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Chapter 1

Introduction

Representing real-world applications using mathematical models has al-
lowed scientists many discoveries. One model appears almost everywhere: the
graph.

Graphs are mathematical models representing relationships between el-
ements. Graphs can be used to represent many different concepts such as
molecules, train networks, social networks and even constraints when making
schedules. They all have in common a set of elements and links between pairs
of those elements. The atoms in a molecule are linked together, train stations
are linked by train lines, users of social networks are linked by friendship, etc.
Modeling a schedule using a graph is less obvious. In this context, two events
to be scheduled are linked by conflicts such as involving the same people, which
means that they cannot be scheduled at the same time.

In a graph, those elements are called the vertices of the graph and the links
between them are called the edges. For example, the graph of Figure 1.1 has
10 vertices and 15 pairs of vertices that are linked by an edge.

The graph model has been used to study and solve many problems, from
computing the best way to assign tasks to computers to finding the best struc-
ture for a metro network. In this last example, the best structure is usually
the structure that will have the lower cost or the higher performance. In most
cases, this structure must respect constraints, such as not having isolated sta-
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: The Petersen graph.

tions that cannot be reached or not having two railways crossing. This is a
special case of a more general problem of finding a graph that has the best
structure according to some objective function for some parameters. While
there are many algorithms that can be used to find a good graph in such a
problem, finding the best one is often difficult and takes a lot of time, even
for a computer.

For this reason, scientists try to identify the best possible graphs with some
parameters such as the number of vertices and prove mathematically that these
graphs are indeed the optimal ones. This is called extremal graph theory. The
difficulty of this approach is that there is an infinite number of graphs, and
even only considering a subset of those graphs often leaves us with a large
number of different graphs. Fortunately, we now have powerful computers
able to perform billions of computations in a split second. These computers
have been used to help researchers identify candidate graphs that might be the
best ones in an extremal graph theory problem. Different computer systems
using different approaches exist to do this, and they have all been of a great
help when searching for those best graphs.

But most of the time, those tools only provide candidate graphs with no
certainty that they are indeed the best possible ones, and researchers need
to prove this by hand. A common method, called a proof by transformation,
consists in showing that any graph that is not one of those candidates can
be transformed into a better graph. Finding those transformations, though,
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is often difficult because of the number of graphs and, to the best of our
knowledge, there is no generic software aimed at assisting researchers in finding
those proofs like there is for finding graph candidates.

This is why, in this document, we present TransProof, a tool able to com-
pute transformations on a large number of graphs in order to assist researchers
in testing out the transformations they plan to use in a proof before setting
out to write the proof. Such a tool can be very helpful in identifying counter-
examples which can show that a proof idea requires some refinement or that
it is entirely wrong and that time should not be wasted on it. TransProof
was used in scientific research and helped in the writing of proofs for several
results, but also produced interesting conjectures that are yet to be proven.

In this thesis, we will first introduce notations and definitions that are
important for a good understanding of the subject. Next, Chapter 3 will go
into more details about extremal graph theory and how computers help with
research in this field. Chapter 4 then presents the common method of the
proof by transformation and introduces the metagraph representation that is
used by TransProof. TransProof itself is presented in Chapter 5. This chapter
explains the ideas used in the writing of this tool in order to achieve good
performance despite many problems being known as computationally expen-
sive. Chapters 6 and 7 present results obtained in extremal graph theory when
studying the eccentric connectivity index of a graph and the average number
of colors in the non-equivalent colorings of a graph respectively. TransProof
was used in the study of those two values, showing problematic cases such as
counter-examples to the ideas for proofs and helping correct them. Finally, we
summarize the results we obtained and discuss them as well as future works
and open problems in Chapter 8.
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Chapter 2

Definitions and notation

Before we start explaining extremal graph theory and TransProof, there
are important notions that need to be defined in order to understand the
subject. We start in the first section by giving the different types of graphs and
introducing the specific notations and terms. To make finding the definitions
of the different concepts in the text, the first time we use a new concept, we
also add it in the margin.

2.1 Graphs

A graph graphis an abstract structure used to model relationships between ele-
ments. Usually written as G = (V, E), a graph G is defined as a pair of two
sets V and E. The set V is called the vertex set vertex setand contains the vertices of
the graph, that is, the elements whose relationships we want to model. This
set is sometimes denoted by V (G) for a given graph G and the number of
elements of this set is the order orderof the graph (denoted by |G| and often repre-
sented by the letter n). The edge set edge setE is a set containing pairs of elements of
V (E ⊆ V × V ). Those pairs are called the edges of the graph. If (u, v) ∈ E,
we say that there is an edge between u and v or that u and v are adjacent adjacent

vertices
.

Also, u and v are called the endpoints or extremities extremitiesof the edge. Two edges
sharing a common extremity are said to be incident incidentto each other. The set

5



6 CHAPTER 2. DEFINITIONS AND NOTATION

E is often denoted by E(G) and its number of elements is the sizesize of a graph
(denoted by ||G|| and often represented by the letter m).

In this document, we will only consider simple undirected graphs unless
stated otherwise. This means that all the pairs {u, v} ∈ E must be such that
u and v are distinct (no edge between a vertex and itself) and that this pair is
present at most once in E (only one edge between two vertices). A graph with
those properties is a simple graph

simple graph

. An undirected graphundirected

graph

adds the constraint
that the edges (u, v) and (v, u) are considered to be the same, that is, the
order of the vertices in the pair does not matter. If we differentiate between
(u, v) and (v, u), we have a directed graph

directed

graph

and we use the word arcarc instead
of edge and the edge set becomes the arc set. Given a vertex v, all the arcs
of the form (v, x) are called the outgoing arcsoutgoing arc of v since they are leaving v to
reach some vertex x and those of the form (x, v) are the incoming arcsincoming arc of v.

Figure 2.1 shows a simple undirected graph G and a directed graph H.
Both have the same vertex set {a, b, c, d} but their edge sets are different.
For the graph G, E(G) = {(a, b), (a, c), (b, c), (c, d)}. It is a simple graph, as
every vertex pair appears at most once in its vertex set and each pair contains
two distinct vertices. The graph G has order |G| = 4 and size ||G|| = 4.
The graph H is a directed graph, as shown by the arrows. Its arc set is
E(H) = {(a, b), (a, b)′, (b, a), (b, d), (c, d), (c, c)}. It is not a simple graph as we
can see that there are two different arcs from a to b and an arc from c to itself.

a b

c d

G

a b

c d

H

Figure 2.1: A simple undirected graph G and a directed graph H
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2.2 Structural properties of graphs

In this document, we only study these graphs for their structure. Thus,
the notion modeled by the graphs such as train stations or schedules are not
important as they do not change the underlying problems. The structure of
a graph can be interesting in many ways, and there are many recognizable
structures. A widely known structure in graph theory is the path. A path path

on n vertices (denoted by Pn) is simply a set of vertices v1, . . . , vn such that
given two vertices vi and vj , there is an edge between the two if and only if
j = i + 1. Note that the length of a path length of a

path

is its number of edges and not its
number of vertices. If there is also an edge between v1 and vn, the structure is
a cycle cycleon n vertices (denoted by Cn). Figure 2.2 shows an example of a path
and a cycle.

(a) A path on 4 vertices (P4). (b) A cycle on 4 vertices (C4).

Figure 2.2: Examples of a path and a cycle.

If a graph on n vertices is such that there is an edge between every pair
of distinct vertices, this graph is called a complete graph complete

graph

(denoted by Kn).
Conversely, if the edge set is empty, the graph is an empty graph empty graph. It is the
complement of the complete graph.

Definition 1. Let G and H be two graphs with the same vertex set V , we say
that H is the complement complementof G if for every pair (u, v) of vertices, (u, v) ∈ E(H)
if and only if (u, v) 6∈ E(G). This is also written H = G.

Because the empty graph is the complement of the complete graph, it will
be denoted by Kn. An example of both a complete graph and an empty graph
can be seen in Figure 2.3.
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(a) A complete graph on 4 vertices (K4). (b) An empty graph on 4 vertices (K4).

Figure 2.3: Examples of a complete and an empty graph.

Those configurations span the whole graphs, but some substructures can
be of interest too. For example, a graph could have a subset of its vertices
that form a complete graph. Such a subset is called a cliqueclique . When a subset
of vertices forms an empty graph instead, we say that this is a stable setstable set

(sometimes called an independent setindependent
set

). Those are both examples of subgraphs.

Definition 2. A graph G′ is a subgraphsubgraph of a graph G if and only if V (G′) ⊆
V (G) and E(G′) ⊆ E(G). The graph G is then a supergraphsupergraph of G′. If E(G′) =
{(u, v) ∈ E(G) | u, v ∈ V (G′)}, G′ is called an induced subgraphinduced

subgraph

.

In Figure 2.4, G′ and G′′ are subgraphs of G but G′ is not an induced
subgraph as vertices 1 and 3 are adjacent in G but not in G′. The graph G′′

is an induced subgraph of G.

1

2

3

4

G

1

2

3

G′

1

2

3

G′′

Figure 2.4: A graph (left) with one of its subgraphs (middle) and an induced
subgraph (right).

Since we only study the structures of the graphs, the way they are drawn
or the names of their vertices does not matter. If two graphs have the same
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structure but differ only by the name, order or position of their vertices, we
will say that these graphs are isomorphic and consider them as the same graph.

Definition 3. Let G and H be two graphs. We say that G and H are iso-
morphic isomorphic, denoted by G'H, if there exists a bijection f : V (G)→ V (H) such
that ∀u, v ∈ V (G), (u, v) ∈ E(H) ⇔ (f(u), f(v)) ∈ E(H). The bijection f is
called a graph isomorphism graph

isomorphism

between G and H.

Given two graphs G and H, which are isomorphic to each other, and the
isomorphism f , if a is a vertex of G and b is a vertex of H such that f(a) = b,
we will say that a is mapped mappedto b. We also have that b is mapped to a.

Figure 2.5 shows two graphs which are isomorphic. Indeed, if we map
vertices 1 through 5 in G to the vertices e, b, d, a and c of H in this order, we
obtain the same graph.

1

2

34

5

G

a

b

cd

e

H

Figure 2.5: Two isomorphic graphs.

When working with computers and using graphs with unnamed vertices,
it is common practice to use the ordered set (1, . . . , n) as the vertex set of a
graph of order n. Thus, each vertex is referred to by an index corresponding
to its position in the set. The first vertex will have index 1, the second will
have index 2 and so on. An edge between two vertices is represented as the
pair of the indices of the two vertices. For example, if there is an edge between
the first and the second vertex of the graph, we store this information as the
pair (1, 2). In this case, two isomorphic graphs G and G′ will have the same
vertex set but maybe in a different order.

If two isomorphic graphs have the same vertex set, the isomorphism is
called an automorphism automor-

phism

. In this case, the bijection that is the automorphism
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is simply a permutation of the vertices. Among all the orderings of the vertex
set that can be obtained from an edge-preserving permutation, we can choose
one ordering to represent all the other ones. This ordering is called a canonical
orderingcanonical

ordering

of the graph. Because this ordering can be seen as giving each vertex
an index from 1 to n, it is also referred to as a canonical labelingcanonical

labeling

.
This canonical ordering is chosen in such a way that it can be obtained

from any ordering of the vertex set. There already are several tools able to
compute such an ordering given any graph, such as Nauty and Traces [74] or
bliss [65].

2.3 Graph invariants

With two isomorphic graphs, their canonical labelings are the same but
it is not the only property they have in common. Given that two isomorphic
graphs have the same structure, many functions on those graphs will produce
the same results. Those functions are called graph invariants, as the image of
a graph G under those functions is invariant by isomorphism of G.

Definition 4. A graph invariantgraph
invariant

is a function f on graphs such that for any
two graphs G and H, G'H ⇒ f(G) = f(H).

The number of graph invariants is infinite since mathematical operations
between invariants are also invariants. They can derive from properties of the
vertices, such as the degreedegree of a vertex v in a graph G (denoted by degG(v))
which is simply the number of edges incident to v. The degree of a vertex is
not an invariant, but one could obtain an invariant by aggregating information
about degrees, such as the average degree of the vertices or simply by taking
the sorted list of the degrees of each vertex. The minimum and maximum
degree in a graph are also common graph invariants. This degree is also used
to describe different types of vertices, such as pendant verticespendant

vertex
whose degree

is 1 or vertices with degree 0 which are called isolated verticesisolated
vertex

. If a vertex has
degree n− 1 where n is the order of the graph, it is called a dominant vertexdominant

vertex
because it is adjacent to every other vertex of the graph. Another invariant



2.3. GRAPH INVARIANTS 11

using the degrees is whether a graph is regular regular

graph

, that is, if all of its vertices
have the same degree.

There are also invariants based on paths between the vertices of a graph.
If, for every pair of vertices u and v of a graph G, there is an induced path
with those two vertices as its extremities, G is said to be a connected graph connected

graph

.
If there exists at least two vertices such that there is no path between them,
G is disconnected. Being connected or not is also a graph invariant. Often,
in a disconnected graph, we consider the connected components connected

components
of this graph.

They are the maximal subsets of vertices such that the induced subgraph they
define is connected. The number of connected components of a graph is also
a graph invariant. If there is at least one induced path between two vertices
u and v, the length of the shortest path between these two vertices is the
distance between u and v.

Using the distances, one can compute the largest distance from a specific
vertex u to any other vertex and obtain the eccentricity eccentricityof u. The largest of
the eccentricities is called the diameter diameterof a graph and is a graph invariant,
and in a graph with a diameter λ, an induced path of length λ is a diametral
path diametral

path

.

Another type of graph invariants is based on coloring the graph. A coloring coloring

of a graph is simply an assignment of colors to its vertices such that adjacent
vertices have different colors. This is equivalent to partitioning the vertices
with the constraint that two adjacent vertices must be in two different subsets.
When coloring a graph, one will often wish to use as few colors as possible. The
minimum number of colors required to color a graph is called the chromatic
number chromatic

number

and is denoted by χ(G).

As we saw, invariants can be as simple as the order and size of the graph or
more complex, such as the chromatic number. Even though numerical invari-
ants are the most commonly used, there are many other types of invariants
such as Boolean values, vectors, matrices or even text. We can cite the sorted
list of degrees, whether the graph is connected and even the canonical labeling
of a graph as examples of invariants. Note that a graph invariant is not nec-
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essarily defined for all graphs. For example, the diameter in a graph cannot
be computed for disconnected graphs as there is no path between different
connected components1.

2.4 Graph transformations

Given an invariant and a graph, we might also be interested in the effect
on the invariant that changes in the graph could cause. Those changes in the
graph are called graph transformations2.

Transforming a graph is done by selecting edges and vertices on this graph
and changing their structure, that is, removing selected edges or vertices or
adding edges between two non-adjacent selected vertices or even adding new
vertices.

A transformation thus needs two sets of both vertices and edges. We need
to know the set Vr of vertices that will be removed, the set Er of edges that
will be removed, the set Va of vertices to add and the set Ea of edges to add.
Of course, there are constraints on these sets:

• Va ∩ V = ∅ (we cannot add an already existing vertex),

• Ea ∩ E = ∅ (we cannot add an already existing edge),

• Vr ⊆ V (we cannot remove a vertex that is not in the graph),

• Er ⊆ E (we cannot remove an edge that is not in the graph),

• ∀v ∈ Vr, w ∈ V, (v, w) ∈ E ⇒ (v, w) ∈ Er (removing a vertex implies
removing all its incident edges).

1Of course, it is possible to decide that the diameter of a disconnected graph is infinite,
but this is not interesting if one wants to compute real world distances.

2In the literature, the concept of graph transformations is slightly different, as there is a
set of labels assigned to the vertices [82]. Here, we only consider the underlying structure of
the graph.
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If we have these constraints, we can define

VC =
{

v ∈ V | v ∈ Vr or ∃w such that (v, w) ∈ (Er

⋃
Ea)

}
and

EC = {(x, y) ∈ E | x ∈ VC and y ∈ VC} ,

and create a graph B = (VC , EC) containing the set of vertices and edges of
G that will be modified by the transformation.

The graph R = ((VC
⋃

Va)\Vr, (EC
⋃

Ea)\Er) is not necessarily a subgraph
of G since it contains vertices and edges that are not part of G (the elements
of Va and Ea) but it is a subgraph of the graph G′ obtained after applying the
transformation on G. Actually, R contains only the vertices and edges that
differ between G and G′.

In Figure 2.6, the graph G is to be transformed by removing the vertex
4 and the edge (3, 1) (in bold) and adding a vertex 5 as well as the edge
(1, 5). The set VC is then the set {1, 3, 4} and the graph B as defined above
is represented in the middle. The graph R is seen on the right and contains
only the elements affected by the transformation and that are not removed.
The transformation can be applied by replacing the subgraph B in G by the
graph R.

The vertex set of B is a subset of V (G) but we can soften this requirement
by saying that we need to have a mapping between the two sets. Of course,
the vertices that are present in R but not in B must not be mapped to vertices
of G since they are to be added to G by the transformation. This mapping
would be a subgraph isomorphism, that is, an isomorphism which maps all the
vertices of the subgraph to vertices of the supergraph but does not necessarily
map all the vertices of the supergraph (if the supergraph has more vertices
than the subgraph).

A graph transformation graph trans-

formation

can thus be seen as a pair of graphs B and R

with B being a template of a configuration in the graph that will be replaced
by a different configuration R. To apply a transformation T = (B, R) to a
graph G, we need to find a subgraph H of G (not necessarily induced) that
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Figure 2.6: A transformation of the graph G represented as a pair of graphs
B and R.

is isomorphic to B. Then, we replace this subgraph by R. As an example,
the transformation consisting of removing an edge would have an edge (a, b)
as its graph B and two isolated vertices a and b as its graph R. Applying this
transformation would then consist of finding an edge and removing it.

Given a graph transformation T , we will say that the graph B is the basisbasis

of T and R is the resultresult of T . An isomorphism between B and a subgraph of
a graph G is called an instanceinstance of T and the graph obtained by applying T on
an instance is an applicationapplication of T .

Note that, for the inverse transformation, adding an edge, we need two
vertices that are not already adjacent. The definition of subgraph does not
allow making a difference between a pair of vertices that can be disjoint and
a pair that must be disjoint. Thus, in our graph B, we will label some non-
adjacent vertices as non-edges. A non-edgenon-edge is a pair of vertices that are not
adjacent in a graph. In a transformation, a non-edge is a pair of vertices that
cannot be adjacent in the instance of a transformation.

In Figure 2.7, we apply a transformation called a rotationrotation . This transfor-
mation consists of removing an edge (a, b) and then adding an edge (a, c) that
was not already present in the graph. Given those two edges (a, b) and (a, c),
we refer to the rotation removing (a, b) and adding (a, c) as rot(a, b, c). The
basis of the transformation is then an edge (a, b) and a non-edge (a, c) that
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is shown using a dashed line. But vertices b and c can be adjacent. We first
find an instance by mapping a with 4, b with 1 and c with 2. Then, we apply
the transformation by removing the edge (4, 1) and adding the edge (4, 2),
obtaining an application of the transformation. Note that we only show one
instance of the transformation, but there are more.

a b

c

B

a b

c

R

1

23

4
a b

c

An instance of the transformation

1

23

4
a b

c

An application of the transformation

Figure 2.7: An application of the rotation rot(a, b, c).

In this document, we will use the notation τ(G) to represent the set of
applications of a transformation τ on a graph G. For example, if a transfor-
mation τ consists simply of removing an edge, τ(G) would be the set of all
the graphs that can be obtained from G by removing an edge.

As we will see in chapter 4, these transformations will play a great role
when proving theorems in extremal graph theory. But first, we introduce this
theory in the next chapter.
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Chapter 3

Computers and extremal
graph theory

In this document, we wish to exploit computers to help researchers with
the writing of proofs by transformation in extremal graph theory. But before
we can talk about this, we first need to explain what extremal graph theory
is. We do so in Section 3.1. We then survey the existing software that can
be used in graph theory in Section 3.2. We present the system PHOEG in
more details in Section 3.3 as we are currently developing it and for which
TransProof, presented in Chapter 5 will be a module. Finally, we give a short
conclusion about what is and is not supported by existing software for extremal
graph theory.

3.1 An introduction to extremal graph theory

Extremal graph theory is the study of bounds on numerical graph invari-
ants. For example, one might be interested in having an upper bound on the
diameter of a connected graph with n vertices. An upper bound can be triv-
ially obtained considering that we can have at most

(n
2
)

edges in this graph and
thus, a diametral path, which is a path whose length is equal to the diameter,
cannot use more than

(n
2
)

edges. The diameter of a graph with n vertices is

17
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thus bounded by
(n

2
)
.

But this bound is not precise, and the attentive reader might already have
a better upper bound: the length of a path on n vertices. Indeed, the diameter
of a connected graph G on n vertices is the length of an induced path in G and
such an induced path can have at most n vertices. Thus, the diameter of a
connected graph is bounded by n−1 and this bound is tight as there is at least
one graph that reaches it: the path on n vertices. This is why, extremal graph
theorists often search for extremal graphs, that is, graphs with the maximum
or minimum value of the invariant. Finding such graphs and proving their
extremality gives bounds that are directly tight.

A conjecture in extremal graph theory for the problem of finding an upper
bound can then be defined using three parameters:

• the set of graphs G satisfying the constraints of the problem such as
having n vertices or being connected,

• the invariant I that is being studied,

• and the set of conjectured extremal graphs E ⊆ G = {E ∈ G | ∀G ∈
G, I(G) ≤ I(E)}.

This can be easily made into a lower bound by switching the inequality.
To illustrate this, we consider the invariant called the irregularity of a

graph, which is a measure of how far a given graph is from being regular.
There are different invariants achieving this goal [10, 34, 50, 89]. The one we
will use was introduced by Albertson et al. [4], and uses the imbalances of the
edges.

Definition 5. Let G be a graph and (u, v) ∈ E(G) be an edge between vertices
u and v of G. We define the imbalanceimbalance of (u, v), denoted by imb(u,v), as the
absolute value of the difference between the degrees of u and v (imb(u,v) =
|degG(u)− degG(v)|).
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The irregularity irregularityof a graph G is then simply the sum of the imbalances of
its edges. One should note that since the graphs considered here are undirected
graphs, the edges (u, v) and (v, u) are the same edge and are only counted once.

Definition 6. Let G = (V, E) be a graph. The irregularity of G, denoted by
irr(G), is the sum of the imbalances of its edges:

irr(G)=
∑

(u,v)∈E

imb(u,v)=
∑

(u,v)∈E

|degG(u)−degG(v)|.

Hansen et al. showed the following theorem which is a good example of a
result in extremal graph theory.

Theorem 1 ([53]). Given a graph G with n vertices and m edges,

irr(G) ≤ d(n− d)(n− d + 1) + t(t− 2d− 1),

where

d =

n− 1
2 −

√(
n− 1

2

)2
− 2m

 ,

and

t = m− (n− d)d− d(d− 1)
2

with equality if and only if G is a fanned split graph.

Definition 7 ([53]). Given three integers n, d and k such that n ≥ d and
k ≤ (n− d− 1) a fanned split graph fanned split

graph

is a graph composed of a clique of order d

and a stable set of order n− d where every vertex of the stable set is adjacent
to every vertex of the clique. If k > 0, one of the vertices of the stable set will
be made adjacent to k other vertices of the stable set.

A fanned split graph can be seen in Figure 3.1. It has 6 vertices and 12
edges. Its clique is of order 3 (round vertices) and its stable set (squared
vertices) as well, except vertex 4 is adjacent to vertex 5. Thus, it has a value
of 3 for d and 1 for k.
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1
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3

4
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6

Figure 3.1: A fanned split graph with n = 6, m = 12, d = 3 and k = 1.

For Theorem 1, if we use the previously introduced notation, G would be
the set of all graphs with n vertices and m edges, I is the irregularity and E
is the set containing only the fanned split graph of order n and size m.

Another example is Turán’s theorem [87] stating that, given two integers
n and r (r ≤ n and n = qr + s), the Turán graph T (n, r) is the graph with
the maximum number of edges that does not have Kr+1 as a subgraph. The
Turán graph is the graph composed of s stable sets of order q + 1 and r − s

stable sets of order q where each vertex is adjacent to every other vertex that
is not part of the same stable set.

For this theorem, G is the set of all graphs of order n that do not contain
a clique of order r + 1, I is the size of the graphs and E is the graph T (n, r).

Given G and I, the hardest part of conjecturing is to define the set E .
This is where computers can be used to speed up the research thanks to their
computational power. Different computer systems developed with this intent
as well as systems that can be generally useful in this domain are reviewed in
the next section.

3.2 Computer-assisted research, a state of the art

In extremal graph theory, it is often difficult to give general bounds on
graph invariants, as the number of possible graph configurations infinite. And
even fixing some invariant such as the number of vertices might not help: there
are already more than 11 million non-isomorphic graphs with 10 vertices and
the amount increases exponentially (see Table 3.1).

Just computing some invariant for all those graphs is already no trivial
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Table 3.1: Number of non-isomorphic graphs with a given order [63]

order number of graphs
0 1
1 1
2 2
3 4
4 11
5 34
6 156
7 1 044
8 12 346
9 274 668
10 12 005 168
11 1 018 997 864
12 165 091 172 592
13 50 502 031 367 952
14 29 054 155 657 235 488
15 31 426 485 969 804 308 768
16 64 001 015 704 527 557 894 928
17 245 935 864 153 532 932 683 719 776
18 1 787 577 725 145 611 700 547 878 190 848
19 24 637 809 253 125 004 524 383 007 491 432 768

task. But if we add the fact that many graph invariants are NP-hard to
compute [47] and that we need to compare those values to obtain a valid
bound, it can become quite tedious to study graph invariants. Fortunately,
while computing an invariant for all graphs is impossible, computers nowadays
are fast enough to handle many graphs in a relatively short amount of time.
This and other more advanced ideas have been exploited over the years by
different software in order to produce and study conjectures.
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The first one was GRAPH [28] in 1981. This tool allowed its user to
consult its database of invariants, compute those for given graphs, compare
different graphs, etc. While it does not produce conjectures on its own, this
system came with an automated theorem prover using the properties known
by the system about graphs, invariants, etc. A new, simplified version called
newGraph [12], which does not include the theorem prover component, was
developed in 2003 to be easier to use and more efficient. Another system
allowing the user to study invariants and the relationships between them is
GrinvIn [81] which aims to be used in teaching mathematical reasoning to
students while still being useful in research.

For conjecturing, some tools go one step further and try not only to help
with the exploration of graph invariants, but also with the generation of con-
jectures in extremal graph theory. Graffiti [43] produced more than 7,000
conjectures on its first run thanks to a database of graphs used to compare
invariants by using heuristics. Later, a simpler variant, Graffiti.pc [30], was
built with the objective to be easier to use.

But while producing a large number of conjectures is impressive, it can
make it difficult to choose a conjecture to work on Other tools with less au-
tomation were built, and different strategies were used. AutoGraphiX [22] uses
the variable neighborhood search to try to find conjectures about selected in-
variants or to refute them. This tool can also prove some trivial conjectures
automatically. Another tool using meta-heuristics is Digenes [2] which uses
a genetic algorithm to produce conjectures, but this time on directed graphs.
GraPHedron [75] and its successor PHOEG [31] (presented in section 3.3)
produce conjectures using a different, geometric based, approach presented in
Section 3.3.

Because of the high number of NP-hard problems in graph theory, there
are also databases of invariant values for all graphs or for interesting ones to
avoid having to compute these invariants each time. PHOEG uses a database
of invariant values for all the graphs up to order 10 and more for some spe-
cific graph classes such as trees or planar graphs. The database House of
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Graphs [13] provides researchers with data about many graphs involved in
conjectures or theorems, as well as their value for a number of invariants.
Some systems rather store relationships between graphs, such as GraphsIn-
Graphs [19] which is a database of graphs and their subgraphs.

Most of those tools aim towards the study or generation of conjectures
in extremal graph theory. Some, like PHOEG or AutoGraphiX can try to
provide counter-examples if a conjecture is wrong. AutoGraphiX can also
generate proofs for trivial conjectures. The system GRAPH offers automated
proving, but only using logical inference, which requires a full database of facts
and properties. This requires to update this database with every new proven
result, but also to be able to detect when two properties are equivalent. Hence,
despite using the term automated, this system still requires user interaction.

There are already proofs involving computer software. A widely known
example is the four color theorem [7]. The authors of this proof used graph
theory to reduce the number of possible counter-examples to a finite set of
configurations and a computer program to check them. This theorem has also
been proved later using the Coq system [48].

Those proofs though require the computer system to be perfectly correct.
Indeed, a simple bug in the software could mean that the proof is, in fact,
wrong. The proof of the four-color theorem was not accepted by everyone
when it was published because of this [92]

General proof assistants exist like Coq [9] or Isabelle [90] which provide
specific languages and functionalities to write formal proofs in any domain
defined in their language. The proofs are based on modifying, rewriting, de-
composing propositions in order to end up with trivial or known results. They
can be used both to help in the logical writing of a proof and in checking a
proof

In proof assistants, the purely mathematical aspect of these systems can
also sometimes hinder the researcher by locking the proof in one direction
while some less formal but still correct argument could work. To help with a
proof, instead of focussing on the logic of the arguments, one could also try
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to look for counter-examples of some proof idea, just like enumerating helps
to study conjectures. In extremal graph theory, graph transformations are
often used in proofs called “proofs by transformation” which will be explained
in more details in Chapter 4. For these proofs, it can be difficult to define
a transformation with the properties required by the proof. While there are
many tools to study graph invariants, there is little computer support to study
transformations.

Transformations are not only used in proofs but also in graph genera-
tion [14,15,73] and also studied on their own [64,71]. This is why, we wish to
offer a system allowing the user to study graph transformations by using the
power of computers in order to efficiently generate these transformations and
check their properties.

3.3 PHOEG Helps to Obtain Extremal Graphs

The content of this section comes from the published paper [31] which we
wrote to present this system and its ideas. Minor changes have been made to
better fit in this document.

