On expansions of the group of integers

Françoise Point (UMons)

BPGMTC, january $14^{\text {th }} 2022$.

Finite automata

A finite automaton M is a finite state machine given by
$\left(\Sigma, Q, q_{0}, F, T\right)$, where Σ is a finite alphabet, q_{0} an initial state, Q a finite set of states, $F \subset Q$ a set of accepting states and T a transition function from $Q \times \Sigma \rightarrow Q$ with the convention that $T(q, \lambda)=q$ for λ the empty word.

Let Σ^{*} be the set of all finite words on Σ. Let $\sigma \in \Sigma^{*}$ and $a \in \Sigma$, one extends T to $T: Q \times \Sigma^{*} \rightarrow Q$ by setting
$T(q, \sigma a):=T(T(q, \sigma), a)$.
The automaton accepts $\sigma \in \Sigma^{*}$ if $T\left(q_{0}, \sigma\right) \in F$. (We will say that M works on Σ.)

A subset $L \subset \Sigma^{*}$ is recognized/accepted by M if
$L=\left\{\sigma \in \Sigma^{*}: T\left(q_{0}, \sigma\right) \in F\right\}$.

Definability and finite automata in the natural numbers

Each natural number n can be written in base $d \geq 2$, so as a finite word in the alphabet $\Sigma:=\{0, \ldots, d-1\}$. A subset of \mathbb{N} is d-automatic if it is recognized by a finite automaton M working on Σ.

Let $d=2$. The study of 2-automatic subsets of \mathbb{N} has been marked by a result of R. Buchi who showed that the sets definable in $\left(\mathbb{N},+, V_{2}\right)$, where $V_{2}(n)$ is the highest power of 2 dividing n, are exactly the 2 -automatic sets.

Example

$$
n \in P_{2} \text { iff } n=0 \ldots 01
$$

$$
\begin{aligned}
&(n, m) \in \operatorname{graph}\left(V_{2}\right) \\
& \text { iff }
\end{aligned}
$$

$$
\begin{aligned}
n & =0.01010 .- \\
v_{2}(n) & =0.0100000
\end{aligned}
$$

Definability and finite automata in the natural numbers

In fact the original statement of R . Buchi is about $\left(\mathbb{N},+, P_{2}\right)$, where P_{2} is the set of powers of 2 , which is incorrect as observed, for instance, by Semenov.

Also, in his review, McNaughton suggested to consider instead the structure $\left(\mathbb{N},+, \epsilon_{2}\right)$, where $\epsilon_{2}(n, m)$ holds iff n is a power of 2 which occurs in the binary expansion of m.

This last structure is interdefinable with $\left(\mathbb{N},+, V_{2}\right)$.
A proof of the corrected result may be found in the master thesis of V . Bruyère.

Regular languages

The class \mathcal{R} of regular languages is the smallest class of languages on Σ that contains all finite languages and closed under the following operations: if $L_{1}, L_{2} \in \mathcal{R}$, then

- $L_{1} \cup L_{2} \in \mathcal{R}$,
(-) $L_{1} L_{2}:=\left\{\sigma \tau: \sigma \in L_{1}, \tau \in L_{2}\right\} \in \mathcal{R}$,
- $L_{1}^{*}:=\left\{\sigma_{1} \ldots \sigma_{n}: n \in \mathbb{N}, \sigma_{i} \in L_{1}, 1 \leq i \leq n\right\} \in \mathcal{R}$.

Fact: A subset $L \subset \Sigma^{*}$ is regular iff it is accepted by an automaton M working on Σ.

Using that correspondence, one can show that indeed a subset of $(\mathbb{N},+, 0)$ is recognized by a finite automaton working on $\{0,1\}$ iff it is definable in $\left(\mathbb{N},+, 0, V_{2}\right)$. Furthermore that last structure is decidable. Also one can easily replace $(\mathbb{N},+, 0)$ by $(\mathbb{Z},+,-, 0,<)$.

Finite-automaton presentable structures, following B. Hodgson and A. Nies

Let \mathcal{L} be a finite language. A first-order (countable) \mathcal{L}-structure \mathcal{M} is FA-presentable (Finite Automaton) if there is a finite alphabet Σ and a regular language $D \subset \Sigma^{*}$ such that the elements of the domain can be represented by D and some finite automata can check whether the atomic relations hold in \mathcal{M}.

