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Abstract—Underground Pumped Hydro-Energy Storage sta-
tions are sustainable options to enhance storage capacity and thus
the flexibility of energy systems. Efficient management of such
units requires high-performance optimization algorithms able to
find solutions in a very restricted timing to comply with the
responsive energy markets. In this context, parallel computing
offers a valuable solution to ensure appropriate decisions that
maximize the profit of the station operator, while guaranteeing
the safety of the energy network. This study investigates the use
of three existing algorithms in Parallel Bayesian Optimization,
namely q-EGO, BSP-EGO and TuRBO. The three algorithms
have different inherent behaviors in terms of parallel potential
and, even though TuRBO scales better, q-EGO remains the best
choice regarding the final outcomes for all investigated batch
sizes and manages to get up to 5 times more profits than other
approaches.

Index Terms—Bayesian Optimization, Gaussian Process,
Batch-based Parallelism, Optimization, Electrical Engineering.

I. INTRODUCTION

Integrating renewable energy resources is a key challenge
to ensure the transition towards a low-carbon energy system.
Electricity storage systems provide a valuable solution to
compensate the uncertain production, thus offering sustain-
able means to increase the flexibility of the system [1]. An
appropriate option regarding storage technologies is offered
by Underground Pumped Hydro-Energy Storage (UPHES).
However, in modern competitive energy networks, individual
actors rely on efficient operational strategies, enabling them
to hedge the uncertainty of renewable energy resources. It is
thus essential to dispose of efficient tools to take informed
decisions at the different time steps of the energy markets
(e.g., from long-term towards real-time) [2]. Let us assume
that for a decision x ∈ Rd, the expected profit of a UPHES

operator is given by f : Rd → R; x 7→ y = f(x). The
optimization problem writes:

max
x∈Ω⊂Rd

f(x) (1)

The simulator, f in Eq. 1, is a time-consuming Black-Box
function, which is further described in Section II. Surrogate-
assisted optimization is extensively used in this context. In-
deed, surrogate models allow to reduce the computational
burden of the optimization by (partially) replacing the time-
consuming simulator and/or by evaluating the desirability of
a candidate point.

More precisely, Parallel Bayesian Optimization (PBO) is
emerging as a powerful framework for such problems. This
surrogate-guided optimization approach relies on a surrogate
model - often Gaussian Process (GP) regression. Based on the
model, an Acquisition Function (AF) is defined to assess the
value of any candidate point. Optimizing the AF yields the
best candidate point according to this specific AF. In this way,
only valuable (in the sense of the AF) points are evaluated in
parallel using the time-consuming simulator. Consequently, the
overall optimization time can be considerably reduced. This
is essential due to the time constraint arising from both the
organization of energy markets and the complex modelling of
physical and economic constraints of pumped-hydro systems.

More generally speaking, we refer to the process responsible
of selecting the next candidate points as the Acquisition
Process (AP). Clearly, the choice of the AP is of crucial
importance to balance the exploration and exploitation during
the optimization process. However, no clear recommendation
can be extracted from the literature. In addition, the main
potential for exploiting parallel computing lies in the batch-
parallel evaluation of the candidates. Therefore, the AP must



be able to provide a batch of valuable candidates. Various
approaches are presented in Shahriari et al. [3], however the
batch selection remains a challenging question especially for
large batch sizes.

In this paper, we investigate three different parallel batch-
based algorithms using different APs, and we compare the
optimized average profit: q-Efficient Global Optimization (q-
EGO) from Ginsbourger, Le Riche and Carraro [4] (2008) and
a revisited version allowing multi-criteria sampling; Binary
Space Partitioning EGO (BSP-EGO) from Gobert et al. [5]
(2020); and TrUst Region BO (TuRBO) from Eriksson et al.
[6] (2019). Experiments are carried out with different batch
sizes to evaluate and compare the scalability of the approaches.
The main objective is to identify the most suitable algorithm
that responds to the specificities of the UPHES optimization
problem (short time budget and acquisition time not negligible
compared to simulation time).

