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ABSTRACT

Introducing sparsity in a convnet has been an efficient way
to reduce its complexity while keeping its performance al-
most intact. Most of the time, sparsity is introduced using
a three-stage pipeline: 1) training the model to convergence,
2) pruning the model, 3) fine-tuning the pruned model to re-
cover performance. The last two steps are often performed
iteratively, leading to reasonable results but also to a time-
consuming process. In our work, we propose to remove the
first step of the pipeline and to combine the two others in a
single training-pruning cycle, allowing the model to jointly
learn the optimal weights while being pruned. We do this
by introducing a novel pruning schedule, named One-Cycle
Pruning (OCP), which starts pruning from the beginning of
the training, and until its very end. Experiments conducted
on a variety of combinations between architectures (VGG-16,
ResNet-18), datasets (CIFAR-10, CIFAR-100, Caltech-101),
and sparsity values (80%, 90%, 95%) show that not only OCP
consistently outperforms common pruning schedules such as
One-Shot, Iterative and Automated Gradual Pruning, but also
that it drastically reduces the required training budget. More-
over, experiments following the Lottery Ticket Hypothesis
show that OCP allows to find higher quality and more stable
pruned networks.

Index Terms— Neural Network Pruning, Neural Net-
work Compression, Pruning Schedule

1. INTRODUCTION

Deep neural networks are able to achieve state-of-the-art re-
sults in a wide variety of domains, including computer vision,
natural language processing and speech recognition. But such
achievements imply important increase in budget required
both at training and inference time. More specifically, model
size, run time memory and the number of computing oper-
ations are all constraints that make modern neural networks
challenging to deploy on resource-constrained environments
such as mobile phones or embedded devices.

For those reasons, neural network compression and ac-
celeration have become active fields of research. Several re-
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searchers have been interested in creating parameter-efficient
architectures, by using low-rank approximations, parameters
quantization, and neural network pruning.

Recent studies have also exhibited a particular character-
istic of neural networks, called the Lottery Ticket Hypothesis
[1], which suggests that, in regular architectures, there exists
a sub-network that can be trained to at least the same level
of performance as the original one, in a comparable training
budget, as long as it starts from the same original conditions.
Such a sub-network is said to have “won” at the initialization
lottery and can be preserved, while other parameters of the
original network can be removed using pruning methods.

To prune a neural network, the most commonly used tech-
nique is the so-called Iterative Pruning [2], requiring several
cycles of pruning and fine-tuning which leads to a lengthy
process. In this work, we propose to adopt a novel pruning
schedule applied directly from the start of the initial training
phase. This scheduling function gradually prunes the network
during the training phase, thus making training and pruning of
a neural network a joint process.

Contributions of our work are summarized as following:

• We propose a novel pruning schedule with stable, thus
generic parameters.

• We show that the proposed pruning schedule, per-
formed during the initial training of a neural network,
drastically reduces the required training budget.

• We empirically show that our pruning schedule is able
to find more stable lottery tickets, both for low and ex-
treme sparsity levels, than other commonly used prun-
ing schedules.

2. RELATED WORK

Pruning techniques can differ in many aspects. The main
points of differentiation are presented in this section.

Granularity. The granularity used for the pruning is of-
ten categorized into two groups: unstructured, or when the
pruning focuses on removing individual weights in the net-
work and that there is no intent to keep any structure in the
filters [3, 4]. Such a pruning method leads to sparse weight



matrices, requiring dedicated hardware or software to take ad-
vantage of the speed and computation gains. To overcome this
limitation, structured pruning was introduced [5, 6, 7], which
takes care of removing complete blocks of weights such as
vectors, kernels, or even convolution filters.

Criteria. Early works on pruning criteria make use of
second-order approximation of the loss surface to remove pa-
rameters [3, 4]. Other works have also explored the use of l0
regularization [8] during the training or even the use of varia-
tional dropout [9]. In addition to being more complex, those
criteria often show to be less consistent across datasets and
to lead to comparable or worse results than simple magnitude
pruning, based on l1-norm [10]. Moreover, the criteria can
be used to compare weights belonging to the same layer, i.e.
local pruning, leading to layers of equivalent sparsities. The
criteria can also be applied to the whole network, comparing
weights from all layers, i.e. global pruning, and leading to a
network with layers of different sparsity levels.

