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ABSTRACT: Structurally precision graphene nanoribbons
(GNRs) are promising candidates for next-generation nano-
electronics due to their intriguing and tunable electronic structures.
GNRs with hybrid edge structures often confer them unique
geometries associated with exotic physicochemical properties.
Herein, a novel type of cove-edged GNRs with periodic short
zigzag-edge segments is demonstrated. The bandgap of this GNR
family can be tuned using an interplay between the length of the
zigzag segments and the distance of two adjacent cove units along
the opposite edges, which can be converted from semiconducting
to nearly metallic. A family member with periodic cove-zigzag
edges based on N = 6 zigzag-edged GNR, namely 6-CZGNR-(2,1),
is successfully synthesized in solution through the Scholl reaction
of a unique snakelike polymer precursor (10) that is achieved by
the Yamamoto coupling of a structurally flexible S-shaped phenanthrene-based monomer (1). The efficiency of cyclo-
dehydrogenation of polymer 10 toward 6-CZGNR-(2,1) is validated by FT-IR, Raman, and UV−vis spectroscopies, as well as by the
study of two representative model compounds (2 and 3). Remarkably, the resultant 6-CZGNR-(2,1) exhibits an extended and broad
absorption in the near-infrared region with a record narrow optical bandgap of 0.99 eV among the reported solution-synthesized
GNRs. Moreover, 6-CZGNR-(2,1) exhibits a high macroscopic carrier mobility of ∼20 cm2 V−1 s−1 determined by terahertz
spectroscopy, primarily due to the intrinsically small effective mass (m*e = m*h = 0.17 m0), rendering this GNR a promising
candidate for nanoelectronics.

■ INTRODUCTION

Structurally defined graphene nanoribbons (GNRs) have
attracted much attention in the past decade due to their
intriguing electronic properties and potential applications in
nanoelectronic devices.1−4 Two bottom-up synthetic strategies,
including on-surface and in-solution methods, have been
developed to achieve GNRs with precisely defined widths and
edge structures (i.e., armchair, zigzag, or cove edge).5−8

Compared with the surface-assisted method, solution-based
synthesis displays significant advantages in terms of scalability,
processability, and edge functionality.9−11 Among various
GNRs, cove-edged GNRs (CGNRs) bearing [4]helicene motifs
represent an important class, as their nonplanar geometry could
effectively improve the solubility and determine the unique
solid-state packing structures that are not shared by the planar
GNRs.12−15 However, the synthesis of fully CGNRs remains
highly challenging due to the lack of efficient synthetic strategies
and precursor design. In 2015, we demonstrated a fully cove-
edged GNR consisting of bischrysene units, which however

produced only oligomers in solution and short ribbons on the
surface due to the steric hindrance at the bay positions of
chrysene that impedes the synthesis of high molecular weight
polymers.12 In addition, the synthesis of CGNRs from pyrene
units also failed due to the incomplete Scholl reaction from the
pyrene-based polymer precursor.16 Therefore, the development
of CGNRs with new edge topology is highly desirable both for
introducing novel chemical structures and for band structure
engineering in designing electronic devices. Recent theoretical
and experimental studies reveal that the combination of different
edge structures in GNRs can provide unique geometries and
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exotic electronic structures.17−22 As a representative example,
the presence of short zigzag-edge segments in armchair-edged
GNRs (AGNRs) demonstrates the possibility of realizing
magnetic ordering and topological electronic states.17 Never-
theless, the synthesis of CGNRs with periodic zigzag-edge
segments has remained elusive.
Herein, we present a new type of curved GNRs with a

