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Abstract—The uncertainty induced by high penetration of
stochastic generation in power systems requires to be properly
taken into account within Optimal Power Flow (OPF) problems
to make informed day-ahead decisions that minimize the social
cost in view of potential balancing actions. This ends up in a
two-stage OPF problem that is usually solved using two-stage
stochastic programming or adaptive robust optimization. Ano-
ther alternative is the use of chance-constrained programming
that allows to control the conservativeness of the decisions.
In this paper, we aim at defining a fair basis for assessing
the performance of these three techniques, using an extensive
out-of-sample evaluation. Considering a common wind power
database, each technique leads to optimal day-ahead decisions
that are a posteriori assessed through the real-time stage on
unseen realizations of the uncertainty. Our main conclusion is
that undertaking conservative decisions results in lower standard
deviations of the cost, but at the expense of higher expected cost.

Index Terms—Stochastic programming, adaptive robust opti-
mization, chance-constrained programming, optimal power flow,
out-of-sample analysis.

NOMENCLATURE
Sets
9 € Gwm) Set of generators (connected to bus n).
le Ly Set of loads (connected to bus n).
q € Quny  Set of wind farms (connected to bus n).
w €N Set of wind power scenarios.
neN Set of buses.
m € M,,  Set of buses connected to bus n.
x Set of day-ahead decisions.
y Set of real-time decisions.
Parameters
Cy Production cost of generator g [€/MWh].
C},J/ D Upward/downward regulation cost of generator g
[€/MWh].
RY/Dmax Maximum upward/downward regulation capability of
generator g [MW].
Py Capacity of generator g [MW].
P Consumption of load | [MW].
v Value of curtailed load of load | [€/MWh].
P, Day-ahead wind forecast of farm ¢ [MW].
AP;~™ Maximum potential wind excess/deficit of farm ¢
compared to its day-ahead forecast [MW].
J Diieee Capacity of the line connecting buses m and n [MW].
Bmn Susceptance of the line connecting buses m to n [S].

m Occurrence probability of scenario w.

Uncertain parameters

Wind power deviation of farm ¢ in the real-time stage
[MW].

APy " Wind power excess/deficit of farm ¢ in the real-time
stage [MW].
Day-ahead decision variables
Py Dispatch of generator g [MW].
5 Scheduled voltage angle at bus n [rad].
Real-time decision variables
rg/l) Upward/downward regulation of generator g [MW].
pypil Wind power spillage of farm g [MW].
e Curtailed load of load [ [MW].
On, Real-time voltage angle at bus n [rad].

I. INTRODUCTION

Intergovernmental agreements and electricity sector liberali-
zation promoted the deployment of renewable energy sources
in power systems, thereby increasing the share of uncertain
and intermittent power production in the whole generation
mix. In a liberalized environment, the aim for the system
operator is to maximize the social welfare by cost-effectively
scheduling the generators while ensuring the balance between
generation and consumption, supply-side and demand-side
restrictions and grid limits. This problem is referred to as
the Optimal Power Flow (OPF) problem. With significant
wind penetration, the day-ahead (DA) stage decisions of the
OPF problems need to become more uncertainty-aware. One
solution, which is still aligned with the current practice, is
to preserve the deterministic description of uncertainties and
impose minimum reserve requirements. The other solution is
to make DA stage energy-only and non-deterministic, i.e., the
DA stage takes into account the forecast distribution (rather
than a point forecast) and the plausible actions at the real-
time (RT) stage. The latter is the focus of this paper. There
exist several optimization techniques to model such a two-
stage (i.e., DA and RT) problem affected by uncertainties.

Two-stage stochastic programming is a well-known tech-
nique that minimizes the expected value of the objective func-
tion by representing the distribution of an uncertain parameter
through a set of scenarios, each assigned with a probability
[1]. However, the dimension of the problem increases with the
number of scenarios, which hinders its practical utilization. It
is therefore important to generate a limited but representative
set of scenarios with assigned probabilities, which is itself
a challenging task and is not straightforward for the system
operators (acquisition and processing of probabilistic data).
Furthermore, the resulting decisions may be risky because they
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might not be cost-efficient against extreme scenarios that are
usually assigned with low probability.

To overcome those issues, adaptive robust optimization
[2] gained interest over the last decade. In this technique,
the distribution of the uncertainty is no longer described by
scenarios but instead by a continuous uncertainty set, which
is usually more straightforward to acquire and less compu-
tationally expensive. The objective function is optimized for
the worst-case realization while ensuring that the undertaken
decisions remain feasible over the entire uncertainty space.
Consequently, decisions are usually over-conservative.