Scheduling. While early pruning methods cared about
removing redundant weights in a single step, called one-
shot pruning [5], the most adopted technique nowadays is to
perform pruning iteratively [11], starting from a pretrained
network and performing several steps of pruning followed by
fine-tuning. While having undeniably shown good results,
such a pruning schedule is usually time consuming to obtain
the final, pruned network [5]. For this reason, researchers
have proposed alternatives to perform pruning during the
training or even before it even started [12, 13]. Recently,
some work has shown that the most critical phase of the
training of a neural network happens during the very first
iterations [14, 15] and that applying regularization after that
initial phase has little effect on the final performance of the
network [16]. One thus should apply pruning early in training
to take advantage of its regularization effects but must do so
very carefully to not irremediably damage the network during
this brittle period [17, 18].

For those reasons, we propose a pruning schedule that is
applied gradually during the training, and designed to be gen-
tle during the very first iterations. This pruning schedule can
be used for any granularity and any selection criteria but in
this work, we are focusing on unstructured pruning, i.e. re-
moving individual weights, and the criteria used for weights
selection is their l1-norms, compared locally in each layer.

3. THE PROPOSED SCHEDULE

The proposed method, One-Cycle Pruning (OCP), consists in
starting from a dense network and inducing sparsity during
the whole training phase. More precisely, sparsity is induced
in the network according to the following schedule:

st = si + (sf − si) ·
1 + e−α+β

1 + e−αt+β
(1)

with st, the level of sparsity at training step t, si and sf

respectively the initial and final level of sparsity, and α, β
being two tuning parameters, modifying either the steepness
of the scheduling (Figure 1a), or its horizontal offset (Figure
1b), to better suit the problem or architecture that is used.
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Fig. 1. Visualization of the variation of the One-Cycle Prun-
ing schedule for different α and β values.

We performed a grid-search to find the best pair of α and
β values and found it to be α = 14 and β = 5. As reported
in Table 1, OCP is stable around its optimal parameter values.
They thus can be used as default, and being adapted if needed.

β
3 4 5 6 7

α
13 93.10 ± 0.18 93.23 ± 0.12 93.30 ± 0.07 93.31 ± 0.05 92.97 ± 0.07
14 93.13 ± 0.06 93.16 ± 0.07 93.46 ± 0.13 93.09 ± 0.18 93.25 ± 0.12
15 93.10 ± 0.03 93.21 ± 0.14 93.19 ± 0.19 93.17 ± 0.08 93.28 ± 0.03

Table 1. Grid search of α and β for Resnet-18 trained on
CIFAR-10 for 90% sparsity. Mean and standard deviation of
validation accuracy over 3 rounds are reported.

The benefits of such a schedule are three-fold. First, it
does not require to train the network before applying pruning,
thus greatly reducing training time. Second, it prunes weights
while the network is training, making the remaining weights
jointly optimize for the task at hand, and the removal of other
weights. Third, the design of the schedule helps the training
dynamics by pruning very gently at the beginning and also
helps the network to recover from pruning by slowly reducing
pruning intensity towards the end.

4. COMPARISON TO TRADITIONAL SCHEDULES

In this section, we compare our proposed schedule, the One-
Cycle Pruning, to other commonly used pruning schedules.

Pruning Methods. We compare our pruning technique to
several state-of-the-art pruning schedules: One-Shot Pruning,
Iterative Pruning and Automated Gradual Pruning (AGP), un-
der a fixed training budget. The optimal training iteration at
which the pruning process starts for those schedules, i.e. the
pretraining phase, is determined by a grid search. We find the
optimal starting iteration at 40%, 20% and 20% of training
budget for the One-Shot Pruning, Iterative Pruning and AGP,
respectively, as depicted in Figure 2.



ResNet-18 VGG-16

One-Shot Iterative AGP One-Cycle One-Shot Iterative AGP One-Cycle

CIFAR-10
Sp

ar
si

ty 80% 93.10 ± 0.03 93.13 ± 0.03 93.22 ± 0.22 93.49 ± 0.14 90.25 ± 0.14 90.64 ± 0.19 90.87 ± 0.15 90.84 ± 0.09
90% 92.42 ± 0.21 91.72 ± 0.08 92.85 ± 0.09 93.31 ± 0.20 89.82 ± 0.19 89.76 ± 0.18 90.67 ± 0.25 90.72 ± 0.40
95% 91.58 ± 0.04 87.54 ± 0.39 92.04 ± 0.07 92.76 ± 0.16 89.73 ± 0.37 81.46 ± 2.87 90.56 ± 0.31 90.67 ± 0.11