As presented in section 3.2, there are many tools to help with research
in extremal graph theory with many different ideas and techniques. In 2008,
Mélot presented GraPHedron [75], using an exact approach on small graphs.
Its central idea is to use all graphs up to some order in the invariant space,
and then compute the convex hull of these points. The facets of the hull can
be seen as inequalities between the chosen invariants and the vertices of the
convex hull as extremal graphs.

While tools such as AutoGraphiX and Graffiti evolved over the years [21,
30], GraPHedron did not. This is why we started a complete overhaul of this
tool. This successor, PHOEG1, contains a set of tools aimed at speeding up the
testing of ideas and helping raise new ones. It is mainly composed of a database
of graphs enabling fast queries and computations, but also of a module named

1PHOEG stands for PHOEG Helps to Obtain Extremal Graphs.
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TransProof whose goal is to assist in finding proofs for the conjectures. This
module will be presented in details in Chapter 5. PHOEG is already being
used in scientific research and has led to several results [32,55,59,60].

In the following sections, we present the different aspects of PHOEG and
its new features with respect to GraPHedron and explain some of the main
ideas used to help researchers in studying extremal graph theory.

3.3.1 Invariant space

In extremal graph theory, many results are expressed as inequalities be-
tween graph invariants [6, 43]. This observation led to the idea used by
GraPHedron.

Given at least two graph invariants, GraPHedron represents each graph
as a point in the invariant space with their values for the chosen invariants
as coordinates. The facets of the convex hull for all those points are then
inequalities between the invariants. This is also a different point of view
from AutoGraphiX as instead of using meta-heuristics to find an arbitrary
large graph, GraPHedron focuses on exact methods but is restricted to a
larger amount of smaller graphs (usually, all graphs up to 10 vertices using
precomputed values and up to 12 vertices on the fly). Both approaches are
thus inexact, as GraPHedron could miss a counter-example if it has too many
vertices. Nevertheless, this idea has led to several results [1, 17,18,23,26,58].

The figure 3.2 shows a visual example of this process for the eccentric
connectivity index (ξc) which is presented in Chapter 6. The points correspond
to the connected graphs of order 7 in the invariants space (the size m and ξc)
and the color of each point represents the maximum diameter among the
graphs with same coordinates, that is, the largest diameter among all graphs
whose size and value of ξc correspond to the coordinates of the point.

One of the specificities of PHOEG is that it is possible to explore the inner
points of the polytope. For example, GraPHedron did not have the possibility
to obtain the diameter of the graphs inside the convex hull.
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Figure 3.2: Polytope and graph coordinates for the eccentric connectivity
index (ξc) invariant with fixed order (n = 7) and parameterized size.

3.3.2 Invariants database

We stated in section 3.2 that while it is fast and easy to compute some
invariants on some classes of graphs, others can be computationally costly.
This is especially inconvenient when there are millions of graphs to consider.
This problem was tackled in GraPHedron by only computing their values once
for each graph and then storing their values in files.

As invariants are constant by isomorphism, each graph is only considered
once thanks to its canonical form computed by the Nauty software [74].

In PHOEG, the data storage and query answering are delegated to a rela-
tional database management system. Complete finite classes of graphs, along-
side their invariants values, are listed in tables, e.g., all non-isomorphic graphs,
trees, claw-free connected graphs, up to some order.

The goal of this tool is to be used by researchers in graph theory. As they
are not necessarily accustomed to the writing of SQL queries, the addition of
a web interface is currently underway to provide ease of use.

3.3.3 Forbidden subgraph characterization

In graph theory, classes of graphs are often described by means of a for-
bidden graph characterization. Such a characterization of a class G of graphs
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is given by an obstruction set O containing the forbidden graphs. A graph G

is a member of G if and only if it has no element of O as substructure (e.g.,
induced subgraph, graph minor). A new feature in PHOEG (mainly developed
by Pierre Hauweele) provides a tool addressing this matter. The substructure
relations define a preorder. Given a finite class of graphs or a class mem-
bership function and a specific substructure relation, PHOEG computes the
minimal graphs (not) in the class for this relation. These minimal graphs are
obtained by iteratively removing graphs that are either supergraphs of some
other graph in the class or that are not subgraphs of one or more graphs in
the class. If the iteration of the class satisfies the natural order relation of the
couple (order, size) of the graphs, then the graphs added to the accumulator
are actual minimals and therefore do not need to be ruled out. The output
set of minimal graphs provides a proposed obstruction set for the forbidden
graph characterization of the input class.

3.4 Conclusion

As we saw in this chapter, the first step in extremal graph theory is find-
ing the structure of extremal graphs. This step benefits from existing software
that can provide researchers for candidates extremal graphs thanks to differ-
ent methods. One of these tools is PHOEG, which we are developing, and
which uses an exact approach on large quantities of small graphs. This allows
researchers to extract information about invariants and structures of graphs.

The next step in extremal graph theory, proving the conjecture, does not
have as much tooling. A reason for this is the need to translate formal math-
ematics into a software usable by all. But restricting ourselves to specific
proving methods, it becomes possible to provide assistance in writing a proof
by exploiting the speed of computers. To this extent, we will focus on proofs
by transformations, which are presented in the next chapter.
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Chapter 4

Proofs by transformation

This chapter presents the notion at the heart of the thesis the proof by
transformation. We first explain and present the ideas of a proof by transfor-
mation. We illustrate this by giving different examples from the literature. We
then formalize them using the concept of the metagraph of transformations.

4.1 Analysis of proofs by transformation

Once a conjecture in extremal graph theory has been written, it needs to
be proven or disproved. If the conjectured bound is tight, this boils down to
proving that the conjectured extremal graphs are indeed extremal.

To prove that a graph is extremal, a common method that often appears in
the literature is the proof by transformation. Among the many ways Turán’s
theorem has been proven, there exists a proof by transformation [3]. This type
of proof works by showing that, for any non-extremal graph, we can transform
it into a new graph with a value for the invariant that is closer to that of the
extremal graphs. Note that, since the invariant value is different, this new
graph is not isomorphic to the previous one.

For example, given a connected graph G with n vertices and diameter λ

that is not a path, we can take an induced path v1, . . . , vλ of length λ in G.
Then, we can take any vertex x not part of this path, completely disconnect it

29
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and then add an edge between x and v1. If this new graph is connected, it has
diameter λ + 1 and thus, G is not extremal with respect to the diameter. If
this works for any connected graph other than the path, we have shown that
all the other connected graphs have a smaller diameter than the path.

But of course, this transformation is not always correct. While the length
of the path will increase, we could obtain a disconnected graph where the
diameter is not defined. In general, finding transformations that will always
work is no trivial matter.

Let us consider another problem: finding an upper bound on the irregu-
larity of a graph with n vertices and m edges.

Using one of the tools for computer-assisted conjecturing mentioned in sec-
tion 3.2, we can find that the extremal graphs are fanned split graphs as stated
by Theorem 1 (p. 19). This theorem was proven using two transformations
that are specific rotations.

Let G be a graph of order n and size m that is not a fanned split graph.
Let us start by defining D as the set of vertices of degree n− 1 in G and d the
number of such vertices (d = |D|). We call the vertices in D the dominating
vertices of G.

Let w be a vertex of maximum degree in V (G)−D. We know this vertex
exists since G is not a fanned split graph and therefore, D ∪ V (G) 6= ∅. Since
w is not a dominant vertex, G also contains a vertex u that is not adjacent to
w and not dominant.

Hansen et al. showed in their proof of Theorem 1 that, if u has a neighbor
v that is not dominant, the graph obtained by the rotation rot(u, v, w) has
a higher irregularity than G. This shows that, for any graph G to which
the transformation can be applied, we can obtain a new graph with a higher
irregularity and that G is therefore not extremal. An example of this rotation
is show in Figure 4.1.

Now, if u is only adjacent to dominant vertices and G is not a fanned
split graph, there is at least one edge (v1, v2) (degG(v1) ≥ degG(v2)) such that
{v1, v2} 6⊆ D ∪ {w}. Otherwise, every non-dominant vertex that is not w is
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Figure 4.1: The first rotation of the proof of Theorem 1.

adjacent to only dominant vertices and possibly w and G would be a fanned
split graph.

In this case, if we applied the rotation rot(v1, v2, u), the graph G′ produced
by this rotation fits the conditions to apply the rotation rot(u, v1, w) and we
would obtain a new graph G′′ with a higher irregularity than G′. This time,
G′ might not have a higher irregularity than G but Hansen et al. showed
that irr(G) ≤ irr(G′) and thus, irr(G) < irr(G′′). Again, all the graphs where
this second rotation applies cannot be extremal, since it was shown that there
exists a graph G′′ with a higher irregularity but with the same order and size.
This second rotation is illustrated in Figure 4.2. One might notice that the
result of this second rotation is exactly the graph being transformed by the
first rotation in Figure 4.1.

v2
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w

u

v2

v1

w

u

Figure 4.2: The second rotation of the proof of Theorem 1.

From those two rotations and their properties, every graph with n vertices
and m edges that is not a fanned split graph fits the conditions of one of the
two. Thus, for every graph G with order n and size m that is not a fanned split
graph, there exists a graph G′ with same order and size but higher irregularity.
This proves that the maximum irregularity can only be reached by a fanned
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split graph on n vertices and m edges.

This example shows that we cannot simply choose a generic transforma-
tion, but that we also need to see when this transformation works. While some
cases can be solved by applying the same transformation several times, others
might require different transformations depending on the situation.

In their paper, Hertz et al. use 42 different transformations [57]. If G
is the set of all the graphs covered by their theorem and E is the set of the
extremal graphs (E ⊆ G), we denote by Gi the set of graphs that were not
proven to be non-extremal after applying transformations 1 to i. We also
define G0 = G. The way these transformations work is by restricting the set of
possibly extremal graphs until this set only contains the extremal ones, that
is, for some transformation i, Gi ⊂ Gi−1 and G42 = E . Finding the special
cases of a transformation and solving them can thus be a complex task.

But even with those cases identified, simple transformations are not always
enough. Some invariants might require more than adding an edge or applying
a rotation. Sometimes they can be as complex as replacing a part of a graph
with an entirely different subgraph. Hansen et al. show that the average
distance between two vertices of a connected graph is at most half of the max-
imum order of an induced forestinduced

forest

, that is, an induced subgraph graph without a
cycle [51]. They do so using a proof by transformation with 5 transformations.
An example of each of these transformations is shown in Figure 4.3. Trans-
formations 1, 3 and 5 are quite simple. Transformation 1 consists in removing
an edge, Transformation 3 is a rotation and Transformation 5 is the removal
of a vertex. Transformation 4 is already more complex as it involves removing
all the neighbors of a vertex and then adding an edge between this vertex and
all the vertices of a clique. The second transformation is completely different
from what we saw up to now as it does not consist in removing and adding
specific edges or vertices, but it removes a subgraph entirely to replace it with
a different structure. In Figure 4.3, the C4 on the left is replaced by a C3 with
a pendant vertex.

Therefore, some tool to check as many configurations as possible can be
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Transformation 1

Transformation 2

Transformation 3

Transformation 4

Transformation 5

Figure 4.3: Examples of the transformations used in the paper from Hansen
et al. [51].

a great help in finding the special cases of a transformation in order to refine
them or maybe to find examples where a transformation does not work. For
example, cases when it will produce a graph with a lower value for the studied
invariant instead of a higher value.

4.2 The metagraph of transformations

Given a set of graphs G and a set of transformations T , we can build a
directed graph with vertex set G and where an arc from vertex A to vertex B
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means that there is a transformation τ ∈ T such that for the graphs A and B,
B ∈ τ(A). We call this graph, the metagraph of transformations or metagraph
for short.

Definition 8. Let G be a set of graphs and T be a set of graph trans-
formations. Let M be the directed graph with vertex set G and arc set
{(G, U) ∈ G × G | ∃τ ∈ T ∧ ∃H ∈ τ(G), H 'U}. This graph is the meta-
graph of transformationsmetagraph of

transforma-
tions

for the given graph set G and transformation set
T .

Figure 4.4 shows such a metagraph with the set of graphs with 5 vertices
and 5 edges as vertices. The set of transformations used is the set containing
only the first transformation from the proof of Theorem 1. The irregularity of
each graph is written next to it. Note that while this transformation is a rota-
tion, not every rotation satisfies the constraints defined by the transformation.
Thus, this is not a metagraph for the rotation but a subgraph of it.

By analyzing this metagraph, we can easily see that this only rotation
is not enough to prove the theorem, but for the graphs on 5 vertices and 5
edges, there is no situation where the rotation does not strictly increase the
irregularity.

10
4

44
6

0

Figure 4.4: Metagraph representing the first transformation of proof of theo-
rem 1 on graphs with 5 vertices and 5 edges.

With this representation, it becomes possible to study properties of graph
transformations on a set of graphs by studying a directed graph. This idea has
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already been used to study transformations properties, such as the diameter
of a transformation, which is the diameter of the metagraph [20,42].

In our context, we can use this metagraph to help build a proof by trans-
formation. If the conjecture we are trying to prove is for an upper bound on
invariant I over the set of graphs G, writing a proof by transformation for this
conjecture requires finding a set of transformations T such that for any non-
extremal graph G in G, there is a transformation τ in T and I(G) < I(τ(G)).
Since we have a set of graphs and a set of transformations, we can build a
metagraph. Then, in order to be able to write a proof by transformation
using T , the metagraph needs to have the following two properties:

1. every arc (A, B) from the metagraph is such that I(A) < I(B),

2. the extremal graphs are the only vertices of the metagraph without out-
going arcs, that is, without arcs leaving this vertex.

The first property means that there is no situation where applying a trans-
formation will not increase the invariant. This would be problematic, as the
goal is to show that every non-extremal graph can be transformed into a new
graph with a higher value for the invariant. This property also implies that the
graph is acyclic because of the strict inequality. For the sake of readability, we
will refer to arcs in the metagraph respecting the first property as improving
arcs improving

arcs
.
The second property makes sure that the chosen set of transformations

suffices to show the non-extremality of all the graphs in G by imposing that
there is no non-extremal graph for which we cannot find a graph with a higher
value of the invariant. Also, since every arc is supposed to be an improving
arc from the first property, if one extremal graph has an outgoing arc, the
conjecture is wrong because there is a graph in G with a higher invariant value
than the extremal graph.

If a chosen set of transformations does not produce a metagraph with those
properties, it is therefore useless to try and use only those transformations in a
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proof. Looking at the metagraph can thus provide the researcher with counter-
examples to their proof idea and save them time they would have spent trying
to write it. If, on the other hand, no counter-example is produced, it can
reinforce their ideas that the proof by transformation would work.

It would be valuable to have a tool allowing researchers to try their ideas
beforehand and explore the metagraph more in depth. Such a tool is currently
being developed and is presented in the next chapter.



Chapter 5

TransProof

As we explained in section 4.2, being able to explore the metagraph formed
by a set of graphs G and a set of transformations T would be helpful to
researchers in order to check if their idea of a proof by transformation is
sound. This is why we are currently developing TransProof, a tool to compute
this metagraph and provide ways to explore it1.

The next section illustrates how, having computed a metagraph of trans-
formations, one can analyze it to find potential flaws in a proof by trans-
formation. The following sections explain the ideas used by TransProof to
provide help to researchers. The second section presents different methods
to remove redundancy in the metagraph in order to make it easier to store
and study. Section 5.3 explores the different types of databases that can be
used to store a metagraph, as well as to provide powerful support for queries.
In section 5.4, we talk about different possibilities to provide a user-friendly
way for researchers to define their own transformations without the need to
know a programming language. Finally, the last section explores ideas that
can be used to extract more information from the amount of data produced
by TransProof.

1The source code for TransProof is available at https://github.com/

umons-dept-comp-sci/PhoegTransRust and the source code for the custom graph library
developed alongside it at https://github.com/umons-dept-comp-sci/PhoegRustGraph.
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https://github.com/umons-dept-comp-sci/PhoegTransRust
https://github.com/umons-dept-comp-sci/PhoegTransRust
https://github.com/umons-dept-comp-sci/PhoegRustGraph
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5.1 Introduction

The main use of TransProof is to compute a metagraph for a given set
of graphs and transformations. This metagraph is then stored in a database
which can be queried to extract information.

Those queries allow checking if there are no counter-examples to an idea of
a proof by transformation (i.e., arcs that are non-improving). But thanks to
the query language offered by the database, more complex queries can be used.
For example, it is possible to know if there is at least one improving arc for
each non-extremal graph or if some non-extremal graph cannot be improved.

66 7

Figure 5.1: Removing an edge can increase the diameter or not.

For example, in Figure 5.1, the graph in the middle has a diameter of 6 and
removing an edge can produce several non-isomorphic graphs. It can produce
a graph with the same diameter (the left one) and a graph with a higher
diameter (the right one). This is an example where exploring the metagraph
can show that the selected transformations need to be refined or constrained
by adding conditions to keep only those that increase the diameter. Indeed,
here we know that removing an edge might not always work, but we know that,
for the graph in the middle, there is an edge that will increase the diameter if
removed and that removing an edge might be an interesting lead.

But if we consider the graph of Figure 5.2, any removal of a single edge will
not change the diameter. However, removing the two edges (2, 5) and (3, 5)
produces a path on 5 vertices with a higher diameter.
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Thus, beyond verifying if a given transformation always works to improve
an invariant, another possibility is to check whether a combination of several
transformations will always improve the invariant when a single transformation
does not suffice. For example, if removing an edge does sometimes decrease
the irregularity, maybe removing two edges or removing an edge and then
performing a rotation will work.

1 2 3 4

5

Figure 5.2: Removing any edge without disconnecting the graph will not in-
crease the diameter.

Of course, it is not possible to build a metagraph with an infinite number
of vertices and TransProof cannot guarantee that the studied transformations
suffice to build a proof. But only considering graphs with small order (up to
10 vertices) can already reveal problems and provide information to refine the
proof and, hopefully, correct it.

5.2 Removing symmetries

When computing transformations for a metagraph, the number of instances
on a single graph can be exponentially large. For example, removing an edge
on a complete graph of order n in a naive fashion will produce n(n−1) results
as each edge can be counted in both directions. Of course, if we number the
vertices, we can simply impose that an edge (x, y) is removed only if x < y.
But we still have n(n−1)

2 cases. For a small single graph, this might not be a
problem. But if we consider this increase multiplied by the number of graphs
on n vertices, the amount of data produced quickly becomes too large to
handle even with modern computers. Only considering the connected graphs
with 10 vertices would produce at least 9 · 11 716 571 = 105 449 139 or more
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than a hundred million of results2.
But, for example, in a complete graph, all the edges are the same with

regard to the transformation. No matter which edge we remove, we obtain
the same result. The same problem arises to a smaller extent with other
graphs. In the graph shown in Figure 5.3, removing the edge (3, 4) or the edge
(2, 5) would give identical results, as we are disconnecting a pendant vertex
adjacent to a vertex of a clique of order 3 in both cases.

1

23

4

5

Figure 5.3: In this graph, vertices 4 and 5 are symmetrical.

However, the problem is more complex than just obtaining the same re-
sult. In fact, two different transformations can produce the same graph. In
Figure 5.4, we can see two different rotations on the same graph, with the
bold edge being removed and the dashed edge being added. These two rota-
tions produce the same graph, but they are not similar. In the left case, we
are only modifying vertices of degree ≥ 2 but in the right case, the pendant
vertex is made adjacent to another vertex. A researcher interested in pendant
vertices could consider only the right case, while a researcher working on an
invariant that is not modified by pendant vertices might be interested in only
the left case. It is not enough to simply discard instances that produce the
same graph.

To obtain the symmetries of a given graph, we will need to consider all the
automorphisms of a graph G. The set they form is called the automorphism
groupautomor-

phism group

of G and is actually a set of permutations of the vertex set, denoted by
Aut(G). In this section, we will use the cycle notation to represent a permu-
tation. For example, the permutation of the set {1, 2, 3, 4} that permutes 1
with 3 and keeps 2 and 4 at the same place will be noted (1 3)(2)(4).

2Every connected graph on 10 vertices has at least 9 edges.
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Figure 5.4: Both of the different transformations of the graph (top) produce
the same graph (bottom).

It is possible to group vertices together based on whether there exists
an automorphism in the automorphism group that permutes them. Given a
vertex v in a graph G = (V, E), the orbit orbit of a

vertex
of v is the set {w ∈ V | ∃p ∈

Aut(G) such that p(w) = v}. Since permuting every vertex with itself is also
an automorphism, the orbit of a vertex contains this vertex. Also, because the
inverse of a permutation that is an automorphism is also an automorphism, if
a vertex w is contained in the orbit of another vertex v, then v is contained
in the orbit of w. Thus, if two vertices are in the orbit of one another, their
orbits are the same subset of vertices. The set of the orbits of all the vertices
of G forms a partition of the vertex set of G. We call this partition the orbits orbits

of G.

In Figure 5.5, we see the only two automorphisms of the graph. The
vertices 4 and 5 are permuted together, as well as the pair of vertices 3 and 2.
The vertex 1 is never permuted. Thus, we have three orbits: one composed of
vertices 4 and 5, one with 2 and 3 and a last one containing only 1. We will
note the orbits using the following notation: {{1}, {2, 3}, {4, 5}}.

In this section, we present three methods that can be used to remove
the symmetries when computing transformations. The first one, the iterating
method, uses the orbits when iterating over the vertices of the graph to avoid
generating symmetrical instances of a transformation. The second method,
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1

23

4

5

(1)(2)(3)(4)(5)

1

32

5

4

(1)(2 3)(4 5)

Figure 5.5: These two permutations are the only automorphisms of the graph
G of Figure 5.3, which means that the orbits are {1}, {2, 3} and {4, 5}.

the hypergraph method uses a different approach and instead produces a spe-
cial type of graph called a hypergraph that will then be used to remove the
symmetries. The subgraph method is an adaptation of a subgraph isomorphism
algorithm to include the idea of the iterating method. The three approaches
have different strengths and weaknesses. We thus give a comparison is given
in Subsection 5.2.4.

5.2.1 The iterating method

Using the instances of a transformation without any filtering of symmetries,
a naive approach would be to simply consider all the possible pairings of a
vertex in the basis and a vertex in the graph to which we want to apply a
transformation. More precisely, to find an instance of a transformation in
a graph, we would normally try to map the first vertex of the basis of this
transformation with every vertex of G. And for every mapping, we would try
to map the second vertex of the basis to another vertex of G and so on.

For example, if we try to apply a transformation with P3 as a basis, we will
look for all triplets of vertices (u, v, w) in G that form a path. Algorithm 1
does so in a naive fashion. If we label the vertices of the basis as p1, p2 and p3

with p1 and p3 being the two vertices with degree 1, this algorithm will iterate
over every vertex u of G to try mapping u to p1. For each mapping of p1, it
will iterate over every vertex v of G to map it to p2. And for every mapping
of p1 and p2, the algorithm will search for a vertex w that could be mapped
to p3.
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Algorithm 1: Algorithm NaivePath3(G)
Input: A graph G

Output: The paths of order 2 in G

1 foreach vertex u in G do
2 foreach vertex v in G adjacent to u do
3 foreach vertex w in G adjacent to u and not adjacent to w do
4 output the path (u, v, w)
5 end
6 end
7 end

This algorithm will produce all the induced paths of order 3 in G and can
then be used to compute the instances of the transformation. But obviously,
there will be duplicates. If we permute the two extremities of a path of order
3, we still obtain a path of order 3, using the same set of vertices. This
is an automorphism. Note that, because we are looking for instances of a
transformation, the path (1, 2, 3) and the path (3, 2, 1) might not be equivalent
with regard to the transformation. For example, the transformation could
consist in adding a vertex pendant to the first vertex of the path.

Given a vertex x in the basis of a transformation, instead of trying to map
it to every vertex of G, we can consider only one vertex per orbit of G. Indeed,
if two vertices a and b of G are in the same orbit, there is an automorphism
of G that permutes a and b. Thus, all the instances where x is mapped to b

can be obtained from an instance where x is mapped to a simply by applying
an automorphism of G. Thus, in Figure 5.5, we only need to consider vertices
1, 2 and 4.

But this is not enough and would not work. In our example, we would never
consider the edge (2, 5) or the edge (3, 4) as they both contain a vertex that
is not part of the considered vertices. This is because once we select some
elements of the graph, not all automorphisms remain valid. For example,
if we select vertex 2 as the first vertex of an edge, we can no longer allow
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automorphisms that permute 2 with another vertex. Indeed, we would then
be searching for an edge (2, v) and thus, we must only consider vertices v that
are adjacent to 2 and not to some vertex in the same orbit as 2. Actually, the
orbits are different. In fact, in the example, once 2 is selected, no symmetries
remain as there are no automorphisms that do not permute 2 with another
vertex except for the automorphism that permutes every vertex with itself.
Thus, the orbits become {{1}, {2}, {3}, {4}, {5}}. When computing the orbits
of a graph, we will sometimes need to restrict the automorphisms we consider
by ignoring those that permute a vertex v with another vertex. We will call
this operation fixingfixing the vertex v. And when computing the orbits of a graph
G, we will then only consider automorphisms p such that for every vertex v

that was fixed, p(v) = v instead of using all the automorphisms of G.

The procedure to find instances of a transformation in a graph G is then
adapted to use the orbits. We will try to map the first vertex u of the basis to
one vertex per orbit. For every mapping of u, we will fix u and compute the
resulting orbits. These orbits are then the orbits produced by the set of all
the automorphisms that do not permute u with another vertex. Then, we will
try to map the next vertex v of the basis to one vertex per orbit for the new
orbits. After we exhausted the possibilities for v, we unfix u, thereby allowing
all the automorphisms permuting u again, and try to map it to another vertex
of G. Since we only consider one vertex per orbit of a graph G, we will often
use the orbits setorbits set of G which is the set obtained by taking only the vertex
with the lowest index in every orbit of G.

Algorithm 2 is an adaptation of the previous one that is now using the
orbits of G to find all the instances of a transformation having a path (u, v, w)
of order 3 as its basis. It starts by computing the orbits set of G and iterates
over it to find candidates for the vertex u. Because we are using the orbits set,
we only consider one vertex per orbit. For every vertex of G that is mapped
to u, it fixes this vertex and then computes the new orbits set. Thus, when
computing the orbits set, we only consider automorphisms such that u is not
permuted with any other vertex. The same principle is applied when searching
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Algorithm 2: Algorithm OrbitsPath3(G)
Input: A graph G

Output: The paths of order 2 in G

1 orbits ← the orbits set of G

2 foreach vertex u in orbits do
3 fix the vertex u

4 orbitsu ← the new orbits set of G

5 foreach vertex v in orbitsu adjacent to u do
6 fix the vertex v

7 orbitsv ← the new orbits set of G

8 foreach vertex w in orbitsv adjacent to v and not to u do
9 output the path (u, v, w)

10 end
11 unfix the vertex v

12 end
13 unfix the vertex u

14 end

for candidates for the vertex w. When the possible candidates for vertex v

have been exhausted, the algorithm moves on to the next candidate for u.
This means that the previously fixed vertex can now be permuted again by
automorphisms because it is no longer a candidate for u.

To illustrate the procedure, we try to find all non-symmetrical edges (a, b)
of the graph in Figure 5.5. The detail is visible in Table 5.1. The first column
is the first vertex a of the edge, the second column is the second vertex b and
the last column is the orbits of the graph when fixing the selected vertices.
Since our graph is undirected, we only consider edges where a < b. In the first
line, we have not fixed any vertex and thus have the orbits {{1}, {2, 3}{4, 5}}.
We will only consider the vertex with the lowest number in each orbit. Thus,
the first vertex of G we consider is 1. Once we are done generating edges
starting with 1, we will try using vertex 2 and vertex 4. Vertex 1 being fixed
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does not change the orbits, as 1 could not be permuted with any other vertex
of G before. The first candidate for b is 2 and since 2 is adjacent to 1, we
found an edge (1, 2). This is shown by the gray background for the line. The
second candidate for b is 4 which is not adjacent to 1. We did not consider
edges (1, 3) or (1, 5) since 3 is in the same orbit as 2 and 5 is in the same orbit
as 4 when 1 is fixed.

Once we considered every non-symmetrical edge (1, b), we unfix 1 and select
another candidate for a which is 2 according to the orbits. This time, fixing
2 produces orbits where every vertex is alone, and we have to consider all the
vertices b such that 2 < b. The last candidate for a is 4 since 3 is in the same
orbit as 2 when no vertex is fixed, and we only explored the vertices starting
with 2. But there is no edge (4, b) where 4 < b. In the end, we generated the
three edges (1, 2), (2, 3) and (2, 5). All the other edges are symmetrical to one
of those three.

This iterating method allows generating instances of a transformation on a
graph while avoiding some useless symmetries. But, until now, we considered
a transformation impacting only one edge, but transformations can be more
complex. It is interesting to note that simply preventing selected vertices from
being swapped in a permutation will not filter out all the possible symmetries.
Consider a transformation which, given an edge (a, b) and a vertex c that is
not adjacent to a and b, removes (a, b) and adds the two edges (a, c) and (c, b).
This is called a detourdetour .

a b

c

Before

a b

c

After

Figure 5.6: Illustration of a detour.

If we try to apply this transformation to the graph in Figure 5.7, we will
first select a vertex a and then a vertex b. Suppose we selected vertices 1 and
2, we then need to select a vertex c that is not adjacent to 1 and 2. We can
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Table 5.1: Procedure of iterating over the non-symmetrical edges of the graph
in Figure 5.3.

first vertex second vertex orbits

{{1}, {2, 3}, {4, 5}}
1 {{1}, {2, 3}, {4, 5}}
1 2 {{1}, {2}, {3}, {4}, {5}}
1 {{1}, {2, 3}, {4, 5}}
1 4 {{1}, {2}, {3}, {4}, {5}}

{{1}, {2, 3}, {4, 5}}
2 {{1}, {2}, {3}, {4}, {5}}
2 3 {{1}, {2}, {3}, {4}, {5}}
2 {{1}, {2}, {3}, {4}, {5}}
2 4 {{1}, {2}, {3}, {4}, {5}}
2 {{1}, {2}, {3}, {4}, {5}}
2 5 {{1}, {2}, {3}, {4}, {5}}
2 {{1}, {2}, {3}, {4}, {5}}

{{1}, {2, 3}, {4, 5}}
4 {{1}, {2}, {3}, {4}, {5}}
4 5 {{1}, {2}, {3}, {4}, {5}}
4 {{1}, {2}, {3}, {4}, {5}}

{{1}, {2, 3}, {4, 5}}

choose either 5 or 6, and they are symmetrical. But since vertices 1 and 2
are already selected, they are fixed, and we ignore the automorphisms that
permute them together. There is no non-trivial automorphism that does not
permute 1 and 2 but permutes 5 and 6. Because of this, we will obtain the
two instances composed of the edge (1, 2) and either vertex 5 or 6 and those
two detours are symmetrical. Fortunately, we will still filter some symmetries,
such as not trying vertices 5 and 6 as candidates for a.