Chance-constrained programming (3] bridges the gap bet-
ween stochastic programming and robust optimization. Indeed,
the system operator is now able to achieve the desired risk
attitude and control the conservativeness of the decisions by
stating that the violation probability of uncertainty-affected
constraints is kept smaller than a predefined level of confi-
dence. Chance-constrained problems are hard to solve; ho-
wever, recent developments allow for tractable reformulations
and approximations [4].

Authors in [5] solve a two-stage probabilistic OPF problem
using two techniques, stochastic optimization and robust opti-
mization. They compare the results through an out-of-sample
analysis, and show the benefits of robust solutions. Authors in
[3] use chance constraints which are analytically reformulated
assuming the distribution of the uncertainties is gaussian and,
highlighting the usefulness of controlling the risk attitude.
References [6] and [7] propose hybrid methods combining the
strength of scenario-based and interval methods for tackling
uncertainty in the unit commitment problem and compare them
with stochastic programming and robust optimization.

In this paper, we aim at comparing the aforementioned
uncertainty modeling techniques in terms of resulting system
cost. To address this comparison, we solve the two-stage
OPF problem, considering a common wind power database
to characterize the uncertainty. Next, we perform an out-of-
sample analysis, meaning that the quality of the DA decisions
is evaluated through numerous unseen realizations at the RT
stage. This analysis provides a fair basis for comparison
because the out-of-sample data are kept the same for each
implemented technique but differ from the in-sample database.

Our work distinguishes from the literature in terms of
plurality of implemented techniques. Indeed, we bring together
two-stage stochastic OPF, adaptive robust OPF and chance-
constrained OPF and compare them through an extensive
out-of-sample analysis, without making any assumption on
the distribution of the uncertain parameter. The main trend
observed in the results is that conservative decisions comes
with a higher expected cost but are less sensitive to the actual
realization of uncertain parameters, i.e., the variance of the
out-of-sample cost distribution is reduced.

The paper is organized as follows. Section II further in-
troduces the OPF under uncertainty and its reformulations.
Section III evaluates the performance of DA decisions through
an out-of-sample analysis, while Section IV concludes on the
main results and prospects.

II. OPF UNDER UNCERTAINTY

The formulation of the OPF problem in Section II-B re-
quires some assumptions that are presented in Section II-A.
The implementations associated with each optimization ap-
proach are presented in Sections II-C, II-D and II-E.

A. Assumptions

In this work, we consider two settlements including DA and
RT stages, and exclude the other trading floors, e.g., intra-
day stages. The DA stage is solved the day before delivery
considering a single period of one hour (i.e., power in MW
is equal to energy in MWh), discarding all inter-temporal
constraints. The RT stage is then solved at the moment of
delivery which enables the available resources to compensate
(if necessary) the deviations that may occur. There exist several
possible RT actions: the upward or downward regulation
capability allows the generators to deviate from their DA
schedule by increasing or decreasing their output power, the
load curtailment representing the consumption reduction for
loads and the wind power spillage which corresponds to a part
of wind power that cannot be injected and is spilled.

For the sake of clarity, we make some additional assump-
tions. Firstly, an energy-only scheme equivalent to the one
presented in [1] is adopted. Secondly, the demand is supposed
to be inelastic and deterministic, meaning that consumers are
willing to be supplied at any price and that the load will not
deviate from the forecast. In such a case, maximizing the social
welfare is equivalent to minimizing the social cost. Thirdly, the
wind power production and wind spillage action are considered
cost-free. This is close to reality because of the free renewable
energy sources and the governmental incentives. Finally, we
use a lossless DC approximation for power flows.

B. Deterministic Formulation

Under the assumptions described in Section II-A, the DA
stage is written as the OPF problem (1), which is a linear
program:
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The objective function (la) to be minimized represents
the total operating cost. Constraint (1b) represents the power
limits of the generators. Equation (1c) ensures that production
matches demand for each node of the system. Constraint (1d)
imposes a maximum capacity for each line while (le) defines
the voltage angle at each node of the network. For given DA
schedules, the RT stage is solved to adjust the wind power
deviations AP, via OPF problem (2) which is also a linear
program:
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The objective function (2a) corresponds to the RT opera-
tional costs (generator regulation costs and value of curtailed
load). The nodal power balance in RT is ensured by (2b) while
power limits of the generators are enforced by (2¢) and (2d).
Constraints (2e)-(2f) respectively require that the amount of
curtailed load (spilled wind power) lics between zero and the
real consumption (real wind power generation). Regulation
limits of generators are enforced by (2g). The capacity of
transmission lines is imposed by (2h) and the voltage angle at
each node of the network is given by (2i).

