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Security is a subject of increasing attention in our actual society in order to protect critical resources
from information disclosure, theft or damage. The informal model of attack trees introduced by
Schneier, and widespread in the industry, is advocated in the 2008 NATO report to govern the evalua-
tion of the threat in risk analysis. Attack-defense trees have since been the subject of many theoretical
works addressing different formal approaches.

In 2017, M. Audinot et al. introduced a path semantics over a transition system for attack trees.
Inspired by the latter, we propose a two-player interpretation of the attack-tree formalism. To do
so, we replace transition systems by concurrent game arenas and our associated semantics consist
of strategies. We then show that the emptiness problem, known to be NP-complete for the path
semantics, is now PSPACE-complete. Additionally, we show that the membership problem is CONP-
complete for our two-player interpretation while it collapses to P in the path semantics.

1 Introduction

Security is a subject of increasing attention in our actual society in order to protect critical resources
from information disclosure, theft or damage. The informal model of attack trees was first introduced by
Schneier [15] to schematically model possible threats one could execute against an information system.
Attack trees have then been widespread in the industry and are advocated in the 2008 NATO report to
govern the evaluation of the threat in risk analysis. The attack tree model is also a subject of increasing
attention in the community of formal methods with a lot of different formal approaches [10, 8, 7, 6, 5,
12, 1] (see the survey [16]).

The first formal model of attack trees introduced in [15] aimed at describing a possible attack over a
system by refining the main attack goal into sub-goals using either an operator OR or an operator AND
to coordinate those refinements. The analysis conducted over those trees is "static" in the sense that the
attacked system does not evolve during the attack. As such, there is no concept of a goal happening
before or after another. In [6], the authors introduce a first formal semantics that can be qualified as
"dynamic" by allowing a new operator, operator SAND (for sequential AND), to specify that sub-goals
must be attained in a given order. Considering that the SAND operator is now commonly accepted, the
authors of [1] propose a path semantics for attack trees over a transition system.

In this paper, our goal is to present a new semantics for attack trees in order to be able to model
more realistic scenarios: we want our attacker to be able to adapt her actions according to the behavior
of the environment – typically, a defender who tries to protect the system. This setting naturally yields
a two-player semantics. Our approach is inspired by [1] where we generalize the path semantics to a
game-theoretic framework, yielding a strategy semantics for attack trees, without changing their syntax.

http://dx.doi.org/10.4204/EPTCS.370.11
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While the path semantics from [1] is compositional in a natural way, it turns out that the strategy
semantics does not have such a nice property. Indeed, although composition of strategies is possible (see
for example [11]), there is no immediate solution to compose two strategies in order to get a strategy that
achieves the disjunction of what the formers achieve. This situation makes it difficult to design a com-
positional strategy semantics for attack trees. We therefore develop a non-trivial strategy semantics that
is not compositionally obtained per se, but that makes use of the former compositional path semantics.

To our knowledge, our proposal is the first game-theoretic semantics for attack trees, and should not
be mixed-up with the multi-player setting induced by the so-called classic model of attack-defense trees
in the literature (see [9]): attack-defense trees are attack trees equipped with a new operator to express
that some defender could use a countermeasure to prevent attacker from achieving her goal. Although
well-understood in a "static" framework, we are not aware of any formal semantics of attack-defense
trees for the “dynamic” one, i.e., over transition systems. This missing piece of work makes it difficult
to conduct a comparison with our contribution, but, from the fact that the defender in our setting is fully
formalized, as an opponent in the game arena, while the defender in attack-defense trees takes the form
of an abstract entity, it seems that those two formalisms are not expressing the same kind of problems.

Our contribution in this paper is twofold.
We first develop a clean mathematical setting to obtain a formal strategy semantics for attack trees.

For pedagogical reasons, we choose to consider a simplified version of the attack trees of [1] where
atomic goals (at the leaves of the trees) are reachability goals with no preconditions. However, at the
price of tedious definitions, the strategy semantics we propose can be adapted to atomic goals with
preconditions. Regarding the design of this semantics, we heavily rely on the older one of [1] based
on paths, and we justify our approach by providing evidence that a compositional strategy semantics is
hopeless.

Second, we exploit the attack tree semantics to address and study the complexity of two decision
problems: the non-emptiness problem and the membership problem. The former consists in determining
if the semantics of an input tree is non-empty, while the latter consists in determining if an input element
belongs to the semantics of an input tree. Our results are summarized in Table 1, where we distinguish
between the path semantics and the strategy semantics.

Table 1: Complexity results

Paths semantics Strategy semantics
Non-Emptiness Problem NP-complete PSPACE-complete

Membership Problem P CONP-complete

Importantly, both decision problems have a practical counterpart. The non-emptiness of the path
semantics of a tree reflects a situation where there exists a favorable scenario for attacker to perform
her attack, while the non-emptiness of the strategy semantics reflects an intrinsic vulnerability of an
information system. Regarding the membership problem for the path semantics, we are interested in
knowing whether a log file of some information system execution makes evidence of an attack, while for
the strategy semantics, we wonder if an attack policy is successful.

