Strong homotopy algebras in conformal field theory and higher spin gravity Workshop on noncommutative and generalized geometry, Corfu Evgeny Skvortsov, UMONS September 21, 2022

European Research Council

Established by the European Commission

Main message: higher spin symmetry is new Virasoro 🕓

- Is there any symmetry behind (Chern-Simons) vector models like Ising model? Slightly-broken higher spin symmetry (Maldacena, Zhiboedov) is clearly not a usual Lie-type symmetry ...
- The structure behind is L_{∞} strong homotopy algebra, behind it is a simple associative algebra of fuzzy sphere. Invariants = correlators and are uniquely fixed, which implies the **3***d* bosonization duality
- On a different note: there has to be a closed subsector of vector models (including the Ising), which has a local AdS_4 description as Chiral Higher Spin Gravity, yet unknown formality ...

99.99%: Lie group G/Lie algebra g acting on some physical states. Group/Algebra = transformations without any info on what they act

Yangian: deformation of $U(\mathfrak{g}[z])$ as a Hopf algebra. Spin-chains, planar $\mathcal{N}=4$ SYM and scattering amplitudes therein

Strong homotopy algebras: multi-linear products on graded spaces (Lie and associative algebras are examples). Nice organizing tool for QQ = 0: BV-BRST, string field theory, higher spin gravities, ...

New: (Chern-Simons) vector models (e.g. 3d Ising, ...) have ∞ -many almost conserved tensors $\partial^m J_{ma_2...a_s} \approx 0$ — slightly-broken higher spin symmetry (Maldacena, Zhiboedov). The right structure are certain L_{∞} -algebras. Symmetry gets entangled with its representation. Explains 3d-bosonizationd duality

- Higher spin symmetry: from canonical QFT/CFT to algebraic view-point on free/very large-N CFT's
- Chern-Simons vector models and bosonization duality
- Slightly-broken higher spin symmetry as L_∞
- DQ of Poisson orbifolds, fuzzy sphere
- 3d bosonization duality via L_{∞} glasses
- Chiral Higher Spin Gravity and yet unknown formality

Higher spin symmetry

Let's take any free CFT, e.g. free boson or free fermion

$$\Box \phi = 0 \qquad \qquad \partial \psi = 0$$

We find the stress-tensor J_{ab} and infinitely many (even spin) higher spin conserved tensors $J_{a_1...a_s}$ (aka higher spin currents, old name — Zilch):

$$J_s = \phi \partial \dots \partial \phi + \dots \qquad \qquad J_s = \bar{\psi} \gamma \partial \dots \partial \psi + \dots$$

They are quasi-primary at the unitarity bound and have $\Delta = d + s - 2$.

Let's take any free CFT, e.g. free boson or free fermion

$$\Box \phi = 0 \qquad \qquad \not \partial \psi = 0$$

We find the stress-tensor J_{ab} and infinitely many (even spin) higher spin conserved tensors $J_{a_1...a_s}$ (aka higher spin currents, old name — Zilch):

$$J_s = \phi \partial \dots \partial \phi + \dots \qquad \qquad J_s = \bar{\psi} \gamma \partial \dots \partial \psi + \dots$$

They are quasi-primary at the unitarity bound and have $\Delta=d+s-2.$

Stress-tensor is responsible for conformal symmetry so(d, 2)

$$Q_v = \int d^{d-1}x \, J_{0m}(x) v^m(x) \qquad \qquad \partial^n v^m + \partial^m v^n \sim \eta^{mn}$$

where conformal killing vector carries adjoint of so(d, 2)

$$v^{a} = \epsilon^{a} + x^{a}\epsilon + \epsilon^{a,b}x_{b} + \tilde{\epsilon}^{a}x^{2} - 2x^{a}(\tilde{\epsilon} \cdot x)$$

Let's take any free CFT, e.g. free boson or free fermion

$$\Box \phi = 0 \qquad \qquad \not \partial \psi = 0$$

We find the stress-tensor J_{ab} and infinitely many (even spin) higher spin conserved tensors $J_{a_1...a_s}$ (aka higher spin currents, old name — Zilch):

$$J_s = \phi \partial ... \partial \phi + ... \qquad \qquad J_s = \bar{\psi} \gamma \partial ... \partial \psi + ..$$

They are quasi-primary at the unitarity bound and have $\Delta = d + s - 2$. Stross tensor is responsible for conformal symmetry so(d, 2)

Stress-tensor is responsible for conformal symmetry so(d, 2)

$$Q_v = \int d^{d-1}x \, J_{0m}(x) v^m(x) \qquad \qquad \partial^n v^m + \partial^m v^n \sim \eta^{mn}$$

What are higher spin currents responsible for?