In the following, we describe three ways for solving this
probabilistic OPF problem. In order to write the OPF problems
in a compact way, let us define x the DA decisions { P, 8%}, y

the RT decisions {rg’D, prt Pt 6, ¢, costP? (x) the linear
function of DA operational costs (1a) and costRT (x, y, APq)
the linear function of RT operational costs (2a).

C. Two-Stage Stochastic OPF Formulation

The two-stage stochastic OPF (S-OPF), whose goal is to
minimize the expected value of the operational costs among
given scenarios, is compactly written in model (3) as follows:

min  cost™ (x) + E,, [costRT (X, Yo, APW)} (3a)

*,Yw

s.t. DA constraints (1b)-(le) (3b)
RT constraints (2b)-(2i) Vw € Q. (3¢)

The objective function (3a) consists of the DA costs and
the expected value of the RT costs among scenarios w € 2.
Day-ahead constraints are imposed through (3b) while RT
constraints for each scenario w are enforced by (3c).

Since the stochastic solution may be too risky under extreme
events, we may use the Conditional Value-at-Risk (CVaR) [8]
as a risk measure. The risk-averse form of S-OPF (3) becomes
then:

min (1 —k) E, [costDA (%) + cost™" (x,yw, Aqu)]

Y (4a)
+ k CVaR, (X, yuw, APg)

s.t. Constraints (3b) and (3c) (4b)

CVaR-related constraints (see [8] for more details) (4¢)

where objective function (4a) is a weighted sum of the
expected value of the cost among all scenarios and the linear
risk function CVaR,(.) that consists of the expected value
among the 100(1 — )% worst scenarios. The weight of risk
term in (4a), can be adjusted by parameter 0 < k < 1.

D. Adaptive Robust OPF Formulation
The Adaptive Robust OPF (AR-OPF) problem (5) is:

min cost™ (x) + max min cost' (x,y, AP,) (5a)
x APgq ¥y

s.t. RT constraints (2b)-(2i) (5b)

st. AP, el (5¢)

s.t. DA constraints (1b)-(1e). (5d)

The AR-OPF problem (5) is a min-max-min problem that
cannot be solved directly. Through the max operator in objec-
tive function (5a), nature is seeking the realization AP inside
the uncertainty set I/ that maximizes the costs. Reference [5]
proposes a decomposition method which has been adopted
in this work. The first step for solving (5) is to derive the
dual optmization problem of the inner-min problem, resulting
in an objective function that contains bilinear terms. Strong
duality theorem allows to recover linearity, which is the
major contribution of [5]. The max operators can then be
merged ending up in a linear min-max problem containing
complementarity conditions in the constraints. A Fortuny-
Amat (Big-M) [9] reformulation of these conditions makes
the problem mixed-integer and linear. The resulting min-
max problem is afterwards decomposed and solved through
a primal cut algorithm. The main advantages of this robust
method are the guaranteed convergence towards the global
optimum, the possible use of any polyhedral uncertainty set
and a comparatively low number of involved binary variables.

In AR-OPF (5), the worst-case deviation of wind power
AP, is determined endogenously (treated as a variable). A
key element when designing robust problems is therefore, the
size and shape of the uncertainty set U/ because it impacts
the decisions and their conservativeness. In this paper, the
latter is chosen to be polyhedral, allowing the overall program
to remain linear and, is described by (6) which represents a
modified version of the budget-type uncertainty set:
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Equation (6a) defines positive and negative wind power
deviations while (6b) and (6c¢) limit those deviations. Equation
(6d) enforces an upper bound I to the sum of relative absolute
deviations, meaning that the aggregation of wind farms cannot
deviate extremely and simultaneously in the same direction.