combination of periodic cove-zigzag edges, which can be viewed
as a periodic removal of one carbon atom along the opposite
edges in the corresponding fully zigzag-edged GNRs (ZGNRs).
By varying the length of zigzag edges and the relative position of
the cove units, a series of periodic cove-edged GNRs can be
constructed, whose electronic structures can be fine-tuned from
semiconducting to nearly metallic according to theoretical
calculations. On the basis of this design principle, we
demonstrate the first example of periodic cove-zigzag edged
GNRs, namely 6-CZGNR-(2,1). The novelty of its synthesis lies
in the design strategy of the snakelike polymer precursor (10)
from a structurally flexible S-shaped monomer (1). The
resulting 6-CZGNR-(2,1) adopts a curved conformation with
alternate up−down edge topologies and possesses an average
length of ∼20 nm which is much longer than the previously
reported CGNRs.12,15,16 The chemical structure of 6-CZGNR-
(2,1) is confirmed by solid-state NMR, FT-IR and Raman
analyses, as well as supported by the successful synthesis of two
model compounds (2 and 3). Remarkably, the UV−vis
spectrum of 6-CZGNR-(2,1) exhibits an extended absorption

into the near-infrared (NIR) region with a record-low optical
bandgap of 0.99 eV among the reported solution-phase
synthesized GNRs.20,23−25 Contact-free terahertz (THz) spec-
troscopy reveals high macroscopic carrier mobility of 20 cm2

V−1s−1 for 6-CZGNR-(2,1). This value is among the highest for
GNR films quantified by THz spectroscopies,20 suggesting
promising applications for optoelectronics and nanoelec-
tronics.26

■ RESULTS AND DISCUSSION

GNR Structure and Calculation. As illustrated in Figure 1,
the regular arrangement of carbon vacancies (or cove edges)
along the N-ZGNR edges provides CGNRs bearing periodic
cove-zigzag segments, which are therefore denoted as N-
CZGNR-(n,m), where N specifies the width of the original
ZGNR backbone, n is the number of zigzag edges between the
two coves, and m is the relative position of the cove edges as
indicated by the dashed lines in Figure 1a (more details for the
nomenclature are presented in Supporting Information). For a
given N, a variety of CGNR structures can be generated by
varying n andm. We take the 6-CZGNR-(n,m) as a prototype to
explore the geometries and variations in the electronic structure
of the CGNRs as a function of n and m by density functional
theory (DFT) calculations, see SI for details. When n is 2 or 3,
five types of CGNRs can be obtained by changing the parameter
m (Figure 1b). Because of the presence of the repeating
[4]helicene at the edges, such CGNRs exhibit a nonplanar

Figure 1. (a) Schematic illustration of new types of CGNRs with periodic zigzag edge segments (N-CZGNR-(n,m)). (b) The chemical structures of
five examples of CGNRs based on a 6-ZGNR backbone, including the 6-CZGNR-(2,1) synthesized in this work. (c) A comparison between the band
structures of the 6-CZGNRs-(n,m) in panel b. (d) The calculated valence band (VB) energy, conduction band (CB) energy, bandgap value, and the
effective masses for holes (m*h) and electrons (m*e) of the 6-CZGNRs-(n,m) in panel b.
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geometry with tilted upward and downward edge topologies.
Interestingly, the electronic structure of 6-CZGNR-(n,m) can
be tuned from semiconducting to almost semimetallic (with a
tiny bandgap, e.g., down to ∼0.03 eV for 6-CZGNR-(3,2)) by
varying n andm (Figure 1c,d). First, by changing the n from 2 to
3, that is, from (2,0) to (3,0), the bands are energetically shifted
almost parallel to each other, resulting in a dramatic reduction of
the bandgap from 1.74 to 0.63 eV. Second, a large decrease in the
bandgap is also observed. When n is kept fixed andm is changed
from 0 to 3, the bandgap is found to go down from 0.63 eV for 6-
CZGNR-(3,0) to 0.46 eV for 6-CZGNR-(3,1) and 0.03 eV for
6-CZGNR-(3,2), respectively.
The bandgap tuning is accompanied by effective modulation

