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ABSTRACT
Since 2005, significant progress has been made in the problem of

Consistent Query Answering (CQA) with respect to primary keys.

In this problem, the input is a database instance that may violate one

or more primary key constraints. A repair is defined as a maximal

subinstance that satisfies all primary keys. Given a Boolean query 𝑞,

the question then is whether 𝑞 holds true in every repair.

So far, theoretical research in this field has not addressed the

combination of primary key and foreign key constraints, despite

the importance of referential integrity in database systems. This

paper addresses the problem of CQA with respect to both primary

keys and foreign keys. In this setting, it is natural to adopt the

notion of symmetric-difference repairs, because foreign keys can

be repaired by inserting new tuples.

We consider the case where foreign keys are unary, and queries

are conjunctive queries without self-joins. In this setting, we char-

acterize the boundary between those CQA problems that admit a

consistent first-order rewriting, and those that do not.
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1 INTRODUCTION
Consistent query answering (CQA) was introduced in [1] as a prin-

cipled semantics for answering queries on inconsistent databases.
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A symmetric-difference repair (or ⊕-repair) of a database db is de-
fined as a consistent database r that ⊆-minimizes the symmetric

difference with db. Informally, a ⊕-repair r becomes inconsistent as

soon as we insert into it more tuples of db, or delete from it tuples

not in db. Then, given a query 𝑞( ®𝑥), an answer ®𝑎 is called consistent
if 𝑞( ®𝑎) holds true in every repair. The problem is often studied for

Boolean queries 𝑞, where the question is to determine whether 𝑞

holds true on every repair of a given input database.

CQA has been studied in depth in case that the only constraints

are primary keys, one per relation. In [30], this problem was coined

as CERTAINTY(𝑞), in which notation it is understood that every re-

lation name in 𝑞 has a predefined primary key. More than a decade

of research has eventually resulted in the following complexity clas-

sification [25]: for every self-join-free Boolean conjunctive query 𝑞,

the problem CERTAINTY(𝑞) is either in FO, L-complete, or coNP-
complete.

Now that this classification has been settled, it is natural to ask

what happens if we add foreign key constraints. Indeed, every rela-

tional database textbook is likely to introduce very soon the notion

of referential integrity, i.e., foreign keys referencing primary keys.

In view thereof, one may even wonder why referential integrity in

CQA has so far received little theoretical research attention. One

plausible explanation is that ⊕-repairs with respect to primary keys

are easy to characterize: every repair has to delete, in every block,
all tuples but one, where a block is a maximal set of tuples of the

same relation that agree on their primary key. In contrast, ⊕-repairs
with respect to foreign keys can introduce new tuples, as illustrated

next. It will become apparent in later sections that having, as repair

primitives, both tuple insertions and tuple deletions considerably

complicates the theoretical treatment of CQA.

Consider the database of Fig. 1, in which primary keys are un-

derlined. A tuple (𝑑, 𝑜) in the relation R means that the document

with DOI 𝑑 was written by the author with ORCiD 𝑜 . The set of

foreign keys is FK0
:= {R[1] → DOCS, R[2] → AUTHORS}. In

this paper, we assume that every foreign key is unary (i.e., consists

of a single attribute) and that the referenced primary key is the

leftmost attribute in the referenced table.

R doi orcid
d1 o1

d1 o2

d1 o3

AUTHORS orcid first last
o1 Jeff Ullman
o1 Jeffrey Ullman
o2 Jonathan Ullman

DOCS doi title year
d1 Some pairs problems 2016

Figure 1: Inconsistent database.
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There is one foreign-key violation: the fact R(d1,o3) is dangling,
because o3 is not an existing ORCiD in the table AUTHORS. There
is also one primary-key violation, because there are two distinct

tuples with ORCiD o1 in the table AUTHORS. This database has an
infinite number of ⊕-repairs. To repair the primary-key violation,

we must delete either tuple with ORCiD o1 in the table AUTHORS.
To repair the foreign-key violation, we can either delete the fact

R(d1,o3), or insert a new fact AUTHORS(o3, fi, la), where fi and la
can be chosen arbitrarily. Consider now the Boolean query:

Does some paper of 2016 have an author with first name Jeff ?

There is a repair in which the answer to this query is “no,” in which

case we also say that “no” is the consistent answer. In our setting,

this Boolean query will be denoted by the following set of atoms:

𝑞0 = {DOCS(𝑥, 𝑡, ‘2016’),R(𝑥,𝑦),AUTHORS(𝑦, ‘Jeff’, 𝑧)}.

We note that 𝑞0 satisfies the foreign keys in FK0 (when distinct

variables are treated as distinct constants) and every relation name

that occurs in FK0 also occurs in 𝑞0, in which case we say that

FK0 is about 𝑞0.
Data cleaning [14, 16] differs from CQA in that it tries to single

out the single best repair before asking any query. We view CQA as

complementary to data cleaning. In the preceding example, it may

take some time (and manual effort) to find out what is the correct

first name of the author with ORCiD o1, and how the dangling

fact in R has to be cleaned. An advantage of CQA is that we can

immediately obtain some consistent query answers, which will

hold true no matter of which repair will be chosen during the data

cleaning process.

For every self-join-free Boolean conjunctive query 𝑞, for every

set of foreign keys that is about 𝑞, we define CERTAINTY(𝑞, FK)
as the following problem:

Problem CERTAINTY(𝑞, FK).
Input: A database instance db.
Question: Is𝑞 true in every ⊕-repair w.r.t. foreign

keys in FK and primary keys?

Obviously, if FK = ∅, then CERTAINTY(𝑞, FK) becomes the well

studied problem CERTAINTY(𝑞).
Of special interest is the case where CERTAINTY(𝑞, FK) is in

the complexity class FO, which is the class of problems that take

a relational database instance as input and can be solved by a

relational calculus query (a.k.a. consistent first-order rewriting in

the context of CQA). A major contribution of this paper can now

be stated.

Theorem 1.1. For every self-join-free Boolean conjunctive query 𝑞,
for every set of unary foreign keys FK that is about 𝑞, it can be
decided whether or not CERTAINTY(𝑞, FK) is in FO. Furthermore,
if CERTAINTY(𝑞, FK) is in FO, its consistent first-order rewriting
can be effectively constructed.

We briefly discuss the remaining restrictions, leaving a more

detailed discussion to Section 9. The requirement that foreign keys

be unary (i.e., consist of a single attribute) is met in our example,

and is likely to be met in many real life situations where entities are

identified by unique identifiers (like DOI, ORCiD. . . ). Note that we

allow composite primary keys, as in the relation R in our example,

but such composite primary keys cannot be referenced by a foreign

key. Nevertheless, some results in this paper are already proved for

foreign keys that need not be unary.

The restriction that the set of foreign keys must be about the
query needs some care during query writing. For example, the

question whether the author with ORCiD o1 has published some

paper in 2016, should be formulated as follows:

𝑞1 = {DOCS(𝑥, 𝑡, ‘2016’),R(𝑥, ‘o1’),AUTHORS(‘o1’, 𝑢, 𝑧)}.

The third atom may look redundant in the latter query. However,

FK0 is not about the shorter query {DOCS(𝑥, 𝑡, ‘2016’), R(𝑥, ‘o1’)},
in which R(𝑥, ‘o1’) is dangling with respect to 𝑅 [2] → AUTHORS.

The remainder of this paper is organized as follows. Section 2

discusses related work. Section 3 introduces preliminary notions

and results from the literature that are used in our work. In Section 4,

we define a novel notion, called block-interference, which plays a

central role in a main theorem, given in Section 5, which implies

Theorem 1.1. Sections 6 and 7 show that CERTAINTY(𝑞, FK) is
L-hard or NL-hard (and thus not in FO) under some conditions.

Section 8 shows that if these conditions are not satisfied, then

CERTAINTY(𝑞, FK) is in FO. In this way, our main theorem will

be proved. A side result in Section 7 is the existence ofNL-complete

and P-complete cases of CERTAINTY(𝑞, FK), which complexity

classes did not pop up in earlier studies that were restricted to

primary keys. We conclude this paper with a discussion in Section 9.

Some proofs and several helping lemmas are given in the appendix.

More details can be found in the full version of this paper [15].

2 RELATEDWORK
Consistent query answering (CQA) was initiated in a seminal paper

by Arenas, Bertossi, and Chomicki [1], in which the notions of

⊕-repairs and consistent query answers were introduced. Recent

overviews of two decades of research in CQA are [2, 31]. From

the latter overview, it is clear that different classes of constraints

have been studied independently in CQA. The current study is

different in that it combines constraints from two classes: primary

keys belong to the larger class of equality-generating dependencies

(egd), and foreign keys belong to the larger class of tuple-generating

dependencies (tgd). CQA has also been studied in the context of

ontologies formulated in description logics; see [3] for a recent

overview.

The term CERTAINTY(𝑞) was coined in 2010 [30] to refer to

CQA for Boolean queries 𝑞 on databases that violate primary keys,

one per relation, which are fixed by 𝑞’s schema. A systematic study

of its complexity for self-join-free conjunctive queries had started

already in 2005 [13], and was eventually solved in two journal

articles by Koutris and Wijsen [22, 25], as follows: for every self-

join-free Boolean conjunctive query, CERTAINTY(𝑞) is either in
FO, L-complete, or coNP-complete, and it is decidable, given 𝑞,

which case applies.

A few extensions beyond this trichotomy result are known. The

complexity of CERTAINTY(𝑞) for self-join-free conjunctive queries
with negated atoms was studied in [23]. For self-join-free conjunc-

tive queries with respect to multiple keys, it remains decidable

whether or not CERTAINTY(𝑞) is in FO [24]. The complexity land-

scape of CERTAINTY(𝑞) for path queries, a subclass of (not neces-

sarily self-join-free) conjunctive queries, was settled in [21]. For
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unions of conjunctive queries 𝑞, Fontaine [10] established interest-

ing relationships betweenCERTAINTY(𝑞) and Bulatov’s dichotomy

theorem for conservative CSP [4].

The counting variant ofCERTAINTY(𝑞), denoted ♯CERTAINTY(𝑞),
asks to count the number of repairs that satisfy some Boolean

query 𝑞. For self-join-free conjunctive queries, ♯CERTAINTY(𝑞) ex-
hibits a dichotomy between FP and ♯P-complete under polynomial-

time Turing reductions [27]. This dichotomy also holds for queries

with self-joins if primary keys are singletons [28]. Calautti, Console,

and Pieris present in [5] a complexity analysis of these counting

problems under weaker reductions, in particular, under many-one

logspace reductions. The same authors have conducted an experi-

mental evaluation of randomized approximation schemes for ap-

proximating the percentage of repairs that satisfy a given query [6].

Other approaches tomaking CQAmoremeaningful and/or tractable

include operational repairs [7] and preferred repairs [19, 29].

It is worthwhile to note that theoretical research inCERTAINTY(𝑞)
has stimulated implementations and experiments in prototype sys-

tems [8, 11, 12, 18, 20].

3 PRELIMINARIES
For a positive integer 𝑛, we write [𝑛] for the set {1, . . . , 𝑛}. We

assume denumerable sets of variables and constants. A term is a

variable or a constant. Every relation name is associated with a

signature, which is a pair [𝑛, 𝑘] of positive integers, where 𝑛 is the

arity and 𝑘 ∈ [𝑛]; the set [𝑘] is the primary key of 𝑅, and each

𝑖 ∈ [𝑘] is called a primary-key position.
From here on, we assume a fixed database schema (i.e., a finite

set of relation names with their associated signatures).

3.1 CQA for Primary Keys
We summarize notations and results used in CQA for primary keys.

The following definitions are borrowed and adapted from [22].

If 𝑅 is a relation name with signature [𝑛, 𝑘], and 𝑡1, . . . , 𝑡𝑛 are

terms, then 𝑅(𝑡1, . . . , 𝑡𝑘 , 𝑡𝑘+1, . . . , 𝑡𝑛) is an 𝑅-atom (or simply atom).

