ — @ with the convention that
T(g,\) = g for A the empty word.

Let ©* be the set of all finite words on . Let c € X* and a € X,
one extends T to T : @ x ¥* — @ by setting
T(q,0a) := T(T(q,0),a).

The automaton accepts o € X* if T(qo,0) € F. (We will say that
M works on ¥.)

A subset L C X* is recognized/accepted by M if
L={oeX*: T(q,o0)e€ F}.



Definability and finite automata in the natural numbers

Each natural number n can be written in base d > 2, so as a finite
word in the alphabet X :={0,...,d — 1}. A subset of N is
d-automatic if it is recognized by a finite automaton M working on
Y.

Let d = 2. The study of 2-automatic subsets of N has been
marked by a result of R. Buchi who showed that the sets definable
in (N, 4, V»), where V5(n) is the highest power of 2 dividing n, are
exactly the 2-automatic sets.
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Definability and finite automata in the natural numbers

In fact the original statement of R. Buchi is about (N, +, P,),
where P; is the set of powers of 2, which is incorrect as observed,
for instance, by Semenov.

Also, in his review, McNaughton suggested to consider instead the
structure (N, +, ¢2), where e2(n, m) holds iff n is a power of 2
which occurs in the binary expansion of m.

This last structure is interdefinable with (N, +, V).

A proof of the corrected result may be found in the master thesis
of V. Bruyere.



Regular languages

The class R of regular languages is the smallest class of languages
on X that contains all finite languages and closed under the
following operations: if L1, Ly € R, then

O LUl eR,

Q Lily:={or:0€ 1,7 € L} €R,

Q Lj:={o1...0n:neNgiel1,1<i<n}eR.
Fact: A subset L C X* is regular iff it is accepted by an
automaton M working on X.

Using that correspondence, one can show that indeed a subset of
(N, +,0) is recognized by a finite automaton working on {0, 1} iff
it is definable in (N, 4,0, V,). Furthermore that last structure is

decidable. Also one can easily replace (N, +,0) by (Z,+, —,0, <).



Finite-automaton presentable structures, following B.

Hodgson and A. Nies

Let £ be a finite language. A first-order (countable) L-structure
M is FA-presentable (Finite Automaton) if there is a finite
alphabet X and a regular language D C X* such that the elements
of the domain can be represented by D and some finite automata
can check whether the atomic relations hold in M.

If a countable structure is FA-presentable, then it is decidable. J

One uses that the emptiness problem for finite automata is
decidable.

Remark: One can extend results on the ring Z to other Euclidean
rings, for instance polynomial rings or rings of formal power series
over a finite field. (To treat that last example one needs to work
with finite automata accepting infinite words).



Expansions of (Z, +, <) and of (R, +, -, <)

The theory of (Z,+,0, <) satisfies different notions of minimality.
Its theory is NIP, dp-minimal, coset-minimal and quasi-o-minimal.
Recall that an ordered group G (non necessarily abelian) is
coset-minimal if every definable subset of G is a finite union of
cosets of definable subgroups intersected with intervals.

A totally ordered structure is quasi-o-minimal if in every
elementarily equivalent structure every definable set is a boolean
combination of intervals and (-definable sets. It is essentially
quasi-o-minimal if it has an expansion by constants which is
quasi-o-minimal.

Fact: (Point-Wagner) Let G be an ordered group. Then the
following is equivalent:

Q Th(G) is essentially quasi-o-minimal.
Q Th(G) is coset-minimal.

Q Every definable subset of a model G of Th(G) is a finite union
of cosets of nG intersected with intervals, for some n < w.



NIP expansions

Note that (Z,+, <, V2) has IP (one can define any finite subset of
P, using €7).

(Z,+, <, P) is NIP (see later).

(van den Dries, 1985) Th(Z,+, <, P2) is model-complete in the
language {+,—, <, mod ,,A\2: n € N\ {0,1}}, where \a(x) is
the largest power of 2 smaller than x.

(Moosa-Scanlon, 2004) Th(Z,+, P,) is stable and its definable
subsets can be described as follows.



(Za +7 P2)

Let (I', 4, —,0) a finitely generated abelian group and F an
injective endomorphism of I'. Let X be a finite symmetric subset of
I" containing 0 and denote by ¥* the set of finite words on X.

We say that the finite word o := agp - - - a,, represents a € I if
a=ag+ F(a1)+ ...+ F"(a,). We use the notation a = [o]£.

Definition (Bell-Moosa/Hawthorne)
Let > be as above. Then ¥ is a F-spanning set for I" if

Q any element of I can be represented by an element of ¥*,
Q ifaj,ap,a3 € X, then a; + ap + a3 € ¥ + F(X),

Q if a;,ap € X are such that for some b €T, a; + a» = F(b),
then be %.

Prorosrtion (Hawthorne)
The structure (I, +, F) is FA-presentable.