The conducted study reveals that even though q-EGO seems
less suited for parallel computing than TuRBO or BSP-EGO,
it achieves the best performance regarding the final outcomes
for moderate batch sizes (≤ 8).

In Section II, a detailed explanation of the complex UPHES
operation is provided along with a mathematical formulation
of the resulting optimization problem. In Section III, the PBO
algorithms designed to optimize the station management are
presented with a focus on their specificities. Section IV is
dedicated to experiments and results, where the outcomes from
different algorithms are compared. In Section V, we discuss
the experimental results. Finally, conclusions are drawn in
Section VI.

II. UNDERGROUND PUMPED HYDRO-ENERGY STORAGE

Due to their ability to quickly and cost-effectively mitigate
energy imbalances, Pumped Hydro-Energy Storage (PHES)
stations offer an appropriate storage solution. PHES plants are
composed of (at least) a lower and an upper reservoirs from
which water is exchanged to either produce or store energy.
In off-peak periods, production might exceed consumption
such that energy is saved by pumping water from lower basin
into the upper one. It then provides a substantial reserve
of energy that can be later released when needed, e.g., to
maintain the transmission grid stability. Recent progress in
power electronics have enabled PHES units to operate with
a reliable variable-speed feature in both pump and turbine
modes. The flexibility offered by these facilities is highly valu-
able. Indeed, it improves the economic efficiency of existing
resources such as wind farms or thermal power plants [7],
[8], and provides ancillary services to ensure the grid stability
(such as frequency control or congestion management).

The inherent potential of PHES units leads to the devel-
opment of new technological solutions such as Underground
PHES (UPHES) for which the lower basin is located under-
ground. A significant advantage of UPHES is the limitation of
expenses from civil engineering works thanks to the recycling
of end-of-life mines or quarries. These stations have very
limited impact on landscape, vegetation and wildlife, and

are not limited by topography so that more sites can be
exploited [9]. In the current competitive framework governing
the electricity sector, UPHES units are exploited with an
objective of return on investment. Consequently the profit of
such stations must be maximized. This task is challenging
since the UPHES operation is governed by two main nonlinear
effects that cannot be easily modeled with traditional analytical
models [10].

Firstly, groundwater exchanges between the reservoirs and
their hydro-geological porous surroundings may occur. This
situation typically arises for UPHES when the waterproofing
work is not feasible or uneconomical [11].

Secondly, UPHES units are generally subject to important
variations of the net hydraulic head (i.e., height difference
between water levels in the reservoirs). These variations are
referred to as the head effects [12], and are typically quantified
through laboratory measurements on a scaled model of the
hydraulic machines [13]. This characterization of head effects
is important since the head value defines both the safe UPHES
operating range as well as the efficiency of both pump and
turbine processes. In this way, the safe operating limits in
pump and turbine modes continuously vary over time with
regard to head variations. In general, the performance curves
of UPHES stations are difficult to model since they present a
non-convex and non-concave behavior.

Directly integrating these effects into model-based opti-
mization (which maximizes the UPHES profit in the different
market floors) implies high computational burden or strong
assumptions that may jeopardize the feasibility of the obtained
solution. To address these issues, a simulation-based BO strat-
egy as been developed. The simulator, which is a black-box
from the user perspective (developed independently without
access to the source code), returns the daily UPHES profit
accounting for all techno-economic constraints.

This simulator is denoted as f in the following and, ac-
cording to a decision vector x ∈ R12, it returns the expected
profit y = f(x) ∈ R. The 12-dimensional decision vector
includes 8 decision variables to participate to the different
time slots of the energy market, and 4 to the reserve market
(i.e., provision of ancillary services). The number of decision
variables is set in accordance with standard recommendation
of electrical engineering. It is subject to modification in order
to get more flexibility in future studies. The objective is then
to find the decisions that maximize the daily expected profit:

xopt = argmaxx∈Ω f(x),

where Ω is the domain (or design space). The objective
function f also involves the constraints and deals with them
by adding a penalty term. The full description of physical and
economical constraints can be found in Toubeau et al. [10].