If 𝐹 is an atom, then vars(𝐹 ) denotes the set of variables that occur
in 𝐹 , and key(𝐹 ) denotes the set of variables that occur in 𝐹 at some

primary-key position. An atom without variables is called a fact.
Two facts 𝐴, 𝐵 are said to be key-equal, denoted 𝐴 ∼ 𝐵, if they use

the same relation name and agree on all primary-key positions.

A database (instance) is a finite set db of facts. From here on,

db stands for a database instance. A Boolean conjunctive query is a

finite set 𝑞 of atoms. We write vars(𝑞) for the set of variables that
occur in 𝑞, and const(𝑞) for the set of constants that occur in 𝑞. If

𝑥 ∈ vars(𝑞) and 𝑐 is a constant, then 𝑞 [𝑥→𝑐 ] is the query obtained

from 𝑞 by replacing each occurrence of 𝑥 with 𝑐; this notation

naturally extends to sequences with more than one variable and

constant. A Boolean conjunctive query is self-join-free if it does not
contain two atoms with the same relation name. We write sjfBCQ
for the class of all self-join-free Boolean conjunctive queries.

In contexts where a query 𝑞 in sjfBCQ is understood, whenever

we use a relation name 𝑅 where an atom is expected, we mean the

(unique) 𝑅-atom of 𝑞.

A valuation over a set𝑉 of variables is a total mapping\ from𝑉 to

the set of constants. A valuation is extended to map every constant

to itself. A valuation naturally extends to atoms and sets of atoms.

A Boolean conjunctive query 𝑞 is satisfied by db, denoted db |= 𝑞,

if there is a valuation over vars(𝑞) such that \ (𝑞) ⊆ db.
A block of db is a maximal subset of key-equal facts. If𝐴 is a fact

in db, then block(𝐴, db) denotes the block of db that contains 𝐴. If

𝐴 = 𝑅( ®𝑎, ®𝑏), then block(𝐴, db) is also denoted by 𝑅( ®𝑎, ∗), and a fact

in this block is said to be of the form 𝑅( ®𝑎, ).
A repair of db with respect to primary keys is a maximal subset

of db containing no two distinct key-equal facts. If 𝑞 is a Boolean

conjunctive query, then CERTAINTY(𝑞) is the problem that, given

an input database instance db, asks whether 𝑞 is satisfied by every

repair of db with respect to primary keys.

Instead of saying that a repair must not contain two distinct key-

equal facts, we can say that, for every relation name 𝑅 of signature

[𝑛, 𝑘], a repair must satisfy the following primary-key constraint:

∀𝑥1 · · · ∀𝑥𝑛∀𝑦𝑘+1 · · · ∀𝑦𝑛((
𝑅(𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛)∧
𝑅(𝑥1, . . . , 𝑥𝑘 , 𝑦𝑘+1, . . . , 𝑦𝑛)

)
→

(∧𝑛
𝑖=𝑘+1 𝑥𝑖 = 𝑦𝑖

))
.

(1)

In the technical treatment, it will often be convenient to use PK
for the set that contains such a formula for every relation name in

the database schema under consideration.

The complexity classification of CERTAINTY(𝑞) uses the notion
of attack graph [22] recalled next. For a query 𝑞 in sjfBCQ , we write

K(𝑞) for the set {key(𝐹 ) → vars(𝐹 ) | 𝐹 ∈ 𝑞}, which is a set of

functional dependencies over vars(𝑞). For an atom 𝐹 ∈ 𝑞, we define

𝐹+,𝑞 := {𝑥 ∈ vars(𝑞) | K(𝑞 \ {𝐹 }) |= key(𝐹 ) → 𝑥}. Informally,

𝐹+,𝑞 is the set of variables that are functionally dependent on key(𝐹 )
via the functional dependencies in K(𝑞 \ {𝐹 }). The attack graph
of 𝑞 is a directed graph whose vertices are the atoms of 𝑞; there is

a directed edge from 𝐹 to 𝐺 , called an attack and denoted 𝐹
𝑞
⇝ 𝐺 ,

if 𝐹 ≠ 𝐺 and there exists a sequence of variables 𝑥0, 𝑥1, . . . , 𝑥𝑛 , all

belonging to vars(𝑞) \ 𝐹+,𝑞 , such that 𝑥0 ∈ vars(𝐹 ), 𝑥𝑛 ∈ vars(𝐺),
and every two adjacent variables occur together in some atom of 𝑞.

Moreover, 𝐹 is said to attack every variable in such a sequence. The

following result obtains.

Theorem 3.1 ([22]). Let 𝑞 be a query in sjfBCQ . If the attack
graph of 𝑞 is acyclic, then the problem CERTAINTY(𝑞) is in FO;
otherwise CERTAINTY(𝑞) is L-hard.

FO is used for the class of decision problems that take a database

instance as input, and that can be solved by a closed first-order

formula.

3.2 Foreign keys
Let 𝑅 be a relation name with signature [𝑛, 𝑘], and 𝑆 a relation name

with signature [𝑚, 1]. Possibly 𝑅 = 𝑆 . A foreign key is an expression

𝑅 [𝑖] → 𝑆 such that 1 ≤ 𝑖 ≤ 𝑛. It is called weak if 𝑖 ≤ 𝑘 , and

strong otherwise. We say that this foreign key is outgoing from 𝑅

and referencing 𝑆 . We say that a fact 𝑅(𝑎1, . . . , 𝑎𝑛) of db is dangling
(in db) with respect to this foreign key if db contains no 𝑆-fact

𝑆 (𝑏1, 𝑏2, . . . , 𝑏𝑛) such that 𝑎𝑖 = 𝑏1. A fact of db is dangling with

respect to a set of foreign keys if it is dangling with respect to some

foreign key of the set. A set of foreign keys is satisfied by db if db
contains no dangling facts. Remark that foreign keys are unary by

definition.
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We write FK∗
for the set that contains every foreign key that is

logically implied by FK (and that only uses relation names of the

database schema under consideration), where logical implication

has its standard definition.

The following notion of dependency graph is borrowed and

adapted from [9, Def. 3.7], where it was defined for general tgds.

The dependency graph of a set FK of foreign keys is a directed

graph. There is a vertex (𝑅, 𝑖) whenever 𝑅 is a relation name that

occurs in FK , say with signature [𝑛, 𝑘], and 𝑖 ∈ [𝑛]. Such a pair

(𝑅, 𝑖) will be called a position. More specifically, we say that (𝑅, 𝑖) is
a primary-key position if 𝑖 ∈ [𝑘], and otherwise a non-primary-key
position. Each foreign key 𝑅 [𝑖] → 𝑆 in FK , where 𝑆 has signa-

ture [𝑚, 1], induces a directed edge from (𝑅, 𝑖) to (𝑆, 𝑗), for every
𝑗 ∈ [𝑚]. An edge from (𝑅, 𝑖) to (𝑆, 𝑗) is called special if 𝑗 ≠ 1. For

a set of positions 𝑃 , we define the closure 𝑃FK of 𝑃 under FK as

the set of all positions (𝑅, 𝑖) such that there is a path (possibly of

length 0) from some position in 𝑃 to (𝑅, 𝑖) in the dependency graph

of FK . The complement of 𝑃FK (with respect to all positions of the

database schema under consideration), denoted 𝑃coFK , is the set of

positions (𝑅, 𝑖) ∉ 𝑃FK . Note that if a relation name 𝑅 of arity 𝑛 oc-

curs in a query but not in FK , then 𝑃coFK includes {(𝑅, 𝑖) |𝑖 ∈ [𝑛]},
even though the positions in the latter set are not vertices of the

dependency graph.

Example 3.2. Let FK = {𝑅 [1] → 𝑆 , 𝑅 [3] → 𝑇 }, where 𝑅 has

signature [3, 2], and 𝑆 and𝑇 both have signature [2, 1]. The foreign
key 𝑅 [1] → 𝑆 is weak, and 𝑅 [3] → 𝑇 is strong. The dependency

graph of FK contains directed edges from (𝑅, 1) to every position

in {(𝑆, 1), (𝑆, 2)}, and directed edges from (𝑅, 3) to every position in

{(𝑇, 1), (𝑇, 2)}. The edges ending in (𝑆, 2) or (𝑇, 2) are special. □

The following definition of query containment under foreign

keys is borrowed and adapted from [17], where it was studied for

general inclusion dependencies. For Boolean queries, containment

boils down to logical entailment. Let FK be a set of foreign keys,

and let 𝑞 and 𝑞′ be two Boolean queries. We say that 𝑞 entails 𝑞′

under FK , written 𝑞
FK
|= 𝑞′, if for every database instance db that

satisfies FK , if db |= 𝑞, then db |= 𝑞′. We say that 𝑞 and 𝑞′ are

equivalent under FK , written 𝑞
FK≡ 𝑞′, if 𝑞

FK
|= 𝑞′ and 𝑞′

FK
|= 𝑞. For

example, if 𝑅 and 𝑆 have arity 1 and FK = {𝑅 [1] → 𝑆}, then
{𝑅(𝑥)} FK≡ {𝑅(𝑥), 𝑆 (𝑥)}.

Finally, we will restrict the sets FK of foreign keys that will be

allowed for a query 𝑞 in sjfBCQ . We say that FK is about 𝑞 if every
foreign key in FK is satisfied by 𝑞 (when distinct variables are

treated as distinct constants) and, moreover, every relation name

that occurs in FK also occurs in 𝑞.

3.3 CQA for Primary and Foreign Keys
Symmetric-difference repairs were defined in [1] as follows, for any

set of integrity constraints.

We write ⊕ for symmetric set difference. Let db be a database

instance. Whenever r, s are database instances, we write r ⪯db s
if db ⊕ r ⊆ db ⊕ s. If r ⪯db s, we also say that r is ⊕-closer to db
than s. It can be easily verified that ⪯db is a partial order on the set

of all database instances. We write r ≺db s if r ⪯db s and r ≠ s.

Let FK be a set of foreign keys. A ⊕-repair of db with respect

to FK ∪ PK1
(or repair for short) is a database instance r such

that: (i) r satisfies FK ∪ PK , and (ii) there is no database instance

s such that s ≺db r and s satisfies FK ∪ PK . A subset-repair is a
⊕-repair r satisfying r ⊆ db, and a superset-repair is a ⊕-repair r
satisfying db ⊆ r.

The next example shows that ⊕-repairs can be less intuitive and

more diverse than subset-repairs or superset-repairs alone.

Example 3.3. Let𝑞 = {𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧)} and FK = {𝑅 [2] →
𝑆 , 𝑆 [2] → 𝑇 }. Let db = {𝑅(𝑎, 𝑏), 𝑆 (𝑏, 𝑐)}. Then the following are

three ⊕-repairs:
r1 = {},
r2 = {𝑅(𝑎, 𝑏), 𝑆 (𝑏, 1),𝑇 (1)},
r3 = {𝑅(𝑎, 𝑏), 𝑆 (𝑏, 𝑐),𝑇 (𝑐)}.

r1 is a subset-repair, and r3 a superset-repair. It may be counter-

intuitive that r3 is not strictly ⊕-closer to db than r2. Note however:

db ⊕ r2 = {𝑆 (𝑏, 𝑐), 𝑆 (𝑏, 1),𝑇 (1)},
db ⊕ r3 = {𝑇 (𝑐)}.

Since the latter two sets are not comparable by ⊆, we have that r2
and r3 are not comparable by ⪯db. □

Let 𝑞 be a query in sjfBCQ , and FK a set of foreign keys about 𝑞.

We write CERTAINTY(𝑞, FK) for the decision problem that takes

as input a database instance and asks whether 𝑞 is true in every

⊕-repair with respect to FK ∪ PK .

The following is relative to a fixed problemCERTAINTY(𝑞, FK).
A consistent first-order rewriting is a closed first-order formula 𝜑

such that a database instance is a “yes”-instance of the problem

CERTAINTY(𝑞, FK) if and only if it satisfies 𝜑 . Clearly, the exis-

tence of a consistent first-order rewriting coincides with the prob-

lem being in the complexity class FO.