CIFAR-100

Sp
ar

si
ty 80% 74.21 ± 0.09 74.18 ± 0.29 74.78 ± 0.09 74.81 ± 0.16 67.83 ± 0.19 67.80 ± 0.15 67.93 ± 0.06 68.34 ± 0.38

90% 73.34 ± 0.23 71.80 ± 0.05 73.83 ± 0.41 74.50 ± 0.24 67.33 ± 0.16 62.66 ± 1.31 67.88 ± 0.39 68.24 ± 0.45
95% 71.68 ± 0.16 62.88 ± 0.27 71.92 ± 0.30 73.34 ± 0.21 66.16 ± 0.49 61.95 ± 0.70 67.51 ± 0.19 67.51 ± 0.16

Caltech-101

Sp
ar

si
ty 80% 80.31 ± 0.89 79.78 ± 0.56 81.93 ± 0.85 82.31 ± 0.88 77.81 ± 0.96 78.23 ± 0.35 78.45 ± 0.85 78.90 ± 0.88

90% 79.87 ± 0.54 77.84 ± 0.31 80.89 ± 0.90 81.84 ± 0.16 78.77 ± 1.06 74.42 ± 2.79 78.57 ± 0.21 78.56 ± 0.31
95% 78.57 ± 1.02 73.83 ± 1.28 78.76 ± 1.27 79.81 ± 0.92 76.99 ± 0.78 42.61 ± 2.60 78.68 ± 0.53 78.99 ± 0.50

Table 2. Results of pruning ResNet-18 and VGG-16 with 4 different schedules. Mean and standard deviation of accuracy over 3 rounds are
reported. Best results are in bold.
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Fig. 2. Evolution of sparsity during the training of the 4 stud-
ied pruning schedules. Best results are obtained when One-
Shot, Iterative and AGP start at 40%, 20% and 20% of train-
ing budget, respectively. OCP is applied right from the start.

Datasets and Architectures. For our experiments, the
datasets have been chosen to be various in terms of image
resolution and number of classes. In particular, we evalu-
ate our methods on the three following datasets: CIFAR-10
[19], CIFAR-100 [19] and Caltech-101 [20]. Moreover, those
datasets are tested on two types of popular convolutional net-
work architectures: VGG-16 [21] and ResNet-18 [22].

Training Procedure. The networks we use for our exper-
iments are trained from a random initialization. The images
are first resized to 224 × 224 and are augmented by using
horizontal flips, rotations, image warping and random crop-
ping. We train each model using a learning rate warmup until
a nominal value of 0.001, then a gradual decay until the end
of the training.

Frameworks and Hardware. Experiments are con-
ducted using the PyTorch [23] and fastai [24] deep learning
libraries for training procedures, fasterai [25] library for the
implementation of the pruning methods and using a 12GB
Nvidia GeForce GTX 1080 Ti GPU for computation.

Experiment A. The first experiment is conducted with a

fixed training budget of 50 epochs. The objective is to identify
the pruning schedule that is the most efficient when the train-
ing budget is tight. The results, reported in Table 2, show that
One-Cycle Pruning usually outperforms other pruning sched-
ules for all the different combinations of studied architectures,
datasets and sparsity levels.

Experiment B. To better emphasize the impact of the
pruning schedule on the training dynamics, we propose to
fix a target accuracy and let the training budget change ac-
cording to the needs of the pruning method in order to reach
that accuracy level. For One-Shot and Iterative pruning,
the pretraining budget is kept identical, only the fine-tuning
budget is extended, i.e. the training after the pruning has
occurred. We present in Table 3 the results of the training
budget required to reach 90%, 70% and 80% of accuracy on
CIFAR-10, CIFAR-100, Caltech-101 dataset respectively, us-
ing ResNet-18 pruned to a sparsity of 95%. Training budget
is expressed relatively to method One-Cycle Pruning.

One-Shot Iterative AGP One-Cycle
CIFAR-10 2.5× 4× 1× 1×
CIFAR-100 3.33× 7.5× 1.25× 1×
Caltech-101 2× 3.2× 1.4× 1×

Table 3. Training budget required to prune ResNet-18 to 95%
to achieve a fixed validation accuracy of 90%,70% and 80%
on CIFAR-10, CIFAR-100 and Caltech-101 respectively

Discussion. Overall, the technique requiring the most
training budget while providing the worst validation accuracy
when that budget is fixed is Iterative Pruning. Several papers
have also reported a similar phenomenon, indicating that It-
erative Pruning required a long fine-tuning time [5, 11]. On
the other hand, One-Cycle Pruning seems to outperform other
pruning schedules both when the training budget is fixed and



when the target accuracy is fixed, indicating that our proposed
schedule is able to reach higher performance faster.