These UPHES decisions must comply with hydraulic and
electro-mechanical constraints over the whole daily horizon.
This results into a challenging optimization problem (em-
bedded in the simulator), which is discontinuous (from the
cavitation effects of the pump-turbine machine that incur



unsafe operating zones), nonlinear (from the complex per-
formance curves of the unit), mixed-integer (to differentiate
the pump-turbine-idle operation modes), which is subject to
uncertainties (e.g., on water inflows and market conditions).
The formulation used in this paper can be found in [10].

This kind of management problem in electrical engineer-
ing is typically solved using Mixed-Integer Linear Program-
ming (MILP) [14], dynamic programming [15] or nonlinear
programming [16]. Current techniques also involve meta-
heuristics such as Genetic Algorithm (GA) [17] or Particle
Swarm Optimization (PSO) [18].

Since the simulator is time-consuming (such that we cannot
perform a large number of simulations during the available
time), a judicious choice is to resort to PBO to find a good
decision vector. Indeed, a decision must in practice be taken
within tens of minutes at most. In this context of very limited
time budget and numerical simulations lasting between 6 to 10
seconds, parallel computing offers an efficient tool to improve
the search within a fixed wall time. In particular, as it usually
provides good candidate solutions with a small amount of
evaluations and short timing, PBO appears to be a natural
choice.

Usually, BO assumes that time-cost associated to the model
fitting and the AP are negligible compared to evaluation time.
However, in the UPHES optimization problem, the simulator
is considered costly because the optimization budget is defined
as a time period. In this context, model fitting and AP cannot
be neglected.

III. PARALLEL BAYESIAN OPTIMIZATION

The general idea of BO is to fit a probabilistic predictive
model of the black-box objective function f - the simulator - in
order to guide the optimization process. Indeed, f being time-
consuming, we cannot afford to query a large number of simu-
lations. Therefore, the surrogate model is used to evaluate the
utility of a candidate point before it is evaluated with the costly
simulator. This utility measure is often called AF, but also Infill
Criteria (IC) or figure of merit. It uses the predicted value of
the surrogate as well as the prediction variance provided by
probabilistic models such as Gaussian Processes (GP). One
famous example of AF is the Expected Improvement (EI) used
in Efficient Global Optimization (EGO) [19]. BO operates in
a loop composed of (i) fitting a metamodel, (ii) searching for
the most valuable candidate(s) to simulate, (iii) simulation of
the candidate(s). The three steps are referred to as a cycle.

BO involves two key elements: the definition of a surrogate
model M that provides a prediction ŷcand for any candidate
point xcand as well as a measure of uncertainty σ(xcand),
and an AP that proposes a (batch of) valuable point(s) for
evaluation. Four different APs are investigated in this paper
and presented in the following.

A. Gaussian Process Regression

Usually, a GP surrogate model is used. The latter assumes
a linear relation between inputs x and outputs y, such that
y = ωTx + ϵ. The observation/output is often considered

noisy, hence the ϵ error term, which is assumed gaussian -
ϵ ∼ N (0, σ2). As explained in [20], a Bayesian approach
assumes a prior distribution over weights ω, which is also
gaussian (ω ∼ N (0,Σ)) and constitutes the prior belief.
Starting from that belief, it is possible to update the prior
knowing the data (X,y), which is defined as the posterior
distribution. Using the Bayes rule the posterior is expressed
as

posterior =
likelihood × prior

evidence
. (2)

With previous notations, Equation 2 becomes

p (ω|X,y) =
p (y|X,ω) p (ω)

p (y|X)
=

p (y|X,ω) p (ω)∫
ω
p (y|X, ω) p(ω)dω

.