4 BLOCK-INTERFERENCE
Block-interference is a novel notion that plays a significant role in

the complexity classification of CERTAINTY(𝑞, FK). Its definition
is technical, but the following example should be helpful to convey

the intuition.

Let 𝑞 = {𝑁 (𝑥, 𝑐,𝑦),𝑂 (𝑦)} with FK = {𝑁 [3] → 𝑂}, where 𝑐 is
a constant. Consider the following database instance, where the

value □ in the last 𝑁 -fact is yet unspecified.

db =

𝑁 𝑥 𝑐 𝑦

𝑏1 𝑐 1

𝑏1 𝑑 2

𝑏2 𝑐 2

𝑏2 𝑑 3

𝑏3 𝑐 3

𝑏3 𝑑 4

.

.

.
.
.
.

.

.

.

𝑏𝑛 𝑐 𝑛

𝑏𝑛 𝑑 𝑛 + 1

𝑏𝑛+1 □ 𝑛 + 1

𝑂 𝑦

1

1
Recall that PK is the set of primary-key constraints, of the form (1), that can be

derived from the relation names in db.
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Note that all 𝑁 -facts, except the first one, are dangling. Our goal

is to construct a ⊕-repair r that falsifies 𝑞. Such a ⊕-repair must

obviously choose 𝑁 (𝑏1, 𝑑, 2) in the first 𝑁 -block, which implies that

𝑂 (2) must be inserted. But then 𝑁 (𝑏2, 𝑐, 2) is no longer dangling,

and, as a consequence, rmust contain an 𝑁 -fact from the second 𝑁 -

block. In order to falsify 𝑞, r must choose 𝑁 (𝑏2, 𝑑, 3) in the second

block, which implies that 𝑂 (3) must be inserted. By repeating the

same reasoning, r must be as follows:

r =

𝑁 𝑥 𝑐 𝑦

𝑏1 𝑑 2

𝑏2 𝑑 3

.

.

.
.
.
.

.

.

.

𝑏𝑛 𝑑 𝑛 + 1

𝑏𝑛+1 □ 𝑛 + 1

𝑂 𝑦

1

2

3

.

.

.

𝑛 + 1

This is a falsifying ⊕-repair if (and only if) □ ≠ 𝑐 . It is now correct

to conclude that db is a “yes”-instance of CERTAINTY(𝑞, FK) if
and only if □ = 𝑐 . Note that for db′ := db \ {𝑂 (1)}, we have that
the empty database instance is a ⊕-repair of db′, and hence db′ is
a “no”-instance of CERTAINTY(𝑞, FK).

Informally, in deciding whether or not db is a “yes”-instance of

CERTAINTY(𝑞, FK), we had to start from the first𝑁 -block, then re-

peatedlymove to the next𝑁 -block, and finally inspect the value of□
in the last𝑁 -block. It is now unsurprising thatCERTAINTY(𝑞, FK)
is not in FO (as formally proved in Section 7), because our move-

ment from block to block goes well beyond the locality of first-order

logic [26, Chapter 4]. The notion of block-interference will capture
what is going on in this example. Two more things are to notice:

• The occurrence of the constant 𝑐 in 𝑁 (𝑥, 𝑐,𝑦) is important in

the above example, because it is used to distinguish, within

each 𝑁 -block, between satisfying and falsifying 𝑁 -facts. In-

stead of a constant, we could have used two occurrences of a

same variable, for example, 𝑁 (𝑥,𝑦,𝑦) (and adapt db accord-

ingly). On the other hand, block-interference disappears if

we replace 𝑁 (𝑥, 𝑐,𝑦) with 𝑁 (𝑥, 𝑧,𝑦) in 𝑞, where 𝑧 is a fresh
variable occurring only once.

• Block-interference will also disappear if we replace 𝑂 (𝑦)
with 𝑂 (𝑦, 𝑐) or 𝑂 (𝑦,𝑦) in the above example, because then

the 𝑂-facts in r \ db can take the form 𝑂 (𝑖,⊥) for some

fresh constant ⊥which cannot be used for making the query

true. On the other hand, if we replace 𝑂 (𝑦) with 𝑂 (𝑦,𝑤)
in 𝑞, where𝑤 is a fresh variable occurring only once, then

block-interference will remain.

We nowproceedwith formalizing block-interference in a number

of steps. First, we introduce a concept called obedience which, as
we will see, plays a central role in block-interference.

Definition 4.1 (Obedience). Let 𝑞 be a query in sjfBCQ , and FK
a set of foreign keys about 𝑞. Let 𝑅 be a relation name of signature

[𝑛, 𝑘], and let 𝑃 ⊆ {(𝑅, 𝑖) | 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}} be a set of positions.
Define 𝑞FK

𝑃
as the smallest subset of 𝑞 such that if the closure 𝑃FK

contains a position (𝑆, 𝑗), then 𝑞FK
𝑃

contains the 𝑆-atom of 𝑞. We

also write 𝑞FK
𝑅

as a shorthand for 𝑞FK
𝑃𝑅

, where 𝑃𝑅 := {(𝑅, 𝑖) | 𝑖 ∈
{𝑘 + 1, . . . , 𝑛}}.

Let the 𝑅-atom of 𝑞 be 𝐹 = 𝑅(®𝑠, 𝑡𝑘+1, . . . , 𝑡𝑛), and define 𝐹𝑃 :=

𝑅(®𝑠,𝑢𝑘+1, . . . , 𝑢𝑛) where for every 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, 𝑢𝑖 = 𝑡𝑖 if

(𝑅, 𝑖) ∉ 𝑃 , and 𝑢𝑖 is a fresh variable otherwise. We say that the set 𝑃

of positions is obedient (over FK and 𝑞) if(
𝑞 \ 𝑞FK

𝑃

)
∪ {𝐹𝑃 }

FK
|= 𝑞, (2)

where it is to be noted that the logical entailment in the other direc-

tion holds vacuously true (and thereforewe also get

FK≡ -equivalence).

Furthermore, we say that atom 𝐹 is obedient (over FK and 𝑞) if the
set of positions {(𝑅, 𝑖) | 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}} is obedient (over FK
and 𝑞). If FK and 𝑞 are clear from the context, we may simply say

that a set of positions or an atom is obedient. A set of positions (or

an atom) is called disobedient if it is not obedient.

Example 4.2. Consider again 𝑞 = {𝑁 (𝑥, 𝑐,𝑦),𝑂 (𝑦)} with FK =

{𝑁 [3] → 𝑂}. We first argue that 𝑃0 := {(𝑁, 2)} is not obedient.
We have 𝑞FK

𝑃0
= {𝑁 (𝑥, 𝑐,𝑦)}, because the dependency graph has an

empty path from (𝑁, 2) to itself, and no path from (𝑁, 2) to (𝑂, 1).
The left-hand expression in (2) then becomes {𝑁 (𝑥,𝑢2, 𝑦),𝑂 (𝑦)},
which is not

FK≡ -equivalent to 𝑞.

We next argue that 𝑃1 := {(𝑁, 3)} is obedient. We have 𝑞FK
𝑃1

= 𝑞,

because the dependency graph has an empty path from (𝑁, 3) to
itself, and an edge from (𝑁, 3) to (𝑂, 1). The left-hand expression

in (2) becomes {𝑁 (𝑥, 𝑐,𝑢3)}. We have {𝑁 (𝑥, 𝑐,𝑢3)}
FK≡ {𝑁 (𝑥, 𝑐,𝑢3),

𝑂 (𝑢3)}, and the latter query is obviously

FK≡ -equivalent to 𝑞.

Note finally that the atom 𝑂 (𝑦) is obviously obedient, because

it has no non-primary-key positions. □

The concept of obedience can also be given a purely syntactic

description, which will be useful in the technical treatment. The

proof of the following theorem is sketched in Appendix B.

Theorem 4.3 (Syntactic obedience). Let𝑞 be a query in sjfBCQ ,
and FK a set of unary foreign keys about 𝑞. Let 𝑃 ⊆ {(𝑅, 𝑖) | 𝑖 ∈
{𝑘 + 1, . . . , 𝑛}} for some relation name 𝑅 of signature [𝑛, 𝑘]. Then, 𝑃
is obedient if and only if all the following conditions hold true on the
dependency graph of FK :

(I) no position of 𝑃 belongs to a cycle;
(II) no constant occurs in 𝑞 at a position of 𝑃FK ;
(III) no variable occurs in 𝑞 both at a position of 𝑃FK and a position

of 𝑃coFK ; and
(IV) no variable occurs in 𝑞 at two distinct non-primary-key posi-

tions of 𝑃FK .

Theorem 4.3 has the following immediate corollary, which im-

plies that obedience can be treated as a property of single positions.

Corollary 4.4. Let 𝑞, FK , and 𝑃 be as in the statement of Theo-
rem 4.3. Then, 𝑃 is obedient over FK and 𝑞 if and only if {(𝑅, 𝑖)} is
obedient over FK and 𝑞 for all (𝑅, 𝑖) ∈ 𝑃 .

Informally, Theorem 4.3 implies that if a set 𝑃 of positions is

obedient, then 𝑃FK is of the form depicted in Fig. 2, where arrows

represent foreign keys and primary-key positions are boxed (rela-

tion names are omitted). In particular, the figure shows the absence

of cycles, constants, and variables that are repeated within a same

atom.
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𝑡1 𝑡2 𝑡3 𝑦1 𝑦2 𝑡4

𝑦1 𝑦3 𝑦1 𝑦4 𝑦5 𝑦2 𝑦6 𝑦7 𝑦8 𝑦9

𝑦3 𝑦10 𝑦4 𝑦4 𝑦11 𝑦7 𝑦12 𝑦9 𝑦13 𝑦14 𝑦15

𝑡1 . . . 𝑡𝑛 +
𝑃

𝑞FK
𝑃

Figure 2: Structure of 𝑞FK
𝑃

over obedient 𝑃 (omitting weak
foreign keys). Terms 𝑡1, . . . , 𝑡𝑛 occupying 𝑃coFK do not occur
among the (pairwise distinct) variables 𝑦1, . . . , 𝑦15 occupying
𝑃FK . The polygon encloses 𝑞FK

𝑃
; the green boxes mark 𝑃FK .

We now come to Definition 4.5 of block-interference, which

uses the following adapted notion of Gaifman graph [26, Def. 4.1].

For a query in sjfBCQ and 𝑉 ⊆ vars(𝑞), we define G𝑉 (𝑞) for the
undirected graph whose vertex-set is 𝑉 , and where {𝑥,𝑦} is an

undirected edge if 𝑥 = 𝑦 or there is 𝐹 ∈ 𝑞 such that {𝑥,𝑦} ⊆
vars(𝐹 ) ∩𝑉 .

Definition 4.5 (Block-interfering). Let 𝑞 be a query in sjfBCQ , and

FK a set of foreign keys about 𝑞. Let 𝑁 [ 𝑗] → 𝑂 be a strong foreign

key inFK∗
. Let𝑁 (𝑡1, . . . , 𝑡𝑘 , 𝑡𝑘+1, . . . , 𝑡𝑛) and𝑂 (𝑡 𝑗 , ®𝑦) be atoms in𝑞

(since the foreign key is strong, 𝑗 > 𝑘). Let 𝑉 = {𝑣 ∈ vars(𝑞′) |
K(𝑞) ̸|= ∅ → {𝑣}}, where 𝑞′ := 𝑞 \ {𝑁 (𝑡1, . . . , 𝑡𝑘 , 𝑡𝑘+1, . . . , 𝑡𝑛)}. We

say that this foreign key is block-interfering (in 𝑞) if the following
hold:

(1) the atom 𝑂 (𝑡 𝑗 , ®𝑦) is obedient;
(2) 𝑡 𝑗 is a variable in 𝑉 (thus K(𝑞) ̸|= ∅ → {𝑡 𝑗 }); and
(3) at least one of the following holds true:

(a) {(𝑁,𝑘 + 1), . . . , (𝑁,𝑛)} \ {(𝑁, 𝑗)} is not obedient; or
(b) for some 𝑖 ∈ {1, . . . , 𝑘}, 𝑡𝑖 and 𝑡 𝑗 are (not necessarily dis-

tinct) variables that are connected in G𝑉 (𝑞′).
We say that the pair (𝑞, FK) has block-interference if some foreign

key of FK∗
is block-interfering in 𝑞. □

It can be seen that, due to properties (3a) or (3b) in Definition 4.5,

the 𝑁 -atom in this definition will itself be disobedient.