But here, vertices 5 and 6 are symmetrical with respect to the edge (1, 2)
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Figure 5.7: If 1 and 2 are fixed, vertices 5 and 6 are no longer symmetrical
and we miss two symmetrical transformations.

and not to the vertices. And in this case, using either the edge (1, 2) or the
edge (2, 1) for a detour will produce two symmetrical applications of the trans-
formation. Thus, instead of fixing vertices 1 and 2, we could only fix the edge
(1, 2). More precisely, instead of considering only the automorphisms that do
not permute 1 and 2 with any other vertex, we could relax this restriction and
also consider automorphisms that permute vertices 1 and 2 together. This is
both an advantage and a disadvantage of the iterating method. We can fur-
ther improve the amount of filtered symmetries, but this improvement requires
changes that are specific to the transformation.

Another situation where not all symmetries are filtered happens when we
have transformations involving subgraphs. Let us imagine a transformation
consisting in linking a vertex to all the vertices of a clique of size 3. Iterating
over the orbits set, we could first look for a vertex of this clique, then a second
one, then the third one and finally the vertex to link to the clique. But in the
graph of Figure 5.8, looking for the first vertex would get us two candidates
that are not symmetrical: 1 and 2. Only, those two vertices are part of the
same clique and would both give us the clique {1, 2, 3}. And since there is no
difference between the vertices of the clique in the transformation, we would
have exactly the same result twice.

This is caused by the fact that we are not looking for three specific vertices
that happen to form a clique, but we are looking for a clique without any
difference between its vertices. In fact, some transformations such as the
rotation are asymmetrical because there are vertices in their basis that cannot
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1

23 4

5

Figure 5.8: Vertices 1 and 2 are in different orbits but they are part of the
same K3.

simply be swapped or the application produced from an instance would be
different. In the case of a basis that is simply a clique, all the vertices can be
swapped and still produce the same instance. This would be a symmetrical
transformation.

Definition 9. Let τ be a transformation with basis H. We say that τ is
a symmetrical transformation symmetrical

transforma-
tion

if the orbit of each vertex of H is the whole
vertex set of H, that is, if for every pair of vertices u and v of H, there is an
automorphism p of H such that p(u) = v.

Symmetrical transformations are not handled efficiently by a generic it-
erating method. A more customized method could impose an order on the
vertices of that triangle. Therefore, the iterating method is not well suited to
produce a generic algorithm working for any basis, but would rather serve as
a method that can be used to write algorithms for specific transformations.
While this is not a problem for someone used to working with symmetries, it
would not be user-friendly.

In the next section, we will define a different method that can filter out
the symmetries in symmetrical transformations while requiring far less cus-
tomization in order to remove as many symmetries as possible.

5.2.2 The hypergraph method

The first example given for the iterating method was to iterate over the
edges of a graph while avoiding the symmetries by using the orbits of the
vertices. It is possible to compute the orbits of the edges of a graph G by
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constructing a new graph L whose vertices are the edges of G. Such a graph
L is called the line graph of G and is defined as follows.

Definition 10. Let G = (V, E) be a graph, the line graphline graph of G is the graph
L such that each vertex of L represents an edge of G and given two vertices e

and f of L, there is an edge (e, f) in L if and only if the edges of G represented
by e and f share an extremity.

Figure 5.9 shows a graph G and its line graph. We can see that the edge
(3, 4) of G is represented by the vertex 3–4 and is adjacent to the vertex 2–3,
representing the edge (2, 3) of G, because the edges they represent are both
incident to the vertex 3 of G.

1

23

4
5(1,2)(1,3)

(2,3)

(3,4)
(2,5)

G

2–3

3–4

1–3 1–2

2–5

Line graph of G

Figure 5.9: The graph of Figure 5.5 and its line graph.

Computing the orbits of the vertices of the line graph of G gives us the
orbits of the edges of G. This way, we compute the orbits once and not
every time we fix a vertex. In Figure 5.9, the orbits of the line graph are
{{1−2, 1−3}, {2−3}, {2−5, 3−4}. Thus, if we consider one vertex per orbit,
we would select (1, 2), (2, 3) and (2, 5) which correspond to the same edges we
obtained previously with the iterating method.

Using the line graph allows us to compute the orbits only once. This is
interesting as there is no know algorithm having a polynomial worst-case time
complexity to compute the orbits at the time of writing. But, the number of
edges can be larger than the number of vertices. And in this case, computing
the orbits of a larger graph once can be slower than computing the orbits of
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the original graph n times. Choosing one of these methods should then depend
on both the order of the graph and its size.

When the basis of the transformation is more complex than a simple edge,
however, the method of the line graph cannot be used as we are looking for
a more complex structure than an edge. Thus, we have to adapt the idea of
the line graph. Instead of building a graph L where each vertex is associated
with an edge of the graph G, we use a graph where each vertex corresponds
to an instance of the transformation. This means that we are actually back to
the previous problem of generating all the instances of a transformation after
generating them. Still, the previous consideration applies, as having a small
number of instances of a transformation would produce a smaller graph on
which to compute the orbits.

However, the adjacencies of the instances with more than two vertices are
not as easy to represent as a graph. Indeed, in the line graph, we know that if
there is a path between two vertices, this path is made of edges and vertices
which are both represented in the line graph. But if, instead of trying to
represent edges, we wish to represent triangles (cliques of order 3), a path
between two triangles is made of edges and vertices. But if we want a graph
where the vertices are the triangles of the original graph, how do we represent
the edges in this path of the original graph? For example, how do we represent
the configuration in Figure 5.10 in a graph where vertices can only represent
triangles? We cannot simply state that two triangles are adjacent if there
is a path between them because we would lose much information about the
structure of the original graph such as the length of that path, the fact that
two paths cross, the adjacencies of the vertices of the path, etc.

1

2

3

4
5

6

7

Figure 5.10: These triangles are not adjacent but not disconnected.
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Fortunately, there is already a model based on graphs to represent the
adjacencies of such subgraphs: hypergraphs. A hypergraphhypergraph is a graph on
which we add hyperedges. A hyperedgehyperedge is simply a set of vertices of the graph.
If we want to extend the concept of the line graph to triangles, for every
triangle, we add a hyperedge containing the vertices of that triangle. This
can be generalized to every transformation if we can find all its instances in
order to build this hypergraph. We will refer to this method as the hypergraph
methodhypergraph

method

.

Definition 11. Given a transformation T and a graph G, we define the hy-
pergraph of instanceshypergraph

of instances

of T on G as the hypergraph having G as its underlying
graph and where each hyperedge represents an instance of T on G.

To compute the hyperedges, we could pre-compute every instance of the
transformation in the graph and then compute the orbits of this hypergraph.
Computing those orbits is equivalent to computing the orbits of a graph that is
a copy of the underlying graph, where we added one vertex per instance of the
transformation and made this vertex adjacent to each vertex of the instance.
The orbits of those hyperedges are the orbits of the vertices we added. We
will refer to this graph as the graph representationgraph repre-

sentation
of the hypergraph. An

illustration of this method can be seen in Figure 5.11. The large circles in the
left graph are the hyperedges, each containing a triangle. The right graph is
the equivalent graph used to compute the orbits. If we restrict ourselves to
automorphisms that do not permute vertices a and b with any vertex of the
original graph, their orbits will correspond to the orbits of the triangles.

The generic algorithm is given as Algorithm 3. We do not give details on
the computation of the orbit set because there are already implemented algo-
rithms to perform this operation while restricting the allowed automorphisms,
such as in the Nauty software [74].

Note that a limitation of this method is that it does not differentiate be-
tween different instances having the same set of vertices. Indeed, it makes
no difference between instances of an asymmetrical transformation using the
same set of vertices. For example, if we consider two rotations rot(a, b, c) and
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Figure 5.11: A hypergraph (left) and its representation as a graph to compute
the orbits (right).

Algorithm 3: Algorithm HyperMethod(G, B)
Input: A graph G, the basis B of a transformation
Output: The non-symmetrical instances of the transformation

1 V ← V (G);
2 A← an empty set;
3 foreach Instance I of the basis B do
4 Insert a vertex v in G;
5 Add v to the set A;
6 Make v adjacent to all the vertices of I in G;
7 end
8 Compute the orbit set of G when forbidding automorphisms that

permute a vertex in A with a vertex in V ;
9 foreach Vertex v in A do

10 output the subgraph induced by the neighbors of v in G;
11 end

rot(b, c, a) that are not necessarily symmetrical, this hypergraph method would
treat both rotations as the same hyperedge.

The symmetry of the transformation can be added to the graph repre-
sentation of the hypergraph. Given a hyperedge, for each instance of the
transformation that contains the vertices of this hyperedge, we add a copy
of the induced subgraph formed by the vertices in the hyperedge and apply
the transformation to this copy. Every copy v′ of a vertex v is then made



54 CHAPTER 5. TRANSPROOF

adjacent to the original vertex v and to a vertex representing the instance. To
differentiate this method from the original hypergraph method, we will refer to
it as the hypergraph method with copies.

For example, if one wishes to remove one vertex from a path of order
3, there are three possibilities, and they are not all symmetrical. Indeed,
removing an extremity or the central vertex is different. To account for this
difference, we can adapt the hypergraph method as seen in Figure 5.12. For
every application of this vertex removal, such as removing vertex c, we add
a copy of the instance and apply the transformation. In the figure, we add
vertices a1 and b1 for the application removing c. Every copy is then made
adjacent to the original. We then add one more vertex per application that
will be adjacent to the copies and the original vertices of the instance. For
the application removing c, we add p1 that will be adjacent to a1, b1, a, b and
c. The orbits of those applications of the transformation are then the orbits
of the vertices p1, p2 and p3 if we forbid automorphisms that permute one of
those vertices with the original vertices or the copies. In Figure 5.12, p1 and p2

would be in the same orbit but not p3. Thus, removing a or b is symmetrical,
but not removing c.

a b c

a1 b1 b2 c2

a3 c3

p1 p2

p3

Figure 5.12: Using the hypergraph method with copies to remove one vertex
from a P3
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The adapted algorithm is given as Algorithm 4. The only part that is
modified is that instead of adding one vertex per instance, we now also add a
complete copy of this instance to which we apply the transformation.

Algorithm 4: Algorithm HyperMethodWithCopies(G, B, R)
Input: A graph G, the basis B of a transformation and its result R

Output: The non-symmetrical instances of the transformation
1 V ← V (G);
2 A← an empty set;
3 foreach Instance I of the basis B do
4 Insert a vertex v in G;
5 Add v to the set A;
6 Make v adjacent to all the vertices of I in G;
7 Add a copy I ′ of I in G with a vertex v′ for every vertex v in I;
8 Apply the transformation by replacing I ′ by R;
9 Make every vertex v′ of I ′ adjacent to its original vertex v in I;

10 end
11 Compute the orbit set of G when forbidding automorphisms that

permute a vertex in A with a vertex in V ;
12 foreach Vertex v in A do
13 output the subgraph induced by the neighbors of v in G;
14 end

This adaptation, however, further increases the size of the graph on which
the orbits need to be computed. Also, both this adaptation and the basic
hypergraph method require computing all the subgraphs isomorphic to the
basis of the transformation, and this number can be quite high. In a complete
graph of order n, there are n(n − 1)(n − 2) triangles. We would then need
to compute the orbits of the automorphism group of a graph of order n +
n(n − 1)(n − 2) (the original graph and one vertex per triangle). In some
cases, and especially with large basis, the amount of possible instances of a
transformation can still be quite small. Thus, the hypergraph method can be
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useful. There is however the need to compute all those instances. We will
see how it can be done in the next subsection, and we will introduce a third
method that does not require a hypergraph.

5.2.3 The subgraph method

Both the iterating method and the hypergraph method require a way to find
subgraphs that are isomorphic to a basis of a transformation. This problem
is called the subgraph isomorphism problem and is known to be NP-hard [29].
However, there already exist fast algorithms to solve this problem [11, 88]
(though with an exponential time complexity). One of them is the VF2 al-
gorithm [27]. This algorithm uses a backtracking recursive method where it
tries to expand a partial mapping between the graphs.

The pseudocode is shown in Algorithm 5. Let G and H be two graphs such
that |G| ≥ |H|. The goal of VF2 is to find subgraphs of G that are isomorphic
to H. It starts with an empty mapping between the vertices of G and H. It
will then try to map the first vertex h1 of H to every vertex of G. For each
candidate g in G, we only consider it if it is valid. In the VF2 algorithm, this
means that the degree of g is at least equal to the degree of h1. Then, we
recursively try to map the second vertex h2 of H to a vertex of G. But this
time, the algorithm will not consider all the vertices of G. If h1 is adjacent
to h2, it only considers the neighbors of g. If h1 is not adjacent to h2, it only
considers of G that are not adjacent to g. The same idea is applied recursively
until we either obtain a mapping that contains all the vertices of H or until
we run out of possibilities.3

But using the orbits of H, we can adapt this algorithm to produce all
the instances of a transformation without generating the symmetries. A first
problem in our case is that the algorithm will generate all the permutations for
each subgraph. For example, for every triangle (a, b, c), VF2 will also generate
(a, c, b), (b, a, c), (b, c, a), (c, a, b) and (c, b, a).

3In the algorithm, |m| is the number of mappings in m. We are trying to map the vertex
of H with the lowest number that is not already mapped: h0, h1, h2, . . . .
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Algorithm 5: Algorithm Match(G, H, m) (also called VF2)
Input: The supergraph G, the subgraph H and a partial mapping m

from the vertices of H to the vertices of G.
Output: The subgraphs of G isomorphic to H

1 if m covers all the vertices of H then
2 output m(G)
3 else
4 Compute the pairs of vertices P that can be mapped onto vertex

|m| of H

5 foreach (g, h) ∈ P do
6 if (g, h) is a valid pair then
7 Compute m′, the mapping augmented by adding the pair

(g, h)
8 call Match(G, H, m′)
9 end

10 end
11 end

This problem can be solved by adapting the conditions defining which pairs
are valid. Let hi (gi) be the ith vertex of H (G). Because of the order in which
the vertices of H and G are explored, a mapping containing the pair (hi, gk)
will be generated before a mapping containing a pair (hj , gk) with j > i. Also,
if hi and hj are in the same orbit, for every mapping m containing the pair
(hj , gk), there is a mapping containing (hi, gk) and automorphic to m. Thus,
once we explored all mappings where hi is mapped to gk, we can ignore every
mapping such that gk is mapped to a vertex hj (j > i) in the same orbit as
hi. This idea is, in fact, similar to the one used when iterating over the edges
and imposing that for an edge (a, b), a < b.

It is important to note that, when exploring the mappings for some vertex
hi, we have a partial mapping for all the vertices hl with l < i. This means
that vertices hl are fixed, and the allowed automorphisms in H are restricted.
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We cannot ignore matchings with the pair (hl, gk) even if we found all the
matchings with the pair (hi, gk) and hl is in the same orbit as hi. Because
once hl is mapped, it is fixed and thus, cannot be permuted with hi until it
is removed from the mapping. Also, once a vertex hl is remapped, we have
a different partial mapping and the forbidden mappings for every vertex hi

(i > l) should be removed as the partial subgraph obtained by mapping all
the vertices up to hi is different.

Those changes can be implemented by using a matrix of dimensions |G| ×
|H|. In this matrix, a value of 0 at coordinates (i, j) means that we can map
hi with gj . A value bigger than 0 means that it is forbidden. Then, every
time we are done exploring the possible subgraphs containing the pair (hi, gj),
we set the value at every coordinates (k, j) (k ≥ i) to the current depth of
the recursion and every value in the matrix that is bigger than the depth to 0
before exploring the possible subgraphs containing the next valid pair for hi.
Those values can be obtained in linear time if we store the pairs in a linked
list in the order they are added.

But the adaptation of the VF2 algorithm does nothing to prevent generat-
ing automorphic subgraphs of G. We are actually filtering out the symmetries
of H but not those of G. Fortunately, we can further adapt the VF2 algorithm.
Instead of trying to map some vertex h of H to every vertex of G, we can try
to only map it to one vertex per orbit of G. This is the same idea as before,
and we will also need to recompute those orbits every time a vertex of G is
mapped.

If one has an already implemented version of the VF2 algorithm, those
two changes can be added easily by changing the way pairs of vertices are
generated and by adapting the conditions to check if a pair is valid as seen in
Algorithm 6.

Note that, if we are searching for subgraphs where no vertex holds a spe-
cific role, we can forbid automorphisms that permute mapped vertices with
unmapped ones when computing the orbits. For example, if we have a path
{a, b, c, d} and fix the vertices b and c, the vertices a and d are not in the same
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Algorithm 6: Algorithm MatchAuto(G, H, m, F, L, i)
Input:

• G, the supergraph, H, the subgraph
• a partial mapping m from the vertices of H to the vertices of G,
• a matrix F of dimensions |G| × |H|,
• a list L and the depth of the current recursion i.

Output: The subgraphs of G isomorphic to H

1 if m covers all the vertices of H then
2 output m(G)
3 else
4 Compute the possible pairings P from a vertex of G onto vertex |m| of H

5 foreach (gk, hi) ∈ P do
6 if (gk, hi) is a valid pair and F [k][i] = 0 then
7 Compute m′, the mapping augmented by adding the pair (g, h)
8 call MatchAuto(G, H, m′, F, L, i + 1)
9 foreach Vertex hj (i < j) in H that is in the same orbit as hi do

10 F [k][j]← i

11 Add (k, j) at the end of L

12 end
13 end
14 end
15 (k, j)← the last element of L

16 while F [k][j] ≥ i do
17 F [k][j]← 0
18 Remove the last element of L

19 (k, j)← the new last element of L

20 end
21 end

orbit because a is adjacent to b while c is adjacent to d. If we allow automor-
phisms permuting vertices b and c together, then there is an automorphism
where a and d are permuted together, and they are in the same orbit since
b and c do not have distinct roles. This allows filtering more symmetries for
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symmetrical transformations.
This subgraph method is then able to filter out more symmetries than the

iterating method in the case of symmetrical transformations. But again, this
requires manual configuration from the user. In the next section, we will
compare all three methods to find out which one would be the better suited
for which situation.

5.2.4 A comparison of the methods

Thanks to these three methods, we can generate all instances of a trans-
formation on a given graph while ignoring many of the symmetrical instances
that are just redundant. However, none of these methods is clearly better than
the others. We will compare them on different aspects.

5.2.4.1 Ease of use

As we stated at the beginning of this section, we would like to avoid the
need for in-depth knowledge for using TransProof. Thus, the method used
should, ideally, require little configuration besides providing the transforma-
tion.

The iterating method can be used without specific configuration if we con-
sider that no fixed vertex can be swapped with another one. However, this
restricts its efficiency when it comes to filtering out symmetries. The same
problem can arise for the subgraph method since it also uses the orbits of the
graph when searching for vertices in the supergraph to map to a vertex of the
subgraph.

The hypergraph method requires no specific information and can be used
directly without any loss of efficiency. However, this is only true if using the
version with copies allowing to differentiate between instances on the same
subset of vertices. Without this change, only transformations where two in-
stances on the same subset of vertices would produce the same result would
be correctly handled.
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5.2.4.2 Amount of symmetries filtered

As we saw, the iterating method will miss some symmetries and so will
the subgraph method since it uses the same iteration pattern. But while some
symmetries can remain, a lot are still filtered out. To illustrate, there is a
total of 1 170 edges among all the graphs of order 6 but the iterating method
produces only 572 non-symmetrical ones. Applying the same method for the
rotations gives a number of 4 368 total instances while only 1 632 of those
instances remain when using the iterating method.

Of course, because it generates all instances, the subgraph method will
remove all the symmetries.

In order to better visualize the performances of those methods, we used all
three methods to find the instances of a transformation with P3 as a basis on all
the graphs of a given order. We did not consider applying the transformation
to those instances, since it should not change the number of instances. The
results are plotted in Figure 5.13. We also plotted the total number of instances
without filtering any symmetries except the permutations of the vertices of a
path.

Because the number of non-isomorphic graphs on n vertices increases ex-
ponentially with n, the number of instances produced also increases exponen-
tially. For the sake of clarity, the values are given in Table 5.2. Without
surprise, the hypergraph method is the one filtering the most symmetries. It
is directly followed by the iterating method and the difference decreases with
the order of the graphs. The subgraph method is the least efficient.

However, a P3 is relatively small and not all its vertices are in the same
orbit. This is why we also ran the same tests for a K5. This graph has a large
automorphism group and will produce many symmetries. A transformation
using this basis would be a symmetrical transformation. The results are shown
in Figure 5.14 and given in Table 5.3. This time, the number of instances
produced is much closer for all the methods. The inefficiency of the iterating
method in the case of a symmetrical transformation is not visible here because
the version used imposed that the indices of the vertices were strictly increasing
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Figure 5.13: Number of instances of P3 in all the graphs of order n produced
by each method.

Table 5.2: Table of the number of instances of P3 produced by each method
on all the graphs of order n.

n 3 4 5 6 7 8 9
No filter 1 14 113 1,092 13,144 2.54 · 105 8.56 · 106

Iterating method 1 6 48 488 7,304 1.73 · 105 6.91 · 106

Subgraph method 1 5 46 488 7,461 1.76 · 105 6.97 · 106

Hypergraph method 1 6 48 484 7,272 1.73 · 105 6.91 · 106

in an instance. For example, the instance composed of the vertices (1, 2, 3, 4, 5)
was considered, but not (2, 1, 3, 4, 5).

If one only considers the number of filtered symmetries, the hypergraph
method would be the best choice. But as stated in Subsection 5.2.2, it is
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Figure 5.14: Number of instances of K5 in all the graphs of order n produced
by each method.

Table 5.3: Table of the number of instances produced of K5 by each method
on all the graphs of order n.

n 5 6 7 8 9
No filter 1 12 132 2,082 62,862
Iterating method 1 6 68 1,280 47,418
Subgraph method 1 6 68 1,288 47,719
Hypergraph method 1 6 68 1,280 47,418

limited to symmetrical transformations. The hypergraph method with copies
solves this problem, but we need to compare its running time to that of the
other methods to see if it is interesting. This is what we do next.
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5.2.4.3 Expected performance

Although there is, at the time of writing, no polynomial algorithm to
compute the orbits of a graph, we would like our methods to be as fast as
possible in the worst-case scenarios.

Evaluating the theoretical performances of the three methods is quite com-
plex because of the huge number of different configurations, and is out of the
scope of this work. But it is known that the canonical labeling algorithm used
by Nauty has an exponential time complexity [76].

The iterating method will have to compute the orbits of the graph once for
the first vertex, then once for every orbit for this first vertex, and so on. In
the worst-case scenario, if the basis has k vertices and each vertex is in its own
orbit, we could compute the orbits (k − 1)! times, which will quickly become
large. The same applies for the subgraph method.

The hypergraph method will only compute those orbits once but after hav-
ing computed all the instances of the transformation which is a NP-hard prob-
lem too as it requires solving the subgraph isomorphism problem. Then, if
there are l instances in a graph of order n, we will compute the orbits of a
graph of order n + l. And, in the case of the hypergraph method with copies,
if the instances are of order k, the resulting graph on which to compute the
orbits is of order n + k! l.

Using the hypergraph method to produce the instances thus seems inef-
ficient. But if l is small, one could use this method to produce the sets of
vertices of those instances and then use those smaller sets to produce the
instances using, for example, the iterating method.

To confirm those hypotheses, we measured the time taken by each of these
methods to filter out the symmetrical instances of a transformation with a ba-
sis that is P3. Those times were obtained on a machine using an AMD Ryzen
9 5900X processor with 32 GB of RAM and with the Artix Linux operating
system. We plot these results in Figure 5.15. There is also a plot for the time
taken to generate all the instances without any filtering. The last dataset cor-
responds to the hypergraph method with copies. Of course, adding copies will
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not affect the number of symmetries produced, but this allows comparing the
hypergraph method with methods that can handle asymmetrical transforma-
tions. The instances for the hypergraph method were obtained thanks to the
VF2 algorithm with the modification to avoid permutations of vertices of in-
stances and for the hypergraph method with copies, the original VF2 algorithm
was used. Again, for the sake of clarity, the data is available in Table 5.4.
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Figure 5.15: Time taken by each method to compute all the instances of P3

in all the graphs of order n.

The first thing we see is that adding copies of instances in the case of the
hypergraph method is really inefficient. However, the version without copies is
quite efficient. The iterating method is the fastest method supporting asym-
metrical transformations, and it is directly followed by the subgraph method.

Again, we also ran the same tests using a K5 as the basis. The results are
plotted in Figure 5.16 and given in Table 5.5. This time, the hypergraph method
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Table 5.4: Table of times (in ms) taken by each method to produce the in-
stances of P3 on all the graphs of order n.

n 3 4 5 6 7 8 9
No filter 0 0 0 0 0 10 349
Iterating method 0 0 0 1 18 370 13,313
Subgraph method 0 0 0 1 21 449 16,861
Hypergraph method 0 0 0 1 15 272 8,640
Hypergraph method with copies 0 0 0 16 386 17,353 1.55 · 106
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Figure 5.16: Time taken by each method to compute all the instances of K5

in all the graphs of order n.

with copies was not used because of the factorial increase in the computational
time when the order of the basis increases. The normal hypergraph method still
remains the fastest, but the subgraph method is now faster than the iterating
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method. The subgraph method indeed makes use of the symmetry of the graph
to which the transformation needs to be applied, but also of the symmetry of
the basis it is looking for. It can then consider fewer instances than a naïve
iterating method.

Table 5.5: Table of times (in ms) taken by each method to produce the in-
stances of K5 on all the graphs of order n.

n 5 6 7 8 9
No filter 0 0 0 1 49
Iterating method 0 1 17 348 12,605
Subgraph method 0 0 8 188 7,761
Hypergraph method 0 0 5 89 2,755

Comparing the speeds, if one wants support of complex transformations,
the iterating method would seem to be the most interesting one. However, this
method has the disadvantage that it requires more work to be used. Indeed,
the order in which the vertices of the basis are explored and the way the orbits
are used can change the number of instances produced, as we saw earlier.

5.2.5 What is used in TransProof

As we saw before, all the methods reduce the number of instances pro-
duced with different efficiencies. But this work also increases the computation
time by a non-negligible amount. While being the most efficient in terms of
symmetry filtering, the hypergraph method with copies is also the slowest.

For now, TransProof uses the iterating method for its already implemented
transformations. This choice was made because the basis of these transforma-
tions is small (at most 4 vertices), they all are asymmetrical and since they
were directly implemented in TransProof, it was not a problem to require
more customization. To make defining such transformations easier, a specific
language was defined using a Rust [69] macro that generates Rust code when
compiling TransProof. The macro, however, is limited as it does not work for
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a transformation using an arbitrary number of vertices.
The iterating method is not the most efficient in general, but it is the

fastest for small basis provided the user knows how to use it. Therefore, it
is well suited for small general transformations. The adapted VF2 algorithm
is implemented and available, but not yet used in practice. We will see in
Section 5.4 that this algorithm could be used for custom transformations.

But even though we can filter out symmetries, a general consideration is
that, for all these methods, the number of results can remain quite large. The
next section will explore some considerations when storing the data produced
in order to provide support for complex queries while limiting the size of the
data and the answering time for those queries.

5.3 Storing the metagraph

Once the transformations have been computed, TransProof stores them
in a database to be able to use the powerful query languages in order to
explore the metagraph. This leads to different technical questions. The first
subsection presents a format that can be used to store transformations in a
compact fashion while keeping all the necessary information to later explore
them. Subsection 5.3.2 compares two types of databases and the advantages
to using them.

5.3.1 A format for the transformations

When storing an arc of the metagraph, we need to store three elements:
the original graph G, an application G′ of the transformation and the changes
from G to G′. The first two can be stored easily using, for example, a binary
format such as graph6 [72]. But, because we do not differentiate between
isomorphic graphs, we need to store G and G′ using their canonical labelling
which is a canonical ordering of the vertices.

This canonical ordering makes it difficult to know which vertex v′ of G′

corresponds to a vertex v in G. For example, if we remove all edges incident
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with the first vertex of G, this vertex might be the third vertex of G′ in its
canonical ordering. Therefore, in addition to the graphs G and G′, we need
to store the information about which vertex of G corresponds to which vertex
of G′.

In TransProof, this is done using a labelled graph. Let G = (V, E) be the
original graph and G′ = (V ′, E′) be an application of a transformation on G

before applying the canonical ordering, that is, the ordering of the vertices of
G′ is the same as that of G. The graph of changes graph of

changes

between G and G′ is the
complete graph H with vertex set V ∪ V ′. For every edge and vertex of H,
we add a label composed of two Boolean values bm and bp. The Boolean bm

is true if the edge or vertex has been added or removed when transforming G

into G′ and false otherwise. The Boolean bp is true if the edge or vertex is
present in G′ and false otherwise.

For example, in Figure 5.17, the graph G on the left is transformed into
the middle graph G′ by removing the vertex a and adding the edge (b, c). The
graph of changes on the right is the complete graph with vertex set {a, b, c}.
For every vertex and edge of the graph of changes, we added the two Boolean
values bm and bp in this order (T for true and F for false). We can see that the
vertex a was removed when transforming G into G′. It was thus modified and
is not present in G′. Its label is then T, F . The vertex b, on the other hand,
was not modified by the transformation and is still a vertex of G′. Its label is
then F, T . The edge (a, b) was not modified, but is not an edge of neither G

nor G′. Its label is F, F .