Let L C ¥, then L is sparse if L is regular and if the set of words
in L of length smaller than or equal to x is bounded by a
polynomial function of x. A subset A C I is F-sparse if A= [L]F-
for some sparse L C ¥* with ¥ a F"-spanning set, r > 0.

Let a €T, then set K(a,F):={a+ F(a)+---+ F"(a): n € N}.

An elementary F-set is a subset of [ of the form

ap + K(a1, F™) + ...+ K(am, F™), for some ag,...,am € I and
n,...,nmeN.

Example: the F-orbit of a

FN(a) = {F"(a) : n € N} = a+ K(Fa — a) is an elementary F-set.

Theorem (Moosa-Scanlon 2004 /Hawthorne 2021)

Let AC T be F-sparse. Then A is stable in I iff A is a boolean
combination of elementary F-sets.




Back to expansions of (Z,+, —,0)

As a consequence, one obtains:

Theorem (Hawthorne 2021-case d = 2)

Let A C Z. Then A is 2-automatic and stable in (Z,+) iff Ais a
boolean combination of elementary 2-sets and cosets of subgroups
of Z iff A is definable in (Z,+, P>). In particular the theory of
(Z,+, Py) is stable.

Independently, Poizat (2014) and then Palacin-Sklinos (2018)
proved that:

Theorem (Poizat/Palacin-Sklinos)

The theory of (Z,+, P») is superstable of U-rank w.




Expansions of fields by multiplicative subgroups

The result of L. van den Dries on the expansion Th(Z,+, <, Py)
was proven using a similar analysis as for (R, +,-,0,1, <, P>)
(adding a multiplicative group to the field structure) which was
extended later by van den Dries and Gunaydin to expansions of the
form (R, +,-, 0, ]., <, P2.P3).

Theorem (van den Dries, Gunaydin, 2006, Theorem 1.3)

Let I' be a dense subgroup of (R>0) and suppose it has the Mann
property. Then one can (explicitely) axiomatize the theory of
(R, =R, +,—,-,0, 1, {y:yeT}).




Mann property

Let K be a field and G a subgroup of the multiplicative group of
K. Consider equations of the form:

rnxy 4+ ...+ rmx, =1,

withr;,1 <7 < n, in the prime field of K and its solutions in G. A
tuple (g1, ...,8n) € G" is called a non-degenerate solution if for all
proper subsets J of of {1, ..., n}, ZjeJ rigj # 0. The group G has
the Mann property in K if such equations have only finitely many
non-degenerate solutions.

Fact [van der Poorten-Schlickewei, Evertse, Laurent] Any
multiplicative group of finite rank in a field of characteristic 0 has
the Mann property.



Theorem

Let K be an algebraically closed field of characteristic 0 and let I
be a finitely generated subgroup of the K-points of some
semi-abelian variety defined over K, then the theory of (K,T) is
stable (I is stably embedded).

Theorem (Scanlon-Moosa, 2004)

Consider the structure (K, +,-,T), where K is an algebraically
closed field of characteristic p and I is a finitely generated
Frobenius submodule of a semi-abelian variety X defined over a
finite field. Then the induced structure on I is stable and so the
theory of (K, T) is stable.




How special is P,?

Let A C N, A infinite. Enumerate A as a strictly increasing
sequence A = (ap)n>o0.

Consider the expansions (Z,+, A), or (Z,+,—AU A), or
(Z,+,0,<,A). Which ones are tame?

How does the sequence grows?
Consider the sequence (?2t*) e and lim sup ey 224
If it is > 1, say that Ais lacunary. If lim,ey 22 exists in

R U {+o0}, denote it by 6 and call it the Kepler limit.

Recall that (a,) is a linear recurrence sequence if there are
1, ., rk—1 € Q, with k € N2 minimal, such that for all n € N,

k—1
antk = g ridnj.
i=0

The polynomial P4 defined by P4(X) = Xk — Z:(:_ol r:X" is called
the characteristic polynomial and the elements ag, ..., ax_1 the
initial conditions.



Lacunary sequences (G. Conant)

A subset B C R>0 is geometric if {2: a> b & a,b € B} is closed
and discrete.
The sequence A = (a,) C Z is a geometric sparse sequence if

O there is a function f : A — R>0 such that f(A) is geometric,
and

Q sup {|la—f(a)]: a€ A} e R.

Theorem (G. Conant, 2019)

Let A be a geometric sparse sequence (in Z). Then, the theory of
(Z,+, A) is superstable of Lascar rank w.




Lacunary sequences: the Kepler limit is > 1

Let A:= (an)neny C N. Then A is a regular (sparse) sequence if it
has a Kepler limit exists and # > 1 and either

Q 6 is transcendental or

Q 0 is algebraic (over Q) and (ap) is a linear recurrence sequence
whose characteristic polynomial is the minimal polynomial of ¢

Theorem (Semenov(1979) /P.(2000); P.-Lambotte(2020))

Suppose A is a regular (sparse) sequence. Then,

the theory of (Z,+, <, A) is model-complete and NIP,

the theory of (Z,+, A) is superstable of Lascar rank w and
model-complete.

