## On expansions of the group of integers

Françoise Point (UMons)

BPGMTC, january 14<sup>th</sup> 2022.

A finite automaton M is a finite state machine given by  $(\Sigma, Q, q_0, F, T)$ , where  $\Sigma$  is a finite alphabet,  $q_0$  an initial state, Q a finite set of states,  $F \subset Q$  a set of accepting states and T a transition function from  $Q \times \Sigma \rightarrow Q$  with the convention that  $T(q, \lambda) = q$  for  $\lambda$  the empty word.

Let  $\Sigma^*$  be the set of all finite words on  $\Sigma$ . Let  $\sigma \in \Sigma^*$  and  $a \in \Sigma$ , one extends T to  $T : Q \times \Sigma^* \to Q$  by setting  $T(q, \sigma a) := T(T(q, \sigma), a)$ .

The automaton accepts  $\sigma \in \Sigma^*$  if  $T(q_0, \sigma) \in F$ . (We will say that M works on  $\Sigma$ .)

A subset  $L \subset \Sigma^*$  is recognized/accepted by M if  $L = \{\sigma \in \Sigma^* : T(q_0, \sigma) \in F\}.$ 

Each natural number *n* can be written in base  $d \ge 2$ , so as a finite word in the alphabet  $\Sigma := \{0, \ldots, d-1\}$ . A subset of  $\mathbb{N}$  is *d*-automatic if it is recognized by a finite automaton *M* working on  $\Sigma$ .

Let d = 2. The study of 2-automatic subsets of  $\mathbb{N}$  has been marked by a result of R. Buchi who showed that the sets definable in  $(\mathbb{N}, +, V_2)$ , where  $V_2(n)$  is the highest power of 2 dividing n, are exactly the 2-automatic sets.



$$\begin{array}{c}
\begin{pmatrix}
\begin{pmatrix}
0\\
0
\end{pmatrix}
\end{pmatrix} \\
\begin{pmatrix}
0\\
0
\end{pmatrix} \\
\begin{pmatrix}
0\\
0
\end{pmatrix}
\end{pmatrix} \\
\begin{pmatrix}
0\\
0
\end{pmatrix} \\
\begin{pmatrix}
0\\
0$$

In fact the original statement of R. Buchi is about  $(\mathbb{N}, +, P_2)$ , where  $P_2$  is the set of powers of 2, which is incorrect as observed, for instance, by Semenov.

Also, in his review, McNaughton suggested to consider instead the structure  $(\mathbb{N}, +, \epsilon_2)$ , where  $\epsilon_2(n, m)$  holds iff n is a power of 2 which occurs in the binary expansion of m.

This last structure is interdefinable with  $(\mathbb{N}, +, V_2)$ .

A proof of the corrected result may be found in the master thesis of V. Bruyère.

The class  $\mathcal{R}$  of *regular* languages is the smallest class of languages on  $\Sigma$  that contains all finite languages and closed under the following operations: if  $L_1, L_2 \in \mathcal{R}$ , then

- $\ \, {\bf 0} \ \, L_1\cup L_2\in {\mathcal R},$

**Fact:** A subset  $L \subset \Sigma^*$  is *regular* iff it is accepted by an automaton M working on  $\Sigma$ .

Using that correspondence, one can show that indeed a subset of  $(\mathbb{N}, +, 0)$  is recognized by a finite automaton working on  $\{0, 1\}$  iff it is definable in  $(\mathbb{N}, +, 0, V_2)$ . Furthermore that last structure is decidable. Also one can easily replace  $(\mathbb{N}, +, 0)$  by  $(\mathbb{Z}, +, -, 0, <)$ .

# Finite-automaton presentable structures, following B. Hodgson and A. Nies

Let  $\mathcal{L}$  be a finite language. A first-order (countable)  $\mathcal{L}$ -structure  $\mathcal{M}$  is *FA*-presentable (Finite Automaton) if there is a finite alphabet  $\Sigma$  and a regular language  $D \subset \Sigma^*$  such that the elements of the domain can be represented by D and some finite automata can check whether the atomic relations hold in  $\mathcal{M}$ .

#### Theorem (Hodgson, 1976)

If a countable structure is FA-presentable, then it is decidable.

One uses that the emptiness problem for finite automata is decidable.