(3)

The evidence p(y|X) is also referred to as the normalizing
constant and can be expressed as the marginal likelihood by
marginalizing over the weights ω. Often, input data X is
projected into a feature space using a set of basis functions
Φ(x) = (ϕ1(x), . . . , ϕk(x))

T which leads to the following
model: y = ωTΦ(x)+ϵ. Denoting Φ = Φ(X), we can simply
replace X by Φ in Equation 3. Knowing the distribution
of the posterior p (ω|Φ, y) ∼ N

(
1
σ2A

−1Φy, A−1
)

with
A = σ−2ΦΦT + Σ−1, it is possible to make inference. The
predictive distribution of a design point x∗ writes

p (y∗|Φ,y,x∗) =

∫
ω

p (y∗|ω) p (ω|Φ,y) dω (4)

∼ N
(

1

σ2
Φ(x∗)

T
A−1Φy,Φ(x∗)

T
A−1Φ(x∗)

)
and is also gaussian. It can be shown that Equation 4 can be
equivalently written as:

p (y∗|Φ,y,x∗) ∼ N
(
Φ(x∗)TΣΦ(K + σ2I)−1y,

K∗∗ −K∗·(K + σ2I)−1K ·∗) (5)

where K = ΦTΣΦ is known as the covariance matrix
and K(1)(2) = Φ(x(1))TΣΦ(x(2)) = k

(
x(1), x(2)

)
. The k

function is referred to as the covariance kernel and K =
(k(xi,xj))i,j∈{1,...,n} and is chosen as an hyper-parameter.

B. Acquisition Process for Optimization

The BO framework is illustrated in Alg. 1. The mentioned
parallel algorithms (TuRBO, BSP-EGO and q-EGO) follow
the same scheme but differ in the candidate selection phase
which is represented by the optimization of the α function in
Alg. 1. Line 4 of Alg. 1 states that the algorithm is searching
for the best (batch of) candidate(s) in terms of α to be added.
The candidate selection, referred to as the AP, is also an
optimization problem sometimes called inner optimization.

Even though BO and GP seems a legitimate choice in the
context of optimization with a relatively small budget, and
strong time constraint; the choice of the AP is difficult and
must be done in accordance with the time constraint. This
is why four different APs presenting different behaviors are
investigated in this study.



Algorithm 1 Bayesian Optimization

1: Initial DoE: D = {X,y}
2: while Budget available do
3: M = GP(D)
4: xnew = argmaxD(α(x))
5: ynew = f(xnew)
6: (X,y) = (X,y) ∪ (xnew, ynew)
7: end while

The q-EGO algorithm is a common parallel BO approach
that relies on a sequential heuristic to select a batch of
candidates and uses a global model fitted on the entire data
set. BSP-EGO also uses a global model, but uses spatial
decomposition in order to perform independent parallel APs
and reduce the acquisition time. TuRBO is based on trust
regions in which surrogate models are locally fitted. A notable
difference lies in the way each algorithm exploits parallelism:
q-EGO only uses batch parallelization for the evaluation of
the candidates, while BSP-EGO and TuRBO extend parallel
computing to the AP.

1) q − EGO - Single criterion: The q-EGO algorithm
refers to the work of Ginsbourger et al. [4], [21] where they
present heuristics to approximate multi-point criteria which are
difficult to exploit when the required number of candidates
exceeds q = 2. The idea is to replace the time-consuming
simulation by a fast-to-obtain temporary value in order to par-
tially update the surrogate modelM, which allows to propose
a new distinct candidate. The operation can be repeated until
q design points are selected. Then, it is possible to exactly
evaluate them in parallel and replace the temporary values by
the real costs. However this strategy has the major drawback
of requiring q sequential updates of M per cycle. In order
to alleviate the fitting cost, the budget allocated to the partial
fitting of the surrogate model is reduced compared to a full
update performed at the beginning of a cycle. Nevertheless,
increasing q makes the data set size increase faster and the
algorithm becomes prohibitively time-consuming without any
further precaution.