Example 4.6. Continuing Example 4.2, consider again the query

𝑞 = {𝑁 (𝑥, 𝑐,𝑦), 𝑂 (𝑦)} with FK = {𝑁 [3] → 𝑂}, where the

atom𝑂 (𝑦) is obviously obedient. Following the notations of Defini-
tion 4.5, we obtain block-interference by letting 𝑗 = 3 and therefore

𝑡 𝑗 = 𝑦. The set difference in item (3a) of Definition 4.5 becomes

{(𝑁, 2)}, which is not obedient as shown in Example 4.2. □

The following example shows the use of property (3b) in Defini-

tion 4.5.

Example 4.7. Consider 𝑞0 = {𝑁 ′ (𝑥,𝑦),𝑂 (𝑦),𝑇 (𝑥,𝑦)} and FK =

{𝑁 ′ [2] → 𝑂}. In comparison with the previous Example 4.6, we

removed the constant 𝑐 that allowed us to distinguish, within an

𝑁 -block, between satisfying and falsifying 𝑁 -facts. However, since

𝑥 and 𝑦 occur together in the𝑇 -atom of 𝑞0, we can now use𝑇 -facts

to make this distinction. Indeed, in the database db at the beginning
of this section, we can replace every “satisfying” fact 𝑁 (𝑏𝑖 , 𝑐, 𝑖)

with two facts 𝑁 ′ (𝑏𝑖 , 𝑖) and 𝑇 (𝑏𝑖 , 𝑖), while every “falsifying” fact

𝑁 (𝑏𝑖 , 𝑑, 𝑖 + 1) is replaced with a single fact 𝑁 ′ (𝑏𝑖 , 𝑖 + 1) (for 1 ≤ 𝑖 ≤
𝑛 + 1). Informally, the role of the constant 𝑐 is now played by 𝑇 .

To illustrate the role of the set 𝑉 in Definition 4.5, we note that

our construction with 𝑇 -facts would fail if for some constant 𝑎,

the query 𝑞0 also contained 𝑅(𝑎, 𝑥) (yielding a functional depen-

dency ∅ → {𝑥}), because no ⊕-repair can contain both 𝑅(𝑎, 𝑏𝑖 ) and
𝑅(𝑎, 𝑏 𝑗 ) with 𝑖 ≠ 𝑗 . □

5 MAIN THEOREM
The following theorem refines Theorem 1.1 by adding the condi-

tions to decide whether or not CERTAINTY(𝑞, FK) is in FO. To
show that a problem CERTAINTY(𝑞, FK) is not in FO, we show
that it is L-hard or NL-hard.

Theorem 5.1. Let 𝑞 be a query in sjfBCQ , and let FK be a set of
unary foreign keys about 𝑞. Then,

(1) if the attack graph of 𝑞 is acyclic and (𝑞, FK) has no block-
interference, then CERTAINTY(𝑞, FK) is in FO (and its con-
sistent first-order rewriting can be effectively constructed);

(2) if the attack graph of 𝑞 is cyclic, then CERTAINTY(𝑞, FK) is
L-hard (and therefore not in FO); and

(3) if (𝑞, FK) has block-interference, then CERTAINTY(𝑞, FK)
is NL-hard (and therefore not in FO).

Moreover, it can be decided, given 𝑞 and FK , which case applies.

There is an easy proof for the last line in the statement of the

above theorem. Indeed, it is known that, given 𝑞 in sjfBCQ , it can

be decided in quadratic time whether or not 𝑞’s attack graph is

acyclic [22, Theorem 3.2]. Moreover, it is clear that the existence of

block-interference is decidable in polynomial time by inspecting

the conditions in Definition 4.5 and the syntactic characterization

of obedience in Theorem 4.3.

The following example illustrates Theorem 5.1, and shows that

consistent query answering over foreign keys depends in a subtle

way on the syntax of the query.

Example 5.2. For variables 𝑥,𝑦, 𝑧,𝑤 , and a constant 𝑐 , let

FK = {𝑁 [3] → 𝑂};
𝑞1 = {𝑁 (𝑥,𝑢,𝑦),𝑂 (𝑦,𝑤)};
𝑞2 = {𝑁 (𝑥, 𝑐,𝑦),𝑂 (𝑦,𝑤)};
𝑞3 = {𝑁 (𝑥, 𝑐,𝑦),𝑂 (𝑦, 𝑐)}.

Note that 𝑞2 and 𝑞3 can be obtained from 𝑞1 by replacing variables

with constants: 𝑞2 = 𝑞1 [𝑢→𝑐 ] and 𝑞3 = 𝑞1 [𝑢,𝑤→𝑐,𝑐 ] . The attack

graph of each query is acyclic, and hence CERTAINTY(𝑞𝑖 ) is in FO
for 𝑖 ∈ {1, 2, 3}. The complexity and consistent first-order rewritings

change as follows in the presence of FK .

• CERTAINTY(𝑞1, FK) is in FO because 𝑁 [3] → 𝑂 is not

block-interfering in 𝑞1, even though the atom 𝑂 (𝑦,𝑤) is
obedient. It can be formally verified that condition (3a) in

Definition 4.5 is not satisfied: the position (𝑁, 2) in 𝑞1 is

obedient, because it is occupied by a variable that occurs

only once in the query. The consistent first-order rewriting

for CERTAINTY(𝑞1, FK) is the query 𝑞1 itself. Remarkably,

this is different from the consistent first-order rewriting for

CERTAINTY(𝑞1) (i.e., in the absence of foreign keys). To see
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the difference, note that the following database instance is a

“yes”-instance of CERTAINTY(𝑞1, FK), but a “no”-instance
of CERTAINTY(𝑞1).

𝑁 𝑥 𝑢 𝑦

𝑐 1 𝑎

𝑐 2 𝑏

𝑂 𝑦 𝑤

𝑎 3

• CERTAINTY(𝑞2, FK) is NL-hard, because 𝑁 [3] → 𝑂 is

block-interfering in 𝑞2. Informally, this is because the posi-

tion (𝑁, 2) is now occupied by a constant 𝑐 and therefore

not obedient.

• CERTAINTY(𝑞3, FK) is again in FO, because 𝑁 [3] → 𝑂 is

not block-interfering in 𝑞2. The reason is that the 𝑂-atom is

no longer obedient because its non-primary-key position is

now occupied by a constant. With some effort, one can see

that CERTAINTY(𝑞3, FK) and CERTAINTY(𝑞3) have the

same consistent first-order rewriting.

To conclude, replacing a variable by a constant can increase or

decrease the complexity, depending on where the variable occurs.

This behavior is typical of foreign keys, and does not occur in the

case of only primary keys. □

The following sections are devoted to the proof of Theorem 5.1.

In Section 6, we prove item (2) of Theorem 5.1, and in Section 7 we

prove item (3). Finally, item (1) is shown in Section 8.

6 L-HARDNESS
We know from Theorem 3.1 that CERTAINTY(𝑞, FK) is L-hard if

FK = ∅ and the attack graph of 𝑞 is cyclic. The following lemma

tells us that this complexity lower bound remains valid if we add

foreign keys to FK . It is worth mentioning that it can be proved

for foreign keys that need not be unary (see Appendix C).

Lemma 6.1. Let𝑞 be a query in sjfBCQ , and FK be a set of foreign
keys about𝑞. If𝑞 has a cyclic attack graph, thenCERTAINTY(𝑞, FK)
is L-hard.

For example, since the attack graph of 𝑞 = {𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑥)}
is cyclic, CERTAINTY(𝑞, FK) is L-hard, for every FK that is a

(possibly empty) subset of {𝑅 [2] → 𝑆, 𝑆 [2] → 𝑅}.

7 NL-HARDNESS
The following lemma, proven in [15], restates item (3) of Theo-

rem 5.1.

Lemma 7.1. Let 𝑞 be a query in sjfBCQ , and FK be a set of
unary foreign keys about 𝑞. If (𝑞, FK) has block-interference, then
the problem CERTAINTY(𝑞, FK) is NL-hard.

For an intuition why block-interference leads to NL-hardness,
consider again the example with 𝑞 = {𝑁 (𝑥, 𝑐,𝑦), 𝑂 (𝑦)} and FK =

{𝑁 [3] → 𝑂}, elaborated in the beginning of Section 4, where it

was argued that CERTAINTY(𝑞, FK) goes beyond locality of first-

order logic. With this preceding example in mind, it should not

come as a surprise that directed graph reachability can be reduced

to (the complement of) CERTAINTY(𝑞, FK). In graph reachability,

the input consists of a directed graph and two vertices (𝑠 and 𝑡 ),

and the question is whether there is a directed path from 𝑠 to 𝑡 .

𝑠

1

2

𝑡

𝑁 𝑥 𝑐 𝑦

𝑠 𝑐 𝑠

𝑠 𝑑 1

↦→ 𝑠 𝑑 2

1 𝑐 1

2 𝑐 2

2 𝑑 𝑡

𝑂 𝑦

𝑠

Figure 3: Reduction from graph reachability.

The problem is NL-hard, even if the graphs are acyclic. Figure 3

illustrates a straightforward reduction: for every vertex 𝑣 such that

𝑣 ≠ 𝑡 , add an 𝑁 -fact 𝑁 (𝑣, 𝑐, 𝑣); for every directed edge (𝑢,𝑤), add
𝑁 (𝑢,𝑑,𝑤). Finally, add 𝑂 (𝑠). The path from 𝑠 to 𝑡 (via vertex 2) in

the database instance of Fig. 3 can be cooked into the following

⊕-repair that falsifies 𝑞:

𝑁 𝑥 𝑐 𝑦

𝑠 𝑑 2

2 𝑑 𝑡

𝑂 𝑦

𝑠

2

𝑡

On the other hand, it can be easily verified that there would be no

falsifying ⊕-repair if every path starting from 𝑠 ended in a vertex

other than 𝑡 . The reasoning is analogous to the one used in the

beginning of Section 4.

The previous example gives a correct intuition for the proof of

Lemma 7.1. The reason why its proof is technically much more

involved is that Definition 4.5 (and especially condition (3a) in it)

exhibits several ways in which block-interference can arise. In

the previous example, we only looked at the very simple case

where block-interference uses a constant. In more difficult situ-

ations, block-interference arises from cycles in the dependency

graph or repetitions of variables.

In the absence of foreign keys, for every𝑞 in sjfBCQ , the problem

CERTAINTY(𝑞) is either in FO, L-complete, or coNP-complete [25].

Interestingly, in the presence of foreign keys, NL-completeness and

P-completeness also pop up, as shown next.

Proposition 7.2. CERTAINTY(𝑞, FK) is NL-complete for 𝑞 =

{𝑁 (𝑥, 𝑥), 𝑂 (𝑥)} and FK = {𝑁 [2] → 𝑂}.

Proposition 7.3. CERTAINTY(𝑞, FK) is P-complete for 𝑞 =

{𝑁 (𝑥, 𝑐,𝑦), 𝑂 (𝑦)} and FK = {𝑁 [3] → 𝑂}.

A fine-grained complexity classification for all problems in the

set {CERTAINTY(𝑞, FK) | 𝑞 ∈ sjfBCQ and FK is about 𝑞} is open;
in the current paper, we succeed in tracing the FO-boundary in the

above set.