The paper is organized as follows. We start in Section 2 with an introductory example explaining
informally the difference between path semantics and strategy semantics. After some background work
in Section 3, we introduce in Section 4 the formal model of attack trees and define the path semantics in-
spired by [1] as well as our new strategy semantics. We then study the complexity of the Non-Emptiness
and the Membership problems in Section 5.
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2 Introductory example

Consider a thief (the attacker) who wants to steal some document inside a safe of a building without
being seen. The building is composed of two rooms. The first room has two entrance doors (called door
1 and door 2) from the street. There is a guard keeping the entrance doors, but he can only control the
bypassing of one of the two entrance doors at a time. The first room has also another door that leads
to the second room. This door is locked but the key to unlock it is in the first room. There is also a
camera in the first room monitoring the door to the second room. The second room contains a safe with
the document that the thief wants to steal. Therefore, in order for the thief to attain his goal, he needs
to enter the first room (by either door that is not currently controlled by the guard), then deactivate the
camera and collect the key (in whichever order he wants) and finally unlock and go through the door
leading to the second room. The thief can be seen by the guard if they appen to be in front of the same
door or by the camera if activated when he is in front of the door to room 2. Figure 1a gives a picture of
the situation where the thief is still outside of the building and the guard controls the second door.

Key

Locked door

Door 1

Guard

Camera

Thief

Safe

Door 2

(a) Building plan

(o,m)

(o,d1)

(o,d2)

(d2,d1)

(d2,d2)

(d2,m)

(d1,d1)

(d1,d2)

(d1,m)

{D2}

{D2}

{D2, seen}{D1}

{D1}

{D1, seen}

(b) Graph representation of the possibles positions of the thief and the guard at the
entrance of the building.

Figure 1: Introductory example building

In security, it is common to use an attack tree to model the goal of the attacker. An attack tree is a
tree where each node describes a goal and the children of a node describe a refinement into sub-goals of
the parent goal. To model those refinements, it is common to use three operators:

• OR operator means that at least one sub-goal needs be achieved to have the goal accomplished,

• SAND operator, read "sequential and", means that the sub-goals need be achieved in the left-to-
right order to have the goal accomplished,

• AND operator means that the sub-goals need be achieved (in whatever order) to have the goal
accomplished.
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Figure 2: An attack tree to model the goal of our thief.

In Figure 2, we describe the goal of the thief by means of an attack tree. To distinguish the different
types of nodes, we draw a curved line below an AND operator, a curved arrow below a SAND operator
and nothing below an OR operator.

We focus our attention on the very first part of our problem, that is, the sub-goal of the thief to enter
the building. We start by fixing a set of proposition Prop = {D1,D2,seen} where D1 holds when the
thief is in front of the first door, D2 holds when the thief is in front of the second door and seen holds
when the guard sees the thief because they meet in front of the same door. The goal "crossing the first
door unseen" of the thief can be modelled by the formula D1∧¬seen and the goal "crossing the second
door unseen" is modelled by the formula D2∧¬seen. If we assume that the guard can switch door
whenever he wants but leaves the two doors unguarded for a brief amount of time during his motion,
we can model the situation using the graph of Figure 1b where each state consists of a pair in the set
{o,d1,d2}×{m,d1,d2}. For a pair (a,b), element a determines the position of the thief (o means that he
is still outside the building, while di indicates he is at door i) and element b determines the position of
the guard (m means that he is currently in motion between the two doors, leaving them both unguarded).
We write next to each state which propositions hold in it.

In a path semantics, a successful attack for goal D1∧¬seen consists of a sequence of states (i.e., a
word) such that the valuation of the last state of this sequence satisfies formula D1∧¬seen. In particular,
the sequence (o,m),(d1,d2) is a successful attack. Now, if we want to consider a successful attack for
the attack tree consisting of the "OR" operator of objective D1∧¬seen and D2∧¬seen, it is enough to
consider the union of the set of all attacks for objective D1∧¬seen with the set of all attacks for objective
D2∧¬seen.

However, in the strategy semantics we introduce in this paper, we consider that an attack is successful
if the attacker has a strategy that grants him to reach the states he needs to attain, independently of the
environment. In our example, we can see that the thief has no strategy starting at position (o,m) to
achieve goal D1∧¬seen. Indeed, if the first move of the guard consists on going to door 1 and he then
does not move any more, there is no way for the thief to cross the first door while unseen. Similarly, there
is no strategy starting at position (o,m) to achieve goal D2∧¬seen. However, if we consider the "OR"
operator of the two goals D1∧¬seen and D2∧¬seen, the strategy of the thief consisting in waiting for
the guard to go to one of the two doors and then going to door 1 if the guard is at door 2 and vice versa is
a successful strategy. Later, we will use similar a similar example to show that a compositional definition
for a strategy semantics cannot be achieved.
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3 Preliminary notions

Formal languages Given an alphabet (i.e., a finite set of symbols) Σ, notation Σ∗ represents the set of
finite words (i.e., sequences of symbols) over the alphabet Σ, with typical element w = `1 . . . `n ∈ Σ∗; the
empty word is written ε . On the other hand, the set of infinite words is denoted by Σω . A subset L⊆ Σ∗ is
a language. Given a word w = `1 . . . `n ∈ Σ∗, its set of prefixes is the language Prefixes(w) = {`1...`i|i≤
n}∪{ε}, and we write w′ C w whenever w′ ∈ Prefixes(w). A language L is prefix-closed if w∈ L implies
w′ ∈ L for every w′ C w. The concatenation of a word w = `1 . . . `n with another word w′ = `′1 . . . `

′
m is the

word ww′ = `1 . . . `n`
′
1 . . . `

′
m. The concatenation of a word with a language is defined in the usual way:

for w ∈ Σ∗ and L⊆ Σ∗, we let wL := {ww′|w′ ∈ L}.