2) q-EGO - Multi-criteria: In order to limit the number of
surrogate fitting operations, we propose an alternative AP that
uses multiple IC in a same cycle. This approach is a com-
bination of q-EGO and a multi-infill approach such as in De
Palma et al. [22]. Using multiple AFs allows to select different
candidate points without updating the surrogate model, assum-
ing that their optimization yields distinct candidate points.
Moreover, it has been observed that resorting to different
AFs can favorably impact the objective value, especially when
the batch size is high. Indeed, repeatedly updating M using
non-simulated data may degrade the relevance of proposed
candidates. The process is described in Alg. 2. A counter is
initialized to 0 at line 6 and increments each time the AP
adds a candidate to Xbatch. We denote αi the i-th AF, and
ncand[i] the number of candidates chosen with αi. For the
same model, a candidate can be chosen according to each AF
(11). The optimizations of αi can be conducted in parallel.

If more candidates are required, a partial model update is
necessary (line 18). The loop continues until q candidate points
are selected.

Algorithm 2 Multi-infill q-EGO acquisition process

1: M: Surrogate model
2: ncrit: number of chosen AF
3: ncand: vector of size ncrit

4: ncand[i]: number of candidates for AF αi

5: Initialize ncand with minimum 1
6: ct = 0; initialize counter
7: Xbatch = {}, ybatch = {}
8: while ct < q do
9: for αi in AF list do

10: if ncand[i] ̸= 0 then
11: xnew = argmaxD(αi(x),M)
12: ncand[i]← ncand[i]− 1
13: Xbatch = Xbatch ∪ xnew

14: ybatch = ybatch ∪ yPV

15: ct← ct+ 1
16: end if
17: end for
18: M← partial_fit(X ∪Xbatch,y ∪ ybatch)
19: end while
20: Returns Xbatch to exactly evaluate in parallel

3) BSP-EGO: BSP-EGO [5] uses a dynamic binary parti-
tion of the search space to optimize local AFs. A local AP
based on a global model is conducted in each sub-domain.
This considerably reduces the acquisition time compared to q-
EGO since it can be conducted in parallel thanks to the spatial
decomposition. This is interesting since the optimization must
be completed in very restricted timing. The partition evolves
in accordance with the performance of each sub-region: the
one containing the best candidate in terms of the AF will be
split further while the supposedly less valuable sub-regions
are merged. At any time, the partition covers the entire search
space and involves the same number of sub-regions. The
number of sub-regions is chosen to be a multiple of nbatch.
Having ncand > nbatch avoids sampling into clearly low
potential sub-regions by evaluating only a subset of candidates.
Besides, it is advised to maintain a multiple of nbatch sub-
domains to balance the load between parallel workers. As the
supposed best sub-region is split at each cycle, diversification
is imposed at the beginning, while intensification is favored
as the budget fades.

BSP-EGO is an algorithm developed by the authors within
the objective of tackling time-consuming black-box objective
function for which the execution time does not dominate the
acquisition time. In this context, it is particularly important to
be able to run the AP in parallel. A study over benchmark
function is performed in [23] and revealed that BSP-EGO can
compete with q-EGO while having a faster AP.

4) TuRBO: TuRBO [6] performs several local optimiza-
tions with independent probabilistic models in different trust



regions. It aims at compensating the overemphasized explo-
ration resulting from global AP. A number of hyper-rectangles
centered at the best solutions found so far are used as trust
regions and are maintained simultaneously. The side length
for each dimension of the hyper-rectangle is scaled according
to the length scale λi (from the GP model) while maintaining
a total volume of Ld. Thompson Sampling is used to select
a batch of candidates inside a trust region, and also to select
the region in which a local BO optimization is performed (i.e
in which trust region to intensify). In TuRBO, as well as in
BSP-EGO, both AP and batch evaluations can be performed
in parallel, contrary to q-EGO where only the batch evaluation
is executed in parallel.