8 FIRST-ORDER REWRITABILITY
The following lemma restates item (1) of Theorem 5.1.

Lemma 8.1. Let 𝑞 be a query in sjfBCQ , and FK a set of unary
foreign keys about 𝑞. If the attack graph of 𝑞 is acyclic and (𝑞, FK)
has no block-interference, then CERTAINTY(𝑞, FK) is in FO (and
its consistent first-order rewriting can be effectively constructed).
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𝑅-atom 𝑆-atom Type

weak→ Lemma D.2

obedient obedient o
str→ o Lemma D.3

disobedient disobedient d
str→ d Lemma D.4

disobedient obedient d
str→ o Lemmas D.5 and D.6

Figure 4: Reductions that remove foreign keys 𝑅 [𝑖] → 𝑆 .

We sketch how the previous lemma is proved. For two decision

problems 𝑃1 and 𝑃2, we write 𝑃1 ≤FO
𝑚 𝑃2 if there exists a first-order

many-one reduction from 𝑃1 to 𝑃2.

Let 𝑞 and FK be as stated in Lemma 8.1 such that the attack

graph of 𝑞 is acyclic and (𝑞, FK) has no block-interference. The

proof strategy is to show that one can construct a query 𝑞′ in
sjfBCQ such that 𝑞′ has an acyclic attack graph and

CERTAINTY(𝑞, FK) ≤FO
𝑚 CERTAINTY(𝑞′, ∅) . (3)

Since the latter problem has an empty set of foreign keys, it is in

FO by Theorem 3.1.

Equation (3) is shown by a composition of first-order reductions,

each of which removes at least one foreign key, and some of which

remove obedient atoms or replace variables with constants. The

helping lemmas that define these reductions are summarized in

Fig. 4 and are given in Appendix D. We distinguish between four

types of foreign keys. A strong foreign key 𝑅 [𝑖] → 𝑆 is of a type

in {o str→ o, d
str→ d, d

str→ o}, depending on whether the 𝑅-atom or

𝑆-atom are obedient (symbol o) or disobedient (symbol d). Note

that there is no type o
str→ d, because if the 𝑅-atom is obedient and

the foreign key is strong, then the 𝑆-atom is necessarily obedient

as well. For weak foreign keys there is only one type, denoted

weak→ .

Note in Definition 4.5 that only foreign keys of type d
str→ o can be

block-interfering. Unsurprisingly, the requirement, in Lemma 8.1,

that (𝑞, FK) has no block-interference is used in (and only in) the

helping Lemma D.5 that shows the removal of foreign keys of type

d
str→ o.
It becomes apparent from the proofs of the helping lemmas that

whenever CERTAINTY(𝑞, FK) is in FO, its consistent first-order
rewriting is very similar to that of CERTAINTY(𝑞) [22], except for
obedient atoms referenced by strong foreign keys. For example,

consider 𝑞 = {𝑁 (𝑐,𝑦), 𝑂 (𝑦), 𝑃 (𝑦)} with FK = {𝑁 [2] → 𝑂},
where 𝑂 is referenced but 𝑃 is not. The following is a consistent

first-order rewriting for CERTAINTY(𝑞, FK):

∃𝑦
(
𝑁 (𝑐,𝑦) ∧𝑂 (𝑦)

)
∧ ∀𝑦

(
𝑁 (𝑐,𝑦) → 𝑃 (𝑦)

)
.

Note the asymmetric treatment of 𝑂 and 𝑃 in the above formula.

In this respect, it is instructive to note that the following database

instance satisfies the previous formula and hence is a “yes”-instance.

However, removing either 𝑃 (𝑎) or 𝑃 (𝑏) turns it into a “no”-instance.

𝑁 𝑐 𝑦

𝑐 𝑎

𝑐 𝑏

𝑂 𝑦

𝑎

𝑃 𝑦

𝑎

𝑏

9 DISCUSSION
While CQA for primary keys was successfully studied in the past

15 years, CQA with respect to both primary and foreign keys re-

mained largely unexplored. We made a significant contribution

by tracing the FO-boundary in the set {CERTAINTY(𝑞, FK) |
𝑞 ∈ sjfBCQ and FK is about 𝑞}, under the restriction that foreign

keys are unary (but primary keys can be composite). If FK = ∅,
then these problems only have primary-key constraints, in which

case a complete complexity classification in FO, L-complete, and

coNP-complete is already known [25]. For non-empty sets FK ,

a complete complexity classification beyond FO is left open. Our

paper nevertheless shows that the complexity landscape is more

diverse than for primary keys alone, as Propositions 7.2 and 7.3

show that there are NL-complete and P-complete problems in the

above set of problems.

It is an open research task to release our restrictions that foreign-

keys are unary and are about the query, as discussed next.

• Our assumption that all foreign keys are unary excludes, for

example, a query with atoms 𝑅(𝑥,𝑦, 𝑧), 𝑆 (𝑥, 𝑧,𝑦) and foreign
key 𝑅 [1, 3] → 𝑆 . The difficulty here is that the foreign key

covers both a primary-key and a non-primary-key position

of 𝑅. In future research, we will investigate how our con-

structs of obedience and block-interfering can be generalized

to composite foreign keys.

• Our assumption that all foreign keys are about the query

excludes, for example, the problem in the following Propo-

sition 9.1, because 𝑞 = {𝐸 (𝑥,𝑦)} does not satisfy 𝐸 [2] → 𝐸

(when 𝑥 and 𝑦 are treated as distinct constants).

Proposition 9.1. Let 𝑞 = {𝐸 (𝑥,𝑦)} and FK = {𝐸 [2] → 𝐸}.
Then, CERTAINTY(𝑞, FK) is NL-hard.
Concerning the previous proposition, note that every con-

junctive query 𝑞′ that includes 𝑞 and satisfies FK contains a

self-join. The shortest such a query is 𝑞′ = {𝐸 (𝑥,𝑦), 𝐸 (𝑦, 𝑥)}.
CQA for conjunctive queries with self-joins is a notorious

open problem, even in the absence of foreign keys.
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A HELPING NOTIONS AND LEMMAS
In this section, we define more preliminary notions and helping lem-

mas. The following definitions are relative to a database instance db,
a query 𝑞 in sjfBCQ , and a set FK of foreign keys.

We write adom(db) for the set of constants that occur in db, also
called its active domain.

A variable 𝑥 ∈ vars(𝑞) is called orphan (in𝑞) if 𝑥 occurs only once

in 𝑞, and this single occurrence is at a non-primary-key position.

Similarly, a constant 𝑐 in db is called orphan (in db) if 𝑐 occurs

only once in db, and this single occurrence is at a non-primary-key

position.

Two variables 𝑥,𝑦 ∈ vars(𝑞) are said to be connected in 𝑞 if 𝑥 = 𝑦

or there exists a sequence 𝑥0, 𝑥1, . . . , 𝑥ℓ of variables in vars(𝑞) such
that 𝑥0 = 𝑥 , 𝑥ℓ = 𝑦, and every two adjacent variables occur together

in some atom of 𝑞.

We say that a fact 𝐴 of db is relevant for 𝑞 in db if there exists

a valuation \ over vars(𝑞) such that 𝐴 ∈ \ (𝑞) ⊆ db (and therefore

𝐴 ∈ db); otherwise 𝐴 is irrelevant. A block of db is relevant if it
contains at least one relevant fact.

We write db↾𝑞 for the restriction of db to those facts whose

relation name occurs in 𝑞. We write FK↾𝑞 for the set of those

foreign keys in FK that only use relation names in 𝑞. Clearly, if

FK is about 𝑞, then FK↾𝑞 = 𝑞.

If 𝑅 is a relation name with signature [𝑛, 1], then the (weak)

foreign key 𝑅 [1] → 𝑅 is called trivial, because it cannot be falsified.
If FK is a set of foreign keys and𝑅 a relation name, then FK[𝑅 →]
is the set of foreign keys in FK that are outgoing from 𝑅, and

FK[→ 𝑅] is the set of foreign keys in FK that are referencing 𝑅.

Lemma A.1. Let PK ∪ FK be a set of primary keys and foreign
keys. Let db be a (possibly inconsistent) database instance, and let r be
a ⊕-repair of db. Let s be a database instance such that s ⊆ r∪db and
s |= PK ∪ FK . For every fact 𝐴 ∈ s∩ db, there is a fact 𝐴′ ∈ r∩ db
such that 𝐴′ ∼ 𝐴.

Proof. Let s \ r = {𝐴1, 𝐴2, . . . , 𝐴𝑛}. Since s ⊆ r ∪ db, each 𝐴𝑖

belongs to db. Let t0 := r. For 𝑖 = 1, 2, . . . , 𝑛,

(1) if r ∩ db contains a fact that is key-equal to 𝐴𝑖 , let t𝑖 := t𝑖−1;
(2) if r \ db contains a fact 𝐴′

𝑖
that is key-equal to 𝐴𝑖 , let t𝑖 :=(

t𝑖−1 \ {𝐴′
𝑖
}
)
∪ {𝐴𝑖 }; and

(3) if r contains no fact that is key-equal to 𝐴𝑖 , let t𝑖 := t𝑖−1 ∪
{𝐴𝑖 }.

Let t := t𝑛 . From r |= PK and s |= PK , it follows t |= PK by

construction.

We show that t |= FK . To this end, let 𝑅 [𝑖] → 𝑆 be a foreign

key in FK , and let 𝑅(𝑎1, . . . , 𝑎𝑛) be a fact in t. If 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ r,
then this foreign key is satisfied by t because r |= FK and, by

construction, every fact in r is key-equal to a fact in t. Assume next

that 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ s \ r. Since 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ s and s |= FK ,

s contains a fact 𝑆 (𝑎𝑖 , ). By construction, t will contain a fact that

is key-equal to 𝑆 (𝑎𝑖 , ).
By construction, r ∩ db ⊆ t and t ⊆ r ∪ db. It follows t ⪯db r.

If (2) or (3) are applied once or more, then t ≺db r, contradicting
that r is a ⊕-repair. It follows that only (1) applies, which means

that for every 𝐴 ∈ s ∩ db, r contains a fact of block(𝐴, db). □

Lemma A.2. Let 𝑞 be a query in sjfBCQ , and FK a set of for-
eign keys that is satisfied by 𝑞 (when distinct variables are treated
as distinct constants). Let db be a (possibly inconsistent) database
instance. Let r be a database instance that satisfies FK ∪ PK . Let \
be a valuation over vars(𝑞) satisfying the following conditions:

(1) \ (𝑞) ⊆ db ∪ r; and
(2) there is a fact 𝐴 ∈ \ (𝑞) \ r such that r ∩ db contains no fact

that is key-equal to 𝐴.

Then r is not a ⊕-repair.

Proof. Since 𝑞 |= FK and since 𝑞 ∈ sjfBCQ , we have \ (𝑞) |=
PK ∪FK . Assume towards a contradiction that r is a ⊕-repair. By
Lemma A.1, for every fact 𝐴 ∈ \ (𝑞) ∩ db, there is a fact 𝐴′ ∈ r∩ db
such that 𝐴′ ∼ 𝐴, contradicting (2). □

B PROOFS FOR SECTION 4
In this section we show that the concept of obedience can be char-

acterized in syntactic terms (Theorem 4.3). The proof relies on

Lemma B.1 which is proven in [15].
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For a database instance db, define

keyconst(db) := adom({𝑅′ ( ®𝑎) | ∃®𝑏 : 𝑅( ®𝑎, ®𝑏) ∈ db});

in words, keyconst(db) is the set of constants that appear at a

primary-key position in db.