Those labels give us a lot of information. Of course, since bp indicates if an
element is part of G′, obtaining G′ is easy and because we compute the graph
of changes using the same vertex order as G, we do not have to consider the
problem of the canonical ordering. Obtaining the graph G is simply keeping
the non-modified elements of G′ (where bm is false) and the elements not in G′

(bp is true) that were modified (bm is true). If we wish to know which vertices
or edges were added or removed, we simply keep only the elements where bm

is true.
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a

b c

F, F

T, T

T, F

T, F

F, T F, T

G

a

b c

F, F

T, T

T, F

T, F

F, T F, T

G′

a

b c

F, F

T, T

T, F

T, F

F, T F, T

Figure 5.17: The graph of changes between the original graph G and the
application G′.

This format is equivalent to using two Booleans bG and b′
G to know if an

element was present in G and in G′ respectively. In both formats, using those
Booleans gives us a labelled graph on which graph algorithms can be used
to study those transformations. For example, it is possible to compute the
canonical ordering of a graph of changes.

In practice, those two Booleans are stored as a binary number on 2 bits in
order to have a compact format. This, however, does not reduce the number
of arcs in the metagraph, and they still need to be stored. The next subsection
will discuss about different types of databases for this purpose.

5.3.2 A database to store the metagraph

We study here different existing database models to store the metagraph.
Ideally, the model used should be able to handle large amounts of data as well
as offer a good support for queries.

The most common model is the relational database, which stores data
in tables. Each table has a fixed number of named columns, and the data
correspond to the rows of this table. A simple structure for a metagraph
would be to have one table per transformation with three columns: the graph
to which the transformation is applied, the resulting graph and the changes
between the two. Those elements can be compacted using a binary format
such as graph6.

Figure 5.18 shows how graphs and invariants are stored in PHOEG’s
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database in the two tables on the left. The left table stores the graph6 format
of the graphs using their canonical ordering. The middle table stores the value
of the eccentric connectivity index of these graphs, which will be explained in
Chapter 6. The table on the right is how an application of a transformation is
stored in a table in TransProof. The first column stores the graph of changes
of the application using a special binary format based on graph6. The two
other columns use the graph6 format of the original graph and of the graph
obtained after applying the transformation.

Graphs
signature
A_

A?

B?

BG

Bw

BW

C‘

C^

C~

C?

C@

ECI
signature val
A_ 2
Bw 6
BW 6
C^ 14
C~ 12
CF 9
CN 13
Cr 16
CR 14
D‘[ 25
D‘{ 20

remove-edge
signature orig dest
AmQ= A_ A?

A0SQ BG B?

A0ZQ BW BG

A2VQ Bw BW

BEQQkA== C@ C?

BEQSUA== CB C@

BEQZUA== CF CB

BGQQUA== C‘ C@

BEYRUA== CR CB

BEURkA== CR C‘

BESRUA== CJ CB

Figure 5.18: Tables in a relational database for TransProof and PHOEG.

With this table, it becomes possible to write SQL queries about the meta-
graph. A second table storing the invariants values for each graph is enough
to know if every arc is an improving arc, or simply if the conjectured extremal
graphs are indeed extremal within the data.

For example, Figure 5.19 is an SQL query to compute all the arcs of the
metagraph, built from edge-removal transformation, where removing an edge
will increase the eccentric connectivity index.
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SELECT t.orig, eci1.val, t.dest, eci2.val

FROM eci eci1

JOIN remove_edge t ON (eci1.signature = t.orig)

JOIN eci eci2 ON (eci2.signature = t.dest)

where eci1.val < eci2.val;

Figure 5.19: An SQL query to obtain the cases where removing an edge in-
creases the eccentric connectivity index.

But we can write more complex queries such as the effect of chaining two
transformations instead of just one or finding a path in the metagraph between
two graphs.

This latest example is possible using recursive joins, that is, joining a table
with itself recursively until some condition is achieved.

Instead of using tables, an alternative is to use graph databases. A graph
database uses a graph as underlying structure and allows the user to run
queries directly on the graph itself. Such model is then much closer to the
principle of the metagraph. Furthermore, it makes queries requiring graph
exploration such as finding paths between two vertices faster than tables, as
the edges are already known.

A downside to graph databases is that, while they outperform SQL when
querying about paths for specific vertices, most of them are not written with
broader queries in mind, as Cheng et al. showed in their benchmarks [25].
So, a query about a large number of elements such as knowing if all arcs in
the metagraph strictly increase an invariant will be slower than a relational
database.

Given the advantages and disadvantages of the two database models, a
combination of both would be best performance-wise. For example, we could
have two databases containing the same data, with one using a relational
model and the other using a graph model. Storage-wise, however, we would
double the size of the data.
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Since the main difficulty in writing a proof by transformation is to find
problematic cases among many graphs, broad queries are more frequent and
queries about specific graphs or even paths are rare. Thus, a relational
database is, at the time of writing, better suited to TransProof. It uses the
same relational database as PHOEG in order to easily access the invariants
values. But the field of graph databases is evolving quickly and is likely to
become a better alternative once it is mature enough.

At the time of writing, the database contains several simple transforma-
tions such as removing, adding or rotating an edge for all graphs up to order
10. This limitation is imposed by the size of the data, which remain large
despite removing symmetrical transformations. TransProof can handle bigger
graphs if necessary.

5.4 Efficient custom transformations

To help research, several common transformations are implemented in
TransProof and they are pre-computed for all the graphs up to order 10.
This makes trying to build a proof by transformation using those faster. But
as we saw in Chapter 4, more complex transformations are sometimes needed.
Therefore, researchers need to be able to provide their own transformation
and, ideally, computing a metagraph should remain fast with custom trans-
formations.

5.4.1 Simple transformations

One simple way to provide support for custom transformations is to allow
combination of simple transformations. Any transformation can be described
in terms of adding or removing edges or vertices. Thus, it is possible to define a
set of basic transformations that will serve as a basis to produce more complex
ones.

The choice of this basis of transformations requires being able to generate
all transformations from a subset of the simple ones. As an example, one
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can consider increasing the number of connected components of a complete
graph. This requires removing a number of edges depending on the graph the
transformation is applied to.

This means that we need a way to specify how a variable number of edges
will be added or removed. We should thus add different transformations based
on the ways one can connect or disconnect a subset of vertices of a graph.

With this basis of transformations, we need only to compute simple trans-
formations and store them inside the database. This data can then be ex-
ploited by queries to the database for more complex transformations, and we
do not need to recompute those.

However, it is possible to generate a large number of duplicated results.
Indeed, simply removing k edges produces k! possible orders in which to re-
move them. Furthermore, the queries are limited to what has already been
computed and stored in the database.

5.4.2 Complex transformations

A different approach is to use hypergraphs to define transformations and
the subgraph method to compute the instances. A transformation could be
defined by the user as the basis (using hyperedges for specific subgraphs)
and the result. Using the subgraph method and the adapted VF2 algorithm,
it becomes possible to generate the instances of such transformations while
filtering symmetries. Also, this hypergraph can be defined in a visual way,
providing user-friendliness.

This hypergraph provides more flexibility than the simple method ex-
plained in the previous subsection and does not require pre-computed data.
But this flexibility comes with a cost. Indeed, storing all the custom transfor-
mations in a database can quickly fill the available storing space. Therefore,
transformations defined this way should not be stored permanently.
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5.4.3 A hybrid method

As we can see, both versions have their advantages and downsides. But
they also intervene at different points in the process of writing a proof by
transformation. At first, when little is known about the impact of changes on
some invariant, simple transformations are preferred and many graphs have
to be considered. Those simple transformations can be quite generic and pre-
computed.

When the subject becomes better understood, the number of graphs for
which extremality cannot be refuted becomes smaller and transformations used
for those become more complex. At this point, since there are fewer graphs,
computing the metagraph will usually be faster and pre-computed values are
not necessary, but the need arise to have more flexibility in defining transfor-
mations. For example, in their paper, Hansen et al. [51] use transformations
with little requirements in the beginning of their proof and the transformations
become more complex and more constrained as the proof unfolds.

In TransProof, one can use the already computed and implemented trans-
formations to prune the data and then use custom transformations to try solv-
ing the remaining problems. At the time of writing, the hypergraph model
to define transformations is being implemented, but it is not yet functional.
It is possible, however, to use custom transformations by writing them in
TransProof thanks to the specific graph library that was developed.

5.5 Conclusion

We presented ideas and methods that can be used to compute the appli-
cations of a transformation on a large amount of small graphs. These ideas
are currently being used in TransProof or in the process of being added. Cur-
rently, TransProof uses the iterating method to compute those applications
and stores them in a relational database. It contains the applications of sev-
eral simple transformations such as edge-removal, rotation and vertex-removal
for all graphs up to 10 vertices. But TransProof can compute other transfor-
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mations and store them temporarily in its database.
The main difficulty is not so much the computation time for one graph,

but rather the large number of graphs, even if restricted to a small order, and
the exponential number of applications for each graph. Despite this, querying
the metagraph can prove quite helpful, as we will see in the next two chapters
which present results on two graph invariants.



Chapter 6

On the eccentric connectivity
index

During the development of TransProof, in order to assess its usefulness and
study the needed functionalities, we worked on different problems in extremal
graph theory. The first one is about the eccentric connectivity index of a
graph. Two papers were published about bounds on this invariant [32,55] but
only one uses proofs by transformation. This paper [32] is presented in this
chapter with minor changes to better fit this document and to better show
how TransProof was used.

6.1 Introduction

A chemical graph is a representation of the structural formula of a chemical
compound in terms of graph theory where atoms are represented by vertices
and chemical bonds by edges. Arthur Cayley [24] was probably the first to
publish results that consider chemical graphs. In an attempt to analyze the
chemical properties of alkanes, Wiener [91] introduced the path number index,
nowadays called Wiener index, which is defined as the sum of the lengths of
the shortest paths between all pairs of vertices. Mathematical properties and
chemical applications of this distance-based index have been widely researched.

77
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Numerous other topological indices are used to help describe and under-
stand the structure of molecules [67, 86] by means of studies on quantitative
structure-property relationship (QSPR) and quantitative structure-activity re-
lationship (QSAR). Among these indices, the eccentric connectivity index can
be defined as follows. Let G = (V, E) be a simple connected undirected graph.
The eccentric connectivity indexeccentric

connectivity
index

ξc(G) of G is defined by

ξc(G) =
∑
v∈V

degG(v)eG(v).

This index was introduced by Sharma et al. [84] and successfully used for
mathematical models of biological activities of diverse nature [41,49,62,70,83].
It was also studied for specific classes of graphs [38,54,94] and several extremal
results were published [77, 78, 95]. Among them, Hauweele et al. [55] have
characterized those graphs which have the largest eccentric connectivity index
among all connected graphs of a given order n. These results are summarized
in Table 6.1, where

• Kn is the complete graph of order n;

• Pn is the path of order n;

• Wn is the wheel of order n, i.e., the graph obtained by joining a vertex
to all vertices of a cycle of order n− 1;

• Mn is the graph obtained from Kn by removing a maximum matching
and, if n is odd, an additional edge adjacent to the unique vertex that
still has degree n− 1;

• En,D is the graph constructed from a path u0 − u1 − . . .− uD by joining
each vertex of a clique Kn−D−1 to u0, u1 and u2.

In addition to the above-mentioned graphs, we will also consider the following
ones:

• Cn is the chordless cycle of order n;

• Sn,x is the graph of order n obtained by linking all vertices of a stable
set of n − x vertices with all vertices of a clique Kx. The graph Sn,1 is
called a star.
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Table 6.1: Largest eccentric connectivity index for a fixed order n

n optimal graphs
1 K1

2 K2

3 K3 and P3

4 M4

5 M5 and W5

6 M6

7 M7

8 M8 and E8,4

≥ 9 E
n,
⌈

n+1
3

⌉
+1

Also, for n ≥ 4 and p ≤ n − 3, let Hn,p be the graph of order n obtained by
adding a dominating vertex (i.e., a vertex linked to all other vertices) to the
graph of order n− 1 having p vertices of degree 0, and

• n− 1− p vertices of degree 1 if n− p is odd;

• n− 2− p vertices of degree 1 and one vertex of degree 2 if n− p is even.

For illustration, H8,3 and H9,3 are drawn on Figure 6.1. Note that H4,0 '
S4,2. Moreover, H4,0 has two dominating vertices while H4,1 and Hn,p have
exactly one dominating vertex for all n ≥ 5 and p ≤ n− 3.

H9,3H8,3H4,0

Figure 6.1: Three examples of Hn,p.

In this chapter, we first give an alternative proof to a result of Zhou and
Du [96] showing that the stars are the only graphs with the smallest eccentric
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connectivity index among all connected graphs of a given order n ≥ 4. These
graphs have n−1 pendant vertices (i.e., vertices of degree 1). We then consider
all pairs (n, p) of integers with p ≤ n − 1 and characterize the graphs with
the smallest eccentric connectivity index among all connected graphs of order
n with p pendant vertices. This characterization is proven using a proof by
transformation. A similar study appears in [52] where bounds on the Randić
index are given for graphs with fixed order and fixed number of pendant ver-
tices. Note that pendant vertices play a special role in chemical compounds
known as alkanes, which are exclusively composed of carbon and hydrogen
atoms. Each carbon atom has four chemical bonds and each hydrogen atom
has one chemical bond. Hence, the number of pendant vertices in the chemical
graph that represents an alkane (where every vertex corresponds to an atom,
and every edge to a chemical bond) is equal to the number of hydrogen atoms
in the considered chemical compound.

6.2 Minimizing ξc for graphs with fixed order

K1 and K2 are the only connected graphs with 1 and 2 vertices, respectively,
while K3 and P3 are the only connected graphs with 3 vertices. Since ξc(K3) =
ξc(P3) = 6, all connected graphs with the same order have the same eccentric
connectivity index when n ≤ 3. From now on, we therefore only consider
connected graphs with fixed order n ≥ 4. A proof of the following theorem
was already given by Zhou and Du in [96]. Ours is slightly different.

Theorem 2. Let G be a connected graph of order n ≥ 4. Then ξc(G) ≥
3(n− 1), with equality if and only if G ' Sn,1.

Proof. Let x be the number of dominating vertices (i.e., vertices of degree
n− 1) in G. We distinguish three cases.

• If x = 1, then let u be the dominating vertex in G. Clearly, eG(u) = 1
and degG(u) = n − 1. All vertices v 6= u have eccentricity eG(v) = 2,
while their degree is at least 1 (since G is connected). Hence, ξc(G) ≥
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(n− 1) + 2(n− 1) = 3(n− 1), with equality if and only if all v 6= u have
degree 1, i.e., G ' Sn,1.

• If x > 1, then all dominating vertices u have degG(u)eG(u) = n−1, while
all non-dominating vertices v have degG(v) ≥ x ≥ 2 and eG(v) ≥ 2,
which implies degG(v)eG(v) ≥ 4. If n = 4, all the dominating vertices
have degree 3 and eccentricity 1 and we therefore have ξc(G) ≥ 3n >

3(n − 1) which is reached when x = 4. If n > 4, we have ξc(G) ≥
2(n− 1) + 4(n− 2) = 6n− 10 > 3(n− 1).

• If x = 0, then every pendant vertex v has eG(v) ≥ 3 since its only
neighbor is a non-dominating vertex. Since the eccentricity of the non-
pendant vertices is at least two, we have degG(v)eG(v) ≥ 3 for all vertices
v in G, which implies ξc(G) ≥ 3n > 3(n− 1).

Stars have n−1 pendant vertices. As will be shown in the next subsection,
obtaining a similar result is more challenging when the total number of pendant
vertices is fixed to a value strictly smaller than n− 2.

6.3 Minimizing ξc for graphs with fixed order and
fixed number of pendant vertices

Let G be a connected graph of order n ≥ 4 with p pendant vertices.
Clearly, p ≤ n−1, and G ' Sn,1 if p = n−1. For p = n−2, let u and v be the
two non-pendant vertices. Note that u is adjacent to v since G is connected.
Clearly, G is obtained by linking x ≤ n− 3 vertices of a stable set S of n− 2
vertices to u, and the n − 2 − x other vertices of S to v. The n − 2 pendant
vertices w have degG(w) = 1 and eG(w) = 3, while eG(u) = eG(v) = 2 and
degG(u) + degG(v) = n. Hence, ξc(G) = 3(n− 2) + 2n = 5n− 6 for all graphs
of order n with n− 2 pendant vertices.

The above observations show that all graphs of order n with a fixed number
p of pendant vertices have the same eccentric connectivity index when p ≥
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n − 2. As will be shown, this is not the case when n ≥ 4 and p ≤ n − 3. We
will prove that Hn,p is almost always the unique graph minimizing the eccentric
connectivity index. We first give results that can be proven mathematically
when the graphs contain at least one dominating vertex. The general result
when there is no dominating vertex is then proven by transformation. Note
that

ξc(Hn,p) =

 n− 1 + 2p + 4(n− p− 1) = 5n− 2p− 5 if n− p is odd
n− 1 + 2p + 4(n− p− 2) + 6 = 5n− 2p− 3 if n− p is even.

Theorem 3. Let G be a graph of order n ≥ 4 with p ≤ n− 3 pendant vertices
and one dominating vertex. Then ξc(G) ≥ ξc(Hn,p), with equality if and only
if G ' Hn,p.

Proof. The dominating vertex u in G has degG(u)eG(u) = n− 1, the pendant
vertices v have degG(v)eG(v) = 2, and the other vertices w have eG(w) = 2
and degG(w) ≥ 2. Hence, ξc(G) is minimized if all non-pendant and non-
dominating vertices have degree 2, except for one vertex with degree 3 if
n−p−1 is odd. In other words, ξc(G) is minimized if and only if G ' Hn,p.

Theorem 4. Let G be a connected graph of order n ≥ 4, with at least two
dominating vertices.

• If n = 4 then ξc(G) ≥ 12, with equality if and only if G ' K4.

• If n = 5 then ξc(G) ≥ 20, with equality if and only if G ' S5,2 or G ' K5.

• If n ≥ 6 then ξc(G) ≥ 6n− 10, with equality if and only if G ' Sn,2.

Proof. Let x be the number of dominating vertices in G. Then degG(u)eG(u) =
n − 1 for all dominating vertices u, while eG(v) = 2 and degG(v) ≥ x for all
other vertices v. Hence, ξc(G) ≥ x(n− 1) + 2x(n− x) = −2x2 + x(3n− 1).
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• If n = 4 then ξc(G) ≥ f(x) = −2x2 + 11x. Since 2 ≤ x ≤ 4, f(2) =
14, f(3) = 15, and f(4) = 12, we conclude that ξc(G) ≥ 12, with equality
if and only if x = 4, which is the case when G ' K4.

• If n = 5 then ξc(G) ≥ f(x) = −2x2 + 14x. Since 2 ≤ x ≤ 5, f(2) =
f(5) = 20 and f(3) = f(4) = 24, we conclude that ξc(G) ≥ 20, with
equality if and only if x = 2 or 5, which is the case when G ' S5,2 or
G ' K5.

• If n ≥ 6 then −2x2 + x(3n− 1) is minimized for x = 2, which is the case
when G ' Sn,2.

Theorem 5. Let G be a connected graph of order n ≥ 4, with p ≤ n − 3
pendant vertices and no dominating vertex. Then ξc(G) > ξc(Hn,p) unless
n = 5, p = 0 and G ' C5, in which case ξc(G) = ξc(Hn,0) = 20.

Proof. Let U be the subset of vertices u in G such that degG(u) = eG(u) = 2.
If U is empty, then all non-pendant vertices v in G have degG(v) ≥ 2 and
eG(v) ≥ 2 (since G has no dominating vertex), and at least one of these two
inequalities is strict, which implies degG(u)eG(u) ≥ 6. Also, every pendant
vertex w has eG(w) ≥ 3 since their only neighbor is not dominant. Hence,
ξc(G) ≥ 6(n−p)+3p = 6n−3p. Since p ≤ n−3, we have ξc(G) ≥ 5n−2p+3 >

ξc(Hn,p).
So, assume U 6= ∅. Let u be a vertex in U , and let v, w be its two neighbors.

Also, let A = N(v)\ (N(w)∪{w}), B = (N(v)∪N(w))\{u}, and C = N(w)\
(N(v)∪{v}). Since eG(u) = 2, all vertices of G belong to A∪B∪C∪{u, v, w}.
We finally define B′ as the subset of B that contains all vertices b of B with
degG(b) = 2 (i.e., their only neighbors are v and w). This decomposition is
shown in Figure 6.2. The vertices A, B, C and B′ are sets of vertices. Not
all the edges are shown here. Vertices v and w could be adjacent, and there
could be edges between vertices of A and vertices of C or between vertices of
B\B′ and vertices of A or C.
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u

v w

A C
B

B′

Figure 6.2: A decomposition of G into sets of vertices.

To show that such a graph cannot be extremal, we will use four transfor-
mations defined below.

Transformation 1 :
If v is adjacent to w, A 6= ∅ otherwise w is a dominating vertex, and C 6= ∅
otherwise v is dominating. In this case, it is easy to obtain a new graph with
the same number of pendant vertices but with a dominant vertex. Let G′

be the graph obtained from G by replacing every edge linking v to a vertex
a ∈ A with an edge linking w to a, and by removing all edges linking v to a
vertex of B \B′. The resulting graph G′ is shown in Figure 6.3. Clearly, G′ is
also a connected graph of order n with p pendant vertices, and w is the only
dominating vertex in G′. It follows from Theorem 3 that ξc(G′) ≥ ξc(Hn,p).
Also,

• degG(u) = degG′(u) and eG(u) = eG′(u);

• degG(x) = degG′(x) and eG(x) ≥ eG′(x) for all x ∈ A ∪ C;

• degG(x) = degG′(x) and eG(x) = eG′(x) for all x ∈ B′;

• degG(x) > degG′(x) and eG(x) = eG′(x) for all x ∈ B \B′.

Hence, ∑
x∈A∪B∪C∪{u}

degG(x)eG(x) ≥
∑

x∈A∪B∪C∪{u}
degG′(x)eG′(x).

Moreover,
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u

v w

A C
B

B′

Figure 6.3: The graph obtained from transformation 1.

• degG(v)eG(v) + degG(w)eG(w) = 2(|A| + |B| + 2) + 2(|C| + |B| + 2) =
2|A|+ 4|B|+ 2|C|+ 8;

• degG′(v)eG′(v) + degG′(w)eG′(w) = 2(|B′|+ 2) + |A|+ |B|+ |C|+ 2.

We therefore have

ξc(G)−ξc(G′) =
∑

x∈A∪B∪C∪{u}
degG(x)eG(x)

+ degG(v)eG(v)+degG(w)eG(w)

−
∑

x∈A∪B∪C∪{u}
degG′(x)eG′(x)

− (degG′(v)eG′(v)+degG′(w)eG′(w))

≥(2|A|+4|B|+2|C|+8)−(2(|B′|+2)+|A|+|B|+|C|+2)

=|A|+|C|+3(|B′|+|B \B′|)−2|B′|+2

=|A|+|C|+|B′|+3|B \B′|+2 > 0

This implies ξc(G) > ξc(G′) ≥ ξc(Hn,p).

Transformation 2 :
If v is not adjacent to w, and both A∪ (B \B′) and C∪ (B \B′) are nonempty,
we will instead apply transformation 1 after having added the edge (u, v).
Let G′ be the graph obtained from G by adding an edge linking v to w, by
replacing every edge linking v to a vertex a ∈ A with an edge linking w to a,
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and by removing all edges linking v to a vertex of B \B′. Clearly, G′ is also a
connected graph of order n with p pendant vertices. As in the previous case,
we have ∑

x∈A∪B∪C∪{u}
degG(x)eG(x) ≥

∑
x∈A∪B∪C∪{u}

degG′(x)eG′(x).

u

v w

A C
B

B′

Figure 6.4: The graph before applying transformation 2.

Moreover, eG(v) ≥ 2 and eG(w) ≥ 2, while eG′(v) ≤ 2 and eG′(w) = 1, which
implies

• degG(v)eG(v) + degG(w)eG(w) ≥ 2(|A| + |B| + 1) + 2(|C| + |B| + 1) =
2|A|+ 4|B|+ 2|C|+ 4;

• degG′(v)eG′(v) + degG′(w)eG′(w) ≤ 2(|B′|+ 2) + |A|+ |B|+ |C|+ 2.

We therefore have

ξc(G)−ξc(G′) ≥(2|A|+4|B|+2|C|+4)−(2(|B′|+2)+|A|+|B|+|C|+2)

=|A|+|C|+|B′|+3|B \B′|−2.

If B \B′ 6= ∅, w is the only dominating vertex in G′, and ξc(G)− ξc(G′) > 0.
It then follows from Theorem 3 that ξc(G) > ξc(G′) ≥ ξc(Hn,p). So assume
B \ B′ = ∅. Since A ∪ (B \ B′) 6= ∅, and C ∪ (B \ B′) 6= ∅, we have A 6= ∅
and C 6= ∅. Hence, once again, w is the only dominating vertex in G′, and we
know from Theorem 3 that ξc(G′) ≥ ξc(Hn,p).
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• If |B′| ≥ 1, |A| ≥ 2 or |C| ≥ 2, then ξc(G) > ξc(G′) ≥ ξc(Hn,p).

• If |B′| = 0 and |A| = |C| = 1, there are two possible cases:

– if the vertex in A is not adjacent to the vertex in C, then n = 5,
p = 2, G ' P5 and G′ ' H5,2. Hence, ξc(G) = 24 > 16 = ξc(Hn,p);

– if the vertex in A is adjacent to the vertex in C, then n = 5, p = 0,
G ' C5 and G′ ' H5,2. Hence, ξc(G) = ξc(Hn,p) = 20;

Transformation 3:
If v is not adjacent to w, and at least one of A ∪ (B \B′) and C ∪ (B \B′) is
empty, TransProof allows us to see that if, B′ is empty, the number of pendant
vertices can be modified by transformation 2. For example, if A∪(B \B′) = ∅,
then v is a pendant vertex and transformation 2 makes v non-pendant as shown
in Figure 6.5. Because our theorem is about graphs with a fixed number of
pendant vertices, this is a problem.

u

v w

C

u

v w

C

Figure 6.5: Applying transformation 2 when A and B are empty.

However, assuming that A ∪ (B \ B′) = ∅, since n ≥ 4, we have that C 6= ∅
and also, there is a non-pendant vertex r ∈ C because p ≤ n − 3. Let G′

be the graph obtained from G by removing the edge linking u and v and by
linking v to w and to r. The result can be seen in Figure 6.6. Note that G′ is
a connected graph of order n with p pendant vertices : while v was pendant
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in G, but not u, the situation is the opposite in G′. Note also that Theorem
3 implies ξc(G′) ≥ ξc(Hn,p) since w is the only dominating vertex in G′. We
then have:

• degG(u)=2, degG′(u)=1 and eG(u)=eG′(u)=2, giving degG(u)eG(u)−
degG′(u)eG′(u) = 2;

• degG(v)=1, degG′(v)=2 eG(v)=3 and eG′(v)=2, giving degG(v)eG(v)−
degG′(v)eG′(v) =−1;

• degG(w) = n − 2, degG′(w) = n − 1 eG(w) = 2 and eG′(w) = 1, giving
degG(w)eG(w)− degG′(w)eG′(w) = n− 3;

• degG′(r)= degG(r)+1, eG(r) = 3 and eG′(w) = 2, giving degG(r)eG(r)−
degG′(r)eG′(r)=degG(r)−2;

• degG′(c) = degG(c) and eG(c) > eG′(c) for all c ∈ (C \ {r}). Since r has
a neighbor in C of degree at least 2, we have ∑c∈C\{r}(degG(c)eG(c) −
degG′(c)eG′(c) ≥ 2).

Hence, ξc(G) − ξc(G′) ≥ 2 − 1 + n− 3︸ ︷︷ ︸
>0

+ degG(r)− 2︸ ︷︷ ︸
≥0

+2 > 0, which implies

ξc(G) > ξc(G′) ≥ ξc(Hn,p).

u

v w

C

r

Figure 6.6: Result of transformation 3.

Transformation 4:
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If v is not adjacent to w, and at least one of A ∪ (B \ B′) and C ∪ (B \ B′)
is empty, but B′ is not empty, applying transformation 2 can produce graphs
with a smaller value for ξc. But there is another problem raised by TransProof:
transformations 1 and 2 are not sufficient to reach Hn,p. Indeed, if we apply
transformation 2 to the graph of Figure 6.7, we do obtain a graph with a lower
value for ξc with two dominating vertices. But transformations 1, 2 and 3 do
not apply anymore, and we do not know yet if Hn,p is the extremal graph when
we have two dominant vertices. Thus, we define a different transformation.

v

u

w

Figure 6.7: A graph from which transformations 1, 2 and 3 cannot produce
Hn,p

Let b1, . . . , b|B′| be the vertices in B′. Remember that the unique neighbors of
these vertices are v and w. Let G′ be the graph obtained from G as follows.
We first add an edge linking v to w. Then, for every odd i < |B′|, we add an
edge linking bi to bi+1 and remove the edges linking v to bi and to bi+1. We
then have

• degG(x) = degG′(x) and eG(x) = eG′(x) for all x ∈ B′ ∪ C ∪ {u};

• degG(v) = |B′|+ 1, degG′(v) ≤ 3, eG(v) ≥ 2, and eG′(v) ≤ 2;

• degG(w) = |B′| + |C| + 1, degG′(w) = |B′| + |C| + 2, eG(w) = 2, and
eG′(w) = 1.

Hence,

ξc(G)−ξc(G′) =degG(v)eG(v)+degG(w)eG(w)

− degG′(v)eG′(v)+degG′(w)eG′(w)
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≥2(|B′|+1)+2(|B′|+|C|+1)−6−(|B′|+|C|+2)

=3|B′|+|C|−4.