5. EXPERIMENTS WITH LOTTERY TICKETS

In order to investigate further in the behaviour of One-Cycle
Pruning, we evaluate it using the Lottery Ticket Hypothesis.

Finding Lottery Tickets The Lottery Ticket Hypothesis
(LTH) states that in each network, there exists a sub-network
that, trained in isolation, is able to achieve comparable per-
formance in a comparable training budget as the whole net-
work, as long as they start from the same initialization [1]. To
discover such winning tickets, authors propose to follow an
Iterative Magnitude Pruning (IMP) method that goes as fol-
lows: an initial network, designated by a set of weight W0, is
trained for t iterations, giving the set of weights Wt. Then,
a binary mask m, whose values are either 0 if we want to re-
move the corresponding weight or 1 if we want to keep it, is
applied, creating the network Wt �m, where � denotes the
element-wise product. The weights are then reinitialized to
their original values W0 � m and the process is performed
iteratively, updating m until the desired sparsity is achieved.
The IMP method require several rounds of one-shot pruning
to unveil winning tickets. We propose to compare the qual-
ity of found tickets when they are uncovered with different
pruning schedules.

Comparison of Tickets. We conduct the LTH experi-
ments using ResNet-18 and CIFAR-10 with the same hyper-
parameters as described in Section 4. In the original LTH
experiments, IMP was applied in a single step at the end of
each training round. In our experiments, we apply the studied
schedules during each training round, such that our One-Shot
Pruning corresponds to the original IMP experiment. We re-
port the accuracy of the ticket of the last round of pruning
in Table 4, i.e. W0 � m, where m is composed at 95% of
0. From that experiment, we find that untrained sub-networks
found with OCP are outperforming the ones found with other
schedules. This further confirms that it is possible to find al-
ready performant sub-networks directly at initialization and
that we do not necessarily need to pretrain a model before
starting the pruning process.

Accuracy (%)

One-Shot Iterative

72.213 ± 0.009 85.778 ± 0.003

AGP OCP

86.114 ± 0.001 89.239 ± 0.004

Table 4. Validation accuracy of the reinitialized ResNet-18
sub-networks found by several pruning schedules at their last
pruning round, i.e. at a sparsity level of 95%. The training is
performed on the CIFAR-10 dataset.

Stability of Tickets. To further study the difference in
the results, we conduct a stability analysis of the found Lot-
tery Tickets [18]. This analysis consists of retraining two
copies of the same ticket W0 � m, leading to two different
trained versions W1 �m and W2 �m, then linearly interpo-
late their set of weights, setting a new network with weights
W3�m = α(W1�m)+(1−α)(W2�m) with α ∈ [0, 1]. The
two copies will then be said linearly connected, i.e. they con-
verged to the same linearly connected minimum, if the vali-
dation error of W3 � m remains stable for all the α values.
We report in Figure 3 the evolution of instability against the
level of sparsity. We denote instability error the validation er-
ror, i.e. 1−accuracy, with network W3 �m, whose weights
were interpolated at half-way between the two trained copies,
i.e. for α = 0.5. We can observe that OCP, as well as AGP,
become stable at really low level of sparsity, i.e. after per-
forming only a few rounds of LTH, while One-Shot Pruning
and Iterative Pruning take more rounds before getting stable.
However, AGP seems to be the only one to show signs of in-
creasing instability for high sparsity values, i.e. for late LTH
pruning rounds.
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Fig. 3. Evolution of instability error after each round of
the Lottery Ticket Hypothesis when using a different prun-
ing schedule. A low instability error indicates that the found
ticketW0�m is stable to retraining for that particular sparsity
level.

6. CONCLUSION

In this work, we proposed One-Cycle Pruning, a novel prun-
ing schedule that allows a network to be pruned in a single
training-pruning phase, removing the needs of an initial pre-
training phase but also of a complex and time-consuming fine-
tuning phase. When compared to common pruning schedules,
One-Cycle Pruning provides comparable or better results with
significantly less computation required. We also studied the
quality of Lottery Tickets found with One-Cycle Pruning. We
showed that those tickets were of higher quality and were con-
sistently stable both at low and high level of sparsities, further
validating the benefits of the proposed pruning schedule.
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