Game theory and game arena To formalize a strategy semantics for attack trees, we need standard
two-player, zero-sum, perfect information games that we recall here.

A game arena is a finite graph on which two players play a game of unbounded duration. We choose
to consider concurrent games, meaning that, at each round, each player makes an action. To define it
properly, we consider two players called Player 1 and Player 2 and a finite set of propositions Prop.

Definition 3.1. A two-player game arena is a tuple G = (Pos,Act,δ ,val) where:

• Pos = {v, ...} is a finite set of positions.

• Act = Act1×Act2 is a finite set of actions, as a product of the sets of actions of each player.

• δ : Pos×Act→ Pos is a transition function,

• val : Pos→P(Prop) is a valuation function.

In our introductory example of Section 2, if we consider the set of actions for the thief: {wait,
go-to-Door-1, go-to-Door-2} and the following set of actions for the defender: {stay-at-current-door,
leave-current-door, go-to-Door-1, go-to-Door-2}, then it is easy to see that the graph drawn in Figure 1b
forms a game arena.

For the rest of this paper, we fix a game arena G = (Pos,Act,δ ,val).
For a game position v ∈ Pos, we define Post(v) = {v′ ∈ Pos| δ (v,a) = v′ for some a ∈ Act} the set of

all positions reachable from v in one step. For convenience, we assume that each player j can play every
action a in Act j at each position of the game arena, so that for each position v∈ Pos, we have Post(v) 6= /0.
A play ρ is an infinite sequence of positions of the form v0v1v2.... ∈ Posω such that for each i ∈ N, there
is a ∈ Act such that δ (vi,a) = vi+1. For i ∈ N, we let ρi = vi be the ith position of play ρ . The set of
all plays is denoted by Plays(G ). Each non-empty prefix h of a play is called a history and the set of all
histories is denoted by Hist(G ). For a history h ∈ Hist(G ), we define last(h) as the last position of h.
For v ∈ Pos, we also use the notations Plays(G ,v) and Hist(G ,v) to denote the set of all plays starting
from v (i.e., ρ0 = v) and the set of all histories starting from v, respectively.

Winning plays for Player 1 are obtained from a distinguished subset Γ1 ⊆ Plays(G ). As we consider
zero-sum games, all plays in Γ1\Plays(G ) are winning for Player 2.

Classically, we introduce the notion of strategy, as a map prescribing how a player plays depending
on the current history: a strategy µ j for the Player j is a map µ j : Hist(G )→ Acti. The set of all strategies
for the Player j is denoted as Strat j.

A history h = v0v1...vm is consistent with a strategy µ j if for each 1 ≤ i ≤ m, there exists a =
(a1,a2) ∈ Act such that we have δ (vi,a) = vi+1 and µ j(v0v1...vi) = a j. We say that a play ρ is consistent
with a strategy µ j if all prefixes of ρ are histories consistent with µ j. The set of all plays consistent
with µ j is denoted by Outcomes(µ j). From a game position v we say that a strategy is winning if all
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R2

D1∧¬seen D2∧¬seen C K

Figure 3: Formal version of the attack tree in Figure 2.

outcomes starting at v are winning. In other words, for a strategy of say Player 1, a strategy µ is winning
if Outcomes(µ)∩Plays(G ,v)⊆ Γ1.

A classic kind of concurrent games are the reachability games. In such games, a player wants to
reach some positions while the other player tries to prevent it from happening. These games are clearly
zero-sum. More formally, we say that a game is a reachability game for Player 1 if there exists W1 ⊆ Pos
such that Γ1 = {ρ ∈ Plays(G )|ρi ∈W1 for some i ∈ N}.

In a game arena, we says that a position v satisfies the formula φ if its valuation val( ()) satisfies
the formula in classic propositional logic, denoted by v |= φ . Note that a Boolean formula φ over Prop
describes the reachability game (G ,W1) where W1 = {v ∈ Pos|v |= φ}.

4 Attack trees and their semantics

In this section, we start with the formal definition of attack tree used in this paper. Then we develop two
semantics for attack trees: the path semantics and the strategy semantics.

4.1 Syntax of attack trees

To formalize attack trees, we start by fixing a set of propositions Prop.

Definition 4.1. An attack tree τ over Prop is:

• either a leaf composed of a unique Boolean formula φ over Prop,

• or an expression OP(τ1, ...,τn) where OP ranges over OR, AND and SAND and τ1, ...,τn are attack
trees.

We define the size of an attack tree τ , noted |τ|, by the number of its nodes.

Example 4.2. We will formalise the example introduced in Section 2. To represent the situation, we use
the following set of propositions: Prop = {D1,D2,seen,C,K,R2}. We have that D1 holds when the thief
has crossed the first door, D2 holds when the thief has crossed the second door, seen holds when the
guard sees the thief, C holds when the camera is on, K holds when the thief has the key and finally R2
holds when the thief is in the second room.