Lemma B.1. Let 𝑞 be a query in sjfBCQ , and let FK be a set of
unary foreign keys that is about 𝑞. Let db be a database instance, and
let 𝐴 = 𝑅( ®𝑎, 𝑏𝑘+1, . . . , 𝑏𝑛) ∈ db. Let 𝑃 ⊆ {(𝑅, 𝑖) | 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}}
be a set of positions that violates some of the conditions listed in
Theorem 4.3. Assume that 𝑏𝑖 is an orphan constant of db that does
not belong to const(𝑞), for all (𝑅, 𝑖) ∈ 𝑃 . Then, there exists a database
instance db𝐴,𝑃 such that

(1) keyconst(db) ∩ adom(db𝐴,𝑃 ) = ∅;
(2) db𝐴,𝑃 |= FK ;
(3) 𝐴 is not dangling in {𝐴} ∪ db𝐴,𝑃 with respect to any 𝑅 [𝑖] →

𝑆 ∈ FK such that (𝑅, 𝑖) ∈ 𝑃 ; and
(4) every fact of {𝐴} ∪ db𝐴,𝑃 is irrelevant for 𝑞 in db ∪ db𝐴,𝑃 .

Example B.2. Let 𝑞 = {𝑁 (𝑥, 𝑥),𝑂 (𝑥,𝑦)} and FK = {𝑁 [2] →
𝑁, 𝑁 [2] → 𝑂}. Consider the following database instance db:

db =

𝑁 𝑥 𝑥

𝑎 𝑎

𝑏 𝑐

𝑂 𝑥 𝑦

𝑎 𝑏 .

Select 𝐴 = 𝑁 (𝑏, 𝑐), 𝑃 = {(𝑁, 2)}, and observe that {(𝑁, 2)} belongs
to a cycle in the dependency graph, thus violating Theorem 4.3 (I).

As Lemma B.1 predicts, we find a database instance db𝐴,𝑃 satisfying

all the items of the lemma statement:

db𝐴,𝑃 =

𝑁 𝑥 𝑥

𝑐 ⊥
⊥ 𝑐

𝑂 𝑥 𝑦

𝑐 ⊥
⊥ 𝑐

,

where ⊥ is a fresh variable. □

We next turn to the proof of Theorem 4.3.

Proof of Theorem 4.3. It is straightforward to verify that the

empty set of positions is obedient and satisfies all the items listed

in Theorem 4.3. From here on, we assume that 𝑃 is non-empty.

We also assume that the unique 𝑅-atom of 𝑞 is of the form 𝐹 =

𝑅(®𝑠, 𝑡𝑘+1, . . . , 𝑡𝑛), and define

𝑞′ :=
(
𝑞 \ 𝑞FK

𝑃

)
∪ {𝐹𝑃 },

where 𝐹𝑃 is obtained from 𝐹 by substituting fresh variables for the

terms occurring at positions of 𝑃 (see Definition 4.1).

=⇒ We show the contraposition. Assume that some of the con-

ditions listed in Theorem 4.3 is violated. Let \ be a one-to-one

valuation mapping variables 𝑥 to constants 𝑐𝑥 (that are not from

const(𝑞)). We can then apply Lemma B.1 to obtain a database in-

stance db𝐴,𝑃 given 𝐴 := \ (𝐹𝑃 ) and db := \ (𝑞′). The lemma states

that every fact of {𝐴} ∪ db𝐴,𝑃 is irrelevant for 𝑞 in db ∪ db𝐴,𝑃 .
This entails that no 𝑅-fact is relevant for 𝑞 in db ∪ db𝐴,𝑃 , whence
db∪db𝐴,𝑃 ̸ |= 𝑞. On the other hand, it is obvious that db∪db𝐴,𝑃 |= 𝑞′.
Finally, db ∪ db𝐴,𝑃 |= FK follows by Lemma B.1 and the fact that

FK is about 𝑞. We thus conclude that 𝑞′
FK
̸ |= 𝑞, i.e., 𝑃 is disobedient.

⇐= Let 𝐹 be the unique 𝑅-atom of 𝑞. Assuming conditions (I)–

(IV) in Theorem 4.3 hold true, we show that 𝑃 is obedient, i.e.,

𝑞′
FK
|= 𝑞.

Suppose db is a database that satisfies both 𝑞′ and FK . We need

to show that db satisfies also 𝑞. Let \0 be a valuation such that

\0 (𝑞′) ⊆ db. In what follows, we will extend \0 to a valuation \

such that \ (𝑞) ⊆ db.
Let (𝐺1, . . . ,𝐺𝑚) list the atoms of 𝑞FK

𝑃
in such an order that

• 𝐺1 = 𝐹 , and

• for all 𝑗 ∈ [𝑚 − 1] there is some 𝑘 ∈ [ 𝑗] such that 𝑆𝑘 [𝑙] →
𝑆 𝑗+1 ∈ FK for some integer 𝑙 ,

where it is to be assumed that for each ℎ ∈ [𝑚], 𝑆ℎ is the relation

name of 𝐺ℎ .

We show by induction that, for all 𝑗 ∈ [𝑚], there exists a valua-
tion \ 𝑗 over vars(𝑞 𝑗 ) such that \ 𝑗 (𝑞 𝑗 ) ⊆ db, where

𝑞 𝑗 :=

(
𝑞 \ 𝑞FK

𝑃

)
∪ {𝐺1, . . . ,𝐺 𝑗 }.

For the base step suppose 𝑗 = 1. Denote by 𝑃𝑐 the set of positions

{(𝑅, 𝑖) | (𝑅, 𝑖) ∉ 𝑃, 𝑖 ∈ [𝑛]}. Concerning the positions over relation

names appearing in 𝑞1 =

(
𝑞 \ 𝑞FK

𝑃

)
∪ {𝐹 }, let us make a few ob-

servations. First, we note that 𝑃𝑐 ⊆ 𝑃coFK , because otherwise some

position of 𝑃 would belong to a cycle, contradicting condition (I).

Second, every position of a relation name appearing in 𝑞 \ 𝑞FK
𝑃

belongs to 𝑃coFK by definition. Third, it readily holds that 𝑃 ⊆ 𝑃FK .

We conclude that a position (𝑇, 𝑘) of a relation name 𝑇 that ap-

pears in 𝑞1 belongs to 𝑃FK if and only if it belongs to 𝑃 . It follows

by conditions (II)–(IV) that the positions of 𝑃 are occupied in 𝐹 by

variables that are orphan in𝑞1. Clearly, we can extend \0 to these or-

phan variables to obtain \1 such that \0 (𝐹𝑃 ) = \1 (𝐹 ). In particular,

we obtain that \1 (𝑞1) ⊆ db, where 𝑞1 =
(
𝑞 \ 𝑞FK

𝑃

)
∪ {𝐹 }.

For the induction step suppose 𝑗 ∈ [𝑚−1]. The induction claim is

that \ 𝑗+1 (𝑞 𝑗+1) ⊆ db for some valuation \ 𝑗+1 over vars(𝑞 𝑗+1), given
the induction hypothesis that there is a valuation \ 𝑗 over vars(𝑞 𝑗 )
such that \ 𝑗 (𝑞 𝑗 ) ⊆ db. Let𝑘 ∈ [ 𝑗] be such that 𝑆𝑘 [𝑙] → 𝑆 𝑗+1 ∈ FK
for some integer 𝑙 . Assuming 𝐺𝑘 = 𝑆𝑘 (𝑠1, . . . , 𝑠𝑎, 𝑠𝑎+1 . . . , 𝑠𝑏 ), we
can write 𝐺 𝑗+1 = 𝑆 𝑗+1 (𝑠𝑙 , 𝑢2, . . . , 𝑢𝑐 ) since FK is about 𝑞. Since

\ 𝑗 (𝐺 𝑗 ) = 𝑆𝑘 (\ 𝑗 (𝑠1), . . . , \ 𝑗 (𝑠𝑎), \ 𝑗 (𝑠𝑎+1) . . . , \ 𝑗 (𝑠𝑏 )) ∈ db and db |=
𝑆𝑘 [𝑙] → 𝑆 𝑗+1, we find a fact 𝑆 𝑗+1 (\ 𝑗 (𝑠𝑙 ), 𝑏2, . . . , 𝑏𝑐 ) ∈ db. Observe
by condition (IV) that 𝑢2, . . . , 𝑢𝑐 are pairwise distinct variables.

Hence \ 𝑗+1 := \ 𝑗 ∪ {(𝑢𝑖 , 𝑏𝑖 )}𝑐𝑖=2 is a well-defined valuation over

vars(𝑞 𝑗+1) such that \ 𝑗+1 (𝑞 𝑗+1) ⊆ db, if we can establish the fol-

lowing claim.

Claim 1. 𝑈 ∩ vars(𝑞 𝑗 ) = ∅, for𝑈 := {𝑢2, . . . , 𝑢𝑐 }.

Proof of Claim 1. Let 𝑃 ′ := {(𝑆 𝑗+1, 2), . . . , (𝑆 𝑗+1, 𝑐)}. Let us
first turn attention to 𝑞1 =

(
𝑞 \ 𝑞FK

𝑃

)
∪ {𝐹 }. Recall that 𝑃coFK con-

tains 𝑃𝑐 as well as the positions of relation names appearing in

𝑞 \ 𝑞FK
𝑃

. Since 𝑃 ′ ⊆ 𝑃FK , it follows by condition (III) that 𝑈 does

not contain any variable that appears in 𝐹 at a position of 𝑃𝑐 , nor

does it contain any variable from vars(𝑞 \ 𝑞FK
𝑃

). Furthermore, it

follows by condition (IV) that 𝑈 does not contain any variable that

appears in 𝐹 at a position of 𝑃 . We thus obtain that𝑈 ∩vars(𝑞1) = ∅.
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For the sake of contradiction, suppose now the claim is false, i.e.,

𝑢𝑝 ∈ vars(𝑞 𝑗 ) for some 𝑝 ∈ {2, . . . , 𝑐}. Let ℎ ≤ 𝑗 be the smallest

integer such that 𝑢𝑝 ∈ vars(𝑞ℎ). We may assume, by the previ-

ous paragraph, that ℎ > 1. Suppose 𝐺ℎ = 𝑆ℎ (𝑣1, 𝑣2 . . . , 𝑣𝑑 ). By
construction of the sequence (𝐺1, . . . ,𝐺𝑚), and since 𝑞 is self-join

free and FK is about 𝑞, the primary-key term 𝑣1 of 𝐺ℎ must ap-

pear in 𝐺ℎ′ for some ℎ′ < ℎ. By minimality of ℎ, it must be that

𝑢𝑝 ≠ 𝑣1 and, consequently,𝑢𝑝 occurs at a non-primary-key position

in 𝑆ℎ (𝑣1, 𝑣2 . . . , 𝑣𝑑 ); i.e., 𝑢𝑝 = 𝑣𝑝′ for some 𝑝 ∈ {2, . . . , 𝑑}. But then
(𝑆ℎ, 𝑝′) and (𝑆 𝑗+1, 𝑝) are two distinct non-primary-key positions

of 𝑃FK that are occupied in 𝑞 by the same variable, contradict-

ing condition (IV). We conclude by contradiction that the claim

holds. □

Having concluded the induction proof, we note that \ (𝑞) ⊆ db
for \ := \𝑛 . This concludes the proof of Theorem 4.3. □

C PROOFS FOR SECTION 6
The following proof of Lemma 6.1 goes through for foreign keys

that need not be unary. The following definition of (not necessarily

unary) foreign keys is standard. Let𝑅 be a relation namewith arity𝑛,

and 𝑆 an atom with signature [𝑚,𝑘]. An (unrestricted) foreign key
is an expression 𝑅 [ 𝑗1, 𝑗2, . . . , 𝑗𝑘 ] → 𝑆 with 𝑗1, 𝑗2, . . . , 𝑗𝑘 distinct

integers in [𝑛]. Given a database instance db, an𝑅-fact𝑅(𝑎1, . . . , 𝑎𝑛)
in db is dangling with respect to this foreign key if db contains no

𝑆-fact 𝑆 (𝑏1, . . . , 𝑏𝑘 , 𝑏𝑘+1, . . . , 𝑏𝑛) such that 𝑎 𝑗1 = 𝑏1, 𝑎 𝑗2 = 𝑏2, . . . ,

𝑎 𝑗𝑘−1 = 𝑏𝑘−1, and 𝑎 𝑗𝑘 = 𝑏𝑘 .