E. Chance-Constrained OPF Formulation

The chance-constrained programming provides a flexibility
for the system operator to control the conservativeness. The



compact Chance-Constrained OPF (CC-OPF) is (7) given by:

min cost™ (x) + cost™" (x,y, AP,) (7a)

x.y

s.t. DA constraints (1b)-(le) (7b)
V (x,y,AP;) = P(RT constraints (2b)-(2i)) > 1 —e¢. (7c)

The joint chance constraint (7c) enforces the realization
probability of RT constraints V (x,y, AP,) to be equal to
or higher than a predefined level of confidence 1 — €, but
makes the problem non-convex. A mathematical reformulation
of such a constraint is not straightforward in general and
necessitates the knowledge of the multivariate distribution
function followed by the uncertain parameters (see [3]). In
this work, we use a sampling-based approach [10] that does
not require the distribution information, to reformulate the
joint chance constraint (7c). To this end, we randomly pick
N samples from the historical data, with N obtained by (8):

1 e 1
N > p— (nw—l—i-ln(B)) ®)

where e is Euler number, n, is the number of decision
variables, [ is the level of confidence ensuring the solution
to be an e-level feasible solution, and the operator [ | picks
the smallest integer higher than the argument. The objective
function is therefore defined as the expectation over those
samples and the original CC-OPF problem recasts as a S-OPFE.

Pursuing a similar idea, one can recast the original CC-OPF
problem (7) as an AR-OPF by enclosing the same /N samples
within a continuous box uncertainty set. This reformulation is
used in this paper to solve CC-OPF as an AR-OPF problem.

III. CASE STUDY: OUT-OF-SAMPLE ANALYSIS

A modified version of the IEEE 24-bus Reliability Test
System is used in this case study. It consists of 12 generators,
17 loads and 4 wind farms connected to a 24-bus network.
The wind penetration level (total expected wind power to total
load ratio) is equal to 29.6%. The modified network and the
related input parameters are provided in [11]. We use a wind
power dataset which includes 10,000 samples representing
the output power of 15 wind farms during 43 consecutive
hours. We arbitrarily pick one hour (hour 37) and four wind
farms (1, 2, 3 and 12) and rescale these data based on the
installed wind capacity. We then use 6,000 out of 10,000
samples to characterize the uncertainty within the models;
the remaining 4,000 samples are used later for out-of-sample
analysis. Fig. 1(a) illustrates the in-sample and out-of-sample
data for arbitrarily selected two (out of four) wind farms.

We first solve each two-stage OPF problem (i.e., S-OPF,
AR-OPF and CC-OPF) and obtain the optimal DA decisions
and system cost for each of those techniques. Then, for given
DA decisions, we solve the deterministic version of OPF
problem in RT stage, i.e., problem (2), for each out-of-sample
realization, from which we attain the total system cost in DA
and RT, amount of curtailed load and spilled wind power. We
can next calculate the mean and standard deviation of those
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Fig. 2: The process of out-of-sample analysis

quantities. Fig. 2 summarizes how the out-of-sample analysis
is performed. We now present in detail how we solved each
probabilistic OPF problem.
Deterministic OPF: this problem is solved based on a
single forecast, i.e., the expected in-sample wind power.
S-OPF: we use a scenario reduction algorithm based on
Kantorovitch probability metric [12] to avoid computational
burden. With this algorithm, 30 or 100 scenarios are selected
among the original 6,000 samples in order to minimize Kan-
torovitch distance between the resulting set and the overall
set of samples. Each selected scenario is then assigned with a
probability based on the number of closest samples. The set
of 100 scenarios is shown in Fig. 1(b). A risk-averse version
of S-OPF is also solved considering k£ = 1 (full risk-aversion)
and o = 0.95 (the 5% worst scenarios are taken into account).
AR-OPF: we generate four different uncertainty sets, three
of which enclosing a given subset of in-sample dataset (6,000,
1,000 or 100 samples) and one enclosing the reduced set of 30
scenarios. Parameters AP, ™ and AP,;"™ are treated as the
maximum negative and positive deviations for each farm g,
whereas I" in (6d) is computed as the maximum total relative
deviation among those scenarios. The uncertainty set enclosing
all 6,000 original in-sample data is represented in Fig. 1(c).
CC-OPF: it is solved through both scenario and robust