We can now propose a formal definition for the attack tree in Figure 2: τ =
SAND(OR(D1∧¬seen,D2∧¬seen),AND(C, K),R2) to model the objective of the attacker. The graph
representation of τ is given by Figure 3.
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Let us notice that the attack trees used in [1] are in fact slightly different: the leaves of the attack trees
of that paper are of the form < φ1,φ2 > with φ1 and φ2 two Boolean formulas. Formula φ1 describes a
precondition for the objective to begin with and formula φ2 describes the postcondition for the objective
to be granted. However, in this paper, we never consider preconditions. So a leaf φ of our attack trees
can be seen as a leaf < true,φ > of attack trees introduced in [1]. Although the semantics defined in this
paper could also be defined for attack trees with preconditions, not considering them makes the setting
more pedagogical.

The first semantics for attack trees we introduce is a path semantics inspired by [1]. Informally, in
the path semantics, we consider all sequences of events that lead to a successful attack. The idea is to
determine which scenarios are favourable for the attacker. One could also say that an attack can occur if
the attacker is lucky.

The second semantics is our main contribution, and is named the strategy semantics for attack trees.
In this approach, the attacker should not rely on an opportunity offered by the environment but should
be able to find the right sequence of actions whatever the environment does. Otherwise said, an attack is
not a favourable scenario anymore but a winning strategy for attacker in some two-player game arena.

4.2 Path semantics for attack trees

To give a path semantics over our trees, we first need to fix a transition system to model which ac-
tions/sequences of actions can be executed by the attacker in the system. A transition system is composed
of a finite set of states together with a transition relation between pairs of states. We decided not to label
every transition with an action as we only consider perfect information here. We also provide a valuation
function to our transition system, informing which propositions of Prop holds in a state of the transition
system.

Definition 4.3. A transition system over Prop is a triplet S = (S,δ ,val) where:

• S is a finite set of states,

• δ ⊆ S×S is a relation of transitions,

• val : S→P(Prop) is a valuation function.

The size of S , noted |S |, is defined by its number of states.
We can see from Definition 4.3 that a transition system is a notion close to a game arena. Indeed,

it is easy to associate a transition system with a game arena G = (Pos,Act,δ ,val), by merging the two
players into a single one in the following way: SG = (Pos,{(v,v′) ∈ Pos×Pos| there exists a ∈ Act such
that δ (v,a) = v′},val). Later, we denote SG by G when it is clear from the context.

For the rest of this section, we fix a transition system S = (S,δ ,val) over Prop. A path in a transition
system is a finite non-empty sequence of states π = s0s1...sn such that, for each 0≤ i < n, (si,si+1) ∈ δ .
The size of a path is its number of states. We denote the set of all paths in S by ΠS .

In order to define the path semantics we need to introduce operators over paths.

Definition 4.4. Let π = s0s1...sn and π ′ = s′0s′1...s
′
m be two paths in S with n,m≥ 0. The synchronised

concatenation of π1 and π2 is defined only if sn = s′0 and is given by t π ·π ′ = s0s1...sns′1...s
′
m.

We lift this operations to sets of paths the following way: if Π1 and Π2 are two sets of paths, then
Π1 ·Π2 = {π1 ·π2|π1 ∈Π1 and π2 ∈Π2}.

The authors of [1] introduce the operator of parallel composition of paths. However, our definition
of attack trees grants us the possibility to use a simpler operator.



T. Brihaye, S. Pinchinat & A. Terefenko 169

Definition 4.5. Let Π1, Π2 be two sets of paths of S . The merge of Π1 and Π2 is the set of paths
Π14Π2 = {π1 ∈Π1| there exists π2 ∈Π2 such that π2 C π1}∪{π2 ∈Π2| there exists π1 ∈Π1 such that
π1 C π2}

Unlike the parallel composition of [1], thanks to the transitivity of the prefix relation, the merge
operator is associative.

We can now define our path semantics.

Definition 4.6. Let τ be a attack tree over Prop. The path semantics of τ over S is the set of paths
PathsS (τ) inductively defined as follow:

• PathsS (φ) = {s0s1...sn ∈ΠS |sn |= φ}
• PathsS (OR(τ1, ...,τn)) = PathsS (τ1)∪ ...∪PathsS (τn)

• PathsS (SAND(τ1, ...,τn)) = PathsS (τ1) · ... ·PathsS (τn)

• PathsS (AND(τ1, ...,τn)) = PathsS (τ1)4...4PathsS (τn)

It is easy to verify that the semantics of Definition 4.6 is equivalent to the one introduced in [1] if we
restrict to the attack trees whose leaves are of the form < true,φ >.

Remark that, in our framework, for φ1 and φ2 two formulas over Prop, the interpretation of SAND(φ1,φ2)
is that φ1 must hold at some point and φ2 must hold at some point afterwards. This requirement does not
prevent φ2 from holding before φ1.

We also want to point out that our semantics consider that the simultaneity of objectives is always
successful: for φ1 and φ2 two formulas over Prop, if φ1, φ2 ∈ val(s), then s ∈ PathsS (SAND(φ1,φ2))
and s ∈ PathsS (AND(φ1,φ2)).

Example 4.7. If we consider the game arena G given in Figure 1b, we have that (d1,d2) |= D1∧¬seen,
thus the path (o,m)(d1,d2) ∈ PathsG (D1∧¬seen). This gives us also (o,m)(d1,d2) ∈ PathsG (OR(D1∧
¬seen,D2∧¬seen)).

