
Poster template by ResearchPosters.co.za

3 - Model 5 - Conclusion and perspectives

References

4 - Results

A semi-analytical model for unidirectional guided 

resonances based on multimodal interference
Thomas Delplace – Bjorn Maes

Micro- and Nanophotonic Materials Group, Research Institute for Materials Science and Engineering, University of Mons, Place du Parc, 20, 7000, Mons, Belgium

1 - Introduction

INSERT

LOGO HERE

Figure 1 –
Out-of-plane
electric field
for a BIC (left)
and a UGR
(right).

2 - Search of guided modes

Recently, optical bound states in the continuum (BICs) have been produced in photonic crystal slabs. A
variation, unidirectional guided resonances (UGRs), has been reported, where the symmetry is broken,
leading to leakage in a specific direction [1]. We explore a microscopic semi-analytical model to
understand these resonances, by extending a multimodal interference approach of BICs.

The multimodal approach consists of searching for vertically propagating guided modes in a waveguide
that has the same dimensions as our geometry. Then by injecting these modes in the upper and lower
half of our structure we construct de reflection matrices of two halves of our cell. These matrices gives us
information about the way the guided modes interfere in the structure.

Figure 2 – Left: Dispersion curve of a waveguide with same dimensions as our structure.
The black line shows the frequency of the UGR. Right: Electric field norm of the three
guided modes used for interference.

Figure 3 – Inner
geometry used for 
the UGR. The 
dashed line shows 
the separation
between the 
upper and lower
half.

How we proceed:

➔ Using an eigenmode
solver, we search for guided
modes with the same
horizontal wavenumber and
frequency as the UGR.

➔ We inject these modes
in the upper and lower half
of the structure.

➔ We construct the
reflection matrices 𝑅𝑢 (up)
and 𝑅𝑑 (down).
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The eigenvalue 𝝀 gives us insight in the
resonance:
• If 𝐼𝑚 𝜆 → 0 we have a phase resonance.
• If 𝜆 → 1 losses go to zero.

Losses are computed with the eigenvectors and reflection
matrices.

Based on [2] and [3] we
constructed the semi-analytical
Q factor for the two halves.

Figure 4 – We construct the 
round trip by combining the 
eigenvectors and reflection
matrices.
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As shown on figure 5, our model
gives good results in comparison to
an eigenmode solver. Meaning that
we can describe BICs and UGRs as
interferences between fundamental
modes. However more investigation
are needed to construct a more
precise formula for the Q factor.

Perspectives:
• Extending the model to more

elaborate structures
• Using the multimodal

interference to find BICs and
UGRs in new geometries

• Connecting our near-field
approach with the far-field
description of UGRs [1]
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Figure 6 – Comparison of the out-
of-plane electrical field profile
given by an eigenmode solver (left)
and the mode mixing of our
method (right).

As we can see, the profile of the
two methods are similar. Showing
that the mode mix given by the
eigenvectors reproduces the UGR.

Figure 5 – Comparison between the Q
factor given by our model and an
eigenmode solver.