Theorem (Hodgson, 1976)

If a countable structure is $F A$-presentable, then it is decidable.
One uses that the emptiness problem for finite automata is decidable.

Remark: One can extend results on the ring \mathbb{Z} to other Euclidean rings, for instance polynomial rings or rings of formal power series over a finite field. (To treat that last example one needs to work with finite automata accepting infinite words).

Expansions of $(\mathbb{Z},+,<)$ and of $(\mathbb{R},+, \cdot,<)$

The theory of $(\mathbb{Z},+, 0,<)$ satisfies different notions of minimality. Its theory is NIP, dp-minimal, coset-minimal and quasi-o-minimal. Recall that an ordered group G (non necessarily abelian) is coset-minimal if every definable subset of G is a finite union of cosets of definable subgroups intersected with intervals. A totally ordered structure is quasi-o-minimal if in every elementarily equivalent structure every definable set is a boolean combination of intervals and \emptyset-definable sets. It is essentially quasi-o-minimal if it has an expansion by constants which is quasi-o-minimal.
Fact: (Point-Wagner) Let G be an ordered group. Then the following is equivalent:

- $\operatorname{Th}(G)$ is essentially quasi-o-minimal.
- $\operatorname{Th}(G)$ is coset-minimal.
- Every definable subset of a model \mathcal{G} of $\operatorname{Th}(G)$ is a finite union of cosets of $n G$ intersected with intervals, for some $n<\omega$.

NIP expansions

Note that $\left(\mathbb{Z},+,<, V_{2}\right)$ has IP (one can define any finite subset of P_{2} using ϵ_{2}).
$\left(\mathbb{Z},+,<, P_{2}\right)$ is NIP (see later).
(van den Dries, 1985) $\operatorname{Th}\left(\mathbb{Z},+,<, P_{2}\right)$ is model-complete in the language $\left\{+,-,<, \bmod _{n}, \lambda_{2}: n \in \mathbb{N} \backslash\{0,1\}\right\}$, where $\lambda_{2}(x)$ is the largest power of 2 smaller than x.
(Moosa-Scanlon, 2004) $\operatorname{Th}\left(\mathbb{Z},+, P_{2}\right)$ is stable and its definable subsets can be described as follows.

$\left(\mathbb{Z},+, P_{2}\right)$

Let $(\Gamma,+,-, 0)$ a finitely generated abelian group and F an injective endomorphism of Γ. Let Σ be a finite symmetric subset of Γ containing 0 and denote by Σ^{*} the set of finite words on Σ. We say that the finite word $\sigma:=a_{0} \cdots a_{n}$ represents $a \in \Gamma$ if $a=a_{0}+F\left(a_{1}\right)+\ldots+F^{n}\left(a_{n}\right)$. We use the notation $a=[\sigma]_{F}$.

Definition (Bell-Moosa/Hawthorne)

Let Σ be as above. Then Σ is a F-spanning set for Γ if

- any element of Γ can be represented by an element of Σ^{*},
(O) if $a_{1}, a_{2}, a_{3} \in \Sigma$, then $a_{1}+a_{2}+a_{3} \in \Sigma+F(\Sigma)$,
- if $a_{1}, a_{2} \in \Sigma$ are such that for some $b \in \Gamma, a_{1}+a_{2}=F(b)$, then $b \in \Sigma$.

Proposition (Hawthorne)

The structure $(\Gamma,+, F)$ is FA-presentable.

Let $L \subset \Sigma^{*}$, then L is sparse if L is regular and if the set of words in L of length smaller than or equal to x is bounded by a polynomial function of x. A subset $A \subset \Gamma$ is F-sparse if $A=[L]_{F r}$ for some sparse $L \subset \Sigma^{*}$ with Σ a F^{r}-spanning set, $r>0$.

Let $a \in \Gamma$, then set $K(a, F):=\left\{a+F(a)+\cdots+F^{n}(a): n \in \mathbb{N}\right\}$.
An elementary F-set is a subset of Γ of the form $a_{0}+K\left(a_{1}, F^{n_{1}}\right)+\ldots+K\left(a_{m}, F^{n_{m}}\right)$, for some $a_{0}, \ldots, a_{m} \in \Gamma$ and $n_{1}, \ldots, n_{m} \in \mathbb{N}$.
Example: the F-orbit of a $F^{\mathbb{N}}(a)=\left\{F^{n}(a): n \in \mathbb{N}\right\}=a+K(F a-a)$ is an elementary F-set.