4.3 Strategy semantics for attack trees

We start this section by formally defining strategic trees as well as some handful operators over them.
We use a definition of a tree really close to the one made from prefix-closed languages (for example in
[3, p. 15]) except that we fix a letter to represent the root.

Definition 4.8. A strategic tree (written s-tree for short) over an alphabet Σ is a language T of the form
`L with ` ∈ Σ and L is a prefix-closed language over Σ.

For an s-tree T = `L, ` is called the root. For a word w ∈ T , if there exists no w′ ∈ T such that w C w′

then we call w a leaf. The set of all leaves of T is denoted by Leaves(T ). For two words w,w′ ∈ T such
that w C w′, if there exist no w′′ ∈ T such that w C w′′ C w′, then we says that w is the parent of w′ and w′

is a child of w. The set of all children of a word w in a s-tree T is denoted by ChildrenT (w). The depth
of an s-tree is the size of the longest word in it.

Example 4.9. Figure 4 shows an s-tree over the alphabet Pos, the set of positions of the game arena of
Figure 1b.

As in Example 4.9, for the particular case where alphabet Σ is the set of positions on some game
arena, we develop several notions on s-trees and show that strategies can be presented as s-trees.

For the rest of this section we fix a game arena G = (Pos,Act,δ ,val).
The next lemma asserts that all histories consistent with a strategy and starting from a given position

form an s-tree.
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(o;d1)

(o;d1)(o;m)

(o;d1)(o;m)(o;d1)

...(d2;d1) ...(d2;m)

(o;d1)(o;m)(o;d2)

...(d1;d2) ...(d1;m)

(o;d1)(o;d1)

(o;d1)(o;d1)(d2;d1) (o;d1)(o;d1)(d2;m)

Figure 4: strategic tree T µ

(o,d1)

Lemma 4.10. Let µ be a strategy for some player and v ∈ Pos be a game position. The language T µ
v =

Pre f ixes(Outcomes(µ))∩Hist(G ,v) is an s-tree over alphabet Pos, and is called the s-tree associated
with µ from position v.

The proof is straightforward from the definition of T µ
v .

By Lemma 4.10, each branch of T µ
v is the succession of all prefixes (in terms of words) of a play

consistent with µ . Reciprocally, each play consistent with µ and starting from position v is represented
by a branch of T µ

v . Therefore T µ
v fully describes the strategy µ starting from position v.

Example 4.11. Consider the game arena G given in Figure 1b and the strategy µ for the thief consisting
in waiting one unit of time, then, if the guard is at some door, going to the other door and if the guard is
currently in motion, waiting another unit of time before going to the door where the guard will not be. If
we call this strategy µ , the strategic tree T µ

(o,d1)
is given in Figure 4.

As we put the focus on attack trees, we take the convention that, in the game arena, Player 1 is
called Attacker and Player 2 is called Defender. In this setting, Attacker tries to achieve an attack that is
described by some attack tree τ , while Defender tries to prevent it from happening. In other words, the
winning plays for the Attacker are given as ΓA = PathsG (τ). Our strategy semantics consists of the set
of winning strategies for this game.

We start by motivating a construction only for a leaf attack tree. The strategy semantics for an attack
tree φ is the set of all strategies that are winning for the reachability game defined by φ . Remark that for
the case of reachability games, once a winning position is reached, the continuation of the play does not
matter. Therefore, for reachability games, the s-tree corresponding to a winning strategy can be cut as a
finite tree: this cut consists in removing all children of a node describing a history ending in a position
where φ holds. This way of cutting motivates the definition of prefix of s-trees as follows:

Definition 4.12. Let T be an s-tree over Σ∗. An s-tree T ′ is a prefix of T if root(T ′) = root(T ), and
T ′ ⊆ T , and for every w ∈ T ′ \Leaves(T ′), we have ChildrenT ′(w) = ChildrenT (w).

Example 4.13. For the s-tree T µ

(o,d1)
of Figure 4 and the two trees given in Figure 5, we have Ta is a prefix

of T µ

(o,d1)
, but Tb is not because ChildrenT µ

(o,d1)
(o,d1) = {(o,d1)(o,m),(o,d1)(o,d1)} 6= ChildrenTb(o,d1)

= {(o,d1)(o,d1)}.
With this notion of prefix, it is immediate to characterise attack trees that witness a strategy.

Definition 4.14. Consider a leaf attack tree φ , and write φ ⊆ Pos for the set of positions where φ holds.
Consider µ a strategy for Attacker in the reachability game (G ,φ) and T µ

v the associated s-tree from
position v. A finite s-tree T is a witness of µ from position v if T is a finite prefix of T µ

v , and Leaves(T )⊆
Pos∗φ .
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(o;d1)

(o;d1)(o;m) (o;d1)(o;d1)

(o;d1)(o;d1)(d2;d1) (o;d1)(o;d1)(d2;m)

(o;d1)

(o;d1)(o;d1)

(o;d1)(o;d1)(d2;d1) (o;d1)(o;d1)(d2;m)

Figure 5: two s-trees: Ta (left) and Tb (right)

Definition 4.14 can be generalised to an arbitrary reachability condition W1 ⊆ Pos as follows: T is a
witness of µ from position v if T is a finite prefix of T µ

v and h ∈ Leaves(T ) implies last(h) ∈W1.