IV. UPHES OPTIMIZATION - PERFORMANCE EVALUATION

A. Problem instance

The experimental evaluation uses a real-world UPHES
station located in Maizeret - Belgium as a test-case. Its
configuration is shown in Fig. 1. The lower basin is a
former underground open pit mine subject to groundwater
exchanges. Furthermore, the surface of both reservoirs is
relatively limited, which results in significant head effects. The
specific features of the UPHES unit are taken into account in
the simulator implemented in the Resource-Action-Operation
(RAO) language [24] and Matlab. The UPHES nominal output
ranges (for the nominal value of the hydraulic head) are
respectively [6, 8] MW and [4, 8] MW in pump and turbine
modes and the energy capacity is of 80 MWh.

B. Experimental protocol

TuRBO is implemented within the Python-based BOTorch
framework [26], whereas BSP-EGO and q-EGO are imple-
mented in C++ using the BayesOpt library [27]. In all three
approaches Message Passing Interface (MPI) is used for
parallelization. The UPHES simulator itself is implemented
in Matlab and the domain-specific RAO language. As the
black-box UPHES simulator executable requires a software
license, experiments are performed on a shared university
cluster, preventing us from conducting a meaningful speed-
up analysis.

Due to energy market constraints, the optimization must be
completed within tens of minutes. Exact timing is not relevant
for this study since it is subject to case-dependant choices.
However to remain consistent with the time-constraints, the
global budget of each optimization run is chosen equivalent
to 60 cycles. According to usual recommendations in BO,
20% of the budget is allocated to the initial sampling, which
is randomly created. The optimization budget for this study
is then fixed at 48 cycles, meaning that the budget in terms
of simulations increases proportionally to the batch size (and
degree of parallelism) q. Experiments are performed for q =
2, 4, 8. The total number of simulations is then q×48, and the
budget allocation is summarized in Tab. I.

The metamodel selected for every optimization is a GP
model with constant trend and Matern- 52 kernel. Single cri-
terion q-EGO is executed with the EI criterion, and since it

Table I: Allocation of the budget according to available
computing power (i.e. nbatch)

nbatch initial sample simulation budget

2 24 96
4 48 192
8 96 384

is suggested in Rehbach et al. [28] that the variance of GP
might not be reliable in high dimensions (x ∈ R12), we also
use the predicted value (PV) as an additional AF. According
to previous experiments demonstrating that the simultaneous
use of complementary AF can improve the performances,
and consistently with the observation of [28], PV is used as
supplementary AF when the number of candidates per AF
exceeds 2. Finally, we follow the experimental setup presented
in Tab. II.

Table II: Experimental setup

nbatch TuRBO q-EGO MC_q-EGO BSP-EGO

2 EI EI / EI
4 EI EI EI/PV EI
8 EI EI EI/PV EI

C. Experimental Results

Results displayed in Fig. 2, 3 and 4 present the average
profit value of the best found decision vector according to the
number of cycles executed by the algorithms. Bar-plots are
added to indicate the standard deviation around the average
objective value. Final numerical values of the average profit
and its standard deviation are also presented in Tab. III, IV and
V. Optimization runs are repeated 10 times with 10 different
initial sets, and each algorithm is run once with each initial
set. Therefore, within each figure, every curve has the same
starting point. However, for the sake of readability, windows
are re-scaled by removing the 5 first cycles (otherwise the
curves are hard to distinguish).

Table III: Average final profit and standard deviation for
nbatch = 2

nbatch = 2 average profit standard deviation

TuRBO -627.33 1222.95
q-EGO -434.06 751.88

BSP-EGO -927.54 1033.66

Looking at Fig. 2 presenting the results of TuRBO, q-EGO
and BSP-EGO for nbatch = 2, no clear distinction can be done
between the three algorithms. They all manage to significantly
improve the expected profit of the UPHES operator, however
the budget is not sufficient to guarantee a positive profit. A
slight advantage can be given to q-EGO in terms of final profit
and consistency. Indeed, it possesses the best profit on average,
and its standard deviation is smaller than its contestants. The