Any symmetry is certainly useful unless too much ...

Imagine a CFT $d \geq 3$ with $J_2 \equiv T_{ab}$ and $J_s \equiv J_{a_1...a_s}$, all being traceless and conserved. Is it interesting?

One can show (Maldacena, Zhiboedov; Boulanger, Ponomarev, E.S. Taronna; Alba, Diab) that there are J_s with arbitrarily high spin (at least all even spins), and the correlators are

 $\langle J...J \rangle$ = some free CFT

In 3d there are two choices: free boson $\Box \phi = 0$ and free fermion $\partial \psi = 0$. Note: they have different correlators of J!

When something is completely fixed, usually it is thanks to some symmetry. What is the symmetry behind?

Conserved tensor \rightarrow current \rightarrow charge \rightarrow symmetry

$$j_m(v) = J_{ma_2...a_s} v^{a_2...a_s} \qquad \partial^{(a_1} v^{a_2...a_s)} = \eta^{(a_1a_2} u^{a_3...a_s)}$$

where $v^{a_1...a_{s-1}}$ is a conformal Killing tensor, \square of so(d,2)

Conserved tensor \rightarrow current \rightarrow charge \rightarrow higher-spin symmetry

$$j_m(v) = J_{ma_2...a_s} v^{a_2...a_s} \qquad \partial^{(a_1} v^{a_2...a_s)} = \eta^{(a_1a_2} u^{a_3...a_s)}$$

where $v^{a_1...a_{s-1}}$ is a conformal Killing tensor.

Miracle 1: the Lie algebra $Q_s = \int J_s$ originates from an associative one

Free CFT = Associative algebra

Indeed, $\Box \Phi = 0$ is so(d, 2)-invariant:

$$\delta_v \Phi = v^m \partial_m \Phi + \frac{d-2}{2d} (\partial_m v^m) \Phi$$

We can multiply such symmetries due to linearity of $\Box \Phi = 0$

$$\delta \Phi = \delta_{v_1} \dots \delta_{v_n} \Phi = \epsilon^{a_1 \dots a_k} \partial_{a_1} \dots \partial_{a_k} \Phi + \dots$$

Unbroken higher spin symmetry

Define $|V\rangle$ as the space of one-particle states $P_a...P_c |\phi\rangle$, where $|\phi\rangle \equiv \phi(0)|0\rangle$

Higher spin algebra \mathfrak{hs} is $\mathrm{gl}(V) : V \to V$

hs is DQ of the so(d, 2) coadjoint orbit ϕ Higher spin currents are bilinear in ϕ or ψ

Miracle 2: $J \leftrightarrow \mathfrak{hs}$ upon identifying $|\phi\rangle |\phi\rangle$ with $|\phi\rangle \langle \phi|$ by inversion **R**

 $J \sim |V\rangle \otimes |V\rangle \qquad \iff \qquad \mathfrak{hs} \sim |V\rangle \otimes \langle V|$

In 3d the module of one-particle states of free boson/fermion CFT's is just the 2d harmonic oscillator (Dirac, 1963):

$$\begin{array}{lll} P_{a}...P_{a}|\phi\rangle & \sim & a_{\alpha}^{\dagger}a_{\beta}^{\dagger}...a_{\alpha}^{\dagger}a_{\beta}^{\dagger}|0\rangle \\ P_{a}...P_{a}|\psi\rangle & \sim & a_{\alpha}^{\dagger}a_{\beta}^{\dagger}...a_{\alpha}^{\dagger}a_{\beta}^{\dagger}a_{\gamma}^{\dagger}|0\rangle \end{array}$$

This is thanks to $so(3,2) \sim sp(4,\mathbb{R})$ and thanks to the oscillator realization of sp(2n), e.g. $P_mP^m \sim 0$, $P_m = \sigma_m^{\alpha\beta}a^{\dagger}_{\alpha}a^{\dagger}_{\beta}$, $\alpha,\beta,\ldots=1,2$