Theorem (Moosa-Scanlon 2004/Hawthorne 2021)

Let $A \subset \Gamma$ be F-sparse. Then A is stable in Γ iff A is a boolean combination of elementary F-sets.

Back to expansions of $(\mathbb{Z},+,-, 0)$

As a consequence, one obtains:

Theorem (Hawthorne 2021-case $d=2$)

Let $A \subset \mathbb{Z}$. Then A is 2-automatic and stable in $(\mathbb{Z},+)$ iff A is a boolean combination of elementary 2 -sets and cosets of subgroups of \mathbb{Z} iff A is definable in ($\mathbb{Z},+, P_{2}$). In particular the theory of $\left(\mathbb{Z},+, P_{2}\right)$ is stable.

Independently, Poizat (2014) and then Palacin-Sklinos (2018) proved that:

Theorem (Poizat/Palacin-Sklinos)

The theory of $\left(\mathbb{Z},+, P_{2}\right)$ is superstable of U-rank ω.

Expansions of fields by multiplicative subgroups

The result of L . van den Dries on the expansion $\operatorname{Th}\left(\mathbb{Z},+, \leq, P_{2}\right)$ was proven using a similar analysis as for $\left(\mathbb{R},+, \cdot, 0,1, \leq, P_{2}\right)$ (adding a multiplicative group to the field structure) which was extended later by van den Dries and Gunaydin to expansions of the form $\left(\mathbb{R},+, \cdot, 0,1, \leq, P_{2} . P_{3}\right)$.

Theorem (van den Dries, Gunaydin, 2006, Theorem 1.3)

Let Γ be a dense subgroup of $\left(\mathbb{R}^{>0}\right)$ and suppose it has the Mann property. Then one can (explicitely) axiomatize the theory of $(\mathbb{R}, \Gamma):=(\mathbb{R},+,-, \cdot, 0,1, \Gamma,\{\gamma: \gamma \in \Gamma\})$.

Mann property

Let K be a field and G a subgroup of the multiplicative group of K. Consider equations of the form:

$$
r_{1} x_{1}+\ldots+r_{n} x_{n}=1
$$

with $r_{i}, 1 \leq i \leq n$, in the prime field of K and its solutions in G. A tuple $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ is called a non-degenerate solution if for all proper subsets J of of $\{1, \ldots, n\}, \sum_{j \in J} r_{j} g_{j} \neq 0$. The group G has the Mann property in K if such equations have only finitely many non-degenerate solutions.

Fact [van der Poorten-Schlickewei, Evertse, Laurent] Any multiplicative group of finite rank in a field of characteristic 0 has the Mann property.

Theorem

Let K be an algebraically closed field of characteristic 0 and let Γ be a finitely generated subgroup of the K -points of some semi-abelian variety defined over K , then the theory of (K, Γ) is stable (Γ is stably embedded).

Theorem (Scanlon-Moosa, 2004)

Consider the structure $(K,+, \cdot, \Gamma)$, where K is an algebraically closed field of characteristic p and Γ is a finitely generated Frobenius submodule of a semi-abelian variety X defined over a finite field. Then the induced structure on Γ is stable and so the theory of (K, Γ) is stable.

How special is P_{2} ?

Let $A \subset \mathbb{N}, A$ infinite. Enumerate A as a strictly increasing sequence $A=\left(a_{n}\right)_{n \geq 0}$.
Consider the expansions $(\mathbb{Z},+, A)$, or $(\mathbb{Z},+,-A \cup A)$, or $(\mathbb{Z},+, 0,<, A)$. Which ones are tame?

How does the sequence grows?
Consider the sequence $\left(\frac{a_{n+1}}{a_{n}}\right)_{n \in \mathbb{N}}$ and $\lim \sup _{n \in \mathbb{N}} \frac{a_{n+1}}{a_{n}}$. If it is >1, say that A is lacunary. If $\lim _{n \in \mathbb{N}} \frac{a_{n+1}}{a_{n}}$ exists in $\mathbb{R} \cup\{+\infty\}$, denote it by θ and call it the Kepler limit.