Example 4.15. In the game arena of Figure 1b, if we consider the reachability condition W1 = {(o,m),
(d2,m),(d2,d1)}, then the attack tree Ta of Figure 5 is a witness for the s-tree T µ

(o,d1)
drawn in Figure 4.

Definition 4.14 leads us to the following intuitive lemma.

Lemma 4.16. Let µ be a strategy for Attacker and W1 be a winning condition. Then µ is a winning
strategy for (G ,W1) from position v ∈ Pos if, and only if, there exists a witness T of µ from v.

The proof relies on the König’s Lemma.
Thus, for a leaf φ , the strategy semantics is all witnesses that can be constructed from a winning

strategy over the reachability game defined by φ . Moreover, an s-tree is in the semantics of a leaf attack
tree if it is a prefix of some strategy and if all its leaves are in the path semantics of the attack tree. The
former condition guarantees that our s-tree has the shape of a strategy, while the latter guarantees that
the strategy is winning. As we will see below, those are the two conditions we use to define the strategy
semantics of arbitrary attack trees.

For the first condition, we say that an s-tree T is well-formed if there exists a strategy µ and a position
v such that T is a prefix of T µ

v . For the second condition, we use the following definition:

Definition 4.17. Let τ be an attack tree. A τ-s-tree is a finite s-tree T over Pos such that Leaves(T ) ⊆
PathsG (τ).

Since for a leaf attack tree φ , we have PathsG (φ) = Pos∗φ , a witness T (Definition 4.14) is a φ -s-tree.
We now have all the material to define the strategy semantics of an attack tree.

Definition 4.18. Let τ be an attack tree. The strategy semantics associated with τ , written StratG (τ) is
the set of all well-formed τ-s-trees.

In particular, StratG (φ) is the set of all witnesses in the reachability game (G ,φ).
We can see that the idea is far from the one of attack-defence trees in [8]. In attack-defence trees, the

countermeasure is a structure similar to an attack tree whose semantics describes paths that prevent an
attack from succeeding, and by no means a strategy of the attacker’s opponent in the arena.

Now that we defined our semantics, we might want to know if it can be obtained in a composi-
tional manner ? Namely, if the semantics of a compound tree can be defined in terms of the semantics
of its subtrees: More formally.. can we define StratG (OP(τ1, ...,τn)) on the basis of StratG (τ1), ...,
StratG (τn)? Sadly, the answer is no:

Example 4.19. Consider the game arena defined in Figure 1b. Obviously, our attacker here will be the
thief while the guard will do the defender role. We also consider a new proposition: Start which only
holds at position {o,m}. We have that the semantics of SAND(start,D1∧¬seen) is empty. Indeed,
the guard can choose to only keep door 1 and thus, the thief will not be able to attain D1 while remain-
ing unseen. Similarly, StratG (SAND(start,D2∧¬seen)) is empty. However, the strategy consisting on
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waiting one unit of time then going through the door not controlled by the guard is a winning strat-
egy, it is easy to construct a witness for that strategy that attains the objective of OR(SAND(start,D1∧
¬seen),SAND(start,D2∧¬seen)) and thus is in its strategy semantics.

The previous example showcases an empty semantics for τ1 and τ2 but a non-empty one for OR(
τ1,τ2). This is because, for φ1 and φ2 two propositional formulas over Prop, there are more strategies to
achieve φ1 ∨φ2 than strategies only achieving φ1 or only achieving φ2. We can for example consider a
strategy that, depending on the move of the opponent, chooses whether it prefers to attain φ1 or to attain
φ2.

Remark that, using the "merge" operator of [11] provides us a compositional semantics for attack
trees with SAND-only operators. However, we have already argues that the OR operator have some
problems just as the AND operator for more elaborate examples. Still, it is possible to tune the semantics
so that it becomes compositional for the AND operator, at the price of loosing clarity, but more regrettably
without solving the hopeless case of the OR operator.

5 Decision Problems over attack trees

In this section, we discuss two common decision problems over semantics of attack trees and determine
their complexities with respect to the path semantics and the strategy semantics. The first problem we
consider is the Non-Emptiness problem. This problem consists of, given an attack tree and a game arena,
deciding whether its semantics is not empty:

Definition 5.1. The Non-Emptiness problem is the following decision problem for a fixed semantics J·KG

of attack trees:
Input: G , a game arena, τ , an attack tree.
Output: Yes if JτKG 6= /0, No otherwise.

The Non-Emptiness problem for the path semantics is denoted by PNE while the Non-Emptiness
problem for the strategy semantics is denoted SNE. A positive instance of PNE tells us that Attacker has
a favourable scenario to attack. A positive instance of SNE tells us that Attacker has a strategy (it is
possible for him to attack successfully the system independently of the defender/environment comport-
ment).

We now turn to the Membership problem.

Definition 5.2. The Membership problem is the following decision problem for a fixed attack tree se-
mantics J·KG of of type X :
Input: G , a game arena, τ , an attack tree and x ∈ X .
Output: Yes if x ∈ JτKG , No otherwise.