Now it is obvious that \mathfrak{hs} is formed by even functions $f(a^{\dagger}, a)$. Formally, it is the even subalgebra of Weyl algebra A_2 . Passing to p_i , q^j the product on \mathfrak{hs} is the familiar Moyal-Weyl star-product:

$$(f \star g)(q, p) = f(q, p) \exp \frac{i\hbar}{2} (\overleftarrow{\partial}_q \overrightarrow{\partial}_p - \overleftarrow{\partial}_p \overrightarrow{\partial}_q) g(q, p)$$

Conserved tensor \rightarrow current \rightarrow symmetry \rightarrow invariants=correlators Is higher spin symmetry powerful enough to fix correlators? All correlators are invariants (Sundell, Colombo; Didenko, E.S.; ...)

$$\langle J...J\rangle = \operatorname{Tr}(\Psi \star ... \star \Psi) \qquad \qquad \Psi \leftrightarrow J$$

 Ψ are coherent states representing J in the higher spin algebra. The correlators are invariant under full higher spin symmetry, $\delta \Psi = [\Psi, \xi]_{\star}$, which contains the conformal symmetry

Easy to say, but can we compute them? yes, why not (Sundell, Colombo; Didenko, E.S.; ...)

 $\langle JJJJ\rangle_{F.B.}\sim \cos(Q_{13}^2+Q_{24}^3+Q_{31}^4+Q_{43}^1)\cos(P_{12})\cos(P_{23})\cos(P_{34})\cos(P_{41})+\ldots$

In every free CFT one finds ∞ -many higher spin currents $J_s \equiv J_{a_1...a_s}$, which generate HS-charges $Q_s = \int J$. By construction, Q generate an ∞ -dim Lie algebra, an extension of so(3, 2)

$$[Q,Q] = Q \qquad \qquad [Q,J] = J \qquad \qquad [Q,\phi] = \phi$$

Miracle 1: the algebra originates from an associative HS-algebra \mathfrak{hs} via $[a,b] = a \star b - b \star a$. Free CFT = associative algebra. Miracle 2: HS-currents J are isomorphic to \mathfrak{hs} , representation twisted by inversion.

Correlators are invariants of this HS-algebra hs

$$\langle J...J\rangle = \operatorname{Tr}(\Psi \star ... \star \Psi) \qquad \qquad \Psi \leftrightarrow J$$

Important: in $3d \ \mathfrak{hs}_{F,B} \sim \mathfrak{hs}_{F,F} \sim Weyl algebra of <math>f(a_i^{\dagger}, a^j)$ and the invariants are the unique invariants of HS-algebra (Sharapov, E.S.)

Chern-Simons Matter Theories and bosonization duality

 CFT_3 : there exists a large class of models, vector models, Chern-Simons Matter theories (extends to ABJ(M))

$$\frac{k}{4\pi}S_{CS}(A) + \mathsf{Matter} \begin{cases} (D\phi^i)^2 & \text{free boson} \\ (D\phi^i)^2 + g(\phi^i\phi^i)^2 & \mathsf{Wilson-Fisher (Ising)} \\ \bar{\psi} D \psi & \text{free fermion} \\ \bar{\psi} D \psi + g(\bar{\psi}\psi)^2 & \mathsf{Gross-Neveu} \end{cases}$$

- describe physics (Ising, quantum Hall, ...)
- break parity in general (Chern-Simons)
- two parameters $\lambda = N/k$, 1/N (λ continuous for N large)
- exhibit remarkable dualities, e.g. 3d bosonization duality (Aharony, Alday, Bissi, Giombi, Karch, Maldacena, Minwalla, Prakash, Seiberg, Tong, Witten, Yacobi, Yin, Zhiboedov, ...)

Chern-Simons Matter theories and dualities

The simplest gauge-invariant operators are higher spin currents

$$J_s = \phi D...D\phi \qquad \qquad J_s = \psi \gamma D...D\psi$$

which are AdS/CFT dual to higher spin fields

What is going on in Chern-Simons-matter theories? HS-currents are responsible for their own non-conservation:

$$\partial \cdot J_s = \sum_{s_1, s_2} C_{s, s_1, s_2}(\lambda) \frac{1}{N} [J_{s_1} J_{s_2}]$$

which is an exact non-perturbative quantum equation. In the large-N we can use classical (representation theory) formulas for [JJ].

The worst case $\partial \cdot J =$ some other operator. The symmetry is gone, the charges are not conserved, do not form Lie algebra.

In our case the non-conservation operator $\left[JJ\right]$ is made out of J themselves, but charges are still not conserved.