IF |B′| ≥ 2 or |C| ≥ 2, then ξc(G)− ξc(G′) > 0, and since w is then the only
dominating vertex in G′, we know from Theorem 3 that ξc(G) > ξc(G′) ≥
ξc(Hn,p). So, assume |B′| = 1 and |C| ≤ 1:

• if |C| = 0 then n = 4, p = 0, G ' C4 and G′ ' H4,0 which implies
ξc(G)=16>14=ξc(Hn,p);

• if |C| = 1 then n = 5, p = 1, ξc(G) = 23 and G′ ' H5,1 which implies
ξc(G) > 20 = ξc(Hn,p).

We can now combine these results as follows. Assume G is a connected
graph of order n with p pendant vertices. If p ≥ 1, then G has at most one
dominating vertex, and it follows from Theorems 3 and 5 that Hn,p is the
only graph with maximum eccentric connectivity index. If p = 0 and n = 4,
then G cannot contain exactly one dominating vertex, and Theorems 4 and 5
show that K4 is the only graph with maximum eccentric connectivity index.
If p = 0 and n = 5, Theorems 3, 4 and 5 show that H5,0, S5,2, K5 and C5 are
the only candidates to minimize the eccentric connectivity index, and since
ξc(H5,0) = ξc(S5,2) = ξc(K5) = ξc(C5) = 20, the four graphs are the optimal
ones. If p = 0 and n ≥ 6 then we know from Theorems 3, 4 and 5 that
Sn,2 and Hn,0 are the only candidates to minimize the eccentric connectivity
index. Since ξc(S6,2) = 26 < 27 = ξc(H6,0), ξc(S7,2) = 32 > 30 = ξc(H7,0)
and ξc(Sn,2) = 6n − 10 > 5n − 3 ≥ ξc(Hn,0) for n ≥ 8, we deduce that S6,2 is
the only graph with maximum eccentric connectivity index when n = 6 and
p = 0, while Hn,0 is the only optimal graph when n ≥ 7 and p = 0. This is
summarized in the following Corollary.

Corollary 6. Let G be a connected graph of order n ≥ 4 with p ≤ n − 3
pendant vertices.

• If p ≥ 1 then ξc(G) ≥ ξc(Hn,p), with equality if and only if G ' Hn,p;
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• If p = 0 then

– if n = 4 then ξc(G) ≥ 12, with equality if and only if G ' K4;

– if n = 5 then ξc(G) ≥ 20, with equality if and only if G ' H5,0,
S5,2, K5 or C5;

– if n = 6 then ξc(G) ≥ 26, with equality if and only if G ' S6,2;

– if n ≥ 7 then ξc(G) ≥ ξc(Hn,0), with equality if and only if G ' Hn,0.

6.4 Conclusion

We have characterized the graphs with the smallest eccentric connectivity
index among those of fixed order n and fixed or non-fixed number of pendant
vertices. The proof of this result was helped by TransProof which found graphs
that were not covered by the transformations, allowing us to correct the proof.
A characterization of graphs with a fixed order n and a fixed size m minimizing
ξc(G) was given in [96]. It reads as follows.

Theorem 7 ([96]). Let G be a connected graph of order n with m edges, where
n− 1 ≤ m <

(n
2
)
. Also, let

k =
⌊

2n− 1−
√

(2n− 1)2 − 8m

2

⌋
.

Then ξc(G) ≥ 4m− k(n− 1), with equality if and only if G has k dominating
vertices and n− k vertices of eccentricity 2.

It is, however, an open question to characterize the graphs with the largest
eccentric connectivity index among those of fixed order n and fixed size m.
The following conjecture appears in our paper [55], which was not presented
in this thesis as it does not use transformations. We define En,D,k as the graph
of order n constructed from a path u0 − u1 − . . .− uD by joining each vertex
of a clique Kn−D−1 to u0 and u1, and k vertices of the clique to u2.
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Conjecture 8. Let G be a connected graph of order n with m edges, where
n− 1 ≤ m ≤

(n−1
2
)
. Also, let

D =
⌊

2n + 1−
√

17 + 8(m− n)
2

⌋
and k = m−

(
n−D + 1

2

)
−D + 1.

Then ξc(G) ≤ ξc(En,D,k), with equality if and only if G ' En,D,k if D > 3 or
D = 3, k = n−4 and G is the graph constructed from a path u0−u1−u2−u3,
by joining 1 ≤ i ≤ n−3 vertices of a clique Kn−4 to u0, u1, u2 and the n−4− i

other vertices of Kn−4 to u1, u2, u3.



Chapter 7

On the average number of
colors in the non-equivalent
colorings of a graph

Following our work on the eccentric connectivity index of a graph (see
Chapter 6), we studied another invariant: the average number of colors in
the non-equivalent colorings of a graph. This time, we produced proofs by
transformation for some cases, but also conjectures about the effect of some
transformations on the invariant. Indeed, we could check with TransProof
that removing a vertex from a graph G with n ≤ 10 vertices will always
produce a graph G′ with a lower value of this invariant. But we could not
prove it for higher values of n. Two papers were written and submitted for
publication [59,60]. This chapter is based on those articles, with some changes
to highlight transformations and uses of TransProof.

7.1 Introduction

The total number B(G) of non-equivalent colorings (i.e., with different
partitions into color classes) of a graph G is the number of partitions of the
vertex set of G whose blocks are stable sets (i.e., sets of pairwise non-adjacent

93
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vertices). This invariant has been studied by several authors in the last few
years [1, 39,40,45,58,68] under the name of (graphical) Bell number1.

Recently, Hertz et al. [56] have defined a new graph invariant A (G) which
is equal to the average number of colors in the non-equivalent colorings of a
graph G. It can be seen as a generalization of a concept linked to Bell numbers.
More precisely, the Bell numbers (Bn)n≥0 count the number of different ways to
partition a set that has exactly n elements. The 2-Bell numbers (Tn)n≥0 count
the total number of blocks in all partitions of a set of n elements. Odlyzko and
Richmond [80] have studied the average number An of blocks in a partition
of a set of n elements, which can be defined as An = Tn

Bn
. The graph invariant

A (G) that we study in this chapter generalizes An. Indeed, when constraints
(represented by edges in G) impose that certain pairs of elements (represented
by vertices) cannot belong to the same block of a partition, A (G) is the average
number of blocks in the partitions that respect all constraints. Hence, for a
graph of order n, A (G) = An if G is the empty graph of order n.

As shown in [56], A(G) can help discover nontrivial inequalities for the Bell
numbers. For example, the authors show that A (Pn) = Bn

Bn−1
and A (Pn) <

A (Pn+1) for n ≥ 1, where Pn is the path on n vertices. This immediately
implies B2

n < Bn−1Bn+1, which means that the sequence (Bn)n≥0 is strictly log-
convex. This result has also been proved recently by Alzer [5] using numerical
arguments.

In the next section, we fix some notations, while Section 7.3 is devoted to
basic properties of A (G). In Section 7.4, we give values of A (G) for some
particular graphs G that we will deal with later. The following section intro-
duces necessary notations for this chapter. We then establish some properties
before providing values for some specific classes of graphs. Section 7.5 studies
lower bounds of A (G) and Section 7.6 studies upper bounds. In Section 7.7,
we give an improved algorithm to compute the value of A (G). The results are
summarized in Section 7.8.

1A formal definition is given on page 96.
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7.2 Notation

For basic notions of graph theory that are not defined here, we refer the
reader to Diestel [33]. We write Ka,b for the complete bipartite graph complete

bipartite
graph

where a

and b are the cardinalities of the two sets of vertices of the bipartition. For a
subset S of vertices in a graph G, we write G[S] for the subgraph of G induced
by S.

Let N(v) be the set of neighbors of a vertex v in G. A vertex v is isolated
if |N(v)| = 0 and is dominant if |N(v)| = n − 1 (where n is the order of G).
We write ∆(G) for the maximum degree maximum

degree

of G. Given a vertex v of a graph G,
we say that v is simplicial simplicial

vertex
if the induced subgraph G[N(v)] of G is a clique.

A graph is triangulated triangulated

graph

or chordal if each of its induced subgraphs contains a
simplicial vertex or equivalently if it contains no induced cycle of order ≥ 4.

Let G be a graph of order n and let u and v be two vertices in G. We use
the following notations:

• G|(u,v) is the graph (of order n − 1) obtained from G by identifying identifying

(merging) the vertices u and v and, if (u, v) ∈ E(G), by removing the
edge (u, v);

• if (u, v) ∈ E(G), G− (u, v) is the graph obtained by removing the edge
(u, v) from G;

• if (u, v) /∈ E(G), G + (u, v) is the graph obtained by adding the edge
(u, v) in G;

• G − v is the graph obtained from G by removing v and all its incident
edges.

Given two graphs G1 and G2 (with disjoint sets of vertices), we write
G1 ∪ G2 for the disjoint union disjoint

union
of G1 and G2, while the graph obtained from

G1 ∪G2 by adding all possible edges between the vertices of G1 and those of
G2 is the join joinG1 + G2 of G1 and G2. Also, G ∪ pK1 is the graph obtained
from G by adding p isolated vertices.

A coloring of a graph G is an assignment of colors to the vertices of G

such that adjacent vertices have different colors. The chromatic number χ(G)
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of G is the minimum number of colors in a coloring of G. Two colorings are
equivalentequivalent

colorings

if they induce the same partition of the vertex set into color classes.
So for instance, all permutations of the colors in a fixed coloring are equivalent.
Let S(G, k) be the number of non-equivalent colorings of a graph G that use
exactly k colors. Then, the total number B(G) of non-equivalent colorings of
a graph G is defined by

B(G) =
n∑

k=1
S(G, k) =

n∑
k=χ(G)

S(G, k),

and the total number T (G) of color classes in the non-equivalent colorings of
a graph G is defined by

T (G) =
n∑

k=1
kS(G, k) =

n∑
k=χ(G)

kS(G, k).

The average number A(G) of colors in the non-equivalent colorings of a graph
G can therefore be defined as

A (G) = T (G)
B(G) .

For illustration, as shown in Figure 7.1, there are one non-equivalent col-
oring of P4 with 2 colors, three with 3 colors, and one with 4 colors, which
gives B(P4) = 5, T (P4) = 15 and A(P4) = 15

5 = 3.

{

4 colors

2

1 2

1 2

1 3

1 2

1 1

3 2

1 2

3 2

1 4

3

{{

3 colors2 colors

Figure 7.1: The non-equivalent colorings of P4.

7.3 Properties of S(G, k) and A(G)

As for several other invariants in graph coloring, the deletion-contractiondeletion-
contraction
rule rule (also often called the Fundamental Reduction Theorem [37]) can be used
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to compute B(G) and T (G). More precisely, let u and v be any pair of distinct
vertices of G. As shown in [40,68], we have

S(G, k) = S(G− (u, v), k)− S(G|(u,v), k) ∀(u, v) ∈ E(G), (7.1)

S(G, k) = S(G + (u, v), k) + S(G|(u,v), k) ∀(u, v) /∈ E(G). (7.2)

It follows that

B(G) = B(G− (u, v))− B(G|(u,v))
T (G) = T (G− (u, v))− T (G|(u,v))

 ∀(u, v) ∈ E(G), (7.3)

B(G) = B(G + (u, v)) + B(G|(u,v))
T (G) = T (G + (u, v)) + T (G|(u,v))

 ∀(u, v) /∈ E(G). (7.4)

This rule is very useful to study the impact of removing or adding an edge
to a graph. We next give several results on transformations and their impact
on the value of A (G) for a graph G.

But first, we give a useful Theorem to prove those properties.

Theorem 9. Given any two graphs G1 and G2, we have

A (G1 + G2) = A (G1) +A (G2) .

Proof. As observed in [1], given any coloring of G1 +G2, none of the vertices of
G1 can share a color with a vertex of G2, which immediately gives B(G1+G2) =
B(G1)B(G2). For T (G1 + G2), assuming that G1 and G2 are of order n1 and
n2, respectively, we get

T (G1 + G2) =
n1∑

k=1

n2∑
k′=1

(k + k′)S(G1, k)S(G2, k′)

=
n1∑

k=1
S(G1, k)

n2∑
k′=1

(k + k′)S(G2, k′)

=
n1∑

k=1
S(G1, k)

(
k

n2∑
k′=1

S(G2, k′) +
n2∑

k′=1
k′S(G2, k′)

)

=
n1∑

k=1
kS(G1, k)

n2∑
k′=1

S(G2, k′) +
n1∑

k=1
S(G1, k)

n2∑
k′=1

k′S(G2, k′)
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=T (G1)B(G2) + B(G1)T (G2).

Hence,

A (G1 + G2) = T (G1 + G2)
B(G1 + G2) = T (G1)B(G2) + B(G1)T (G2)

B(G1)B(G2)

= T (G1)
B(G1) + T (G2)

B(G2) = A (G1) +A (G2) .

According to TransProof, removing a vertex from a graph G of order n ≤ 10
will always produce a graph G′ such that A (G) > A (G′). However, we could
not prove this property for an arbitrary value of n. The following properties
show that removing a vertex under some condition will always decrease A (G).
The following Corollary is also proved in [56].

Corollary 10. If v is a dominant vertex of a graph G, then,

A (G) = A (G− v) + 1.

Proof. If v is a dominant vertex of a graph G, then G ' (G − v) + K1, and
since A (K1) = 1, Theorem 9 gives A (G) = A (G− v) + 1.

In the following, given a subset W of vertices in a graph G, we denote
by SW,i(G, k) the number of non-equivalent colorings of G that use exactly
k colors, and where exactly i of them appear on W . Hence, S(G, k) =∑|W |

i=0 SW,i(G, k).

Lemma 11. Let v be a vertex in a graph G of order n and let N(v) be its set
of neighbors in G. Then

• B(G) = B(G− v) +
n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G− v, k), and

• T (G) = T (G− v) +
n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G− v, k).
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Proof. Since SN(v),i(G, k) = SN(v),i(G− v, k− 1) + (k− i)SN(v),i(G− v, k), we
have

B(G) =
n∑

k=1
S(G, k) =

n∑
k=1

|N(v)|∑
i=0

SN(v),i(G, k)

=
n∑

k=1

|N(v)|∑
i=0

SN(v),i(G− v, k − 1) +
n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G− v, k)

=
n−1∑
k=1

|N(v)|∑
i=0

SN(v),i(G− v, k) +
n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G− v, k)

= B(G− v) +
n−1∑
k=1

|N(v)|∑
i=0

(k − i)SN(v),i(G− v, k)

and

T (G) =
n∑

k=1
kS(G, k) =

n∑
k=1

|N(v)|∑
i=0

kSN(v),i(G, k)

=
n∑

k=1

|N(v)|∑
i=0

kSN(v),i(G− v, k − 1) +
n−1∑
k=1

|N(v)|∑
i=0

k(k − i)SN(v),i(G− v, k)

=
n−1∑
k=1

|N(v)|∑
i=0

(k + 1)SN(v),i(G− v, k) +
n−1∑
k=1

|N(v)|∑
i=0

k(k − i)SN(v),i(G− v, k)

=
n−1∑
k=1

|N(v)|∑
i=0

kSN(v),i(G− v, k) +
n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G− v, k)

= T (G− v) +
n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G− v, k).

Theorem 12. Let v be a vertex in a graph G. If χ(G[N(v)]) ≥ |N(v)|−3 then
A (G) > A (G− v).

Proof. Let n be the order of G. We know from Lemma 11 that

A (G)−A (G− v) = T (G− v) + a

B(G− v) + b
− T (G− v)
B(G− v) = aB(G− v)− bT (G− v)

B(G)B(G− v)

where a =
n−1∑
k=1

|N(v)|∑
i=0

(k(k − i) + 1)SN(v),i(G − v, k) and b =
n−1∑
k=1

|N(v)|∑
i=0

(k −

i)SN(v),i(G− v, k).
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It suffices to show that aB(G−v)−bT (G−v) > 0. Let P be the set of
pairs (k, i) such that SN(v),i(G− v, k)>0. Since χ(G[N(v)]) ≥ |N(v)| − 3, we
have k ≥ i ≥ |N(v)| − 3 for all (k, i) ∈ P. For two pairs (k, i) and (k′, i′) in
P, we write (k, i)>(k′, i′) if k>k′ or k=k′ and i>i′. Also, let f(k, k′, i, i′) =
SN(v),i(G−v, k)SN(v),i′(G−v, k′). We have

aB(G−v)− bT (G−v)

= a
n−1∑
k=1

|N(v)|∑
i=0

SN(v),i(G− v, k)− b
n−1∑
k=1

|N(v)|∑
i=0

kSN(v),i(G− v, k)

=
∑

(k,i)∈P
SN(v),i(G− v, k)2

(
(k(k − i) + 1)− (k − i)k

)
+

∑
(k,i)>(k′,i′)

f(k, k′, i, i′)
(
(k(k−i)+1)+(k′(k′−i′)+1)−(k−i)k′−(k′−i′)k

)
=

∑
(k,i)∈P

SN(v),i(G−v, k)2

+
∑

(k,i)>(k′,i′)
f(k, k′, i, i′)

(
(k−k′)2−(k−k′)(i−i′)+2

)
.

Note that since SN(v),|N(v)|(G − v, n − 1) = 1, P 6= ∅. Hence, we have∑
(k,i)∈P SN(v),i(G− v, k)2>0, and it is sufficient to prove that (k− k′)2− (k−

k′)(i− i′) + 2 ≥ 0 for every two pairs (k, i) and (k′, i′) in P with (k, i)>(k′, i′).
For two such pairs (k, i) and (k′, i′), we have i− i′ ≤ |N(v)|− (|N(v)|−3) = 3.
Hence,

• if k = k′, then (k − k′)2 − (k − k′)(i− i′) + 2 = 2 > 0;

• if k = k′ + 1, then (k − k′)2 − (k − k′)(i− i′) + 2 = 3− (i− i′) ≥ 0;

• if k = k′ + 2, then (k − k′)2 − (k − k′)(i− i′) + 2 = 6− 2(i− i′) ≥ 0;

• if k ≥ k′ + 3, then (k − k′)2 − (k − k′)(i− i′) + 2 ≥ 2.

Corollary 13. If v is a vertex of degree at most 4 in a graph G, then A (G) >

A (G− v).

Proof. Since |N(v)| ≤ 4, we have:

• if N(v) = ∅, then χ(G[N(v)]) = 0 > −3 = |N(v)| − 3;
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• if N(v) 6= ∅, then χ(G[N(v)]) ≥ 1 ≥ |N(v)| − 3.

In both cases, we conclude from Theorem 12 that A (G) > A (G− v).

Corollary 14. Let v be a simplicial vertex in a graph G. Then A (G) >

A (G− v).

Proof. Since v is simplicial in G, we have χ(G[N(v)]) = |N(v)| > |N(v)| − 3.
Hence, we conclude from Theorem 12 that A (G) > A (G− v).

Given that removing a vertex seems to always result in a decrease in the
average number of colors, one might think that removing an edge would have
the same effect. Indeed, removing an edge allows more colorings using fewer
colors. But this is not true. Using TransProof, we found that removing any
edge from the graph of Figure 7.2 produces a graph with a larger average
number of colors. And it is not the only example.

Figure 7.2: Any edge removal results in an increase of A (G).

Thus, instead of trying to prove this incorrect property, we restricted our-
selves to simplicial vertices.

Theorem 15. Let v be a simplicial vertex of degree at least one in a graph G of
order n, and let w be one of its neighbors in G. Then A (G) > A (G− (v, w)).

Proof. Let H = (G − v) ∪ K1. In other words, H is obtained from G − v by
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adding an isolated vertex. It follows from Lemma 11 that

B(H) = B(G− v) +
n−1∑
k=1

0∑
i=0

(k − i)S∅,i(G− v, k)

= B(G− v) +
n−1∑
k=1

kS(G− v, k)

and

T (H) = T (G− v) +
n−1∑
k=1

0∑
i=0

(k(k − i) + 1)S∅,i(G− v, k)

= T (G− v) +
n−1∑
k=1

(k2 + 1)S(G− v, k).

Also, since v is a simplicial vertex, SN(v),i(G−v, k)=0 for i 6= |N(v)|, and
we have that S(G−v, k)=SN(v),|N(v)|(G−v, k). It follows from Lemma 11 that

B(G) = B(G− v) +
n−1∑
k=1

(k − |N(v)|)S(G− v, k)

=
(
B(G− v) +

n−1∑
k=1

kS(G− v, k)
)
− |N(v)|

n−1∑
k=1

S(G− v, k)

= B(H)− |N(v)|B(G− v)

and

T (G) = T (G− v) +
n−1∑
k=1

(
k(k − |N(v)|) + 1

)
S(G− v, k)

=
(
T (G− v) +

n−1∑
k=1

(k2 + 1)S(G− v, k)
)
− |N(v)|

n−1∑
k=1

kS(G− v, k)

= T (H)− |N(v)|T (G− v).

Similarly, since v is simplicial (of degree |N(v)| − 1) in G− (v, w), we have

B(G− (v, w)) = B(H)− (|N(v)| − 1)B(G− v)

and
T (G− (v, w)) = T (H)− (|N(v)| − 1)T (G− v).
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Hence,

A (G)−A (G− (v, w)) = T (G)
B(G) −

T (G− (v, w))
B(G− (v, w))

= T (H)−|N(v)|T (G−v)
B(H)−|N(v)|B(G−v)−

T (H)−(|N(v)|−1)T (G−v)
B(H)−(|N(v)|−1)B(G−v)

= T (H)B(G−v)−B(H)T (G−v)
B(G)B(G−(v, w)) .

Since v is isolated in H, it is simplicial and we know from Corollary 14 that

A (H) > A (G− v) ⇐⇒ T (H)
B(H) >

T (G− v)
B(G− v)

⇐⇒ T (H)B(G− v)− B(H)T (G− v) > 0

which implies A (G)−A (G− (v, w)) > 0.

The following properties will also be useful to prove our results.

Lemma 16. Let G and H be two graphs, and suppose H has order n. Then

• B(G ∪H) =
n∑

k=1
S(H, k)B(G ∪ Kk), and

• T (G ∪H) =
n∑

k=1
S(H, k)T (G ∪ Kk).

Proof. We first prove that B(G∪H) = ∑n
k=1 S(H, k)B(G∪Kk) for all graphs

H of order n. For n = 1, we have H = K1, and since S(K1, 1) = 1, we have
B(G ∪ K1) = ∑1

k=1 S(K1, k)B(G ∪ K1). For larger values of n we proceed by
double induction on the order n and the size m of H. So assume H has order
n and size m.

• If m = n(n−1)
2 , then H = Kn. Since S(Kn, i) = 0 for i = 1, . . . , n− 1 and

S(Kn, n) = 1, we have B(G ∪ Kn) = ∑n
k=1 S(Kn, k)B(G ∪ Kn).

• If m < n(n−1)
2 , then H contains two non-adjacent vertices u and v, and

we know from Equations (7.4) that B(G ∪H) = B(G ∪ (H + (u, v))) +
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B(G ∪H|(u,v)). Since H + (u, v) has order n and size m + 1 and H|(u,v)

has order n− 1, we know by induction that

B(G ∪H) =
n∑

k=1
S(H + (u, v), k)B(G ∪ Kk) +

n−1∑
k=1

S(H|(u,v), k)B(G ∪ Kk)

=
n∑

k=1

(
S(H + (u, v), k) + S(H|(u,v), k)

)
B(G ∪ Kk)

=
n∑

k=1
S(H, k)B(G ∪ Kk).

The proof for T (G ∪H) is similar.

Theorem 17. Let H1, H2 be any two graphs. If, for all k>k′, we have that
S(H1, k)S(H2, k′) ≥ S(H2, k)S(H1, k′), the inequality being strict for at least
one pair (k, k′), then A (G ∪H1) > A (G ∪H2) for all graphs G.

Proof. Let f(k, k′)=S(H1, k)S(H2, k′)−S(H2, k)S(H1, k′) and assume that H1

and H2 are of order n1 and n2, respectively. Note that n1 ≥ n2 else we would
have n2 > n1 and f(n2, n1)=S(H1, n2)S(H2, n1)−S(H2, n2)S(H1, n1) = −1 <

0. We know from Lemma 16 that

A (G ∪H1)−A (G ∪H2) =

n1∑
k=1

S(H1, k)T (G ∪ Kk)

n1∑
k=1

S(H1, k)B(G ∪ Kk)
−

n2∑
k=1

S(H2, k)T (G ∪ Kk)

n2∑
k=1

S(H2, k)B(G ∪ Kk)

=

n1∑
k=1

n1∑
k′=1

f(k, k′)T (G∪Kk)B(G∪Kk′)

B(G ∪H1)B(G ∪H2) .

Since f(k, k) = 0 for all k and f(k, k′) = −f(k′, k) for all k 6= k′, we deduce

A (G ∪H1)−A (G ∪H2) =

n1−1∑
k′=1

n1∑
k=k′+1

f(k, k′)T (G∪Kk)B(G∪Kk′)

B(G ∪H1)B(G ∪H2)

−

n1−1∑
k′=1

n1∑
k=k′+1

f(k, k′)T (G∪Kk′)B(G∪Kk)

B(G ∪H1)B(G ∪H2)
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=

n1−1∑
k′=1

n1∑
k=k′+1

f(k, k′)
(
T (G∪Kk)B(G∪Kk′)−T (G∪Kk′)B(G∪Kk)

)
B(G∪H1)B(G∪H2) .

Note that if k > k′, then G∪Kk is obtained from G∪Kk′ by repeatedly adding
a simplicial vertex. Hence, we know from Corollary 14 that

A (G ∪ Kk) > A (G ∪ Kk′) ⇐⇒ T (G ∪ Kk)
B(G ∪ Kk) >

T (G ∪ Kk′)
B(G ∪ Kk′)

⇐⇒ T (G ∪ Kk)B(G ∪ Kk′)

− T (G ∪ Kk′)B(G ∪ Kk) > 0.

Since f(k, k′) = S(H1, k)S(H2, k′)− S(H1, k′)S(H2, k) is positive for all pairs
k > k′, and strictly positive for at least one such pair, we have A (G ∪H1)−
A (G ∪H2) > 0.

As a final property, we mention one which is proved in [56] and which will
be helpful in proving results in the following sections.

Theorem 18 ([56]). Let G, H and F1, · · · , Fr be r+2 graphs, and let α1, · · · , αr

be r positive numbers such that

• B(G) = B(H) +
r∑

i=1
αiB(Fi),

• T (G) = T (H) +
r∑

i=1
αiT (Fi), and

• A(Fi) < A(H) for all i = 1, · · · , r.

Then A(G) < A(H).

7.4 Some values for A(G)

The value A (G) is known for some graphs G. We mention here some of
them which are proven in [56] and determine some others.

Proposition 19. [56]
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• A
(
Kn

)
= A (nK1) = Bn+1 − Bn

Bn
for all n ≥ 1;

• A (T ∪ pK1) =

p∑
i=0

(
p

i

)
Bn+i

p∑
i=0

(
p

i

)
Bn+i−1

for all trees T of order n ≥ 1 and all

p ≥ 0;

• A (Cn ∪ pK1) =

n−1∑
j=1

(−1)j+1
p∑

i=0

(
p

i

)
Bn+i−j+1

n−1∑
j=1

(−1)j+1
p∑

i=0

(
p

i

)
Bn+i−j

for all n ≥ 3 and p ≥ 0.

Since S(Kn, k) = 1 for k = n, and S(Kn, k) = 0 for k < n, we have
A (Kn) = n. We prove here a stronger property, which we use in the next
section. Let

{a
b

}
be the Stirling number of the second kind, with parameters

a and b (i.e., the number of partitions of a set of a elements into b blocks).

Proposition 20.

A (Kn ∪ pK1) =

n+p∑
k=n

k
n∑

j=0

(
k − j

n− j

)(
n

j

)
(n− j)!

{
p

k − j

}
n+p∑
k=n

n∑
j=0

(
k − j

n− j

)(
n

j

)
(n− j)!

{
p

k − j

} for all n ≥ 1 and

all p ≥ 0.

Proof. It is proved in [58] that given two graphs G1 and G2, we have

S(G1 ∪G2, k) =
k∑

i=1

i∑
j=0

(
i

j

)(
k − j

i− j

)
(i− j)!S(G1, i)S(G2, k − j).

For G1 ' Kn and G2 ' pK1, we have S(G1, i) = 1 if i = n, and S(G1, i) = 0
otherwise. Also, S(G2, k − j) =

{ p
k−j

}
. Hence,

S(Kn ∪ pK1, k) =
n∑

j=0

(
k − j

n− j

)(
n

j

)
(n− j)!

{
p

k − j

}
.
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The result then follows from the fact that

A (Kn ∪ pK1) =

n+p∑
k=n

kS(Kn ∪ pK1, k)

n+p∑
k=n

S(Kn ∪ pK1, k)
.

We now determine A (G) for G equal to the complement of a path and
the complement of a cycle. In what follows, we write Fn and Ln for the nth
Fibonacci number and the nth Lucas number, respectively.

Proposition 21. A
(
Pn

)
= (n + 1)Fn+2 + (2n− 1)Fn+1

5Fn+1
for all n ≥ 1.

Proof. The result is true for n ≤ 2. Indeed,

• For n = 1, we have P1 = K1 which implies A
(
P1
)

= 1 = 2F3+F2
5F2

;

• For n = 2, we have P2 = K2 which implies A
(
P2
)

= B3−B2
B2

= 3
2 =

3F4+3F3
5F3

.

For larger values of n, we proceed by induction. It is shown in [40] that
B(Pn)=Fn+1. Also, it follows from Equations (7.4) that T (Pn) = T (Pn−1 +
K1) + T (Pn−2 + K1). Moreover, as shown in the proof of Theorem 9, we have

T (G + K1) = T (G)B(K1) + B(G)T (K1) = T (G) + B(G).

Hence,

A
(
Pn

)
= T (Pn−1) + B(Pn−1) + T (Pn−2) + B(Pn−2)

Fn+1

= nFn+1 + (2n− 3)Fn

5Fn+1
+ Fn

Fn+1
+ (n− 1)Fn + (2n− 5)Fn−1

5Fn+1
+ Fn−1

Fn+1

= nFn+1 + (3n + 1)Fn + 2nFn−1
5Fn+1

= 3nFn+1 + (n + 1)Fn

5Fn+1

= (n + 1)Fn+2 + (2n− 1)Fn+1
5Fn+1

.
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Proposition 22. A
(
Cn

)
= nFn+1

Ln
for all n ≥ 4.