Proof of Lemma 6.1. Suppose 𝑞 has a cyclic attack graph. Then,

by [22, Lemma 3.6], there are atoms 𝐹 and𝐺 such that 𝐹
𝑞
⇝ 𝐺

𝑞
⇝ 𝐹 .

For two constants 𝑎 and 𝑏, define the following valuation Θ𝑎
𝑏
over

vars(𝑞):

Θ𝑎
𝑏
(𝑥) =


𝑎 if 𝑥 ∈ 𝐹+,𝑞 \𝐺+,𝑞,

𝑏 if 𝑥 ∈ 𝐺+,𝑞 \ 𝐹+,𝑞,
⊥ if 𝑥 ∈ 𝐹+,𝑞 ∩𝐺+,𝑞,

(𝑎, 𝑏) if 𝑥 ∈ vars(𝑞) \
(
𝐹+,𝑞 ∪𝐺+,𝑞 ) .

Let 𝑅, 𝑆 be two sets of ordered pairs of constants. Define

db𝑅,𝑆 :={Θ𝑎
𝑏
(𝐻 ) | 𝐻 ∈ 𝑞 \ {𝐹,𝐺}, (𝑎, 𝑏) ∈ 𝑅 ∪ 𝑆}

∪ {Θ𝑎
𝑏
(𝐹 ) | (𝑎, 𝑏) ∈ 𝑅}

∪ {Θ𝑎
𝑏
(𝐺) | (𝑎, 𝑏) ∈ 𝑆}.

The following follows from the proof of [22, Lemma 4.3]:

• db𝑅,𝑆 is consistent with respect to primary keys in 𝑞 \ {𝐹,𝐺};
and

• CERTAINTY(𝑞,PK) is L-hard, and remains L-hard when

inputs are restricted to database instances that are equal to

db𝑅,𝑆 for binary relations 𝑅 and 𝑆 .

We claim that the following are equivalent for all binary relations

𝑅 and 𝑆 :

(1) db𝑅,𝑆 is a “no”-instance of CERTAINTY(𝑞,PK); and
(2) db𝑅,𝑆 is a “no”-instance of CERTAINTY(𝑞,PK ∪ FK).
1 =⇒ 2 Let r be a repair of db𝑅,𝑆 with respect to PK such that

r ̸ |= 𝑞. Informally, we construct a repair r′ of db𝑅,𝑆 with respect

to PK ∪ FK by closing each dangling fact of r by a cycle that is

long enough. Initialize r′ as r, and chase r′ by the following rule:

Whenever there is some fact 𝐴 ∈ r′ that is dangling with respect to

some foreign key 𝐻 [®𝚥] → 𝐻 ′
in FK , pick constants 𝑎, 𝑏 such that

𝐴 = Θ𝑎
𝑏
(𝐻 ),

(1) if 𝐻 ′ ∈ 𝑞 \ {𝐹,𝐺}, then add Θ𝑎
𝑏
(𝐻 ′) to r′;

(2) if 𝐻 ′ = 𝐹 , then add Θ𝑎
𝑐 (𝐹 ) to r′, where 𝑐 is a fresh constant;

and

(3) if 𝐻 ′ = 𝐺 , then add Θ𝑐
𝑏
(𝐺) to r′, where 𝑐 is a fresh constant.

We only make one exception to this rule. Suppose that, according

to (3), we should add to r′ a 𝐺-fact, say Θ𝑒
𝑑
(𝐺) with 𝑒 a fresh con-

stant, while having already added Θ𝑎
𝑏
(𝐹 ), Θ𝑐

𝑏
(𝐺), and Θ𝑐

𝑑
(𝐹 ). Then,

instead of introducing a fresh value, we add Θ𝑎
𝑑
(𝐺). We deal sym-

metrically with additions of 𝐹 -facts. It is now easy to see that the

chase terminates, and that r′ is a repair with respect to PK ∪ FK .

Assume for the sake of contradiction that ` (𝑞) ⊆ r′ for some val-

uation `. The attacks between 𝐹 and𝐺 imply that {Θ𝑎
𝑏
(𝐹 ),Θ𝑎′

𝑏′
(𝐺)} ⊆

` (𝑞) if and only if 𝑎 = 𝑎′ and 𝑏 = 𝑏′. Thus no added 𝐹 -fact

or 𝐺-fact is in ` (𝑞), and hence we find constants 𝑎, 𝑏 such that

{Θ𝑎
𝑏
(𝐹 ),Θ𝑎

𝑏
(𝐺)} ⊆ ` (𝑞) ∩ r. Moreover, db𝑅,𝑆 is consistent with

respect to primary keys in 𝑞 \ {𝐹,𝐺}, and thus by construction,

Θ𝑎
𝑏
(𝑞 \ {𝐹,𝐺}) ⊆ r. We obtain Θ𝑎

𝑏
(𝑞) ⊆ r, hence r |= 𝑞, a contradic-

tion. We conclude by contradiction that r′ does not satisfy 𝑞.
2 =⇒ 1 Let r be a repair of db𝑅,𝑆 with respect to PK ∪ FK

such that r ̸ |= 𝑞. Note that r need not be a repair of db𝑅,𝑆 with

respect to PK , because

• some facts of r may not belong to db𝑅,𝑆 ; or
• some blocks of db𝑅,𝑆 may be disjoint with r.

Let s be a ⊆-minimal database instance such that

• r ∩ db𝑅,𝑆 ⊆ s; and
• for every block blk of db𝑅,𝑆 such that r∩db𝑅,𝑆 = ∅, s contains
a fact arbitrarily picked from blk.

By construction, s ⊆ db𝑅,𝑆 . It is easily verified that s is a repair of
db𝑅,𝑆 with respect to PK . Note incidentally that since s ⪯db𝑅,𝑆 r
is easily verified, it must hold that either s = r or s ̸ |= FK .

It suffices to show that s falsifies 𝑞. Suppose for the sake of

contradiction that s |= 𝑞. Then, we can assume a valuation \ such

that \ (𝑞) ⊆ s, and therefore \ (𝑞) ⊆ db𝑅,𝑆 . Since \ (𝑞) ⊈ r, there is
a fact 𝐴 ∈ \ (𝑞) \ r. Moreover, from the construction of s, it follows
that r ∩ db𝑅,𝑆 contains no fact that is key-equal to 𝐴. Then, by

Lemma A.2, r is not a repair, a contradiction. □

D PROOFS FOR SECTION 8
We start with a helping lemma.

Lemma D.1. Let 𝑞 be query in sjfBCQ , and FK a set of foreign
keys about 𝑞. Assume that every foreign key in FK is strong. Let
𝑅 [𝑖] → 𝑆 be a foreign key in FK , where 𝑆 is obedient over FK and 𝑞.
Assume that 𝑞FK

𝑆
= {𝑆}. Assume that at least one of the following

properties holds:
(1) The attack graph of 𝑞 is acyclic, and key(𝐹 ) ≠ ∅ for every

𝐹 ∈ 𝑞.
(2) 𝑅 is obedient over FK and 𝑞.

Let 𝑞0 = 𝑞 \ {𝑆} and FK0 = FK \ {𝑅 [𝑖] → 𝑆}. Suppose (𝑞, FK)
has no block-interference. Then FK0 is about 𝑞0, and (𝑞0, FK0) has
no block-interference.
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Lemma D.2 assumes that FK is closed under logical implication.

Under this assumption, it is not sufficient to remove one weak

foreign key 𝜎 at a time, because it may be that FK∗ \ {𝜎} ≡ FK∗
.

Instead, all weak foreign keys referencing a same relation name are

removed at once.

Lemma D.2 (

weak→ removal). Let FK be a set of foreign keys such
that FK∗ = FK . Let FKweak be the set of weak foreign keys in
FK . Assume that some non-trivial foreign key in FKweak references
𝑆 , and let FK0 = FK \ FKweak [→ 𝑆]. Let 𝑞 be a query in sjfBCQ
such that FK is about 𝑞. Then, FK0 is about 𝑞, and the following
hold:

• CERTAINTY(𝑞, FK) ≤FO
𝑚 CERTAINTY(𝑞, FK0); and

• if (𝑞, FK) has no block-interference, then (𝑞, FK0) has no
block-interference.

Lemma D.3 (o
str→ o removal). Let 𝑞 be query in sjfBCQ , and FK

a set of foreign keys about 𝑞. Let 𝑅 [𝑖] → 𝑆 be a strong foreign key of

type o
str→ o in FK . Assume that 𝑞FK

𝑆
= {𝑆}. Following Lemma D.2,

assume that every foreign key in FK is strong. Let 𝑞0 = 𝑞 \ {𝑆}
and FK0 = FK \ {𝑅 [𝑖] → 𝑆}. Suppose (𝑞, FK) has no block-
interference. Then, FK0 is about 𝑞0, and the following hold:

• CERTAINTY(𝑞, FK) ≤FO
𝑚 CERTAINTY(𝑞0, FK0);

• (𝑞0, FK0) has no block-interference; and
• if the attack graph of 𝑞 is acyclic, then the attack graph of 𝑞0
is acyclic.

Lemma D.4 (d
str→ d removal). Let 𝑞 be query in sjfBCQ , and

FK a set of foreign keys about 𝑞. Let 𝑅 [𝑖] → 𝑆 be a strong foreign

key of type d
str→ d in FK . Following Lemma D.2, assume that every

foreign key in FK is strong. Let FK0 = FK \ {𝑅 [𝑖] → 𝑆}. Then,
FK0 is about 𝑞, and the following hold:

• CERTAINTY(𝑞, FK) ≤FO
𝑚 CERTAINTY(𝑞, FK0); and

• if (𝑞, FK) has no block-interference, then (𝑞, FK0) has no
block-interference.

Finally, we have two lemmas for removing strong foreign keys of

type d
str→ o. Lemma D.5 deals with queries 𝑞 such that vars(𝐹 ) ≠ ∅

for every 𝐹 ∈ 𝑞. Lemma D.6 deals with queries containing an atom 𝐹

with vars(𝐹 ) = ∅.

Lemma D.5 (d
str→ o removal). Let 𝑞 be query in sjfBCQ , and

FK a set of foreign keys about 𝑞. Following Lemmas D.2, D.3, and D.4,

assume that all foreign keys in FK are strong and of type d
str→ o.

Assume the following:
(1) for every 𝐹 ∈ 𝑞, key(𝐹 ) ≠ ∅;
(2) (𝑞, FK) has no block-interference; and
(3) the attack graph of 𝑞 is acyclic.

Let 𝑁 [𝑖] → 𝑂 belong to FK (and therefore, by our previous assump-
tion, 𝑞FK

𝑂
= {𝑂}). Let 𝑞0 = 𝑞 \ {𝑂} and FK0 = FK \ {𝑁 [𝑖] → 𝑂}.

Then, FK0 is about 𝑞0, and the following hold:
• CERTAINTY(𝑞, FK) ≤FO

𝑚 CERTAINTY(𝑞0, FK0);
• (𝑞0, FK0) has no block-interference; and
• the attack graph of 𝑞0 is acyclic.

Proof sketch of Lemma D.5. From Lemma D.1, it follows that

FK0 is about 𝑞0 and that the second item holds. Since FK0 is

about 𝑞0, it readily follows that

FK[→ 𝑂] = {𝑁 [𝑖] → 𝑂} and FK[𝑂 →] = ∅.
That is, FK contains only one foreign key in which 𝑂 occurs, and

that foreign key is “incoming” in 𝑂 .