**Remark:** One can extend results on the ring  $\mathbb{Z}$  to other Euclidean rings, for instance polynomial rings or rings of formal power series over a finite field. (To treat that last example one needs to work with finite automata accepting infinite words).

# Expansions of $(\mathbb{Z},+,<)$ and of $(\mathbb{R},+,\cdot,<)$

The theory of  $(\mathbb{Z}, +, 0, <)$  satisfies different notions of minimality. Its theory is NIP, dp-minimal, coset-minimal and quasi-o-minimal. Recall that an ordered group *G* (non necessarily abelian) is coset-minimal if every definable subset of *G* is a finite union of cosets of definable subgroups intersected with intervals. A totally ordered structure is *quasi-o-minimal* if in every elementarily equivalent structure every definable set is a boolean combination of intervals and  $\emptyset$ -definable sets. It is *essentially quasi-o-minimal* if it has an expansion by constants which is quasi-o-minimal.

**Fact:** (Point-Wagner) Let G be an ordered group. Then the following is equivalent:

- Th(G) is essentially quasi-o-minimal.
- Th(G) is coset-minimal.
- Every definable subset of a model G of Th(G) is a finite union of cosets of nG intersected with intervals, for some  $n < \omega$ .

Note that  $(\mathbb{Z}, +, <, V_2)$  has IP (one can define any finite subset of  $P_2$  using  $\epsilon_2$ ).

 $(\mathbb{Z}, +, <, P_2)$  is NIP (see later).

(van den Dries, 1985)  $Th(\mathbb{Z}, +, <, P_2)$  is model-complete in the language  $\{+, -, <, \mod n, \lambda_2 : n \in \mathbb{N} \setminus \{0, 1\}\}$ , where  $\lambda_2(x)$  is the largest power of 2 smaller than x.

(Moosa-Scanlon, 2004)  $Th(\mathbb{Z}, +, P_2)$  is stable and its definable subsets can be described as follows.

# $(\mathbb{Z},+,P_2)$

Let  $(\Gamma, +, -, 0)$  a finitely generated abelian group and F an injective endomorphism of  $\Gamma$ . Let  $\Sigma$  be a finite symmetric subset of  $\Gamma$  containing 0 and denote by  $\Sigma^*$  the set of finite words on  $\Sigma$ . We say that the finite word  $\sigma := a_0 \cdots a_n$  represents  $a \in \Gamma$  if  $a = a_0 + F(a_1) + \ldots + F^n(a_n)$ . We use the notation  $a = [\sigma]_F$ .

#### Definition (Bell-Moosa/Hawthorne)

Let  $\Sigma$  be as above. Then  $\Sigma$  is a *F*-spanning set for  $\Gamma$  if

- () any element of  $\Gamma$  can be represented by an element of  $\Sigma^*,$
- $\bigcirc$  if  $a_1, a_2, a_3 \in \Sigma$ , then  $a_1 + a_2 + a_3 \in \Sigma + F(\Sigma)$ ,
- if  $a_1, a_2 \in \Sigma$  are such that for some  $b \in \Gamma$ ,  $a_1 + a_2 = F(b)$ , then  $b \in \Sigma$ .

#### **P**ROPOSITION (Hawthorne)

The structure  $(\Gamma, +, F)$  is FA-presentable.

Let  $L \subset \Sigma^*$ , then *L* is sparse if *L* is regular and if the set of words in *L* of length smaller than or equal to *x* is bounded by a polynomial function of *x*. A subset  $A \subset \Gamma$  is *F*-sparse if  $A = [L]_{F^r}$ for some sparse  $L \subset \Sigma^*$  with  $\Sigma$  a  $F^r$ -spanning set, r > 0.

Let  $a \in \Gamma$ , then set  $K(a, F) := \{a + F(a) + \cdots + F^n(a) \colon n \in \mathbb{N}\}.$ 

An elementary *F*-set is a subset of  $\Gamma$  of the form  $a_0 + K(a_1, F^{n_1}) + \ldots + K(a_m, F^{n_m})$ , for some  $a_0, \ldots, a_m \in \Gamma$  and  $n_1, \ldots, n_m \in \mathbb{N}$ . Example: the *F*-orbit of *a*  $F^{\mathbb{N}}(a) = \{F^n(a) : n \in \mathbb{N}\} = a + K(Fa - a)$  is an elementary *F*-set.