Proof. It follows from Equations (7.4) that

T (Cn) = T (Pn) + T (Pn−2 + K1).

Moreover, it is shown in [40] that B(Cn) = Ln. Since T (Pn−2 + K1) =
T (Pn−2) + B(Pn−2), Proposition 21 implies

A
(
Cn

)
= T (Pn) + T (Pn−2) + B(Pn−2)

Ln

= (n + 1)Fn+2 + (2n− 1)Fn+1
5Ln

+ (n− 1)Fn + (2n− 5)Fn−1
5Ln

+ Fn−1
Ln

= (n + 1)Fn+2 + (2n− 1)Fn+1 + (n− 1)Fn + 2nFn−1
5Ln

= 3nFn+1 + 2nFn + 2nFn−1
5Ln

= 5nFn+1
5Ln

= nFn+1
Ln

.

7.5 Lower bounds and properties for the average
number of colors in the non-equivalent colorings
of a graph

Coloring a graph with many colors is usually quite simple and uninterest-
ing. But using as few colors as possible is an NP-hard problem [46]. This is
why we wish to study the possible lower bounds for A (G), as a function of
n, which is reached by at least one graph of order n. We think that the best
possible lower bound is Bn+1−Bn

Bn
and is reached by the empty graph of order

n. But it is just a conjecture we are trying to prove.
In this section, we give three conjectures for potential lower bounds on

A (G). We then establish their validity for triangulated graphs and for graphs
G with maximum degree ∆(G) ≤ 2.
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K7 K4 ∪ 3K1 K1,3 ∪ 3K1

Figure 7.3: The three graphs that define the lower bounds L1(7), L2(7, 4) and
L3(7, 4).

7.5.1 Conjectures

The lower bounds we are interested in depend on two parameters n and
r with 1≤r≤n. They are equal to A (G) for some specific graphs G. More
precisely, with the help of Propositions 19 and 20, we define

• L1(n) = A
(
Kn

)
= Bn+1 − Bn

Bn
,

• L2(n, r) = A (Kr ∪ (n−r) K1) =

n∑
k=r

k
r∑

i=0

(
k − i

r − i

)(
r

i

)
(r − i)!

{
n− r

k − i

}
n∑

k=r

r∑
i=0

(
k − i

r − i

)(
r

i

)
(r − i)!

{
n− r

k − i

} ,

• L3(n, r) = A (K1,r−1 ∪ (n−r) K1) =

n−r∑
i=0

(
n−r

i

)
Br+i

n−r∑
i=0

(
n−r

i

)
Br+i−1

.

For illustration, we show in Figure 7.3 the three graphs that give the
bounds for n = 7 and r = 4.

Given a graph G of order n, we are interested in the following inequalities,
one of them being a conjecture, the other ones being proved here below:

L1(n) ≤ min
{

L2(n, χ(G)), L3(n, ∆(G)+1)
}

≤ max
{

L2(n, χ(G)), L3(n, ∆(G)+1)
}
≤A(G).

The first inequality follows from Theorem 15 since Kn is obtained from
Kr∪(n−r)K1 and from K1,r−1∪(n−r)K1 by repeatedly removing edges incident
to simplicial vertices. The second inequality is trivial. The last inequality is
an open problem stated in the two following conjectures.
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Conjecture 23. Let G be a graph of order n. Then,

A (G) ≥ L2(n, χ(G))

with equality if and only if G ' Kχ(G) ∪ (n−χ(G))K1.

Conjecture 24. Let G be a graph of order n. Then

A (G) ≥ L3(n, ∆(G)+1)

with equality if and only if G ' K1,∆(G) ∪ (n−∆(G)−1)K1.

Since L1(n) ≤ min{L2(n, χ(G)), L3(n, ∆(G)+1)}, it suffices to show that
one of these conjectures is true to prove that the empty graph Kn has the
minimum value for A(G) among all graphs G of order n. This leads to the
following weaker conjecture.

Conjecture 25. Let G be a graph of order n, then,

A (G) ≥ L1(n)

with equality if and only if G ' Kn.

Theorem 26. Conjectures 23 and 24 (and therefore 25) are true for triangu-
lated graphs.

Proof. Let us first observe that removing an edge incident to a simplicial
vertex in a triangulated graph gives another triangulated graph. So let G

be a triangulated graph. Since G is perfect, it contains a clique K of order
|K| = χ(G). It is well known that triangulated graphs that are not a clique
contain at least two non-adjacent simplicial vertices [35]. Hence, G can be
reduced to Kχ(G) ∪ (n−χ(G))K1 by repeatedly removing edges incident to
simplicial vertices. We know from Theorem 15 that each of these edge removals
strictly decreasesA (G). We thus haveA (G) ≥ A

(
Kχ(G

)
∪(n−χ(G))K1), with

equality if and only if G ' Kχ(G) ∪ (n−χ(G))K1. Conjecture 23 is therefore
true for triangulated graphs.
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Let us now deal with Conjecture 24. Let v be a vertex of degree ∆(G)
in G. We consider the partition (N1(v), N2(v)) of the neighborhood N(v)
of v, where N1(v) contains all vertices of N(v) of degree 1 in G (i.e., v is
the only neighbor of every vertex of N1(v)). Also, we consider the partition
(N1(v), N2(v)) of the set N(v) of vertices of G that are not adjacent to v, where
N1(v) contains all vertices of N(v) of degree 0 in G. If N2(v)∪N2(v) 6= ∅ then
G[N2(v) ∪ N2(v) ∪ {v}] contains a simplicial vertex w 6= v (since it is also a
triangulated graph). Clearly, w is simplicial in the whole graph that includes
N1(v) and N1(v).

• If w ∈ N2(v), we can remove all edges incident to w, except the one that
links w with v. We thus get a new triangulated graph in which at least
one vertex has been transferred from N2(v) to N1(v), vertices of N2(v)
may have transferred to N1(v), but no vertex has undergone the reverse
transfers.

• If w ∈ N2(v), we can remove all edges incident to w. We thus get a new
triangulated graph in which at least one vertex has been transferred from
N2(v) to N1(v), vertices of N2(v) may have transferred to N1(v), but
no vertex has undergone the reverse transfers.

Note that in both cases, no vertex has been transferred from N(v) to N(v)
or vice versa. Hence, by repeatedly applying the above-mentioned edge re-
movals, we get N2(v) = N2(v) = ∅, which means that the resulting graph
is K1,∆(G) ∪ (n−∆(G) − 1)K1. Again, we know from Theorem 15 that each
of the edge removals performed strictly decreases A (G), which proves that
A (G) ≥ A

(
K1,∆(G

)
∪ (n−∆(G) − 1)K1), with equality if and only if G '

K1,∆(G) ∪ (n−∆(G)− 1)K1.

The three conjectures come from the discovery systems GraPHedron [75]
and PHOEG [31]. Note that despite the apparent simplicity of Conjecture 25,
its validity cannot be proven by simple intuitive means such as sequential edge
removal. Indeed, there are graphs, for example K2,4, for which the removal
of any edge strictly increases A (G). Also, we cannot proceed by induction
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on the number of connected components of G. Indeed, there are pairs of
graphs G1, G2 such that A (G1) < A (G2) while A (G1∪K1) > A (G2∪K1). For
example, for G1 = K2,3 and G2 = K3∪2K1, we have

A (G1) =3.5<3.529=A (G2) and A (G1∪K1) =3.867>3.831=A (G2∪K1) .

Note that proving that Conjecture 24 is true for all graphs G of order n and
maximum degree ∆(G) = n−1 is as difficult as proving Conjecture 25. Indeed,
let v be a vertex of degree n−1 in a graph G of order n. Since v is a dominant
vertex of G, we know from Corollary 10 that A (G) = A (G− v)+1. Hence,
minimizing A (G) is equivalent to minimizing A (G− v), with no maximum
degree constraint on G− v. We show in the next section that Conjectures 23
and 24 (and therefore 25) are true for graphs of maximum degree at most 2.

7.5.2 Proof of the conjectures for graphs G with ∆(G) ≤ 2

We start this section with a simple proof of the validity of Conjectures 23
and 24 when ∆(G) = 1.

Theorem 27. Let G be a graph of order n and maximum degree ∆(G) = 1.
Then,

L2(n, χ(G)) = L3(n, ∆(G)+1) ≤ A(G),

with equality if and only if G ' K2∪(n−2)K1.

Proof. Since ∆(G) = 1, we have χ(G) = 2, which implies

L2(n, χ(G))=L2(n, 2)=A (K2∪(n−2) K1)=A (K1,1∪(n−2) K1)

= L3(n, 2)=L3(n, ∆(G)+1).

Note also that ∆(G) = 1 implies G ' pK2∪(n−2p)K1 for p ≥ 1. Hence, all
vertices in G are simplicial. We can thus sequentially remove all edges of G,
except one, and it follows from Theorem 15 that A (G) ≥ A (K2∪(n−2) K1),
with equality if and only G ' K2∪(n−2)K1.

The proofs that Conjectures 23 and 24 are true when ∆(G) = 2 are more
complex. We first prove some intermediate results in the form of lemmas.
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Lemma 28. A(G ∪ Cn) > A(G ∪ Pn) for all n ≥ 3 and all graphs G.

Proof. Let H ' P2 if n = 3 and H ' Cn−1 if n > 3. We know from Equations
(7.3) that B(G ∪ Cn) = B(G ∪ Pn) − B(G ∪ H) and T (G ∪ Cn) = T (G ∪
Pn) − T (G ∪ H). Since Pn is a proper spanning subgraph of Cn, we have
B(G ∪ Cn) < B(G ∪ Pn). Altogether, this gives

A (G ∪ Cn)−A(G ∪H) =T (G ∪ Cn)
B(G ∪ Cn)−

T (G ∪H)
B(G ∪H)

=T (G ∪ Pn)−T (G ∪H)
B(G ∪ Pn)−B(G ∪H)−

T (G ∪H)
B(G ∪H)

=T (G ∪ Pn)B(G ∪H)−T (G ∪H)B(G ∪ Pn)
B(G ∪ Cn)B(G ∪H)

>
T (G ∪ Pn)B(G ∪H)−T (G ∪H)B(G ∪ Pn)

B(G ∪ Pn)B(G ∪H)

=T (G ∪ Pn)
B(G ∪ Pn)−

T (G ∪H)
B(G ∪H)

=A (G ∪ Pn)−A(G ∪H)

⇐⇒ A(G ∪ Cn) > A(G ∪ Pn).

For n ≥ 3, let Qn be the graph obtained from Pn by adding an edge
between an extremity v of Pn and the vertex at distance 2 from v on Pn.

Lemma 29. If n ≥ 3, 0 ≤ x ≤ p and 1 ≤ k ≤ n, then

S(Qn ∪ pK1, k) =
x∑

i=0

(
x

i

)
S(Qn+i ∪ (p− x)K1, k).

Proof. The result is clearly true for p = 0. For larger values of p, we proceed
by induction. Since the result is clearly true for x = 0, we assume x ≥ 1.
Equations (7.2) imply

S(Qn ∪ pK1, k) = S(Qn+1 ∪ (p−1)K1, k) + S(Qn ∪ (p−1)K1, k)

=
x−1∑
i=0

(
x−1

i

)
S(Qn+i+1 ∪ (p−x)K1, k)
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+
x−1∑
i=0

(
x−1

i

)
S(Qn+i ∪ (p−x)K1, k)

=
x∑

i=1

(
x−1
i−1

)
S(Qn+i ∪ (p−x)K1, k)

+
x−1∑
i=0

(
x−1

i

)
S(Qn+i ∪ (p−x)K1, k)

= S(Qn+x∪(p−x)K1, k)+S(Qn∪(p−x)K1, k)

+
x−1∑
i=1

((
x−1
i−1

)
+
(

x−1
i

))
S(Qn+i∪(p−x)K1, k)

=
x∑

i=0

(
x

i

)
S(Qn+i ∪ (p−x)K1, k).

Lemma 30. If n ≥ 3 is an odd number and 1 ≤ k ≤ n, then

S(Cn ∪ pK1, k) =
(n−3)/2∑

i=0
S(Q2i+3 ∪ pK1, k).

Proof. The result is clearly true for n = 3 since C3 ' Q3. For larger values of
n, we proceed by induction. It follows from Equations (7.1) and (7.2) that

S(Cn ∪ pK1, k) = S(Pn ∪ pK1)− S(Cn−1 ∪ pK1, k)

=
(
S(Qn∪pK1, k)+S(Pn−1∪pK1, k)

)
−
(
S(Pn−1∪pK1, k)−S(Cn−2∪pK1, k)

)
= S(Qn ∪ pK1, k) + S(Cn−2 ∪ pK1, k)

= S(Qn ∪ pK1, k) +
(n−5)/2∑

i=0
S(Q2i+3 ∪ pK1, k)

=
(n−3)/2∑

i=0
S(Q2i+3 ∪ pK1, k).
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Lemma 31. If n and x are two numbers such that 5 ≤ x ≤ n and x is odd,
then

S(C3 ∪ (n− 3)K1, k) = S(Cx ∪ (n− x)K1, k) +
x−5∑
i=0

αiS(Qi+4 ∪ (n− x)K1, k)

where

αi =



(
x− 3
i + 1

)
− 1 if i is even

(
x− 3
i + 1

)
if i is odd.

Proof. Since Q3 ' C3 we know from Lemma 29 that

S(Q3 ∪ (n− 3)K1, k) =
x−3∑
i=0

(
x− 3

i

)
S(Qi+3∪(n− x)K1, k)

=
(x−3)/2∑

i=0

(
x−3
2i

)
S(Q2i+3∪(n−x)K1, k)

+
(x−5)/2∑

i=0

(
x−3

2i + 1

)
S(Q2i+4 ∪ (n−x)K1, k).

It then follows from Lemma 30 that

S(Q3∪(n−3)K1, k)=S(Cx∪(n−x)K1, k)

+
(x−5)/2∑

i=1

((
x−3
2i

)
−1
)

S(Q2i+3∪(n−x)K1, k)

+
(x−5)/2∑

i=0

(
x− 3
2i + 1

)
S(Q2i+4 ∪ (n− x)K1, k)

=S(Cx ∪ (n− x)K1, k) +
x−5∑
i=0

αiS(Qi+4 ∪ (n− x)K1, k).

Lemma 32. If n ≥ 5 and 3 ≤ i < n then

A (Qi ∪ pK1) < A (Cn ∪ pK1)
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Proof. Since Qn−1∪pK1 is obtained from Qi∪pK1 by iteratively adding vertices
of degree 1, we know from Corollary 13 that A (Qi ∪ pK1) ≤ A (Qn−1 ∪ pK1).
Moreover, it is proved in [56] that A (Qn−1 ∪ pK1) < A (Pn ∪ pK1) for all n ≥ 5
and p ≥ 0. It then follows from Lemma 28 that

A (Qi ∪ pK1) ≤ A (Qn−1 ∪ pK1) < A (Pn ∪ pK1) < A (Cn ∪ pK1) .

Corollary 33. If n ≥ 5, x is odd and 5 ≤ x ≤ n, then

A (C3 ∪ (n− 3) K1) < A (Cx ∪ (n− x) K1).

Proof. Lemma 31 implies

• B(C3 ∪ (n− 3)K1) = B(Cx ∪ (n−x)K1) +
x−5∑
i=0

αiB(Qi+4 ∪ (n−x)K1), and

• T (C3 ∪ (n− 3)K1) = T (Cx ∪ (n− x)K1) +
x−5∑
i=0

αiT (Qi+4 ∪ (n− x)K1),

where

• αi =
(

x− 3
i + 1

)
− 1 ≥ 0 if i is even, and

• αi =
(

x− 3
i + 1

)
> 0 if i is odd.

Also, we know from Lemma 32 that A (Qi+4 ∪ pK1) <A (Cx ∪ (n− x) K1) for
i = 0, . . . , x−5. Hence, it follows from Theorem 18 that A (C3 ∪ (n− 3) K1) <

A (Cx ∪ (n− x) K1).

We are now ready to prove the validity of the two Conjectures 23 and 24 when
∆(G) = 2.

Theorem 34. Let G be a graph of order n with ∆(G) = 2. Then,

A (G) ≥ L2(n, χ(G))

with equality if and only if G ' Kχ(G) ∪ (n−χ(G))K1.
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Proof. Since ∆(G) = 2, G is the disjoint union of paths and cycles. If G does
not contain any odd cycle, then χ(G) = 2. It then follows from Theorem 15
and Lemma 28 that the edges of G can be removed sequentially, with a strict
decrease of A (G) at each step, until we get K2 ∪ (n−2)K1.

If χ(G)=3, then at least one connected component of G is an odd cycle
Cx with x≤n. Again, we know from Theorem 15 and Lemma 28 that the
edges of G can be removed sequentially, with a strict decrease of A (G) at
each step, until we get Cx ∪ (n−x)K1. It then follows from Corollary 33 that
A (G) ≥ A (Cx ∪ (n−x) K1) ≥ A (C3 ∪ (n−3) K1), with equalities if and only
if G ' C3 ∪ (n−3)K1 ' K3 ∪ (n−3)K1.

Theorem 35. Let G be a graph of order n with ∆(G) = 2. Then,

A (G) ≥ L3(n, ∆(G) + 1)

with equality if and only if G ' K1,2 ∪ (n−3)K1.

Proof. Since ∆(G) = 2, G is the disjoint union of paths and cycles. Also, G

contains at least one vertex u of degree 2. Let v and w be two neighbors of u

in G. It follows from Theorem 15 and Lemma 28 that the edges of G can be
removed sequentially, with a strict decrease of A (G) at each step, until the
edge set of the remaining graph H is {(u, v), (u, w)}. But H is then isomorphic
to K1,2 ∪ (n−3)K1.

7.6 Upper bounds on the average number of colors
in the non-equivalent colorings of a graph

Lower bounds on A (G) are studied in the previous section, and we saw
that there is no known lower bound on A (G) which is a function of n and
such that there exists at least one graph of order n which reaches it. As we
will show, the situation is not the same for the upper bound. Indeed, we show
that there is an upper bound on A (G) which is a function of n and such that
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there exists at least one graph of order n which reaches it. We also give a
sharper upper bound for graphs with maximum degree ∆(G) ∈ {1, 2, n− 2}.

The next subsection is devoted to properties of A (G) and basic ingredients
that we will use in Section 7.6.2 for proving the validity of the upper bounds
on A (G).

7.6.1 Useful properties for the upper bound

Some graphs G of order n ≤ 9 will play a special role in the next subsection.
The values S(G, k) of these graphs, with 2 ≤ k ≤ n, are given in Table 7.1.
These values lead to the following lemma.

Lemma 36. The following strict inequalities are valid for all graphs G:

(a)A(G ∪ C6) < A(G ∪ 2C3)

(b)A(G ∪ C7) < A(G ∪ C3 ∪ C4)

(c)A(G ∪ C8) < A(G ∪ C3 ∪ C5)

(d)A(G ∪ C3 ∪ K2) < A(G ∪ C5)

(e)A(G ∪ C4 ∪ K2) < A(G ∪ 2C3)

(f)A(G ∪ C5 ∪ K2) < A(G ∪ C3 ∪ C4)

(g)A(G ∪ C4 ∪ K1) < A(G ∪ C5)

(h)A(G ∪ C5 ∪ K1) < A(G ∪ 2C3)

(i)A(G ∪ 2C4) < A(G ∪ C3 ∪ C5)

(j)A(G ∪ C4 ∪ C5) < A(G ∪ 3C3)

(k)A(G ∪ 2C5) < A(G ∪ 2C3 ∪ C4).

Proof. All these inequalities can be obtained from Theorem 17 by using the
values given in Table 7.1. For example, to check that (a) holds, the 4th and 7th

lines of Table 7.1 allow checking that S(2C3, k)S(C6, k′)−S(C6, k)S(2C3, k′) ≥
0 for all k > k′ and at least one of these values is strictly positive.
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Table 7.1: Values of S(G, k) for some graphs G of order n and 2 ≤ k ≤ n

k 2 3 4 5 6 7 8 9 10
S(C3 ∪ K2, k) 0 6 6 1
S(C4 ∪ K1, k) 2 7 6 1
S(C5, k) 0 5 5 1
S(2C3, k) 0 6 18 9 1
S(C4 ∪ K2, k) 2 16 25 10 1
S(C5 ∪ K1, k) 0 15 25 10 1
S(C6, k) 1 10 20 9 1
S(C3 ∪ C4, k) 0 18 66 55 14 1
S(C5 ∪ K2, k) 0 30 90 65 15 1
S(C7, k) 0 21 70 56 14 1
S(C3 ∪ C5, k) 0 30 210 285 125 20 1
S(2C4, k) 2 52 241 296 126 20 1
S(C8, k) 1 42 231 294 126 20 1
S(3C3, k) 0 36 540 1242 882 243 27 1
S(C3 ∪ C6, k) 0 66 666 1351 910 245 27 1
S(C4 ∪ C5, k) 0 90 750 1415 925 246 27 1
S(C9, k) 0 85 735 1407 924 246 27 1
S(2C3 ∪ C4, k) 0 108 1908 5838 5790 2361 433 35 1
S(2C5, k) 0 150 2250 6345 6025 2400 435 35 1

Those inequalities also show us which transformation replacing a subgraph
can strictly increase A (G).

We now show the validity of four lemmas which will be helpful for proving
that A (G ∪ Cn) < A (G ∪ Cn−3 ∪ C3) for all n ≥ 6. A direct consequence of
this result will be that a graph G that maximizes A (G) among the graphs
with maximum degree 2 cannot contain an induced Cn with n ≥ 6.

Lemma 37. S(Cn, k) = (k − 1)S(Cn−1, k) + S(Cn−1, k − 1) for all n ≥ 4 and
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all k ≥ 3.

Proof. The values in the following table show that the result is true for n = 4.

k 2 3 4
S(C4, k) 1 2 1
S(C3, k) 0 1 0

For larger values of n, we proceed by induction. So assume n ≥ 5, let u be a
vertex in Cn, and let v and w be its two neighbors in Cn. Let us analyze the
set of non-equivalent colorings of Cn that use exactly k colors:

• there are (k− 1)S(Cn−2, k) such colorings where v and w have the same
color and at least one vertex of Cn − u has the same color as u;

• there are S(Cn−2, k − 1) such colorings where v and w have the same
color and no vertex on Cn − u has the same color as u;

• there are (k − 2)S(Cn−1, k) such colorings where v and w have different
colors and at least one vertex of Cn − u has the same color as u;

• there are S(Cn−1, k − 1) such colorings where v and w have different
colors and no vertex on Cn − u has the same color as u.

Hence,

S(Cn, k) =
(
(k − 1)S(Cn−2, k) + S(Cn−2, k − 1)

)
+ (k − 2)S(Cn−1, k) + S(Cn−1, k − 1)

= S(Cn−1, k) + (k − 2)S(Cn−1, k)+S(Cn−1, k − 1)

= (k − 1)S(Cn−1, k)+S(Cn−1, k − 1).

Lemma 38. If n ≥ 7 and k ≤ n then

S(Cn−3 ∪ C3, k) = (k − 1)S(Cn−4 ∪ C3, k) + S(Cn−4 ∪ C3, k − 1)− (−1)nδk

where

δk =


6 if k = 3, 4,

1 if k = 5,

0 otherwise .
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Proof. The values in the following table show that the result is true for n = 7.

k 2 3 4 5 6 7
S(C4 ∪ C3, k) 0 18 66 55 14 1
S(C3 ∪ C3, k) 0 6 18 9 1 0

For larger values of n, we proceed by induction. Let u be a vertex in Cn−3,
and let v and w be its two neighbors. We analyze the set of non-equivalent
colorings of Cn−3 ∪ C3 that use exactly k colors:

• there are (k − 1)S(Cn−5 ∪ C3, k) such colorings where v and w have the
same color and at least one vertex of Cn−3 ∪ C3 − u has the same color
as u;

• there are S(Cn−5∪C3, k−1) such colorings where v and w have the same
color and no vertex on Cn−3 ∪ C3 − u has the same color as u;

• there are (k − 2)S(Cn−4 ∪ C3, k) such colorings where v and w have
different colors and at least one vertex of Cn−3 ∪ C3 − u has the same
color as u;

• there are S(Cn−4∪C3, k−1) such colorings where v and w have different
colors and no vertex on Cn−3 ∪ C3 − u has the same color as u.

Hence,

S(Cn−3 ∪ C3, k) =
(
(k − 1)S(Cn−5 ∪ C3, k) + S(Cn−5 ∪ C3, k − 1)

)
+ (k − 2)S(Cn−4 ∪ C3, k) + S(Cn−4 ∪ C3, k − 1)

=
(
S(Cn−4 ∪ C3, k)+(−1)n−1δk

)
+(k − 2)S(Cn−4 ∪ C3, k)+S(Cn−4 ∪ C3, k − 1)

=(k − 1)S(Cn−4 ∪ C3, k) + S(Cn−4 ∪ C3, k − 1)− (−1)nδk.

For n ≥ 3, let Qn be the graph obtained from Pn by adding an edge
between an extremity v of Pn and the vertex at distance 2 from v on Pn.
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Lemma 39. If n ≥ 6 and k ≤ n then S(Cn−3 ∪ C3, k) = S(Qn, k)− (−1)nρk

where

ρk =


2 if k = 3,

1 if k = 4,

0 otherwise .

Proof. The values in the following table show that the result is true for n = 6.

k 2 3 4 5 6
S(2C3, k) 0 6 18 9 1
S(Q6, k) 0 8 19 9 1

For larger values of n, we proceed by induction. Equations (7.1) and (7.2)
give

S(Cn−3 ∪ C3, k) = S(Pn−3 ∪ C3, k)−S(Cn−4 ∪ C3, k)

= S(Pn−3 ∪ P3, k)−S(Pn−3 ∪ P2, k)−S(Cn−4 ∪ C3, k)

= S(Pn, k)+S(Pn−1, k)−S(Pn−1, k)

− S(Pn−2, k)−S(Cn−4 ∪ C3, k)

= S(Qn, k)+S(Qn−1, k)−S(Cn−4 ∪ C3, k)

= S(Qn, k)+(−1)n−1ρk

= S(Qn, k)−(−1)nρk

Lemma 40. The following inequalities are valid for all n ≥ 9:

(a) S(Cn, k) > S(Cn, k − 1) for all k ∈ {3, 4, 5};

(b) S(Cn, k) > 3S(Cn−1, k − 1) for all k ∈ {3, 4, 5, 6};

(c) S(Cn, 4) > 8S(Cn, 3).

Proof. The values in Table 7.1 show that the inequalities are satisfied for
n = 9. For larger values of n, we proceed by induction. Note that (a) and (b)
are clearly valid for k = 3 since S(Cn, 3) > 3 ≥ max{S(Cn, 2)), 3S(Cn−1, 2)}.
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We may therefore assume k ∈ {4, 5} for (a) and k ∈ {4, 5, 6} for (b). Lemma
37 and the induction hypothesis imply

S(Cn, k) =(k − 1)S(Cn−1, k) + S(Cn−1, k − 1)

>(k − 2)S(Cn−1, k − 1) + S(Cn−1, k − 2)

=S(Cn, k − 1).

Hence (a) is proved. It follows that the following inequality is valid:

1
k − 1S(Cn−1, k − 1) = 1

k − 1
(
(k − 2)S(Cn−2, k − 1) + S(Cn−2, k − 2)

)
<

1
k − 1

(
(k − 1)S(Cn−2, k − 1)

)
=S(Cn−2, k − 1)

which implies

S(Cn, k) =(k − 1)S(Cn−1, k) + S(Cn−1, k − 1)

>(k − 1)S(Cn−1, k)

>3(k − 1)S(Cn−2, k − 1)

>3S(Cn−1, k − 1).

Hence (b) is proved. We thus have

S(Cn, 4) =3S(Cn−1, 4) + S(Cn−1, 3)

>25S(Cn−1, 3)

>
25
3 S(Cn, 3)

>8S(Cn, 3).

which proves (c).

7.6.2 Upper bounds on A (G)

We are now ready to give upper bounds on A (G). The following theorem
gives a general upper bound on A(G) that is valid for all graphs G of order n.
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Theorem 41. Let G be a graph of order n, then,

A (G) ≤ n,

with equality if and only if G ' Kn.

Proof. Clearly,

T (G) =
n∑

k=1
kS(G, k) ≤ n

n∑
k=1

S(G, k) = nB(G).

Hence, A (G) ≤ n, with equality if and only if S(G, k) = 0 for all k < n, that
is if G ' Kn.

Since ∆(Kn) = n − 1 we immediately get the following corollary to Theorem
41.

Corollary 42. Let G be a graph of order n and maximum degree ∆(G) = n−1.
Then, A (G) ≤ n, with equality if and only if G ' Kn.

We now give a more precise upper bound on A (G) for graphs G of order
n and maximum degree ∆(G) = n− 2.

Theorem 43. Let G be a graph of order n ≥ 2 and maximum degree ∆(G) =
n− 2. Then,

A (G) ≤ n2 − n + 1
n

,

with equality if and only if G ' Kn−1 ∪ K1.

Proof. Let m be the number of edges in G, and let x = n(n−1)
2 −m = S(G, n−

1). Then

T (G) =
n−2∑
k=1

kS(G, k) + x(n− 1) + n

≤ (n− 1)
n−2∑
k=1

S(G, k) + x(n− 1) + n

= (n− 1)
n∑

k=1
S(G, k) + 1
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= (n− 1)B(G) + 1.

Hence, A (G) ≤ n − 1 + 1
B(G) , with possible equality only if S(G, k) = 0

for all k < n− 1. It is proved in [58] that B(G) ≥ n, with equality if and only
if G is isomorphic to Kn−1 ∪ K1 when n 6= 4, and G is isomorphic to K3 ∪ K1

or C4 when n = 4. Since S(C4, 2) = 1 > 0 while S(Kn−1 ∪ K1, k) = 0 for all
k < n− 1, we conclude that A (G) ≤ n− 1 + 1

n = n2−n+1
n , with equality if and

only if G ' Kn−1 ∪ K1.