Slightly-broken higher spin symmetry: what is it?

Initially we have well-defined charges and higher spin algebra \mathfrak{hs}

$$\partial \cdot J_s = 0 \implies Q_s = \int J_s \implies [Q,Q] = Q \& [Q,J] = J$$

 $l(\xi_1,\xi_2) \& l(\xi,J)$

The higher spin symmetry does not disappear completely:

$$\partial \cdot J = \frac{1}{N}[JJ]$$
 $[Q, J] = J + \frac{1}{N}[JJ]$

What is the right math?

Initially we have well-defined charges and higher spin algebra hs

$$\partial \cdot J_s = 0 \implies Q_s = \int J_s \implies [Q,Q] = Q \& [Q,J] = J$$

The higher spin symmetry does not disappear completely:

$$\partial \cdot J = \frac{1}{N}[JJ]$$
 $[Q, J] = J + \frac{1}{N}[JJ]$

What is the right math?

We should deform the algebra together with its action on the module, so that the module (currents) can 'backreact':

$$\delta_{\xi}J = \boldsymbol{l}(\boldsymbol{\xi}, \boldsymbol{J}) + \boldsymbol{l}(\boldsymbol{\xi}, \boldsymbol{J}, \boldsymbol{J}) + \dots, \qquad [\delta_{\xi_1}, \delta_{\xi_2}] = \delta_{\xi},$$

where $\xi = l(\xi_1, \xi_2) + l(\xi_1, \xi_2, J) + \dots$

The consistency of such a structure leads to L_{∞} -algebras

Strong homotopy algebra is a graded space, e.g. $V = V_{-1} \oplus V_0$ equipped with multilinear maps $l_k(x_1, ..., x_k)$ of degree-one. In our case

$$l_k(\xi, \xi, J, ..., J)$$
 $l_k(\xi, J, ..., J)$

that allow us to encode the deformed action

$$\delta_{\xi}J = l_2(\xi, J) + \, l_3(\xi, J, J) + \dots, \qquad [\delta_{\xi_1}, \delta_{\xi_2}] = \delta_{\xi} \,,$$

where $\xi = l_2(\xi_1,\xi_2) + \, l_3(\xi_1,\xi_2,J) + \dots$ The maps obey 'Jacobi' relations

$$\sum_{i+j=n} (\pm) l_i(l_j(x_{\sigma_1}, ..., x_{\sigma_j}), x_{\sigma_{i+1}}, ..., x_{\sigma_n}) = 0$$

 L_{∞} originates from A_{∞} constructed from a certain deformation of \mathfrak{hs} , which is related to para-statistics/fuzzy sphere (Sharapov, E.S.)

Everyone knows that the Weyl algebra A_1 is rigid

 $[q,p] = i\hbar$ no deformation of $f(q,p) \star g(q,p)$

Suppose that $\mathbf{R}f(q,p) = f(-q,-p)$, i.e. we can realize it as

$$R^2 = 1 \qquad RqR = -q \qquad RpR = -p$$

The crossed-product algebra $A_1 \ltimes \mathbb{Z}_2$ is soft (Wigner; Yang; Mukunda; ...):

$$[q,p] = i\hbar + i\nu \mathbf{R}$$

Also known as para-bose oscillators. Even $\mathbf{R}(f) = f$ lead to $gl_{\lambda} = U(sp_2)/(C_2 - \lambda(\lambda-1))$ (Feigin), also (Madore; Bieliavsky et al) as fuzzy-sphere, NC hyperboloid, also (Plyushchay et al) as anyons.

Orbifold $\mathbb{R}^2/\mathbb{Z}_2$ admits 'second' quantization on top of the Moyal-Weyl \star -product, (Pope et al; Joung, Mrtchyan; Korybut; Basile et al; Sharapov, E.S., Sukhanov)

Slightly broken higher spin symmetry: summary

- necessary for bosonization: hs (boson) ~ hs (fermion) (Dirac, 1963)
- there exist exactly one invariant, $Tr(\Psi \star ... \star \Psi)$, to serve as *n*-point correlator $\langle J...J \rangle$ for free/large-N limit
- L_∞ depends on two pheno parameters, to be related to k, N
- invariants are unobstructed and have a quasi-free form

 $\operatorname{Tr}_{\circ} \log_{\circ}[1 - \Psi] \mod \operatorname{irr}, \qquad a \circ b = a \star b + \phi_1(a, b)\mathbf{R} + \dots$

a simple consequence is that correlators are very special

$$\langle J...J \rangle = \sum \langle \mathsf{fixed} \rangle_i \times \mathsf{params}$$