The Membership problem for the path semantics is denoted by PM while the Membership problem
for the strategy semantics is denoted SM. PM consists of determining whether a path is an attack or not.
It can be really useful if we have an attack tree describing an attack goal over an information system
and a log file of that system. Determining if the system has been attacked is equivalent to determining
whether the path described by the log file is in the path semantics of the attack tree or not. The idea
behind SM is different: it is useful to determine whether a strategy is winning or not for a given attack
objective. We start to analyse the complexity of PM and take advantage of it for the proofs of the other
results. We then consider SNE. After that, PNE is easily determined as a particular case of SNE and we
finish by SM whose proof uses similar and simpler constructions than the one for SNE.
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If we use attack trees with preconditions, the problem PM is NP-hard; this comes from the fact that
the packed interval covering problem, which can be easily captured by the parallel composition (see
[13]), is NP-complete (see [14]). However, PM becomes simpler if we discard preconditions:

Theorem 5.3. PM is in P.

For a polynomial algorithm, we use the fact that a word is in the semantics of an attack tree, then
adding an arbitrary prefix to it keeps it in the semantics. As a consequence, we do not need to recompute
which sub-goals of the attack tree are satisfied whenever we add a position in front of a path. Thus, the
shape of the problem is well-suited for a backward induction over the input path. Moreover, determining
if a given input path satisfies an attack tree knowing whether it satisfies the sub-trees can be done in
linear time over the size of the attack tree.

We now turn to the complexity of SNE.

Theorem 5.4. SNE is PSPACE-complete.

For the membership, we construct an alternating algorithm (see [2]) solving the problem that can be
executed in polynomial time. This algorithm consists of synthesizing a history over the game arena and
then verifying that this history is an attack (by Theorem 5.3, this verification is doable in polynomial
time). To construct this history, we finitely iterate first to make a non-deterministic existential guess for
the action of Attacker and then a non-deterministic universal guess for the action of Defender. We then
show that the resulting history is in the path semantics of the input attack tree τ if, and only if, the strategy
semantics of τ is not empty. We guarantee a polynomial time execution, namely that the resulting history
need not be too long with the following lemma.

Lemma 5.5. Let G = (Pos,Act,δ ,val) be a game arena and τ be an attack tree with n leaves. If
StratG (τ) 6= /0, then there exists T ∈ StratG (τ) of depth d ≤ |Pos|×n.

The basic idea behind to prove Lemma 5.5 is that, memoryless strategies suffice in reachability games
(see [4]).

We design Algorithm 1 to solve SNE whose idea is explained above and show that it belongs to
PSPACE.

Algorithm 1 SNE(G ,τ)
Input: G a game arena and τ an attack tree with n leaves
Output: True if StratG (τ) 6= /0, False otherwise.

1: h← empty list
2: v← [∃]guess position in Pos
3: h.append(v)
4: while size(h)< |Pos|×n do
5: [∃]guess break or not
6: a1← [∃]guess action in ActA

7: a2← [∀]guess action in ActD

8: h.append(δ (last(h),(a1,a2)))
9: end while

10: return h ∈ PathsG (τ)

Lemma 5.6. Algorithm 1 is an alternating polynomial-time algorithm and solves SNE.
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Proof. We start by showing the complexity of the algorithm, then we show its correctness.
From the loop at Line 4, it is executed polynomially many times in the size of the input attack tree

and of the game arena. We also know (Theorem 5.3) that the condition h ∈ PathsG (τ) at Line 10 can be
evaluated in polynomial, therefore, Algorithm 1 is polynomial-time alternating.

Assume Algorithm 1 returns True, then, for each choice made by universal guess, there exists a
choice made by existential guess guaranteeing that the obtained history is in PathsG (τ). As a conse-
quence, the choices made by the existential guesses reflect a strategy in the game arena that satisfies τ

so, StratG (τ) 6= /0. Conversely, if StratG (τ) 6= /0, then there exists (by Lemma 5.5) an s-tree T of depth
≤ |Pos|× n. Thus the existential guesses can simply follow the strategy given by T and then choose to
go out from the main loop by the "break" command at Line 5 of Algorithm 1 whenever the sequence of
choices (existential and universal) in the execution is reflected by a full branch of the s-tree T .

For the PSPACE-hardness of SNE, our construction is inspired by the one in [1]: the authors reduce (in
polynomial time) the SAT problem to the PNE problem with attack trees (using preconditions). In fact,
even if in that paper, authors use attack trees with preconditions, we can adapt it without preconditions.
We can even cast the approach to QBF that we first recall:

Definition 5.7. The quantified Boolean formula (QBF) is the following decision problem:
Input: a formula of the form Q1x1, ...,Qnxnψ(x1, ...,xn) with Qi ∈ {∃,∀} and ψ a Boolean formula in
conjunctive normal form over propositions x1, ...,xn.
Output: Yes if the input formula is true, No otherwise.

Lemma 5.8. The QBF problem can be reduced to SNE in polynomial time.

It is easy to understand the reduction principle on an example.

Example 5.9. Consider the formula ψ = ∃x1∀x2∃x3,x1 ∧ (x2 ∨ x3)∧ (¬x2 ∨ x3). Let C1 = x1, C2 =
(x2∨ x3) and C3 = (¬x2∨ x3) be the three clauses in ψ . The game arena G associated with this formula
is drawn in Figure 6: for each position vi (resp. ¬vi), the proposition pi holds if vi ∈Ci (resp. ¬vi ∈Ci).
Remark that this game arena is a special case of game arena called turn-based game arena: only one
player makes an action in each position, we say that a position belongs to the player who can play on
it. We decide classically which position belongs to each player based on quantifiers of ψ (see the proof
of Lemma 5.8 for further explanations). We represent Attacker positions with a circle and Defender
positions with a square (position v3 and position ¬pos3 have only one successor position, therefore, it
does not matter which player makes the move; by convention, we say they belong to the attacker). Then,
ψ holds if, and only if, StratG (SAND(start,AND(p1, p2, p3))) 6= /0.