The next simple case is when ∆(G) = 1.

Theorem 44. Let G be a graph of order n and maximum degree ∆(G) = 1.
Then,

A(G) ≤ A(
⌊

n

2

⌋
K2 ∪ (n mod 2)K1)

with equality if and only if G '
⌊

n
2
⌋
K2 ∪ (n mod 2)K1.

Proof. If G contains two isolated vertices u and v, we know from Theorem 15
that A(G + (u, v)) > A(G). Hence, the maximum value of A(G) is reached
when G contains at most one isolated vertex, that is G '

⌊
n
2
⌋
K2 ∪ (n mod

2)K1.

We now give a precise upper bound on A(G) for graphs G with maximum
degree 2. Such graphs are composed of a disjoint union of cycles and paths.
We will show the effects of transformations replacing connected components
by different subgraphs and use those to prove our bound.

We first analyze the impact of the replacement of an induced Cn (n ≥ 6)
by Cn−3 ∪ C3.

Lemma 45. A (G ∪ Cn) < A (G ∪ Cn−3 ∪ C3) for all n ≥ 6 and all graphs G.

Proof. We know from Lemma 36 (a), (b) and (c) that the result is true for
n = 6, 7, 8. We can therefore assume n ≥ 9.

Let fn(k, k′) = S(Cn−3 ∪C3, k)S(Cn, k′)− S(Cn, k)S(Cn−3 ∪C3, k′). Theo-
rem 17 shows that it is sufficient to prove that fn(k, k′) ≥ 0 for all k > k′, the
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inequality being strict for at least one pair (k, k′). Note that fn(n, 2) = 1 > 0
for n even. Also, fn(n, 3) > 0 for n odd. Indeed, this is true for n = 9 since
the values in Table 7.1 give fn(9, 3) = 85− 66 = 19. For larger odd values of
n, we proceed by induction, using Lemmas 37 and 38:

fn(n, 3) = S(Cn, 3)− S(Cn−3 ∪ C3, 3)

=
(
2S(Cn−1, 3) + 1

)
−
(
2S(Cn−4 ∪ C3, 3) + 6

)
=
(
4S(Cn−2, 3) + 1

)
−
(
2
(
2S(Cn−5 ∪ C3, 3)− 6

)
+ 6

)
= 4S(Cn−2, 3)− 4S(Cn−5 ∪ C3, 3) + 7

= 4fn−2(n− 2, 3) + 7 > 0.

Hence, it remains to prove that fn(k, k′) ≥ 0 for all 1 ≤ k′ < k′ ≤ n. Let
us start with the cases where k′ ≤ 2 and/or k ≥ n− 1.

• If k′ ≤ 2 then fn(k, k′) = S(Cn−3 ∪ C3, k)S(Cn, k′) ≥ 0.

• If k ≥ n− 1 then S(Cn, k) = S(Cn−3 ∪ C3, k) since

– S(Cn, n) = S(Cn−3 ∪ C3, n) = 1, and

– S(Cn, n− 1) = S(Cn−3 ∪ C3, n− 1) = n2−3n
2 .

Also, it follows from Lemma 39 that S(Cn−3 ∪ C3, k′) = S(Qn, k′) −
(−1)nρk′ and Equations (7.1) and (7.2) give

S(Cn, k) = S(Pn, k)− S(Cn−1, k)

= (S(Qn, k) + S(Pn−1, k))− (S(Pn−1, k)− S(Cn−2, k))

= S(Qn, k) + S(Cn−2, k).

Altogether, this gives

fn(k, k′) = S(Cn, k)
(
S(Cn, k′)− S(Cn−3 ∪ C3, k′)

)
= S(Cn, k)

((
S(Qn, k′) + S(Cn−2, k′)

)
−
(
S(Qn, k′)− (−1)nρk′

))
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= S(Cn, k)
(
S(Cn−2, k′) + (−1)nρk′

)
.

Hence,

– if n is even and/or k′ /∈ {3, 4}, then fn(k, k′) ≥ 0;

– if n is odd and k′ = 3 then fn(k, k′) = S(Cn, k)(S(Cn−2, 3)−2) ≥ 0;

– If n is odd and k′ = 4 then fn(k, k′) = S(Cn, k)(S(Cn−2, 4)−1) ≥ 0.

We can therefore assume 3 ≤ k′ < k ≤ n− 2 and we finally prove that

fn(k, k′) ≥

0 if k′ ≥ 6,

7S(Cn, k) if k′ ∈ {3, 4, 5}.

The values in the following table, computed with the help of those for C9 and
C6 ∪ C3 in Table 7.1, show that this is true for n = 9:

(k, k′) (4,3) (5,3) (5,4) (6,3) (6,4) (6,5) (7,3) (7,4)
f9(k, k′) 8100 21973 55923 16366 53466 32046 4589 16239
7S(C9, k) 5145 9849 9849 6468 6468 6468 1722 1722

(k, k′) (7,5) (7,6)
f9(k, k′) 12369 2520
7S(C9, k) 1722 1722

For larger values of n, we proceed by induction. Lemmas 37 and 38 give

fn(k, k′) =S(Cn, k′)S(Cn−3 ∪ C3, k)− S(Cn, k)S(Cn−3 ∪ C3, k′)

=S(Cn, k′)
(

(k−1)S(Cn−4∪C3, k)+S(Cn−4∪C3, k−1)−(−1)nδk

)
−S(Cn, k)

(
(k′−1)S(Cn−4∪C3, k′)+S(Cn−4∪C3, k′−1)−(−1)nδk′

)
=
(

(k′−1)S(Cn−1, k′)+S(Cn−1, k′−1)
)(

(k−1)S(Cn−4∪C3, k)+S(Cn−4∪C3, k−1)
)

−
(

(k−1)S(Cn−1, k)+S(Cn−1, k−1)
)(

(k′−1)S(Cn−4∪C3, k′)+S(Cn−4∪C3, k′−1)
)

+ (−1)nδk′S(Cn, k)− (−1)nδkS(Cn, k′)

=(k−1)(k′−1)
(

S(Cn−1, k′)S(Cn−4∪C3, k)−S(Cn−1, k)S(Cn−4∪C3, k′)
)

+(k′−1)
(

S(Cn−1, k′)S(Cn−4∪C3, k−1)−S(Cn−1, k−1)S(Cn−4∪C3, k′)
)
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+(k−1)
(

S(Cn−1, k′−1)S(Cn−4∪C3, k)−S(Cn−1, k)S(Cn−4∪C3, k′−1)
)

+S(Cn−1, k′−1)S(Cn−4∪C3, k−1)−S(Cn−1, k−1)S(Cn−4∪C3, k′−1)

+(−1)nδk′S(Cn, k)−(−1)nδkS(Cn, k′)

=(k − 1)(k′ − 1)fn−1(k, k′) + (k′ − 1)fn−1(k − 1, k′)

+ (k − 1)fn−1(k, k′ − 1) + fn−1(k − 1, k′ − 1)

+ (−1)nδk′S(Cn, k)− (−1)nδkS(Cn, k′). (7.5)

Since δk = 0 for k ≥ 6 and fn−1(k, k′) ≥ 0, fn−1(k−1, k′) ≥ 0, fn−1(k, k′−
1) ≥ 0, and fn−1(k − 1, k′ − 1) ≥ 0 for k > k′, we have fn(k, k′) ≥ 0 for
k > k′ ≥ 6.

Therefore, it remains to show that fn(k, k′) ≥ 7S(Cn, k) for k′ ∈ {3, 4, 5}.
Let gn(k, k′) = (−1)nδk′S(Cn, k) − (−1)nδkS(Cn, k′). There are 4 possible
cases.

• Case 1: k′ ∈ {4, 5} and k ≥ k′ + 2.

We have gn(k, k′) = (−1)nδk′S(Cn, k) ≥ −6S(Cn, k). Using the induc-
tion hypothesis and Lemma 37, Equation (7.5) gives

fn(k, k′) ≥
(
7(k − 1)(k′ − 1)S(Cn−1, k) + 7(k′ − 1)S(Cn−1, k − 1)

)
+
(
7(k − 1)S(Cn−1, k) + 7S(Cn−1, k − 1)

)
− 6S(Cn, k)

=7(k′ − 1)S(Cn, k) + 7S(Cn, k)− 6S(Cn, k)

=(7k′ − 6)S(Cn, k)

>7S(Cn, k).

• Case 2: k′ ∈ {4, 5} and k = k′ + 1.

Let us first give a lower bound on gn(k, k′):

– if n is even and k = 6, then gn(k, k′) ≥ 0;

– if n is even and k = 5, then gn(k, k′) ≥ −S(Cn, 4), and we deduce
from Lemma 40 (a) that gn(k, k′) ≥ −S(Cn, 5);

– if n is odd, then gn(k, k′) ≥ −δk′S(Cn, k) ≥ −6S(Cn, k).
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Hence, whatever n and (k, k′), gn(k, k′) ≥ −6S(Cn, k). Since fn−1(k −
1, k′) = 0, using again the induction hypothesis and Lemma 37, we
deduce from Equation (7.5) that

fn(k, k′) ≥
(
7(k−1)(k′−1)S(Cn−1, k)

)
+
(
7(k−1)S(Cn−1, k)+7S(Cn−1, k−1)

)
−6S(Cn, k)

=
(
7(k′ − 1)S(Cn, k)− 7(k′ − 1)S(Cn−1, k − 1)

)
+
(
7S(Cn, k)

)
− 6S(Cn, k)

=(7k′ − 6)S(Cn, k)− 7(k′ − 1)S(Cn−1, k − 1)

Since k ≤ 6, Lemma 40 (b) shows that S(Cn−1, k − 1) ≤ 1
3S(Cn, k) and

we therefore have

fn(k, k′) ≥
(14k′ − 11

3

)
S(Cn, k)

≥ 15S(Cn, k)

> 7S(Cn, k).

• Case 3: k′ = 3 and k ≥ 5.

As in the previous case, we have gn(k, k′) ≥ −6S(Cn, k). The in-
duction hypothesis gives fn−1(k, k′) ≥ 7S(Cn−1, k), fn−1(k − 1, k′) ≥
7S(Cn−1, k − 1), fn−1(k, k′ − 1)≥0, and fn−1(k − 1, k′ − 1) ≥ 0. Hence,
Equation (7.5) becomes

fn(k, k′) ≥7(k − 1)(k′ − 1)S(Cn−1, k)

+ 7(k′ − 1)S(Cn−1, k − 1)− 6S(Cn, k)

=7(k′ − 1)S(Cn, k)− 6S(Cn, k)

=8S(Cn, k)

>7S(Cn, k).

• Case 4: k′ = 3 and k = 4.

We have gn(k, k′) = (−1)n6S(Cn, k)−(−1)n6S(Cn, k′) and we know from
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Lemma 40 (a) that S(Cn, 4) > S(Cn, 3). Hence, gn(4, 3) ≥ −6(S(Cn, k)−
S(Cn, k′)). Using the induction hypothesis, Equation (7.5) gives

fn(k, k′) ≥ −7(k − 1)(k′ − 1)S(Cn−1, k)− 6
(
S(Cn, k)− S(Cn, k′)

)
= 42S(Cn−1, k)− 6

(
S(Cn, k)− S(Cn, k′)

)
.

We therefore conclude from Lemmas 37 and 40 (c) that

fn(4, 3) ≥ 42
3
(
S(Cn, 4)− S(Cn, 3

)
− 6

(
S(Cn, 4)− S(Cn, 3)

)
= 8

(
S(Cn, 4)− S(Cn, 3)

)
> 8

(
S(Cn, 4)− 1

8S(Cn, 4)
)

= 7S(Cn, 4).

It is easy to check that

• A(K3 ∪ K1) = 13
4 > 3 = A(C4), and

• A(2K3 ∪ K1) = 778
175 > 684

154 = A(K3 ∪ C4).

Hence, A((p + 1)K3 ∪ K1) > A(pK3 ∪ C4) for p = 0, 1. We next prove that
this inequality is reversed for larger values of p, that is A((p + 1)K3 ∪ K1) <

A(pK3 ∪ C4) for p ≥ 2. Proposition 17 is of no help for this proof since,
whatever p, there are pairs (k, k′) for which S((p+1)K3∪K1, k)S(pK3∪C4, k′) >

S(pK3 ∪ C4, k)S((p + 1)K3 ∪ K1, k′), and other pairs for which the inequality
is reversed. Also, it is not true that

A((p + 1)K3 ∪ K1)−A(pK3 ∪ K1) > A(pK3 ∪ C4)−A((p− 1)K3 ∪ C4)

which would have given a simple proof by induction on p. The only way we
have found to prove the desired result is to explicitly calculateA((p+1)K3∪K1)
and A(pK3 ∪ C4). This is what we do next, with the help of two lemmas.

Lemma 46. If G is a graph of order n, then

B(G ∪ K2) =
n∑

k=1
(k2 + k + 1)S(G, k),
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T (G ∪ K2) =
n∑

k=1
(k3 + k2 + 3k + 2)S(G, k),

B(G ∪ K3) =
n∑

k=1
(k3 + 2k + 1)S(G, k),

T (G ∪ K3) =
n∑

k=1
(k4 + 5k2 + 4k + 3)S(G, k).

Proof. As observed in [58],

S(G ∪ Kr, k) =
r∑

i=0

(
k − i

r − i

)(
r

i

)
(r − i)! S(G, k − i). (7.6)

For r = 2, this gives S(G ∪ K2, k) = k(k − 1)S(G, k) + 2(k − 1)S(G, k −
1) + S(G, k − 2). Hence,

B(G ∪ K2) =
n+2∑
k=1

S(G ∪ K2, k)

=
n+2∑
k=1

(
k(k − 1)S(G, k) + 2(k − 1)S(G, k − 1) + S(G, k − 2)

)
=

n∑
k=1

k(k − 1)S(G, k) +
n∑

k=1
2kS(G, k) +

n∑
k=1

S(G, k)

=
n∑

k=1
(k2 + k + 1)S(G, k)

and

T (G ∪ K2) =
n+2∑
k=1

kS(G ∪ K2, k)

=
n+2∑
k=1

(
k2(k − 1)S(G, k) + 2k(k − 1)S(G, k − 1) + kS(G, k − 2)

)
=

n∑
k=1

k2(k − 1)S(G, k) +
n∑

k=1
2(k + 1)kS(G, k) +

n∑
k=1

(k + 2)S(G, k)

=
n∑

k=1
(k3 + k2 + 3k + 2)S(G, k).

The values for B(G ∪ K3) and T (G ∪ K3) are computed in a similar way.
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Lemma 47. If G is a graph of order n, then,

B(G ∪ K3 ∪ K1) =
n∑

k=1
(k4 + k3 + 5k2 + 6k + 4)S(G, k),

T (G ∪ K3 ∪ K1) =
n∑

k=1
(k5 + k4 + 9k3 + 15k2 + 21k + 13)S(G, k).

Proof. Let G′ = G ∪ K3. Equation (7.6) gives S(G′ ∪ K1, k) = kS(G′, k) +
S(G′, k − 1). Hence, it follows from Lemma 46 that

B(G ∪ K3 ∪ K1) =
n+4∑
k=1

(
kS(G′, k) + S(G′, k − 1)

)

=
n+3∑
k=1

kS(G′, k) +
n+3∑
k=1

S(G′, k)

=T (G′) + B(G′)

=
n∑

k=1

(
(k4 + 5k2 + 4k + 3) + (k3 + 2k + 1)

)
S(G, k)

=
n∑

k=1
(k4 + k3 + 5k2 + 6k + 4)S(G, k).

Equation (7.6) gives

n+3∑
k=1

k2S(G′, k)

=
n∑

k=1
k2
(
k(k − 1)(k − 2)S(G, k)

)
+

n+1∑
k=1

k2
(
3(k − 1)(k − 2)S(G, k − 1)

)

+
n+2∑
k=1

k2
(
3(k − 2)S(G, k − 2)

)
+

n+3∑
k=1

k2S(G, k − 3)
)

=
n∑

k=1
k3(k − 1)(k − 2)S(G, k) +

n∑
k=1

3(k + 1)2k(k − 1)S(G, k)

+
n∑

k=1
3(k + 2)2kS(G, k) +

n∑
k=1

(k + 3)2S(G, k)

=
n∑

k=1

(
k3(k − 1)(k − 2) + 3(k + 1)2k(k − 1) + 3(k + 2)2k + (k + 3)2

)
S(G, k)



7.6. UPPER BOUNDS ON A (G) 133

=
n∑

k=1
(k5 + 8k3 + 10k2 + 15k + 9)S(G, k).

Hence, using again Lemma 46, we get

T (G ∪ K3 ∪ K1) =
n+4∑
k=1

(
k2S(G′, k) + kS(G′, k − 1)

)

=
n+3∑
k=1

k2S(G′, k) +
n+3∑
k=1

(k + 1)S(G′, k)

=
n+3∑
k=1

k2S(G′, k) + T (G′) + B(G′)

=
n∑

k=1
S(G, k)

(
(k5+8k3+10k2+15k+9)+(k4+5k2+4k+3)

)
+

n∑
k=1

S(G, k)(k3+2k+1)

=
n∑

k=1
(k5 + k4 + 9k3 + 15k2 + 21k + 13)S(G, k).

We are now ready to compare A (pK3 ∪ C4) with A ((p + 1) K3 ∪ K1).

Theorem 48.

A (pK3 ∪ C4) < A ((p + 1) K3 ∪ K1) if p = 0, 1 and

A (pK3 ∪ C4) > A ((p + 1) K3 ∪ K1) if p ≥ 2.

Proof. We have already mentioned that

• A(K3 ∪ K1) = 13
4 > 3 = A(C4), and

• A(2K3 ∪ K1) = 778
175 > 684

154 = A(K3 ∪ C4).

Hence, it remains to prove that A (pK3 ∪ C4) > A ((p + 1) K3 ∪ K1) for all
p ≥ 2. So assume p ≥ 2 and let

f(p) = T (pK3 ∪ C4)B((p + 1)K3 ∪ K1)− B(pK3 ∪ C4)T ((p + 1)K3 ∪ K1).



134 CHAPTER 7. ON THE AVERAGE NUMBER OF COLORS

Since

A (pK3 ∪ C4)−A ((p + 1) K3 ∪ K1) = f(p)
B(pK3 ∪ C4))B((p + 1)K3 ∪ K1) ,

we have to prove that f(p) > 0. Note that Equations (7.1) and (7.2) give

S(G ∪ C4, k) =S(G ∪ P4, k)− S(G ∪ K3, k)

=S(G ∪ Q4, k) + S(G ∪ P3, k)− S(G ∪ K3, k)

=
(
S(G ∪ K3 ∪ K1, k)− S(G ∪ K3, k)

)
+
(
S(G ∪ K3, k) + S(G ∪ K2, k)

)
− S(G ∪ K3, k)

=S(G ∪ K3 ∪ K1, k)− S(G ∪ K3, k) + S(G ∪ K2, k),

which implies

B(G ∪ C4) =B(G ∪ K3 ∪ K1)− B(G ∪ K3) + B(G ∪ K2), and

T (G ∪ C4) =T (G ∪ K3 ∪ K1)− T (G ∪ K3) + T (G ∪ K2).

Hence, with G = pK3, we get

f(p) =T (G ∪ C4)B(G ∪ K3 ∪ K1)− T (G ∪ K3 ∪ K1)B(G ∪ C4)

=
(
T (G ∪ K3 ∪ K1)− T (G ∪ K3) + T (G ∪ K2)

)
B(G ∪ K3 ∪ K1)

− T (G ∪ K3 ∪ K1)
(
B(G ∪ K3 ∪ K1)− B(G ∪ K3) + B(G ∪ K2)

)
=B(G ∪ K3 ∪ K1)

(
T (G ∪ K2)− T (G ∪ K3)

)
− T (G ∪ K3 ∪ K1)

(
B(G ∪ K2)− B(G ∪ K3)

)
.

Since S(G, k) = 0 for k < 3, we deduce from Lemmas 46 and 47 that

f(p) =
n∑

k=1
akS(G, k)

n∑
k=1

bkS(G, k)−
n∑

k=1
ckS(G, k)

n∑
k=1

dkS(G, k)

=
n∑

k=3

n∑
k′=3

(akbk′−ckdk′)S(G, k)S(G, k′)

=
n∑

k=3
(akbk−ckdk)S2(G, k) (7.7)
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+
n−1∑
k′=3

n∑
k=k′+1

(akbk′ − ckdk′ + ak′bk − ck′dk)S(G, k)S(G, k′) (7.8)

where

ak = k4 + k3 + 5k2 + 6k + 4,

bk = (k3 + k2 + 3k + 2)− (k4 + 5k2 + 4k + 3)

= −k4 + k3 − 4k2 − k − 1,

ck = k5 + k4 + 9k3 + 15k2 + 21k + 13, and

dk = (k2 + k + 1)− (k3 + 2k + 1)

= −k3 + k2 − k.

It is therefore sufficient to prove that the sums defined at (7.7) and (7.8)
are strictly positive.

• Let g(k) = akbk − ckdk = k6 + k5 − 5k4 − 19k3 − 19k2 + 3k − 4. It can
be checked that g(k) > 0 for all k > 3. Note that Equation (7.6) gives

S(G, 3) =S(pK3, 3) = 6S((p− 1)K3, 3)

<18S(p− 1)K3, 3) + 24S((p− 1)K3, 4)

=S((pK3, 4) = S(G, 4).

Because g(3) = −112 and g(4) = 2328, we have that g(3)S2(G, 3) +
g(4)S2(G, 4) > 0, which implies

n∑
k=3

(akbk−ckdk)S2(G, k) =g(3)S2(G, 3) + g(4)S2(G, 4)

+
n∑

k=5
g(k)S2(G, k) > 0.

Hence, the sum in (7.7) is strictly positive.

• Let h(k′, k) = akbk′ − ckdk′ + ak′bk− ck′dk. By definition of ak, bk, ck and
dk we obtain

h(k′, k) =
(
k3 − k2 + k

)
k′5
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−
(
2k4 − k3 + 10k2 + 6k + 5

)
k′4

+
(
k5 + k4 + 20k3 + 7k2 + 35k + 16

)
k′3

−
(
k5 + 10k4 − 7k3 + 70k2 + 35k + 34

)
k′2

+
(
k5 − 6k4 + 35k3 − 35k2 + 30k + 3

)
k′

− 5k4 + 16k3 − 34k2 + 3k − 8.

Let us make a change of variable. More precisely, we substitute k′ by
i + 3 and k by j + i + 4. Since k′ ≥ 3 and k ≥ k′ + 1, we get i ≥ 0 and
j ≥ 0. It is a tedious but easy exercise to check that with these new
variables, h(k′, k) = h(i+3, j+i+4) = h′(i, j) with

h′(i, j) =
(
j2 + 2j + 3

)
i6 +

(
3j3 + 25j2 + 47j + 63

)
i5

+
(
3j4 + 52j3 + 243j2 + 437j + 533

)
i4

+
(
j5 + 37j4 + 338j3 + 1154j2 + 2017j + 2267

)
i3

+
(
8j5 + 161j4 + 997j3 + 2713j2 + 4692j + 4873

)
i2

+
(
22j5 + 290j4 + 1258j3 + 2729j2 + 4784j + 4443

)
i

+ 21j5 + 172j4 + 440j3 + 575j2 + 1112j + 602.

Since i ≥ 0, j ≥ 0, and all coefficients in h′(i, j) are positive, we conclude
that h′(i, j) = h(k′, k) > 0 for 3 ≤ k′ < k ≤ n.

Hence, the sum
n−1∑
k′=3

n∑
k=k′+1

h(k′, k)S(G, k)S(G, k′) in (7.8) is strictly pos-

itive.

We are now ready to prove the main result of this subsection. Let Un

(n ≥ 3) be the following graph.

Un =



n
3 K3 if n mod 3 = 0, and n ≥ 3,

n−1
3 K3 ∪ K1 if n = 4 or n = 7,

n−4
3 K3 ∪ C4 if n mod 3 = 1, and n ≥ 10,

n−5
3 K3 ∪ C5 if n mod 3 = 2, and n ≥ 5.
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Theorem 49. If G is a graph of order n ≥ 3 and maximum degree ∆(G) = 2,
then,

A (G) ≤ A (Un) ,

with equality if and only if G ' Un.

Proof. Since ∆(G) = 2, G is a disjoint union of cycles and paths. Now, suppose
that G maximizes A among all graphs of maximum degree 2. Then at most
one connected component of G is a path. Indeed, if G ' G′ ∪ Pk ∪ Pk′ , then
Equations (7.3) and (7.4) give B(G′∪Pk∪Pk′) = B(G′∪Pk+k′)+B(G′∪Pk+k′−1)
and T (G′ ∪Pk ∪Pk′) = T (G′ ∪Pk+k′) + T (G′ ∪Pk+k′−1). Moreover, we know
from Theorem 15 that A (G′ ∪ Pk+k′−1) < A (G′ ∪ Pk+k′). Hence, Theorem 18
implies that A (G) = A (G′ ∪ Pk ∪ Pk′) < A (G′ ∪ Pk+k′). Since (G′ ∪ Pk+k′)
is of order n and maximum degree 2, this contradicts the hypothesis that G

maximizes A.
We know from Lemma 28 that replacing a path Pk of order k ≥ 3 by a

cycle Ck strictly increases A(G). Moreover, Lemma 45 shows that replacing a
cycle Ck of order k ≥ 6 by Ck−3 ∪ K3 increases A (G). Hence, G is a disjoint
union of copies of K3, C4 and C5 and eventually one path that is either K1 or
K2.

Considering Lemma 36, we know from (d), (e) and (f) that G does not
contain K2, and from (g)-(k) that at most one connected component of G is
not a K3. Hence, if n mod 3 = 0 then G ' n

3 K3 and if n mod 3 = 2 then
G ' n−5

3 K3 ∪C5. Finally, Theorem 48 shows that G ' n−1
3 K3 ∪K1 if n = 4 or

7, and G ' n−4
3 K3 ∪ C4 if n mod 3 = 1 and n ≥ 10.

7.7 Computing A (G) efficiently

As we talked about in previous chapters, it is interesting to be able to
compute A (G) at least for small graphs, and it would be better to have a fast
algorithm. Because computing A (G) is quite fast once we know S (G, k) for
1 ≤ k ≤ |G|, we only need to be able to compute the value of S (G, k) for all
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k rapidly. In the rest of this section, we explore the different methods we can
use to improve computational time when using the deletion-contraction rule
introduced in Section 7.3.

7.7.1 Naive algorithms

Given a graph G, the values of S (G, k) for 0 ≤ k ≤ n can be computed
using the deletion-contraction rule recursively. As a reminder, the deletion-
contraction rule states that, for any pair of distinct vertices u and v in a graph
G,

S (G, k) = S (G− (u, v), k)− S(G|(u,v), k) if (u, v) ∈ E(G), (7.9)

S (G, k) = S (G + (u, v), k) + S(G|(u,v), k) if (u, v) 6∈ E(G). (7.10)

Using this rule, we can develop Algorithm 7 that will compute S (G, k)
recursively by always using Equation 7.10. This algorithm only stops once it
reaches a complete graph for which,

S (Kn, k) =

0 if k 6= n,

1 otherwise.

A similar algorithm can be written that will always use Equation 7.9 and
stop when the graph is an empty graph. In this case, S(Kn, k) =

{n
k

}
where{n

k

}
is a Stirling number of the second kind.

The worst-case scenario of each of these algorithms is actually the base case
of the other one. Indeed, if we always add an edge until we reach a complete
graph, the worst case is an empty graph and the other way around for the
edge-removals. This can be mitigated by merging both algorithms. Instead
of always adding or removing an edge, one can simply use either of the two
equations of the deletion-contraction rule depending on whether the graph is
closer to a complete graph or an empty graph. More precisely, given a graph
G with order n and size m, we remove an edge if m < n(n−1)

4 and add an edge
otherwise.
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Algorithm 7: Algorithm NaiveSGK(G)
Input: A graph G with n vertices.
Output: The list of the values of S (G, k) for 1 ≤ k ≤ n sorted by

value of k.
1 if G'Kn then
2 return a list containing n− 1 0s and a 1 at the end
3 else
4 Choose a non-edge (u, v) in G

5 sgkAdd← NaiveSGK(G + (u, v))
6 sgkMerge← NaiveSGK(G|(u,v))
7 sgk ← an empty list of size n

8 foreach i ∈ {1, . . . , n− 1} do
9 sgk[i]← sgkAdd[i] + sgkMerge[i]

10 end
11 sgk[n]← sgkAdd[n]
12 return sgk

13 end

However, in some cases, this method is still inefficient. For example, if
a graph is composed of a disjoint union of complete graphs, we could avoid
adding or removing an edge and exploit the fact that computing S (Kn, k)
is easy. We will discuss how to improve our algorithms by exploiting such
property in the next subsection.

7.7.2 An improved algorithm

If a graph is not connected, the deletion-contraction rule might require
adding all the possible edges between the components or removing all the edges
of those components. But, if a graph is not connected, we could compute the
values of S (G, k) for every connected components, and they will be smaller
than the graph. Let G be a graph with connected components G1, . . . , Gl
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and let G∗
z (1 ≤ z ≤ l) be the graph composed of the disjoint union of the

connected components 1 trough i

(
G∗

z =
z⋃

i=1
Gi

)
. We have that

S (G∗
z, k) =

k∑
i=1

i∑
j=0

S
(
G∗

z−1, i
)

S (Gz, k − j)
(

i

i− j

)(
k − j

i− j

)
(i− j)!. (7.11)

And, since G∗
l = G, we can compute the values for G∗

1 trough G∗
l and obtain

S (G, k).
The same idea can be applied if the complement of the graph is discon-

nected.

Definition 12. Let G be a graph, the co-connected componentsco-connected
components

of G are the
connected components of the complement of G (G). If a graph G has more
than one co-connected component, we will say that it is co-disconnectedco-

disconnected

.