With some effort, it can be shown that the 𝑁 -atom in 𝑞 is of the

form 𝑁 (®𝑡, 𝑦𝑘+1, . . . , 𝑦𝑛) where 𝑦𝑖 is a variable and {𝑦𝑘+1, . . . , 𝑦𝑛} \
{𝑦𝑖 } is a set of orphan variables. Only the 𝑖th position of 𝑁 can

have outgoing foreign keys. Therefore, we can write

FK[𝑁 →] = {𝑁 [𝑖] → 𝑂1, . . . , 𝑁 [𝑖] → 𝑂𝑚}.
Moreover, it will be the case that no variable of ®𝑡 is connected to 𝑦𝑖
in the query 𝑞′ defined by

𝑞′ := 𝑞 \ {𝑁 (®𝑡, 𝑦𝑘+1, . . . , 𝑦𝑛)}. (4)

The third item has an easy proof. We now sketch a proof for the

first item.

Let db be a database instance that is input toCERTAINTY(𝑞, FK).
We define db0 as the smallest database instance satisfying the fol-

lowing two conditions:

• for every relation name 𝑅 that occurs in 𝑞 such that 𝑅 ∉

{𝑁,𝑂}, db0 contains all 𝑅-facts of db; and
• Relevance restriction: for the relation name 𝑁 , db0 includes
all (and only) those 𝑁 -blocks of db that contain at least one

fact that is not dangling with respect to FK[𝑁 →].
Clearly, db0 ⊆ db. The following claim has an easy proof.

Claim 2. Every repair of db with respect to foreign keys in FK
and primary keys contains an 𝑁 -fact from every 𝑁 -block of db0.

It suffices to show the following:

(A) if db is a “no”-instance of CERTAINTY(𝑞, FK), then db0 is a
“no”-instance of CERTAINTY(𝑞 \ {𝑂}, FK \ {𝑁 [𝑖] → 𝑂});

(B) the converse of (A).

Proof of (A) Assume that db is a “no”-instance of the problem

CERTAINTY(𝑞, FK). We can assume a repair r with respect to

foreign keys in FK and primary keys such that r ̸ |= 𝑞. We construct

r0 from r by applying the following steps:

Deletion step 1: First, delete from r all 𝑁 -facts that are not in db0,
and delete all 𝑂-facts.

Deletion step 2: Then, for each 𝑁 [𝑖] → 𝑂 ′
in FK[𝑁 →], delete

all 𝑂 ′
-facts of r \ db that are no longer referenced by an

𝑁 -fact.

Since FK[→ 𝑁 ] = ∅, it follows that Deletion step 1 does not
introduce dangling facts. Regarding Deletion step 2, observe that
FK \ {𝑁 [𝑖] → 𝑂 ′} is about 𝑞 \ {𝑂 ′} by Lemma D.1. Consequently,

FK[→ 𝑂 ′] = {𝑁 [𝑖] → 𝑂 ′}, wherefore Deletion step 2 does not

introduce dangling facts. We conclude that r0 satisfies foreign keys

in FK \ {𝑁 [𝑖] → 𝑂} and primary keys. By Claim 2, r0 contains an
𝑁 -fact from every𝑁 -block in db0. By construction, r∩db0 ⊆ r0 ⊆ r.
It can be easily verified that r0 ̸ |= 𝑞 \ {𝑂}.

Let r∗
0
be a database instance, consistent with respect to foreign

keys in FK \{𝑁 [𝑖] → 𝑂} and primary keys, such that and r∗
0
⪯db0

r0. That is,

r0 ∩ db0 ⊆ r∗
0

(5)

r∗
0
⊆ db0 ∪ r0 ⊆ db ∪ r (6)
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It suffices to show r∗
0
̸ |= 𝑞\{𝑂}. Assume for the sake of contradiction

that there is a valuation \ over vars(𝑞 \ {𝑂}) such that \ (𝑞\{𝑂}) ⊆
r∗
0
. By (6), \ (𝑞 \ {𝑂}) ⊆ db ∪ r. Since r |= 𝑁 [𝑖] → 𝑂 and since

the 𝑂-atom is obedient, \ can be extended to a valuation \+ over

vars(𝑞) such that \+ (𝑞) ⊆ db ∪ r.
Since r0 ̸ |= 𝑞 \ {𝑂}, there must be a fact 𝐴 ∈ \ (𝑞 \ {𝑂}) such

that 𝐴 ∉ r0. By (6), 𝐴 ∈ db0. Since, as argued before, r0 contains an
𝑁 -fact of every 𝑁 -block of db0, applying (5) it can be seen that 𝐴

cannot be an 𝑁 -fact. We now obtain that 𝐴 ∈ \+ (𝑞) \ r. Moreover,

if r0 contains an atom 𝐴′
such that 𝐴′ ∼ 𝐴, then 𝐴′ ∉ db0 by (5).

Hence, we also obtain that r∩ db contains no fact that is key-equal

to 𝐴.

By Lemma A.2, it is now correct to conclude that r is not a

repair with respect to foreign keys in FK and primary keys, a

contradiction.

Proof of (B) Assume that db0 is a “no”-instance of the problem
CERTAINTY(𝑞 \ {𝑂}, FK \ {𝑁 [𝑖] → 𝑂}). Among all repairs (with

respect to foreign keys in FK \ {𝑁 [𝑖] → 𝑂} and primary keys) of

db0 that falsify 𝑞 \ {𝑂} (there is at least one such repair), let r0 be
one that ⊆-maximizes the set of 𝑁 -facts that are not dangling in

db with respect to FK[𝑁 →]. Recall that in moving from db to

db0, an 𝑁 -block is removed only if all its facts are dangling in db
with respect to FK[𝑁 →]. Thus, db0 can contain 𝑁 -facts that are

dangling in db with respect to FK[𝑁 →]. It can be easily verified

that r0 will contain a fact from every 𝑁 -block in db0. The proof
now constructs a repair of db, called r, that falsifies 𝑞.

We construct r from r0 by applying the following steps:

Insertion step 1: First, insert into r0 all𝑂-facts of db. Then, chase
r0 with the foreign key 𝑁 [𝑖] → 𝑂 . That is, if there is a fact

𝑁 ( ®𝑎, 𝑏𝑘+1, . . . , 𝑏𝑛) that is danglingwith respect to𝑁 [𝑖] → 𝑂 ,

then insert 𝑂 (𝑏𝑖 , ®𝑐) for some sequence ®𝑐 of fresh constants.

Insertion step 2: Consider every 𝑁 -block of db that is not in db0.
If, due to the insertions in the previous step, one fact of such

𝑁 -block is no longer dangling with respect to FK[𝑁 →],
then insert a fact from that block.

By construction, r is consistent with respect to foreign keys in FK
and primary keys. The following claims finish the proof.

Claim 3. r is a repair of db with respect to foreign keys in FK
and primary keys.

Claim 4. r ̸ |= 𝑞.

Proof sketch of Claim 4. Assume towards a contradiction that

there is a valuation \ over vars(𝑞) such that \ (𝑞) ⊆ r. Let the
(unique)𝑁 -fact in \ (𝑞) be𝑁 ( ®𝑎, 𝑏𝑘+1, . . . , 𝑏𝑛). Since r0 ̸ |= 𝑞\{𝑂}, we
observe that the fact 𝑁 ( ®𝑎, 𝑏𝑘+1, . . . , 𝑏𝑛) does not belong to db0 and
was inserted in Insertion step 2. Thus, every fact in the block 𝑁 ( ®𝑎, ∗)
is dangling in db with respect to FK[𝑁 →]. Then, there is a fact
𝑁 (®𝑐, 𝑝𝑘+1, . . . , 𝑝𝑛) ∈ r0 ∩ db0 that is dangling in db with respect to

FK[𝑁 →] such that𝑏𝑖 = 𝑝𝑖 . Informally, due to𝑁 (®𝑐, 𝑝𝑘+1, . . . , 𝑝𝑛) ∈
r0, we insert, in Insertion step 1, the invented fact 𝑂 (𝑝𝑖 ) which in

turn entails the insertion, in Insertion step 2, of 𝑁 ( ®𝑎, 𝑏𝑘+1, . . . , 𝑏𝑛).

By our choice of r0, there is a fact 𝑁 (®𝑐, 𝑑𝑘+1, . . . , 𝑑𝑛) that is not
dangling in db with respect to FK[𝑁 →], and a valuation ` over

vars(𝑞) such that

` (𝑞 \ {𝑂}) ⊆
(
r0 \ {𝑁 (®𝑐, 𝑝𝑘+1, . . . , 𝑝𝑛)}

)
∪ {𝑁 (®𝑐, 𝑑𝑘+1, . . . , 𝑑𝑛)}.

(7)

We define a valuation 𝛾 over vars(𝑞 \ {𝑂}) as follows. Let 𝛾 (𝑦 𝑗 ) =
𝑝 𝑗 for 𝑗 ∈ {𝑘 +1, . . . , 𝑛} \ {𝑖}. For every 𝑢 ∈ vars(𝑞 \ {𝑂}) such that

𝑢 ∉ {𝑦𝑘+1, . . . , 𝑦𝑛} \ {𝑦𝑖 }, let

𝛾 (𝑢) =
{
\ (𝑢) if 𝑢 is connected to 𝑦𝑖 in 𝑞

′
,

` (𝑢) otherwise,

where 𝑞′ is the query defined in Eq. (4).

Using \ (𝑞) ⊆ r and (7), it can be easily seen that 𝛾 (𝑞 \ {𝑂, 𝑁 }) ⊆
r0. It takes some more effort to show that 𝛾 (𝑁 (®𝑡, 𝑦𝑘+1, . . . , 𝑦𝑛)) =
𝑁 (®𝑐, 𝑝𝑘+1, . . . , 𝑝𝑛), using, among others, that no variable in ®𝑡 is
connected to 𝑦𝑖 in 𝑞′ But then 𝛾 (𝑞 \ {𝑂}) ⊆ r0, contradicting our
assumption that r0 falsifies 𝑞 \ {𝑂}. □

The proof of Lemma D.5 is now concluded. □

Lemma D.6 (Variable-free keys). Let 𝑞 be query in sjfBCQ , and
FK a set of foreign keys about 𝑞. Following Lemmas D.2, D.3, and D.4,

assume that all foreign keys in FK are strong and of type d
str→ o. Let

𝑁 be an atom of 𝑞 such that key(𝑁 ) = ∅, and let ®𝑥 be the variables
of vars(𝑁 ). Let 𝑏 be an arbitrary constant, and ®𝑏 = ⟨𝑏, 𝑏, . . . , 𝑏⟩, a
sequence of the same length as ®𝑥 . Let 𝑞0 = 𝑞 \ 𝑞FK

𝑁
and FK0 =

FK↾𝑞0 . Then FK0 is about 𝑞0, and the following hold:

• CERTAINTY(𝑞, FK) ≤FO
𝑚 CERTAINTY(𝑞0 [ ®𝑥→®𝑏 ] , FK0);

• if (𝑞, FK) has no block-interference, then (𝑞0 [ ®𝑥→®𝑏 ] , FK0)
has no block-interference; and

• if the attack graph of 𝑞 is acyclic, then the attack graph of
𝑞0 [ ®𝑥→®𝑏 ] is acyclic.

We can now give a proof of Lemma 8.1.

Proof of Lemma 8.1. Assume that the attack graph of𝑞 is acyclic

and (𝑞, FK) has no block-interference. We first repeatedly apply

the reduction of Lemma D.2 to remove all weak foreign keys. Then

we apply the reductions of Lemmas D.3 and D.4 to remove strong

foreign keys of a type in {o str→ o, d
str→ d}. Whenever the result-

ing query contains an atom 𝐹 such that key(𝐹 ) = ∅, we apply

Lemma D.6. Whenever every atom in the resulting query has a

variable at some primary-key position, we apply Lemma D.5. Even-

tually, we have reduced to some problem CERTAINTY(𝑞′′, FK′′)
with FK′′ = ∅, such that the attack graph of 𝑞′′ is acyclic. The
latter problem is known to be in FO. The desired result holds by

induction on the number of reductions, since for every intermediate

problem CERTAINTY(𝑞′, FK′), it holds that the attack graph of 𝑞′

is acyclic and (𝑞′, FK′) has no block-interference. □
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