#### Theorem (Moosa-Scanlon 2004/Hawthorne 2021)

Let  $A \subset \Gamma$  be *F*-sparse. Then *A* is stable in  $\Gamma$  iff *A* is a boolean combination of elementary *F*-sets.

As a consequence, one obtains:

#### Theorem (Hawthorne 2021–case d = 2)

Let  $A \subset \mathbb{Z}$ . Then A is 2-automatic and stable in  $(\mathbb{Z}, +)$  iff A is a boolean combination of elementary 2-sets and cosets of subgroups of  $\mathbb{Z}$  iff A is definable in  $(\mathbb{Z}, +, P_2)$ . In particular the theory of  $(\mathbb{Z}, +, P_2)$  is stable.

Independently, Poizat (2014) and then Palacin-Sklinos (2018) proved that:

#### Theorem (Poizat/Palacin-Sklinos)

The theory of  $(\mathbb{Z}, +, P_2)$  is superstable of *U*-rank  $\omega$ .

The result of L. van den Dries on the expansion  $Th(\mathbb{Z}, +, \leq, P_2)$  was proven using a similar analysis as for  $(\mathbb{R}, +, \cdot, 0, 1, \leq, P_2)$  (adding a multiplicative group to the field structure) which was extended later by van den Dries and Gunaydin to expansions of the form  $(\mathbb{R}, +, \cdot, 0, 1, \leq, P_2.P_3)$ .

#### Theorem (van den Dries, Gunaydin, 2006, Theorem 1.3)

Let  $\Gamma$  be a dense subgroup of  $(\mathbb{R}^{>0})$  and suppose it has the Mann property. Then one can (explicitely) axiomatize the theory of  $(\mathbb{R}, \Gamma) := (\mathbb{R}, +, -, \cdot, 0, 1, \Gamma, \{\gamma : \gamma \in \Gamma\}).$ 

Let K be a field and G a subgroup of the multiplicative group of K. Consider equations of the form:

$$r_1x_1+\ldots+r_nx_n=1,$$

with  $r_i, 1 \le i \le n$ , in the prime field of K and its solutions in G. A tuple  $(g_1, ..., g_n) \in G^n$  is called a non-degenerate solution if for all proper subsets J of of  $\{1, ..., n\}$ ,  $\sum_{j \in J} r_j g_j \ne 0$ . The group G has the Mann property in K if such equations have only finitely many non-degenerate solutions.

**Fact** [van der Poorten-Schlickewei, Evertse, Laurent] Any multiplicative group of finite rank in a field of characteristic 0 has the Mann property.

#### Theorem

Let K be an algebraically closed field of characteristic 0 and let  $\Gamma$  be a finitely generated subgroup of the K-points of some semi-abelian variety defined over K, then the theory of  $(K, \Gamma)$  is stable ( $\Gamma$  is stably embedded).

#### Theorem (Scanlon-Moosa, 2004)

Consider the structure  $(K, +, \cdot, \Gamma)$ , where K is an algebraically closed field of characteristic p and  $\Gamma$  is a finitely generated Frobenius submodule of a semi-abelian variety X defined over a finite field. Then the induced structure on  $\Gamma$  is stable and so the theory of  $(K, \Gamma)$  is stable.

## How special is $P_2$ ?

Let  $A \subset \mathbb{N}$ , A infinite. Enumerate A as a strictly increasing sequence  $A = (a_n)_{n \ge 0}$ . Consider the expansions  $(\mathbb{Z}, +, A)$ , or  $(\mathbb{Z}, +, -A \cup A)$ , or  $(\mathbb{Z}, +, 0, <, A)$ . Which ones are tame?

How does the sequence grows? Consider the sequence  $(\frac{a_{n+1}}{a_n})_{n\in\mathbb{N}}$  and  $\limsup_{n\in\mathbb{N}} \frac{a_{n+1}}{a_n}$ . If it is > 1, say that A is lacunary. If  $\lim_{n\in\mathbb{N}} \frac{a_{n+1}}{a_n}$  exists in  $\mathbb{R} \cup \{+\infty\}$ , denote it by  $\theta$  and call it the Kepler limit.