Recall that $\left(a_{n}\right)$ is a linear recurrence sequence if there are $r_{0}, \ldots, r_{k-1} \in \mathbb{Q}$, with $k \in \mathbb{N} \geq 1$ minimal, such that for all $n \in \mathbb{N}$,

$$
a_{n+k}=\sum_{i=0}^{k-1} r_{i} a_{n+i}
$$

The polynomial P_{A} defined by $P_{A}(X)=X^{k}-\sum_{i=0}^{k-1} r_{i} X^{i}$ is called the characteristic polynomial and the elements a_{0}, \ldots, a_{k-1} the initial conditions.

Lacunary sequences (G. Conant)

A subset $B \subset \mathbb{R}^{>0}$ is geometric if $\left\{\frac{a}{b}: a \geq b \& a, b \in B\right\}$ is closed and discrete.
The sequence $A=\left(a_{n}\right) \subset \mathbb{Z}$ is a geometric sparse sequence if
(1) there is a function $f: A \rightarrow \mathbb{R}^{>0}$ such that $f(A)$ is geometric, and
© $\sup \{|a-f(a)|: a \in A\} \in \mathbb{R}$.

Theorem (G. Conant, 2019)

Let A be a geometric sparse sequence (in \mathbb{Z}). Then, the theory of $(\mathbb{Z},+, A)$ is superstable of Lascar rank ω.

Lacunary sequences: the Kepler limit is >1

Let $A:=\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{N}$. Then A is a regular (sparse) sequence if it has a Kepler limit exists and $\theta>1$ and either

- θ is transcendental or
(-) θ is algebraic (over \mathbb{Q}) and $\left(a_{n}\right)$ is a linear recurrence sequence whose characteristic polynomial is the minimal polynomial of θ

Theorem (Semenov(1979) /P.(2000); P.-Lambotte(2020))

Suppose A is a regular (sparse) sequence. Then, the theory of $(\mathbb{Z},+,<, A)$ is model-complete and NIP, the theory of $(\mathbb{Z},+, A)$ is superstable of Lascar rank ω and model-complete.

Decidability issues.

Sparse sequences following A.L. Semenov

Let S be the successor function on A and consider $Q(S(x)):=\sum_{i=0}^{n} r_{i} S^{i}(x)$ with $r_{i} \in \mathbb{Z}, 0 \leq i \leq n$. We associate to such term a polynomial in $\mathbb{Z}[S]$.

Definition (A.L. Semenov)

$A \subset \mathbb{N}$ is a sparse sequence if for any $Q(S) \in \mathbb{Z}[S] \backslash\{0\}$, either for all $a_{m} \in A, Q\left(a_{m}\right)=0$, or $Q>_{p p} 0$ or $-Q>_{p p} 0$, and if $Q>_{p p} 0$, then there exists a natural number ℓ such that $Q\left(S^{\ell}\right)-Q>0$.

One shows that if A is regular, then A is sparse following Semenov and that the theory T of $(\mathbb{Z},+,-, 0, A,<)$ admits q.e. in the language of ordered abelian groups, together with $\left\{\bmod _{n} ; n \in \mathbb{N}^{*}, \lambda_{A}, S, S^{-1}\right\}$. One can give an explicit axiomatisation and in case A is a linear recurrence sequence give conditions under which T is decidable.

Comparison between regular sequence and geometrically sparse sequences.

Again one can show that the theory of $(\mathbb{Z},+,-, 0, A)$ admits q.e. in $\{+,-, 0, A\} \cup\left\{S, S^{-1}, c_{0}\right\} \cup\left\{\Sigma_{\bar{Q}}: \bar{Q} \in \mathbb{Z}[S]^{n}\right\}$, where $\Sigma_{\bar{Q}}$ are predicates that express that a tuple belongs to the images of $\bar{Q}(S)$.
(See the thesis of Q . Lambotte). There are regular sequences $\left(a_{n}\right)$ which are not geometrically sparse. And among the linear recurrence sequences with a Kepler limit, one can characterize those which are geometrically sparse.

Non-lacunary sequences

Theorem (Conant, 2018)

Let Γ be a finitely generated monoid of (\mathbb{N}, \cdot) and $A \subset \Gamma$ be infinite. Then the theory of $(\mathbb{Z},+, A)$ is superstable of U-rank ω.

If there are $a, b \in \Gamma$ with $\log _{a}(b)$ is irrational, then Γ is non-lacunary (Furstenberg).