This implies 3d bosonization since $\langle J...J \rangle$ know everything and it does not matter what matter J are made of, ϕ or ψ

Chiral higher spin gravity

AdS/CFT duals of (Chern-Simons) vector models are HiSGRA since conserved tensor J_s is dual to (massless) gauge field in AdS_4 (Sundborg; Klebanov, Polyakov; Sezgin Sundell; Leight, Petkou; Giombi, Yin, ...)

$$\partial^m J_{ma_2...a_s} = 0 \qquad \iff \qquad \delta \Phi_{\mu_1...\mu_s} = \nabla_{(\mu_1} \xi_{\mu_2...\mu_s)}$$

Instead of tedious quantum calculations in Chern-Simons matter one could do the standard holographic computation in the HiSGRA dual.

No free lunch: generic HiSGRA do not (want to \checkmark) exist/too nonlocal (untamed); nice exceptions: 3*d*, conformal, IKKT (Steinacker, ..., Tran), Chiral

Chiral HiSGRA (Metsaev; Ponomarev, E.S.): all spins s = 0, (1), 2, (3), ...; at least one-loop UV-finite (E.S., Tran, Tsulaia); any sign of the cosmological constant is allowed, including zero; the smallest and the only local HiSGRA with propagating massless fields; specific predictions for higher derivative modifications of gravity; some kind of self-dual theory (Ponomarev); trivial *S*-matrix in flat space, but not in AdS ...

Chiral HiSGRA is a local HiSGRA;

It has the right spectrum to be dual to Chern-Simons matter, but it cannot be;

Its very existence implies Chern-Simons matter have 2 closed subsectors;

Its very existence supports 3d bosonization duality;

Bosonization is manifest!

(anti)-Chiral Theories provide a complete base for 3-pt amplitudes

$$V_3 = V_{chiral} \oplus ar{V}_{chiral} \quad \leftrightarrow \quad \langle JJJ
angle$$

Chiral HiSGRA and Chern-Simons Matter

Let us be given a Q-manifold (better an L_{∞} -algebra)

then we can always write a sigma-model:

$$d\Phi = Q(\Phi) \equiv l_2(\Phi, \Phi) + l_3(\Phi, \Phi, \Phi) + ...$$

Any PDE can be cast into such a form ... (Barnich, Grigoriev)

Other names: Free Differential Algebras (Sullivan), in physics: (van Nieuwenhuizen; Fre, D' Auria); FDA=unfolding (Vasiliev), AKSZ (AKSZ), gauged-PDE (Grigoriev, Kotov)

A piece of a yet unknown formality

Moyal-Weyl, \mathfrak{hs} , 2d Poisson/Symplectic $\pi^{AB} = \text{const}$, only boundary graphs survive in (Shoikhet-Tsygan)-Kontsevich formality. The first maps: $m(\boldsymbol{\xi}, \boldsymbol{\eta}) = \boldsymbol{\xi} \star \boldsymbol{\eta}$, $m(\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{J}) \sim \phi_1(\boldsymbol{\xi}, \boldsymbol{\eta}) \star \boldsymbol{JR}$, but we need locality! Result for $m(\boldsymbol{\xi}, \boldsymbol{\eta}, \boldsymbol{J}, ..., \boldsymbol{J})$:

(Sharapov, E.S., Van Dongen) the configuration space is of convex polygons B or swallowtails A, related to Grassmannian. The maps exponentiate like for Moyal-Weyl.

Our A_{∞} is a pre-Calabi-Yau algebra (Kontsevich, ...). Formality? TFT?

Summary/Remarks/Comments/Speculations

- Higher spin symmetry is new (d = 3, ...) Virasoro
- Slightly-broken symmetry should be understood as L_∞
- Uniqueness of L_{∞} -invariants implies the 3d bosonization duality
- New type of a physical symmetry where transformations (algebra) and the object (module) deform together
- Anomalous dimensions of HS-currents are small even for Ising model, N=1, e.g. $\Delta(J_4)=5.02$ instead of 5
- Chiral Higher Spin Gravity is dual to a closed subsector of (Chern-Simons) vector models. How to find it? It should extend to small N due to integrability, implications for Ising?
- Locality implies specific A_{∞} -maps that have (Shoikhet-Tsygan)-Kontsevich as first two layers. Biger Formality? TFT?
- More: Snowmass paper, ArXiv: 2205.01567

Thank you for your attention!