Figure 1: Topology of the modeled PSH unit on Maizeret site [25].
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Figure 2: Evolution of the best known objective value accord-
ing to the number of executed cycles with nbatch = 2

TuRBO algorithm is able to find very good profits, but not
consistently as indicated by the observed extreme values.
As for the BSP-EGO curve, even though not statistically
significant, it seems to be on the verge of being outperformed
by the two other approaches at the end of the budget. Average
final objective values for the three algorithms are displayed in
Tab. III along with the associated standard deviations. A one-
way analysis of variance is conducted to compare the three
average final profits and revealed no meaningful difference
(p-value >> 0.05).

Table IV: Average final profit and standard deviation for
nbatch = 4

nbatch = 4 average profit standard deviation

TuRBO 185.81 922.91
q-EGO 115.56 521.24

2C-q-EGO -826.96 741.95
BSP-EGO -820.71 1002.75
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Figure 3: Evolution of the best known objective value accord-
ing to the number of executed cycles with nbatch = 4

However the difference becomes more prominent when
looking at Fig. 3. Indeed, for a larger batch size (nbatch = 4),
the gap grows larger after 20 cycles, and BSP-EGO does not
seem competitive for optimizing the UPHES profit. When
looking closer at q-EGO and TuRBO, the average curves
appears very similar over the cycles. The only noticeable
difference, as already observed for nbatch = 2, is the much
wider standard deviation of the TuRBO algorithm. It is almost
twice bigger for TurBO as visible in Tab. IV for equivalent
average profit. Fig. 3 also shows the results of the multi-
criteria version of q-EGO, however according to the curve,
the coupling of PV and EI does not perform as well as its
single criterion EI counterpart. As for the previous results,
a one-way analysis of variance is performed and reveals
a significant difference between the four approaches with
a confidence over 99%. A pairwise comparison lead with
Student’s t-tests between TuRBO or q-EGO and the two others
is statistically significant (p-value < 0.05), which supports the
visual observation of Tab. IV and Fig. 3.
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Figure 4: Evolution of the best known objective value accord-
ing to the number of executed cycles with nbatch = 8

Table V: Average final profit and standard deviation for
nbatch = 8

nbatch = 8 average profit standard deviation

TuRBO 170.57 849.49
q-EGO 841.51 313.14

2C-q-EGO -47.64 675.35
BSP-EGO -134.97 803.24

One can notice that the multi-criteria approach represented
by the 2C-q-EGO algorithm is more appealing when larger
batches of candidates are proposed. Indeed, in Fig. 4 (nbatch =
8), we can see that the predicted profits obtained with 2C-q-
EGO at the end of the optimization are similar to BSP-EGO
and TuRBO. TuRBO achieves faster improvement of the profit
at the beginning of the search, but seems to remain stuck in
local maxima for some optimization runs. Again, its standard
deviation is higher than other methods, which supports the
hypothesis of over-intensification of local optima. The one-
way analysis of variance shows significant difference (p-value
≈ 0.01) between average final profits. Regarding Fig. 4, we
identify a clear preference for q-EGO which almost always
gives positive profits. The consistency of the results, described
by the standard deviation in Tab. V, as well as the results
themselves are significantly better than contestant approaches.
Indeed, the pairwise comparison with Student’s t-tests allows
to reject the equality of means with confidence over 95%
between q-EGO and the three other approaches.

Another level of interpretation can be provided regarding the
parallel efficiency. Both versions of q-EGO seem to benefit
from higher parallelization, and the multi-criteria algorithm
seems to make sense when many candidates must be sampled.
BSP-EGO also appears to benefit from a wider batch size,
achieving significantly better profits in average with higher
batch sizes. However no clear difference is visible regarding
the TuRBO curves or average profits between nbatch = 4 and
nbatch = 8.