We now start the proof of lemma 5.8:

Proof. Let Q1x1, ...,Qnxnψ(x1, ...,xn) with Qi ∈ {∃,∀} and with ψ a Boolean formula over variables
x1, ...,xn be an instance of the QBF problem. Since ψ is in conjunctive normal form, we can write it
as ψ = ψ1 ∧ ...∧ψk with ψi denoting disjunctive clauses containing literals of the form x j or ¬x j with
xi ∈ {x1, ...,xn}.

We consider the set of propositions Prop = {Start, p1, ..., pk} with the following game arena:
G = (Pos,Act,δ ,val), where Pos = {Start}∪{vi|1 ≤ i ≤ n}∪{¬vi|1 ≤ i ≤ n}, ActA = ActD = {True,
False}. If Q0 = ∃, then position Start is an Attacker position, otherwise, it’s a defender position. More-
over, playing action True at position start leads to position v1 while playing False leads to position
¬pos1. Similarly, for each 2 ≤ i ≤ n, if Qi = ∃ then vi−1 and ¬vi−1 are Attacker positions, otherwise,
they are Defender positions. Furthermore, playing True at position vi−1 or ¬vi−1 leads to position vi
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Start

v1

¬v1

v2

¬v2

v3

¬v3

{start}

{p1}

/0

{p2}

{p3}

{p2, p3}

/0

start

p1 p2 p3

Figure 6: Game arena and attack tree associated to the formula given in Example 5.9

while playing False leads to ¬vi. Positions vn and ¬vn are Attacker positions, moreover, the transitions
over those two positions are self loops.

We define val(Start) = {Start} and for each i ≤ i ≤ n, val(vi) = {p j|xi ∈ ψ j} and val(¬vi) =
{p j|¬xi ∈ ψ j}. From this definition, if we consider that the attacker tries to satisfy the input QBF
formula and the defender tries to prevent it, we have a classic game. We then only need to show that
the objective of the attacker can be well described using an attack tree, which is the case by consid-
ering τ = SAND(Start,AND(p1, ..., pn)). Indeed, if there exists a strategy to satisfy the input QBF
formula, then this strategy satisfies ψ1, ...,ψk and thus, can be executed in the constructed game arena to
achieve AND(p1, ..., pn) while starting at position Start, therefore, that strategy is in τ . Conversely, if
StratG (τ) 6= /0, then one of such strategies assures that we satisfy the input QBF instance.

By Lemma 5.8 , SNE is PSPACE-hard, which achieves the proof of Theorem 5.4.
We now turn to PNE.

Theorem 5.10. PNE is NP-complete.

For the NP-membership, since our problem is a particular case of the problem discussed in [1], it
is at least as easy. For the NP-hardness we reduce SAT: if we apply the same construction as in the
proof of Lemma 5.8, since we cannot leave any choice for the defender in a transition system and the
path semantics is defined over a transition system and not a game arena, we can reduce formulas of
QBF only using ∃ operators. In other words, we can reduce SAT. In fact, by doing so, we are doing the
exact construction of the proof in [1]. Moreover the attack tree with preconditions AND(< start,φ1 >
,...,< start,φn >) used in that paper is completely equivalent to SAND(start,AND(φ1, ...,φn)) in our
formalism. Thus the proof in [1] can be well adapted for our problem.

Lastly, we study SM.

Theorem 5.11. SM is CONP-complete.

For the membership, we can use the same idea as for the membership of the SNE except that, now,
we already know the strategy of the attacker, we thus do not need to use any existential guess for the
action of Attacker. In other words, it is equivalent to simply considering Defender choosing a branch of
the attack tree and then verifying if it forms an attack or not. Therefore, we use a variant of Algorithm 1
without existential choices, this gives us a CONP algorithm.

For the hardness, we still use the idea of the construction behind the SNE, but now, we consider that
only the actions of Defender matter in the progress of the game arena. This way, we can reduce the
UNSAT problem, known to be CONP-complete, to SM. The UNSAT problem is nothing less than the
sub-problem of the QBF problem where an instance of the problem only uses "∀" quantifiers.
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This concludes the discussion over decision problems; our results are summarised in Table 1.

6 Future work

In this paper, we proposed a strategy semantics for attack trees, useful to tackle some practical questions
(SNE and SM) not expressible with standard semantics provided by the literature. The price to pay is to
renounce a compositional semantics of attack trees. One way to regain it might be to consider a strategy
semantics based on a tree automata: we associate with each attack tree a tree automaton recognising its
strategy semantics. This is currently work. Moreover, being able to consider automata recognising the
strategy semantics allows us to model attack scenarios with constraints, for example, considering that the
attacker cannot perform a given action more than a certain amount of time.

Moreover, we are currently exploring the possibility to expand the path and the strategy semantics to
attack-defense trees. The main idea is to consider a counter operator in attack trees. This generalisation
could lead to a better understanding of the differences between the strategy semantics and the attack-
defence tree formalism.
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