Non-lacunary sequences

Let $r \in \mathbb{R} \backslash \mathbb{Q}, r>1$ and let $B_{r}:=(\lfloor n r\rfloor)_{n \in \mathbb{N}^{*}}$ be a Beatty sequence.

Theorem (Gunaydin-Ozsahakyan, 2021)

$\left(\mathbb{Z},+,-, 0,1, B_{r}\right)$ is NIP (unstable), decidable, admits q.e. adding countably many predicates $D_{n, 1}, D_{n, 0}, n \in \mathbb{N} \backslash\{0,1\}$, and there is no intermediate structure betwen $(\mathbb{Z},+)$ and $\left(\mathbb{Z},+, B_{r}\right)$, where $D_{n, 1}(x):=\exists y \in B_{r} n y=x$ and $D_{n, 0}(x):=\exists y \notin B_{r} n y=x$.

They use the following tool. Let

$$
e: \mathbb{Z} \rightarrow S^{1}: z \mapsto e^{\frac{i 2 \pi z}{r}},
$$

where S^{1} is the circle of center $(0,0)$ and radius 1 in \mathbb{R}^{2}. Let C be the (anti-clockwise) cyclic order on S^{1} and $Z_{r}:=e(\mathbb{Z})$. Denote by $(e(-1) 1)$ the (cyclic) interval in S^{1}.

Gunaydin and Ozsahakyan show that $\left(\mathbb{Z},+,-, 0,1, B_{r}\right)$ is isomorphic to $\left(e(\mathbb{Z}), \cdot,^{-1}, 1, e(1),(e(-1) 1) \cap e(\mathbb{Z})\right)$.

A detour: cyclically ordered groups

Let G be any dense subgroup of $(\mathbb{R},+, 0,<)$, for instance take a subgroup generated by $\langle\mathbb{Z}, \mathbb{Z} / r\rangle$, where $r \in \mathbb{R} \backslash \mathbb{Q}$.
Robinson and Zakon showed that the theory of $(G,+,-, 0,<)$ can be axiomatized as an ordered abelian group which is regularly dense, namely for each positive integer $n, x<y$ implies that there is an element z such that $x<n z<y$, and where for each $n \geq 2$, the indices $[G: n G$] (finite or infinite), are specified.

Theorem (Giraudet, Leloup, Lucas; Bélair, P.)

Let $\mathcal{G}:=\left(G \cap\left[01\left[,{ }_{1},<\right)\right.\right.$. Then $\operatorname{Th}(\mathcal{G})$ is model-complete (in some extension of the language by infinitely many constants symbols), NIP and decidable if is r.e.

Non-lacunary sequences

Let \mathcal{P} be the set of prime numbers. Recall Dickson hypothesis (or the linear Schnitzel hypothesis):
(D) Let $f_{1}(x), \ldots, f_{n}(x)$ be irreducible linear polynomials over \mathbb{Z}, each having a positive leading coefficient. Suppose that there is no prime p which divides $\prod_{i=1}^{n} f_{i}(x)$ for all $x \in \mathbb{N}$. Then there exist infinitely many $x \in \mathbb{N}$ such that such that $f_{1}(x), \ldots, f_{n}(x)$ are all prime.

Theorem (Bateman-Jockusch-Woods, 1993)

$(\mathbb{Z},+, 0,<, \mathcal{P})$ is undecidable if Dickson hypothesis holds.
The proof shows that multiplication is definable, using a theorem of Buchi on the undecidability of ($\mathbb{Z},+,<, 0,\{g(n): n \in \mathbb{N}\}$), where $g(x) \in \mathbb{N}[x]$ is a polynomial of degree at least 2 .

Theorem (Bateman-Jockusch-Woods, 1993)

$\left(\mathbb{Z},+, 0,<, V_{2},\left\{2^{n}: n \in \mathcal{P}\right)\right.$ is decidable if Dickson hypothesis holds.

Theorem (Kaplan-Shelah, 2017)

$(\mathbb{Z},+, 0,1,-\mathcal{P} \cup \mathcal{P})$ is unstable, supersimple of rank 1 and decidable if Dickson hypothesis holds.

Note that in $(\mathbb{Z},+, \mathcal{P})$ one may define the order (since any sufficiently large positive integer is a sum of at most 4 prime numbers).