May the higher spin symmetry be with you

Consider functions $f(q, p, \mathbf{R})$ on the phase space **1st Poisson bracket:**

$$\{f,g\} = m \,\pi_1(f \otimes g) \qquad \qquad \pi_1 = \partial_p \otimes \partial_q - \partial_q \otimes \partial_p$$

2nd Poisson bracket:

$$\{f,g\} = m \pi_1 \int f(q(1-2u_1), p(1-2u_1)) \otimes g(q(1-2u_2), p(1-2u_2)) \mathbf{R}$$

the integral over simplex $0 < u_1 < u_2 < 1$ is a leftover of the Kontsevich-Shoikhet graph. It can be obtained (Feigin, Felder, Shoikhet) from Kontsevich-Shoikhet-Tsygan Formality

In the general case of $A_n \rtimes \Gamma$ the complete deformation can be obtained (Sharapov, E.S., Sukhanov) via Homological Perturbation Theory. There is a relation to Dunkl derivative for $\hbar = 0$ (Tang)

We need to construct L_{∞} that 'deforms' our initial data = algebra + module, both originating from an associative algebra $A = \mathfrak{hs} \rtimes \mathbb{Z}_2$.

One can show (Sharapov, E.S.) that such L_{∞} can be constructed as long as A is soft, i.e. can be deformed as an associative algebra:

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 $a \circ b = a \star b + \sum_{k=1} \phi_k(a, b) \hbar^k$

The maps can be obtained from an auxiliary A_∞

$$m_3(a, b, u) = \phi_1(a, b) \star u \quad \to \quad l_3$$

$$m_4(a, b, u, v) = \phi_2(a, b) \star u \star v + \phi_1(\phi_1(a, b), u) \star v \quad \to \quad l_4$$

Our algebra can be deformed thanks to para-statistics/anyons ... otherwise, any soft associative algebra leads to a certain A_∞

Any PDE can be cast into such a form ...

Flat space is still a flat connection $dA = \frac{1}{2}[A, A]$

$$de^{a} = \omega^{a,}{}_{b} \wedge e^{b}$$
 no torsion
 $d\omega^{a,b} = \omega^{a,}{}_{c} \wedge \omega^{c,b}$ Riemann vanishes

vielbein $e^a \equiv e^a_\mu dx^\mu$; spin-connection $\omega^{a,b} \equiv \omega^{a,b}_\mu dx^\mu$

Minkowski space = flat Poincare algebra connection*

How to add gravitatonal waves?

Any PDE can be cast into such a form ... but in practice cannot

Einstein equations are already painful enough

$$\begin{split} & de^{a} = \omega^{a,}{}_{b} \wedge e^{b} & \text{no torsion} \\ & d\omega^{a,b} = \omega^{a,}{}_{c} \wedge \omega^{c,b} + e_{m} \wedge e_{n} C^{ab,mn} & \text{Einstein is here!} \end{split}$$

vielbein $e^a \equiv e^a_\mu dx^\mu$; spin-connection $\omega^{a,b} \equiv \omega^{a,b}_\mu dx^\mu$; Weyl tensor $C^{ab,cd}$

Any PDE can be cast into such a form ... but in practice cannot

Einstein equations are already painful enough

$$\begin{split} de^{a} &= \omega^{a,}{}_{b} \wedge e^{b} & \text{no torsion} \\ d\omega^{a,b} &= \omega^{a,}{}_{c} \wedge \omega^{c,b} + e_{m} \wedge e_{n}C^{ab,mn} & \text{Einstein is here!} \\ dC^{ab,mn} &= \omega C^{ab,cd} + e_{k}C^{ab,mn,k} & \text{Bianchi for Weyl} \end{split}$$

vielbein $e^a \equiv e^a_\mu dx^\mu$; spin-connection $\omega^{a,b} \equiv \omega^{a,b}_\mu dx^\mu$; Weyl tensor $C^{ab,cd}$; and more $C^{ab,cd,k}$, ... and nonlinear equations for them

We have to introduce auxiliary fields to parameterize the on-shell jet:

 $R_{ab,mn} = C_{ab,mn}$ (Riemann = its Weyl) ~ Einstein

Closed-form for SDYM and SDGR (E.S., Van Dongen), l_2 , l_3