approaches. Two distinct values for the level of confidence
e are used (5% and 10%) arising in different numbers of
randomly extracted samples (respectively, N = 3,582 and
1,791 for 8 = 10~%) ensuring the feasibility of the overall set
of constraints in 95% or 90% of the cases. With the scenario
approach, they are treated as equiprobable scenarios, while
with the robust one, a box uncertainty set is generated to
enclose all of them. Fig. 1(d) shows the randomly extracted
samples and the resulting box uncertainty set for ¢ = 0.05.
The stochastic, adaptive robust and chance-constrained va-
riants of the OPF problem are implemented and solved under
GAMS 24.6.1 using CPLEX 12.6.3. We now describe the
out-of-sample results that are presented in Table I. Among
all results obtained from the different techniques, those of
deterministic OPF are the worst ones in the sense that the
resulting system cost and its standard deviation are the highest.
Implementing the DA decisions of the S-OPF yields a lower
expected cost compared to the deterministic approach. Indeed,
load shedding occurs less often but still takes place in some
extreme events, e.g., mean load curtailment is reduced to
0.87 MW instead of 9.32 MW when using 30 scenarios. The
expected cost is further decreased when more scenarios are
used at the DA stage (i.e., 100 scenarios) since a more accurate
characterization of uncertainty is achieved. Adopting a risk-
averse attitude results in a higher expected cost compared to
the risk-neutral S-OPF but with a significant reduction of load
curtailment and thus, a decrease of standard deviation. In this
case, the increase of scenarios considered at the DA stage
results in a decrease of load shedding (and standard deviation
of system cost) since the focus is placed on extreme scenarios.
The DA decisions of the AR-OPF model result in dilferent
levels of conservatism depending on the size of uncertainty set.
In all cases, the standard deviation of system cost is relatively
low, while the expected cost reduces when shrinking the
uncertainty set. However, the system is not fully immunized
against extreme scenarios in which load curtailment may occur
when the uncertainty set is shrunk. Moreover, the definition of
the uncertainty set over 30 scenarios allows to further decrease
the size of the uncertainty set, while still using relevant data.
The decisions of the chance-constrained OPF based on the
scenario approach attain similar results with the S-OPF in
terms of expected cost and its standard deviation. However,
more scenarios are required to solve the CC-OPF models.
In the robust reformulation, the uncertainty sets computed to
enclose in-sample data are at least as big as the ones used in
the AR-OPF, ending up in even more conservative solutions.
The reason for that is that the box uncertainty set utilized to
enclose the number N of randomly extracted samples leads to
over-conservative size of uncertainty sets.

IV. CONCLUSION

In the present work, we implement stochastic programming,
robust optimization and chance-constrained programming in
the framework of a two-stage OPF problem with uncertain
wind power generation. We make no assumption on the
underlying probability distribution and use historical data for

TABLE I: Out-of-sample results

Method Expected | Standard | Mean Mean Compu-
system devia- load cur- | wind tation
cost [€] | tion tailment spillage time

[€] [MW] [MW] [s
Deterministic OPF
Deterministic [ 16,810 [ 9,398 [ 9.32 [ 19.62 [ 0.4
Stochastic OPF
30 scenarios 15,375 4,573 0.87 8.25 0.7
100 scenarios 15,367 4,971 ‘ 1.43 ‘ 9.83 ‘ 1.6
Risk-averse stochastic OPF (k = 1, a = 0.95)
30 scenarios 16,078 3,565 0.13 10.07 5.6
100 scenarios 16,277 3,456 0.02 ‘ 8.88 ‘ 9.2
Adaptive Robust OPF
All 6,000 samples 16,514 3,486 0 7.21 2.6
1,000 random samples 16,372 3,458 0.01 8.13 1.8
100 random samples 16,318 3,450 0.01 8.53 2.1
30 scenarios 16,293 3,453 0.02 8.74 1.9
Chance-constrained OPF (5 — 10~ %)

Scenario approach (e : 0.05) 15,364 4,853 1.26 9.39 119.7
Scenario approach (e : 0.1) 15,366 4,961 1.42 9.79 313
Robust approach (e : 0.05) 16,545 3,493 0 7.03 13
Robust approach (¢ : 0.1) 16,546 3,493 0 7.02 1.3

the uncertainty characterization. A consistent out-of-sample
analysis shows the advantages and disadvantages of each im-
plemented technique. Through our analysis, it can be noticed
that conservative approaches result in higher expectation of
out-of-sample costs but with a reduced variability.

For repetitive decision processes, stochastic programming is
more favorable since it exhibits the lower cost in expectation.
However, for a unique long-term decision, the decision maker
could prefer to take less risk and opt for robust optimization
(e.g., transmission expansion planning). The results of the
chance-constrained OPF are attractive under the scenario ap-
proach but still too conservative with the robust reformulation.

For further research, individual chance constraints and their
approximation through scenario approach or their reformula-
tion under a given distribution shape can be explored. Other
uncertainty modeling techniques can also be implemented
like distributionally robust optimization, which minimizes the
worst-case expected cost among all potential distributions of
uncertainty, collected in an ambiguity set.
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