Recall that  $(a_n)$  is a linear recurrence sequence if there are  $r_0, \ldots, r_{k-1} \in \mathbb{Q}$ , with  $k \in \mathbb{N}^{\geq 1}$  minimal, such that for all  $n \in \mathbb{N}$ ,

$$a_{n+k}=\sum_{i=0}^{k-1}r_ia_{n+i}.$$

The polynomial  $P_A$  defined by  $P_A(X) = X^k - \sum_{i=0}^{k-1} r_i X^i$  is called the *characteristic polynomial* and the elements  $a_0, \ldots, a_{k-1}$  the initial conditions.

A subset  $B \subset \mathbb{R}^{>0}$  is geometric if  $\{\frac{a}{b}: a \ge b \& a, b \in B\}$  is closed and discrete.

The sequence  $A = (a_n) \subset \mathbb{Z}$  is a geometric sparse sequence if

• there is a function  $f : A \to \mathbb{R}^{>0}$  such that f(A) is geometric, and

$$one sup \{ |a - f(a)| \colon a \in A \} \in \mathbb{R}.$$

#### Theorem (G. Conant, 2019)

Let A be a geometric sparse sequence (in  $\mathbb{Z}$ ). Then, the theory of  $(\mathbb{Z}, +, A)$  is superstable of Lascar rank  $\omega$ .

Let  $A := (a_n)_{n \in \mathbb{N}} \subset \mathbb{N}$ . Then A is a regular (sparse) sequence if it has a Kepler limit exists and  $\theta > 1$  and either

- $\theta$  is transcendental or
- $\theta$  is algebraic (over  $\mathbb{Q}$ ) and  $(a_n)$  is a linear recurrence sequence whose characteristic polynomial is the minimal polynomial of  $\theta$

#### Theorem (Semenov(1979) /P.(2000); P.-Lambotte(2020))

Suppose A is a regular (sparse) sequence. Then, the theory of  $(\mathbb{Z}, +, <, A)$  is model-complete and NIP, the theory of  $(\mathbb{Z}, +, A)$  is superstable of Lascar rank  $\omega$  and model-complete.

Decidability issues.

## Sparse sequences following A.L. Semenov

Let S be the successor function on A and consider  $Q(S(x)) := \sum_{i=0}^{n} r_i S^i(x)$  with  $r_i \in \mathbb{Z}$ ,  $0 \le i \le n$ . We associate to such term a polynomial in  $\mathbb{Z}[S]$ .

#### Definition (A.L. Semenov)

 $A \subset \mathbb{N}$  is a sparse sequence if for any  $Q(S) \in \mathbb{Z}[S] \setminus \{0\}$ , either for all  $a_m \in A$ ,  $Q(a_m) = 0$ , or  $Q >_{pp} 0$  or  $-Q >_{pp} 0$ , and if  $Q >_{pp} 0$ , then there exists a natural number  $\ell$  such that  $Q(S^{\ell}) - Q > 0$ .

One shows that if A is regular, then A is sparse following Semenov and that the theory T of  $(\mathbb{Z}, +, -, 0, A, <)$  admits q.e. in the language of ordered abelian groups, together with  $\{mod_n; n \in \mathbb{N}^*, \lambda_A, S, S^{-1}\}$ . One can give an explicit axiomatisation and in case A is a linear recurrence sequence give conditions under which T is decidable. Again one can show that the theory of  $(\mathbb{Z}, +, -, 0, A)$  admits q.e. in  $\{+, -, 0, A\} \cup \{S, S^{-1}, c_0\} \cup \{\Sigma_{\bar{Q}} : \bar{Q} \in \mathbb{Z}[S]^n\}$ , where  $\Sigma_{\bar{Q}}$  are predicates that express that a tuple belongs to the images of  $\bar{Q}(S)$ .

(See the thesis of Q. Lambotte). There are regular sequences  $(a_n)$  which are not geometrically sparse. And among the linear recurrence sequences with a Kepler limit, one can characterize those which are geometrically sparse.

#### Theorem (Conant, 2018)

Let  $\Gamma$  be a finitely generated monoid of  $(\mathbb{N}, \cdot)$  and  $A \subset \Gamma$  be infinite. Then the theory of  $(\mathbb{Z}, +, A)$  is superstable of *U*-rank  $\omega$ .

