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Klein Geometry and homogeneous spaces

Homogeneous space

Space M with a transitive action of a Lie group G

”All points look the same”

−→ M ≃ G/H, where H is the stabilizer of one point x ∈ G

Examples :

S2 ≃ SO(3)
SO(2)

M1,3 ≃ ISO(1,3)
SO(1,3)

Klein pair

The pair (G ,H) is a Klein geometry
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Example : Conformally compactified Minkowski

Conformally compactified Minkowski M1,3
is a homogeneous space for the

conformal group

M1,3
=

SO(2, 4)

R4 ⋊ (R× SO(1, 3))

We can choose ISO(1, 3) ⊂ SO(2, 4) and break the conformal invariance
by imposing to stabilize the preferred degenerate direction, called null

infinity tractor I I =

 1

0AA
′

0


→ Split of M1,3

into orbits of Poincaré
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Orbit decomposition

Three orbits (subspaces invariant under the action of Poincaré)

M1,3
= M1,3 ⊔ I ⊔ {I}

Because Poincaré acts transitively on each of these subspaces, they are
homogeneous spaces for ISO(1, 3) :

M1,3
=

ISO(1, 3)

SO(1, 3)
⊔ ISO(1, 3)

R3 ⋊ (R× ISO(2))
⊔ ISO(1, 3)

ISO(1, 3)

Conformal Carrollian geometry on I !
[Herfray20; Figueroa22]
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Super Minkowski space

Goal : generalize this to the supersymmetric case

M4 → super compactified Minkowski space M4|2N

SU(2, 2) ↠ SO(2, 4) → super conformal group SU(2, 2|N )

SU(2, 2) ⟲ M4 → SU(2, 2|N ) ⟲ M4|2N

⇒ M4|2N
is an homogeneous space for the superconformal group

e.g. [Manin97]

Question : Orbit decomposition of M4|2N
for super Poincaré group ?
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Orbit decomposition : super case

Choice of a preferred super null direction Iαb =

1Ab

0A′b

0Ib


⇐⇒ Choice of ISO(1, 3|N ) ⊂ SU(2, 2|N )

Result of the decomposition : more orbits !

M1,3|2N
= M1,3|2N ⊔ I (3|N ) ⊔ O1 ⊔ O2 ⊔ {I}

Each of these is an homogeneous space for super Poincaré
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M1,3|2N
= M1,3|2N ⊔ I (3|N ) ⊔ O(0|2N )

1 ⊔ O(3|2N )
2 ⊔ {I}
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M1,3|2N
= M1,3|2N ⊔ I (3|N ) ⊔ O(0|2N )

1 ⊔ O(3|2N )
2 ⊔ {I}

On M1,3|2N ≃ ISO(1,3|N )
SO(1,3)×SU(N ) we find coordinates (XAA′

+ , θA
′
I ) such that

one can write

XAA′
+ = XAA′

+
i

2
θA

′
I θ̄

A
J̄ hI J̄ ,

for a real XAA′
: chiral coordinates appear naturally!
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M1,3|2N
= M1,3|2N ⊔ I (3|N ) ⊔ O(0|2N )

1 ⊔ O(3|2N )
2 ⊔ {I}

On I (3|N ) ≃ ISO(1,3|N )

R3⋊(R0|N⋊(ISO(2)×R×SU(N )))
we find coordinates (πA, u+, θI )

such that one can write

u+ = u +
i

2
θI θJ̄h

I J̄

for a real u : chiral coordinates appear also on I (3|N ) !
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Coordinates details of the classification

Zαb =

ωAb

πA′b

θIb

 ∈ M4|2N

detπ ̸= 0
M4|2N detπ = 0

π = 0

θb ̸= 0

O(0|2N )
1

θb = 0
[Iαb]

π ̸= 0ωA π̃A

πA′ 0
θI 0


I (3|N )

ωA π̃A

πA′ 0
θI ηI


O(3|2N )

2
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Conclusion

Compactified Minkowski can be decomposed into orbits for the
Poincaré group

I is one orbit, and so is an homogeneous space

If we take advantage of the twistor representation of (super)
Minkowski space, the orbit decomposition of super Minkowski works
in the same way

We find an expression for super null infinity as an homogeneous space

Next step : make curved the homogeneous models, study the local
geometry, super BMS group ?
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Thank you for your attention !
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