Let G be a co-disconnected graph and let G1, . . . , Gf be its co-connected
components. Then, G = G1 + · · ·+ Gf . We note G+

h , the graph composed of
all the subgraphs G1 through Gh joined together (G+

h = G1 + · · · + Gh) for
some 1 ≤ h ≤ f . Then,

S
(
G+

h , k
)

=
k−1∑
i=1

S
(
G+

h−1, k − i
)

S
(
G+

h , i
)

. (7.12)

And, similarly to the disconnected case, because G = G+
f , we can use this

equation to compute S (G, k).
In Figure 7.4, we can see two graphs where the deletion-contraction rule

would be inefficient and using the connected or co-connected components
would be faster. The complete bipartite graph on the left is simply a join be-
tween two K4 and the values of S (G, k) can be computed using Equation 7.12.
The graph on the right is a union of two K4 and again, we can compute S (G, k)
using Equation 7.11.

With two special cases, instead of adding or removing arbitrary edges when
using the deletion-contraction rule, we can choose edges so that we reach a
disconnected or co-disconnected graph by adding or removing as few edges as
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(a) A join of two K4.
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(b) A union of two K4.

Figure 7.4: Two graphs where there is no need for the deletion-contraction
rule.

possible. Such edges are part of a minimum cut, that is, a minimal set of edges
of minimum cardinality such that removing them disconnects the graph. Using
the edges of a minimum cut would allow us to reach a disconnected graph in
a minimal number of steps.

If the graph is closer to being co-disconnected, the same idea can be applied
using a minimum cut on the complement of the graph. This minimum cut
then contains non-edges in the graph, and adding them transforms it into a
co-disconnected graph.

Choosing whether to add or remove an edge when using the deletion-
contraction rule then consist in comparing the size of both minimum cuts.
If the minimum cut of the graph G is smaller, the graph is closer to a dis-
connected graph and it is better to remove edges. If, on the other hand,
the minimum cut of the complement is smaller than the minimum cut of G,
then the graph is closer to being co-disconnected and thus, it is better to add
edges. Those minimum cuts can be computed in polynomial time using the
Stoer-Wagner algorithm [85].

Adding those optimizations gives Algorithm 8. Because the two cases of
adding or removing an edge are very similar, we merged them together. The
difference in the algorithm is that the graph G′ is either G+(u, v) or G−(u, v)



142 CHAPTER 7. ON THE AVERAGE NUMBER OF COLORS

and the variable factor is either 1 or −1.

7.7.3 Performance of the algorithms

In order to compare the naive Algorithm 7 and the alternatives explained
in Subsection 7.7.2 and the improved Algorithm 8, we used them to compute
the values of S (G, k) for all the graphs up to 9 vertices. The running times
are plotted in Figure 7.5. Those times were obtained on a machine using an
AMD Ryzen 9 5900X processor with 32 GB of RAM and with the Artix Linux
operating system. The first algorithm from top to bottom in the legend is
Algorithm 7. The second one uses the same idea always removes an edge when
using the deletion-contraction rule until it reaches an empty graph. The third
algorithm combines both equations of the deletion-contraction rule depending
on the size of the graph. The last algorithm is Algorithm 8. The scale for
the execution times is logarithmic. For better comparison, the data is given
in Table 7.2.

We can see in Figure 7.5 that Algorithm 8 is the fastest when the order
of the graphs increases. Interestingly enough, always adding or removing an
edge does not give the same performance. This can be explained by the fact
that, when we always remove an edge, the base case of the algorithm is the
empty graph. Computing S

(
Kn, k

)
requires computing the Stirling number

of the second kind
{n

k

}
while computing S (Kn, k) requires simply comparing k

with n since a complete graph only accepts one coloring with n colors. Using
the size of the graphs to decide whether adding or removing an edge mitigates
this to some extent.

7.8 Conclusion

We have established several properties for a recently defined graph invari-
ant, namely the average number A (G) of colors in the non-equivalent colorings
of a graph G. We then looked at bounds for A (G).

We think that the best possible lower bound onA (G) for a graph G of order



7.8. CONCLUSION 143

Algorithm 8: Algorithm ComplementSGK(G)
Input: A graph G with n vertices.
Output: The list of the values of S (G, k) for 1 ≤ k ≤ n sorted by value of k.

1 if G'Kn then
2 return a list containing n− 1 0s and a 1 at the end
3 else if G'Kn then
4 return a list containing

{
n
k

}
for all 1 ≤ k ≤ n

5 else if G is not connected then
6 Compute S (Gi, k) for all the connected components Gi of G

7 Use formula 7.11 to compute S (G, k) for all 1 ≤ k ≤ n

8 else if G is not connected then
9 Compute S (Gi, k) for all the co-connected components Gi of G

10 Use formula 7.12 to compute S (G, k) for all 1 ≤ k ≤ n

11 else
12 mincut← a minimum cut of G

13 mincutCompl← a minimum cut of G

14 if mincut is smaller than mincutCompl then // If G is almost

disconnected, we will remove an edge.

15 Choose (u, v) in mincut

16 G′ ← G− (u, v)
17 factor ← −1
18 else // If G is almost co-disconnected, we will add an edge.

19 Choose a non-edge (u, v) in mincutCompl

20 G′ ← G + (u, v)
21 factor ← 1
22 end
23 sgkEdge← ComplementSGK(G′)
24 sgkMerge← ComplementSGK(G|(u,v))
25 sgk ← an empty list of size n

26 foreach i ∈ {1, . . . , n− 1} do
27 sgk[i]← sgkEdge[i] + factor · sgkMerge[i]
28 end
29 sgk[n]← sgkEdge[n]
30 return sgk

31 end
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Figure 7.5: Time in microseconds taken by each algorithm to compute the
values of S (G, k) for all the graphs of order n.

Table 7.2: Time in microseconds taken by each algorithm to compute the
values of S (G, k) for all the graphs of order n.

n Adding an edge Removing an edge Adding and removing Components
1 29 29 21 23
2 25 28 22 23
3 27 31 27 29
4 51 57 45 46
5 235 341 163 156
6 2,559 5,956 1,763 1,286
7 50,146 1.92 · 105 40,762 20,320
8 1.9 · 106 1.25 · 107 2.17 · 106 6.69 · 105

9 1.39 · 108 1.72 · 109 2.43 · 108 4.37 · 107



7.8. CONCLUSION 145

n is A
(
Kn

)
. Thanks to counter-examples produced by TransProof, we have

shown that despite its apparent simplicity, this conjecture cannot be proven
using simple techniques like sequential edge removal. We have then refined
this conjecture by proposing lower bounds related to the chromatic number
χ(G) and to the maximum degree ∆(G) of G and stated three open problems.
We have shown that these three conjectures are true for triangulated graphs
and for graphs with maximum degree at most 2.

We have also given a general upper bound on A (G) that is valid for all
graphs G, and a more precise one for graphs of order n and maximum degree
∆(G) ∈ {1, 2, n−2}. Thanks to TransProof, we tested that, for all the graphs
having up to 10 vertices, given G and a vertex v, A (G) > A (G− v). We
believe that this is true for all graphs.

The problem of finding a tight upper bound for graphs with maximum
degree in {3, . . . , n− 3} remains open. Since all graphs of order n and maxi-
mum degree ∆(G) ∈ {1, n− 2, n− 1} that maximize A (G) are isomorphic to⌊

n
∆(G)+1

⌋
K∆(G)+1∪Kn mod (∆(G)+1) (but this is not always true for ∆(G) = 2),

one could be tempted to think that this is also true when 3 ≤ ∆(G) ≤ n− 3.
We have checked this statement by enumerating all graphs having up to 12 ver-
tices, using PHOEG [31] and the algorithm described in Section 7.7. We have
thus determined that there is only one graph of order n ≤ 12 and ∆(G) 6= 2
(among more than a hundred billion), namely C6 ∪K4, for which such a state-
ment is wrong. Indeed, A(C6 ∪ K4) = 5.979 > 5.967 = A(2K4 ∪ K2), which
shows that 2K4 ∪ K2 does not maximize A(G) among all graphs of order 10
and maximum degree 3.
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Chapter 8

Concluding remarks and
future work

In this document, we studied the possibility of using computers to assist in
the writing of a proof by transformation in extremal graph theory. We intro-
duced the notion of the metagraph of transformation which can be computed
by TransProof, a tool that was developed during this work as a module of
PHOEG, a computer assisted research framework in extremal graph theory.
We summarize TransProof’s ideas and discuss possible improvements in the
next section. Section 8.2 summarizes the results obtained on the eccentric
connectivity index, and Section 8.3 summarizes results and conjectures about
the average number of colors in the non-equivalent colorings of a graph. Fi-
nally, we conclude with Section 8.4 by giving important lessons learned from
this work and discussing the place of computers in extremal graph theory.

8.1 TransProof

TransProof was designed to be able to compute transformations of millions
of graphs while removing duplicates caused by symmetries in those graphs.
The data being stored in a database can then be queried to obtain a better
insight about the effect of transformations on graph invariants.

147
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We used TransProof in research to try to find bounds on the eccentric
connectivity index and the average number of colors in the non-equivalent
colorings of a graph. TransProof showed its usefulness in finding flaws in the
proposed transformations to be used in proofs by transformation, saving time
and energy. It also produced conjectures about those transformations.

Despite this, TransProof can be improved on several aspects. The first
improvement is technical and is about a limitation of the speed at which trans-
formations can be computed. We explain this in Subsection 8.1.1. But speed
is not the only important factor when using TransProof. Once the metagraph
has been computed and stored in a database, obtaining information from the
metagraph is not easy for a user who is not fluent in database query languages.
This problem is discussed in Subsection 8.1.2. Finally, the metagraph remains
quite large, making manual study difficult. In Subsection 8.1.3, we list ideas
and considerations to be able to use a computer to provide help when studying
a large number of graphs or transformations.

8.1.1 Overcoming technical limitations

The speed of TransProof and the fact that it works in a multithreaded
way combined with the amount of data generated results in the need for the
computer to handle this data as fast as it is generated. In many computers, the
speed of the storage is slower than the speed of TransProof and the outputted
transformations queue up in memory waiting to be written to disk. This means
that the memory quickly fills up until the computation needs to be stopped.

Of course, TransProof will limit its speed to make sure this does not hap-
pen, but the computation becomes slower. While this will not be a problem
for relatively small sets of graphs, it can become frustrating when one wishes
to try many different transformations on a large set of graphs.

The problem of having to handle or store large amounts of data as fast as
it is produced is a research field known as Big Data. While Big Data is mostly
focused on user-produced content such as social networks or search engines,
studying the solutions used in this field and adapting them to TransProof



8.1. TRANSPROOF 149

might allow for faster speeds and make the waiting time shorter. But, as we
discuss in Subsection 8.1.3, those ideas might be difficult to adapt to graphs.

Another way to circumvent the problem of storage speed is to simply avoid
storing the metagraph. Indeed, some queries can be answered without the need
for a database, such as finding arcs of the metagraph that are not improving
arcs. However, this requires being able to either compute the studied invariant
fast enough or to retrieve pre-computed values from memory. In this last
case, we are limited in the number of graphs we can handle as the memory is
limited and often smaller than disk space for computers. This method would
then be better suited for relatively small classes of graphs and transformations
producing many instances.

In practice, large metagraphs are usually computed at the beginning of
the research process and are mainly used to study the effect of simple trans-
formations. In this case, computation time is not as problematic as the time
taken to answer queries. They become more critical in a later stage when ver-
ifying if a transformation produces non-improving arcs in the metagraph. In
this stage, more complex and numerous transformations are being considered.
But, because this is a later stage in the writing of the proof, the number of
graphs for which non-extremality is yet to be proven is smaller, making com-
puting a metagraph faster. Thus, because TransProof is already quite fast, a
more important problem is usability. We discuss this next.

8.1.2 User-friendlyness

Using TransProof, there are two main interactions needed from a user: the
definition of a transformation and the writing of queries about the metagraph.
While both are possible in the current state of TransProof, they are not easy
for most users.

Defining a transformation can be done in TransProof by implementing it
using the existing library that has been developed alongside it. In order to fa-
cilitate the definition of a transformation, a specific language has been defined
to produce code automatically. However, this language currently assumes that
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the basis of a transformation has a fixed number of vertices. It is not possible,
for example, to use a basis corresponding to a complete graph with an arbi-
trary number of vertices. Also, because the conversion into code is done using
a Rust macro, it still requires compiling code. This makes TransProof diffi-
cult to use for non-programmers. Therefore, a better and more user-friendly
interface needs to be developed.

As we explained in Subsection 5.4.2, a transformation could be defined
using a hypergraph model and then fed to TransProof which would use the
subgraph method to compute the instances. It is then necessary to provide an
easy-to-use interface for defining this hypergraph as well as adapt the subgraph
method to handle the hypergraph constraints such as an arbitrary number of
vertices inside a hyperedge. For example, a hyperedge might correspond to
a maximal clique with not constraint on the order of this clique. For specific
structures such as cliques or cycles, this can be done using existing algorithms
to iterate over matching subgraphs [16,36,44].

Once the transformation has been defined and the metagraph has been con-
structed, it is necessary to also provide a way to query the database. For this,
common and useful queries need to be gathered in order to produce an easy-
to-use interface that removes the need for complex query languages. These
queries and the definition of a transformation using a hypergraph would then
be added to the web interface for PHOEG that is currently being developed.

However, the results of queries on the metagraph can still produce large
amounts of information, making it difficult to extract interesting facts. We
consider this problem in the next subsection.

8.1.3 Studying the results of TransProof

Because TransProof uses exact methods on complete classes of graphs, we
usually limit the order of the graphs and, by doing this, limit the number of
graphs to be considered. Usually, transformations will be computed on graphs
up to order 10 and sometimes more for smaller classes of graphs such as trees.
Despite this, the number of possibilities even for simple transformations is
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exponential. For example, if we consider the connected graphs on 9 vertices
and search for edges that, when removed, produce an increase in the diameter,
we find 607 523 such cases.

Finding interesting patterns in this large number of edge removals can
be difficult when manually going through all those cases. Thus, it would be
interesting to use data analysis algorithms to extract features and patterns. As
we presented in Subsection 5.3.1, those edge removals can be seen as labelled
graphs and extracting patterns from a set of graphs is a known problem and
tools such as Gaston [79], Gspan [93] or FFSM [61] exist to extract subgraphs
that appear in all the graphs or in a large percentage of them. However,
these tools are thought to be used in practical applications where vertices
and edges have their own meaning, such as chemistry or networks. Because
extremal graph theory is interested in the structure of the graphs, regardless
of a context, such results might not be interesting. For example, such software
might tell us that all our graphs contain a path on 3 vertices but will ignore
the fact that those graphs are all cycles of different orders.

Instead of focusing on graph-specific methods, one might try to apply more
general data mining methods such as clustering and see if the arcs of the meta-
graph or the graphs where no transformation actually improves the invariant
actually fall into different situations. For example, some edge removals could
be transforming a cycle into a path, while others could consist in removing
an edge from a clique. However, many data analysis methods use geometric
methods and require being able to compute a distance between two points.
And computing the distance between two graphs requires taking isomorphism
into account. Indeed, if two graphs G and H are isomorphic, their distance
should be zero, even if they are represented differently. Thus, usual metrics
would not work.

Specific distances have been defined, such as the HIM metric [66] But the
distance used needs to have a meaning related to the studied invariant. For
example, if we study the chromatic number and obtain information related to
the average distance in graphs, it might not be interesting for the problem at
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hand. Therefore, one distance might not suffice. Instead, one might prefer
having a set of distances related to different types of invariants such as colors,
distances, or cliques and choose the best fitted one for the studied invariant
when using data mining algorithms. We could then try applying data mining
algorithms using one of those distances in order to extract information about
TransProof’s output.

Another way to compute the distance between two graphs is by computing
their distance in a metagraph for some transformations. Because of the way
the metagraph is constructed, it already accounts for isomorphism. This can
be exploited in data mining algorithms but also be used directly to extract
interesting information. For example, given a graph invariant I, a metagraph
M and a graph G that corresponds to a vertex in the metagraph, we could
compute the minimal distance λ(G) between G and any other graph H ∈
V (M) such that I(G) < I(H). Then, max

G∈V (M)
λ(G) is the minimum number of

transformations required to strictly increase I for any graph in the metagraph.

For example, let us consider the metagraph M for the rotation having all
connected graph of order n as vertex set. For a graph G, λ(G) is the minimum
number of rotation required to obtain a graph G′ such that I(G) < I(H). If

min
G∈V (M)

λ(G) = 2, this means that a proof by transformation would require at
least two rotations as there is at least one graph for which a single rotation
does not strictly increases I.

When using simple transformations, the minimum value of λ as well as the
cases where it is attained can give an idea of a more complex transformation
and the amount of data outputted could be smaller as we do not output all
non-improving arcs.

Such transformations could then be pre-computed and stored in PHOEG’s
database to avoid having to recompute them every time. However, if we use
precomputed transformations, the metagraph built using those transforma-
tions must be strongly connected. That is, there should be a path from any
graph to any other graph in the metagraph. The set of the four transformations
that are the edge-removal, edge-addition, vertex-removal and vertex-addition
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does have these properties.
For commonly fixed invariants in extremal graph theory problems (such as

connectivity, size or the maximum degree), different sets of transformations
could also be pre-computed that do not change these invariants. We could
then consider smaller metagraphs by considering every value of those fixed
invariants separately. For example, if we study graphs with n vertices and m

edges, we will consider
(n

2
)

metagraphs (one for each possible value of m) but
they will be considerably smaller. For example, for all graphs on 9 vertices,
we will consider 28 metagraphs with the largest one having 34 040 vertices
instead of a single one having 274 668 for all the graphs on 9 vertices.

But the problem of extracting meaningful information from a large set
of graphs, is not specific to TransProof and is much more general. And, as
we saw when studying the eccentric connectivity index, a simple answer such
as knowing that there are non-improving arcs in a metagraph can prove very
useful. We summarize the results obtained about this invariant in the following
section.

8.2 The eccentric connectivity index

Given two integers n and p (p ≤ n), we wrote a first paper [32] describing
the graphs of order n with p pendant vertices that maximize the eccentric
connectivity index and proving their extremality using a proof by transforma-
tion. This proof was written using TransProof to help test our transformation
ideas.

A second paper [55] was written characterizing the graphs with fixed order
and fixed diameter having the largest eccentric connectivity index as well as
graphs with only a fixed order. This paper was not presented in this thesis as
it does not use transformations.

Giving an upper bound on ξc(G) for graphs with fixed order n and fixed
size m proved more complex. We conjecture that the extremal graph in this
case is the graph En,D,k constructed by joining each vertex of a clique Kn−D−1
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to vertices u0 and u1 of a path u0, u1, . . . , uD and k vertices of the clique to
u2 where D =

⌊
2n+1−

√
17+8(m−n)
2

⌋
and k = m−

(n−D+1
2

)
−D + 1.

Conjecture 8. Let G be a connected graph of order n with m edges, where
n− 1 ≤ m ≤

(n−1
2
)
. Also, let

D =
⌊

2n + 1−
√

17 + 8(m− n)
2

⌋
and k = m−

(
n−D + 1

2

)
−D + 1.

Then ξc(G) ≤ ξc(En,D,k), with equality if and only if G ' En,D,k if D > 3 or
D = 3, k = n−4 and G is the graph constructed from a path u0−u1−u2−u3,
by joining 1 ≤ i ≤ n−3 vertices of a clique Kn−4 to u0, u1, u2 and the n−4− i

other vertices of Kn−4 to u1, u2, u3.

One should note that the maximum value of ξc for graphs with m edges
does not necessarily increase when m grows. For example, using PHOEG,
we checked, that the conjecture is true when n = 9 and 17 ≤ m ≤ 22 and
we can see in Table 8.1 that the value of ξc(En,d,k) does not increases when
m increases. Thus, a proof by induction on the number of edges might be
difficult.

Table 8.1: ξc does not necessarily increase when the size of the graphs in-
creases.

E9,5,3 E9,4,0 E9,4,1 E9,4,2 E9,4,3 E9,4,4

m 17 18 19 20 21 22
ξc 134 132 132 132 132 132

To prove this conjecture using a proof by transformation, one would re-
quire transformations that do not change the number of edges. The most
common one is the rotation but there exists graphs such as the two from Fig-
ure 8.1 where any rotation does not produce a graph with a higher value of
ξc(G). At least a second transformation would then be required or a more
complex transformation than the rotation. It would, however, be interesting
to characterize the graphs where no rotation increases ξc in order to know if
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they belong to special classes of graphs. Also, identifying the cases where a
rotation does increase ξc is essential for a proof by transformations.

Figure 8.1: Any rotation in those two graphs will not increase ξc.

Studying bounds on ξc with different constraints such as a fixed maximum
clique size or a fixed maximum degree might also provide a better insight
about the conjecture. Even more so because the conjectured extremal graph
are defined by making a clique adjacent to vertices of a path.

A second invariant based on the colorings of a graph was also studied with
the help of TransProof. This study led to two papers with several conjectures
that are presented in the next section.

8.3 The average number of colors in the colorings
of a graph

After establishing properties for the average number of colors in the non-
equivalent colorings of a graph as well as the effect of some transformations
on this invariant, we studied possible lower bounds in [60] for this invariant,
and we were able to produce the three conjectured lower bounds given be-
low. Those conjectures were proven for triangulated graphs and graphs with
maximum degree at most 2.
Conjecture 23. Let G be a graph of order n. Then,

A (G) ≥ L2(n, χ(G))

with equality if and only if G ' Kχ(G) ∪ (n−χ(G))K1.

Conjecture 24. Let G be a graph of order n. Then

A (G) ≥ L3(n, ∆(G)+1)
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with equality if and only if G ' K1,∆(G) ∪ (n−∆(G)−1)K1.

Conjecture 25. Let G be a graph of order n, then,

A (G) ≥ L1(n)

with equality if and only if G ' Kn.

Thanks to TransProof, we could see that Conjecture 25 cannot be proven
using simple methods such as removing an edge, as there are graphs where
removing any edge will strictly increase A (G). Moreover, TransProof showed
us that, for any graph G up to order 10, removing a vertex will strictly decrease
A (G). We conjecture that this is true for all graphs. But showing it requires
being able to compute a lower or upper bound on the value A (G)−A (G− v)
for a vertex v in G. This result might then be useful in a proof by induction
on the number of vertices of the graphs.

Conjecture 50. Let G be a graph of order n and v be a vertex of G,

A (G) > A (G− v) .

Another potentially useful transformation consist in isolating a vertex v.
That is, removing all the edges incident to v. We know this transformation
does not always decrease A (G). Indeed, in the two graphs of Figure 8.2,
isolating the squared vertex does not produce a graph with a lower value of
A (G). But it is unknown if there is a graph such that isolating any vertex
does not decrease A (G). If such a graph exists, its order is at least 11 as we
could check that no such graph exists with less vertices. If, on the contrary,
no such graph exists and if we characterize the cases where the transformation
works, we could use it in a proof by transformation for either one of the three
conjectures.

When studying upper bounds for A (G) in [59], we gave an upper bound
for graphs with a fixed order n as well as for the graphs with fixed order
and maximum degree ∆(G) ∈ {1, 2, n − 2}. We conjectured that for all
graphs G of order n with maximum degree 3 ≤ ∆(G) ≤ n − 3, A (G) ≤
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Figure 8.2: Isolating the squared vertex in either of those two graphs does not
decrease A (G)

A
(⌊

n
∆(G)+1

⌋
K∆(G)+1 ∪ Kn mod (∆(G)+1)

)
. However, thanks to the improve-

ments in Algorithm 8 which uses transformations to compute A (G), we were
able to find that the graph C6 ∪ K4 is a counter-example to this conjecture,
and that it is the only counter-example among all the graphs up to order 12
which is more than a hundred billion graphs.

Before trying to prove this conjecture, one has to first study this counter-
example in order to know if it is a special case or a family of counter-examples.
This would probably require a theoretical analysis as the number of non-
isomorphic graphs becomes too large to use an exact method when n ≥ 13.

8.4 Conclusion

In Section 3.2, we listed different tools with varying levels of complexity.
We also mentioned that most of those tools in extremal graph theory aimed
towards conjecturing. With TransProof, we moved to the next step, that is,
to help researchers prove the conjectures generated by such tools.

Similarly to some of those computer-assisted conjecturing systems, and un-
like others, TransProof is not automated and does not use heuristics. Instead,
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it uses a simple idea that is computing the metagraph of transformations. But
this idea already proved useful by giving insight on how invariants behaved un-
der some transformations and by producing counter-examples, thereby saving
us time that would have been used in trying to prove an incorrect result.

This shows that complexity in computer-assisted proving systems is not a
requirement. Of course, simplicity is not a requirement either. There is room
for improvement in TransProof. Being able to extract meaningful information
from a large set of graphs or applications of a transformation, such as common
structures or similar values of an invariant, could prove valuable to researchers
and not only when using TransProof. Heuristics or artificial intelligence might
then be a valid option.

However, in computer-assisted proving, because a proof needs to be under-
stood in order to be accepted, complex computer systems need to be careful
that their results remain understandable by humans.

We conclude this work with a citation from Isaac Asimov [8, p. 187]:

“The machine is only a tool after all, which can help humanity
progress faster by taking some of the burdens of calculations and
interpretations off its back. The task of the human brain remains
what it has always been; that of discovering new data to be ana-
lyzed, and of devising new concepts to be tested.”
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Index

adjacent vertices, 5
automorphism group, 40

canonical labeling, see canonical or-
dering

chordal graph, see triangulated graph
chromatic number, 11
clique, see complete graph
co-connected components, 140
co-disconnected, 140
coloring, 11
complement of a graph, 7
complete bipartite graph, 95
complete graph, 7
connected components, 11
connected graph, 11
cycle, 7

degree, 10
deletion-contraction rule, 96
diameter, 11

diametral path, 11
disconnected, see connected graph
disjoint union of graphs, 95
dominant vertex, 10

eccentric connectivity index, 78

eccentricity, 11
empty graph, 7
endpoints of an edge, see extremities

of an edge
equivalent colorings, 96
extremities of an edge, 5

fanned split graph, 19

graph, 5
directed graph, 6

arc, 6
edge set, 5
simple graph, 6
undirected graph, 6
vertex set, 5

graph invariant, 10
graph transformation, 13

application, 14
basis, 14
detour, 46
graph of changes, 69
instance, 14
result, 14
rotation, 14

hypergraph, 52
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graph representation, 52
hyperedge, 52

hypergraph method, 52
hypergraph of instances, 52

identifying vertices, 95
incident edges, 5
incoming arc, 6
independent set, see stable set
induced forest, 32
irregularity, 19

imbalance, 18
isolated vertex, 10
isomorphism, 9

automorphism, 9
fixing a vertex, 44
orbit of a vertex, 41
orbits, 41

canonical ordering, 10
isomorphic, 9
mapped, 9

join of graphs, 95

length of a path, 7
line graph, 50

maximum degree, 95
merging vertices, see identifying ver-

tices
metagraph of transformations, 34

improving arcs, 35

non-edge, 14

orbits
orbits set, 44

order of a graph, 5
outgoing arc, 6

path, 7
pendant vertex, 10

regular graph, 11

simplicial vertex, 95
size of a graph, 6
stable set, see empty graph
subgraph, 8

induced, 8
supergraph, 8
symmetrical transformation, 49

triangulated graph, 95



Glossary of notations

Aut(G) The automorphism group of a graph G.

A (G) The average number of colors in the non-equivalent colorings of a graph
G.

Tn The total number of blocks in all partitions of a set of n elements.

An The average number of blocks in a partition of a set of n elements,
which can be defined as An = Tn

Bn
.

Bn A Bell number. The number of ways to partition a set of n elements.

G The complement of a graph G.

Kn A complete graph on n vertices.

Mn The graph obtained from Kn by removing a maximum matching and,
if n is odd, an additional edge adjacent to the unique vertex that still
has degree n− 1.

G|(u,v) The graph (of order n− 1) obtained from G by identifying the vertices
u and v.

Cn A cycle on n vertices.

degG(u) The degree of a vertex u in a graph G.

distG(u, v) The distance between two vertices u and v in a graph G.
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eG(u) The eccentricity of a vertex u in a graph G.

ξc(G) The eccentric connectivity index of a graph G.

(u, v) An edge between vertices u and v in a graph.

E(G) The edge set of a graph G.

Kn An empty graph on n vertices, that is, with no edges.

En,D,k The graph of order n constructed from a path u0 − u1 − . . . − uD by
joining each vertex of a clique Kn−D−1 to u0 and u1, and k vertices of
the clique to u2.

En,D The graph constructed from a path u0 − u1 − . . .− uD by joining each
vertex of a clique Kn−D−1 to u0, u1 and u2.

Hn,p For n ≥ 4 and p ≤ n − 3, the graph of order n obtained by adding
a dominating vertex to the graph of order n − 1 having p vertices of
degree 0, and n− 1− p vertices of degree 1 if n− p is odd or n− 2− p

vertices of degree 1 and one vertex of degree 2 if n− p is even.

imb(u,v) The imbalance of an edge (u, v).

irr(G) The irregularity of a graph G.

G'H The graph G is isomorphic to the graph H.

∆(G) The maximal degree in a graph G.

N(u) The set of neighbors of a vertex u, that is, vertices that are adjacent
to u.

B(G) The total number of non-equivalent colorings of a graph G.

|G| The order (number of vertices) of a graph G.

Pn A path on n vertices.



GLOSSARY OF NOTATIONS 173

Qn For n ≥ 3, the graph obtained from Pn by adding an edge between an
extremity v of Pn and the vertex at distance 2 from v on Pn.

rot(u, v, w) The edge-rotation consisting in removing the edge (u, v) and
adding the edge (u, w).

S (G, k) The number of non-equivalent colorings of a graph G that use exactly
k colors.

||G|| The size (number of edges) of a graph G.

Sn A star on n vertices, that is, a vertex made adjacent to all the vertices
of a cycle on n− 1 vertices.

Sn,x The graph of order n obtained by linking all vertices of a stable set of
n− x vertices with all vertices of a clique Kx.{n

k

}
A Stirling number of the second kind. The number of ways to partition
a set of n elements into k non-empty subsets.

T (G) The total number of color classes in the non-equivalent colorings of a
graph G.

V (G) The vertex set of a graph G.
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