If there are  $a, b \in \Gamma$  with  $\log_a(b)$  is irrational, then  $\Gamma$  is non-lacunary (Furstenberg).

## Non-lacunary sequences

# Let $r \in \mathbb{R} \setminus \mathbb{Q}$ , r > 1 and let $B_r := (\lfloor nr \rfloor)_{n \in \mathbb{N}^*}$ be a Beatty sequence.

#### Theorem (Gunaydin-Ozsahakyan, 2021)

 $(\mathbb{Z}, +, -, 0, 1, B_r)$  is NIP (unstable), decidable, admits q.e. adding countably many predicates  $D_{n,1}, D_{n,0}, n \in \mathbb{N} \setminus \{0, 1\}$ , and there is no intermediate structure betwen  $(\mathbb{Z}, +)$  and  $(\mathbb{Z}, +, B_r)$ , where  $D_{n,1}(x) := \exists y \in B_r \ ny = x$  and  $D_{n,0}(x) := \exists y \notin B_r \ ny = x$ .

They use the following tool. Let

$$e:\mathbb{Z}\to S^1:z\mapsto e^{rac{i2\pi z}{r}},$$

where  $S^1$  is the circle of center (0,0) and radius 1 in  $\mathbb{R}^2$ . Let C be the (anti-clockwise) cyclic order on  $S^1$  and  $Z_r := e(\mathbb{Z})$ . Denote by (e(-1)1) the (cyclic) interval in  $S^1$ .

Gunaydin and Ozsahakyan show that  $(\mathbb{Z}, +, -, 0, 1, B_r)$  is isomorphic to  $(e(\mathbb{Z}), \cdot, -1, 1, e(1), (e(-1)1) \cap e(\mathbb{Z}))$ .

Let G be any dense subgroup of  $(\mathbb{R}, +, 0, <)$ , for instance take a subgroup generated by  $\langle \mathbb{Z}, \mathbb{Z}/r \rangle$ , where  $r \in \mathbb{R} \setminus \mathbb{Q}$ . Robinson and Zakon showed that the theory of (G, +, -, 0, <) can be axiomatized as an ordered abelian group which is *regularly dense*, namely for each positive integer n, x < y implies that there is an element z such that x < nz < y, and where for each  $n \ge 2$ , the indices [G : nG] (finite or infinite), are specified.

#### Theorem (Giraudet, Leloup, Lucas; Bélair, P.)

Let  $\mathcal{G} := (G \cap [01[, +_1, <).$  Then  $Th(\mathcal{G})$  is model-complete (in some extension of the language by infinitely many constants symbols), NIP and decidable if is r.e.

## Non-lacunary sequences

Let  $\mathcal{P}$  be the set of prime numbers. Recall Dickson hypothesis (or the linear Schnitzel hypothesis):

(D) Let  $f_1(x), \ldots, f_n(x)$  be irreducible linear polynomials over  $\mathbb{Z}$ , each having a positive leading coefficient. Suppose that there is no prime p which divides  $\prod_{i=1}^{n} f_i(x)$  for all  $x \in \mathbb{N}$ . Then there exist infinitely many  $x \in \mathbb{N}$  such that such that  $f_1(x), \ldots, f_n(x)$  are all prime.

#### Theorem (Bateman-Jockusch-Woods, 1993)

 $(\mathbb{Z},+,0,<,\mathcal{P})$  is undecidable if Dickson hypothesis holds.

The proof shows that multiplication is definable, using a theorem of Buchi on the undecidability of  $(\mathbb{Z}, +, <, 0, \{g(n) : n \in \mathbb{N}\})$ , where  $g(x) \in \mathbb{N}[x]$  is a polynomial of degree at least 2.

#### Theorem (Bateman-Jockusch-Woods, 1993)

 $(\mathbb{Z}, +, 0, <, V_2, \{2^n \colon n \in \mathcal{P})$  is decidable if Dickson hypothesis holds.

#### Theorem (Kaplan-Shelah, 2017)

 $(\mathbb{Z},+,0,1,-\mathcal{P}\cup\mathcal{P})$  is unstable, supersimple of rank 1 and decidable if Dickson hypothesis holds.

Note that in  $(\mathbb{Z}, +, \mathcal{P})$  one may define the order (since any sufficiently large positive integer is a sum of at most 4 prime numbers).