V. DISCUSSION

Even though the quantification of execution time differences
is difficult due to different implementations of the surrogate
models and a variable workload of the used computing cluster,
some noticeable differences must be stated. First, TuRBO
relies on sub-models learnt on a subset of the data and on
TS for the candidate selection which makes it the most time
efficient algorithm of the study. TuRBO should be practical
to larger batch sizes within acceptable time. On the other
side, q-EGO with its pseudo-sequential AP is the most time-
consuming algorithm of this set, and would not be suitable for
larger parallelization within such a restricted timing. Although
the multi-criteria q-EGO (denoted 2C-q-EGO) decreases the
AP time-cost, the cost of learning a global model from a large
data set becomes prohibitive for the UPHES optimization.
BSP-EGO succeeds in decreasing the AP cost thanks to its
parallel operation. However, the global model fitting cost
cannot be reduced and increases rapidly as the data set gets
bigger. BSP-EGO has a much higher time-cost than TuRBO,
but lower than both q-EGO algorithms.

TuRBO presents the best efficiency in terms of computa-
tional time, while providing good expected profits. However,
it is outperformed by q-EGO in terms of quality of the final
profit when nbatch = 8. The global metamodel might be a
factor explaining its better performance compared to TuRBO.
It is also assessed by the fact that BSP-EGO fills the gap with
TuRBO when reaching nbatch = 8.

Multi-criteria q-EGO has been investigated with the ob-
jective of reducing the time cost of the AP. The global
execution time is indeed reduced. However the introduction of
a secondary AF delays the convergence towards good profits.

A second AF has also been integrated into BSP-EGO’s AP,
without leading to a significant difference with the single-
criterion approach. Hence, it is not included in the results
section. The two tested multi-criteria approaches are then not
appropriate for small batch size (nbatch ≤ 8) on the UPHES
management problem.

In this work, the additional AF is used to lower the
acquisition cost. However it could be used with the objective
of adding diversification into the candidate selection and keep
the partial update within the q-points selection loop to make
the selection more relevant. Operating this way will not reduce
execution time, but might improve the search and find better
solutions at the end.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, we have investigated three parallel BO algo-
rithms: q-EGO, BSP-EGO and TuRBO. We have experimented
and compared these algorithms on the UPHES management
problem. The main observations from the reported results are
summarized in the following.

Even though TuRBO is a recent BO algorithm addressing
higher dimensional spaces (≈ 20), we can see on the UPHES
management problem that a more conventional approach such
as a fine-tuned version of q-EGO still outperforms TuRBO.
Whereas the good performance of q-EGO on such application



is highlighted by the reported results, it has to be noted that
is less scalable than TuRBO due its sequential global AP.

A solution is proposed to tackle this problem, by adding
a complementary AF in the AP, so that the number of
model updates is reduced. However, the single-criterion EI-
based q-EGO algorithm remains a more robust choice for all
considered batch sizes. Indeed, it offers consistent performance
in terms of objective values, while being always (in our
testbed) among the best performing. Regarding the results
of Section IV and the statistical analysis, q-EGO is the best
option.

Even though BO considerably reduces the number of simu-
lations needed to find a good solution, the optimization itself
is time-consuming. Therefore it is crucial to find a balance
between acquisition time and simulation time. BSP-EGO and
TuRBO offer more possibilities to lower the acquisition time
especially because their AP can be efficiently parallelized.
However, a global model seems to be an advantage in the
UPHES optimization task and relying on lower cost global
models should be investigated within the q-EGO framework.

Trying to achieve better results in a very limited timing
remains challenging for the UPHES management problem or
any application with similar time constraints. Even though q-
EGO is a suitable choice, approaches using subsets of data
such as TuRBO can become attractive to better exploit parallel
computing resources. It is planned to run the algorithms with
higher batch sizes and q-EGO to confirm this hypothesis. The
aspect of data set decomposition is applicable within the BSP-
EGO framework but remains to be investigated. We also plan
to investigate the impact of space filling methods for initial
sampling and inside the optimization process in order to reduce
the variance between optimization runs in terms of final cost.
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