Decidability issues.



Sparse sequences following A.L. Semenov

Let S be the successor function on A and consider
Q(S5(x)) :== > riS'(x) with r; € Z, 0 < i < n. We associate to
such term a polynomial in Z[S].

Definition (A.L. Semenov)

A C N is a sparse sequence if for any Q(S) € Z[S] \ {0}, either for
all a,, € A, Q(am) =0, or Q >p, 0 or —Q >4, 0,
and if Q >p, 0, then there exists a natural number ¢ such that

Q(SY) — Q@ > 0.

One shows that if A is regular, then A is sparse following Semenov
and that the theory T of (Z,+,—,0, A, <) admits g.e. in the
language of ordered abelian groups, together with

{modp; n € N*,\4,S,S1}. One can give an explicit
axiomatisation and in case A is a linear recurrence sequence give
conditions under which T is decidable.



Comparison between regular sequence and geometrically

sparse sequences.

Again one can show that the theory of (Z, +, —, 0, A) admits q.e.
in {+,—,0,A}U{S,5 1, 00} U{E5: Q € Z[S]"}, where T are
predicates that express that a tuple belongs to the images of Q(S).

(See the thesis of Q. Lambotte). There are regular sequences (a,)
which are not geometrically sparse. And among the linear
recurrence sequences with a Kepler limit, one can characterize
those which are geometrically sparse.



Non-lacunary sequences

Theorem (Conant, 2018)

Let I' be a finitely generated monoid of (N,-) and A C I be
infinite. Then the theory of (Z, +, A) is superstable of U-rank w.

If there are a, b € I' with log,(b) is irrational, then I is
non-lacunary (Furstenberg).



Non-lacunary sequences

Let r€e R\ Q, r > 1 and let B, := (| nr])nen+ be a Beatty
sequence.

Theorem (Gunaydin-Ozsahakyan, 2021)

(Z,+,—,0,1,B,) is NIP (unstable), decidable, admits q.e. adding
countably many predicates D1, Dpo, n € N\ {0,1}, and there is
no intermediate structure betwen (Z, +) and (Z, +, B;), where
Dp1(x) :=3y € By ny = x and Dpo(x) := 3y ¢ B, ny = x.

They use the following tool. Let

i2rz

e:Z—St:izer,

where St is the circle of center (0,0) and radius 1 in R2. Let C be
the (anti-clockwise) cyclic order on S! and Z, := e(Z). Denote by
(e(—1)1) the (cyclic) interval in St

Gunaydin and Ozsahakyan show that (Z,+,—,0,1, B,) is
isomorphic to (e(Z),-, 71,1, e(1), (e(—1)1) Ne(Z)).



A detour: cyclically ordered groups

Let G be any dense subgroup of (R, +,0, <), for instance take a
subgroup generated by (Z,7Z/r), where r € R\ Q.

Robinson and Zakon showed that the theory of (G, +,—,0, <) can
be axiomatized as an ordered abelian group which is regularly
dense, namely for each positive integer n, x < y implies that there
is an element z such that x < nz < y, and where for each n > 2,
the indices [G : nG] (finite or infinite), are specified.

Theorem (Giraudet, Leloup, Lucas; Bélair, P.)

Let G := (G N[01[,+1,<). Then Th(G) is model-complete (in
some extension of the language by infinitely many constants
symbols), NIP and decidable if is r.e.




Non-lacunary sequences

Let P be the set of prime numbers. Recall Dickson hypothesis (or
the linear Schnitzel hypothesis):

(D) Let fi(x),..., fa(x) be irreducible linear polynomials over Z,
each having a positive leading coefficient. Suppose that there is no
prime p which divides []/_; fi(x) for all x € N. Then there exist
infinitely many x € N such that such that fi(x), ..., f,(x) are all
prime.

Theorem (Bateman-Jockusch-Woods, 1993)

(Z,+,0,<,P) is undecidable if Dickson hypothesis holds.

The proof shows that multiplication is definable, using a theorem
of Buchi on the undecidability of (Z, +, <,0,{g(n) : n € N}),
where g(x) € N[x] is a polynomial of degree at least 2.

Theorem (Bateman-Jockusch-Woods, 1993)

(Z,+,0,<, V»,{2": n € P) is decidable if Dickson hypothesis
holds.




Theorem (Kaplan-Shelah, 2017)

(Z,+,0,1,—P UP) is unstable, supersimple of rank 1 and
decidable if Dickson hypothesis holds.

Note that in (Z,+,P) one may define the order (since any
sufficiently large positive integer is a sum of at most 4 prime
numbers).