of the effective mass of charge carriers with values of m*h = 0.19
m0 for holes and m*e = 0.17 m0 for electrons for 6-CZGNR-
(3,1) and a much smaller value of 0.02m0 for both electrons and
holes for 6-CZGNR-(3,2). For 6-CZGNR-(2,m), the bandgap
shows a significant decrease from 1.74 to 0.71 eV with a change
of m from 0 to 1, and the effective mass of 6-CZGNR-(2,1) is
calculated to be small with m*e = m*h = 0.17 m0. Note that a
small effective mass could be beneficial for achieving high charge
carrier mobility (μ) by considering μ = eτ/m* (in a Drude-like

model, τ is the scattering time, e is the elementary charge).20,21

Instead of the 6-CZGNR-(3,2)with the lowest bandgap and the
smallest effective masses in this GNR family, we ultimately chose
the synthesis of 6-CZGNR-(2,1) as the first example of cove-
edged GNR with periodic zigzag edges considering its synthetic
feasibility as well as the stability issue of the semimetallic 6-
CZGNR-(3,2) in solution. Moreover, 6-CZGNR-(2,1) also
possesses the record low bandgap and low effective masses
among the reported solution-synthesized GNRs.

Synthesis and Characterization of Model Compounds
(2 and 3). The synthesis of 6-CZGNR-(2,1) is based on the S-
shaped key monomer 1,4-bis(6-chloro-10-dodecylphenanthren-
4-yl)benzene (1), which was obtained from the commercially
available 2-bromo-4-chloro-1-iodobenzene over five steps as
depicted in Scheme 1. First, 2-bromo-4-chloro-1-(tetradec-1-yn-
1-yl)benzene (4) was synthesized from 2-bromo-4-chloro-1-
iodobenzene via Sonogashira coupling with 1-tetradecyne in
88% yield. Then, compound 4 was transformed into (5-chloro-
2-(tetradec-1-yn-1-yl)phenyl)boronic acid (5) by the lithiation
reaction with n-BuLi at −78 °C in 92% yield. Meanwhile,
compound 2,2″-dibromo-1,1′:4′,1″-terphenyl (6) was achieved
through the Suzuki coupling of 1,4-diiodobenzene with (2-

Scheme 1. Synthetic Routes for the Key Monomer 1, Precursor Polymer 10, Model Compounds (2 and 3), and 6-CZGNR-(2,1)
with a DFT Optimized Geometrydodecyl chains are omitted for claritya

a(a) 1-Tetradecyne, Pd(PPh3)2Cl2, CuI, THF, Et3N, rt, 24 h, 88%; (b) n-BuLi, triisopropyl borate, THF, −78 °C, 1 h, 92%; (c) Pd(PPh3)4, K2CO3,
toluene/ethanol/H2O, 80 °C, 24 h, 60%; (d) PtCl2, toluene, 120 °C, 48 h, 38%; (e) Pd(PPh3)4, (2-bromophenyl)boronic acid, K2CO3, toluene/
ethanol/H2O, 70 °C, 12 h, 81%; (f) Pd(OAc)2, K3PO4, toluene, 80 °C, 24 h, 85%; (g) FeCl3, CH3NO2, DCM, rt, 1.5 h, 91%; (h) Pd(OAc)2,
K3PO4, toluene, 80 °C, 24 h, 87%; (i) FeCl3, CH3NO2, DCM, rt, 2 h, 88%; (j) Ni(COD)2, COD, 2,2′-bipyridine, toluene/DMF, 80 °C, 3 days,
86%; (k) FeCl3, CH3NO2, DCM, rt, 3 days, 91%. Dodecyl chains are omitted for clarity.
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bromophenyl)boronic acid in 81% yield. Subsequently, a Suzuki
coupling between compounds 4 and 6 gave 5,5⁗-dichloro-2,2⁗-
di(tetradec-1-yn-1-yl)-1,1′:2′,1″:4″,1‴:2‴,1⁗-quinquephenyl
(7) with a yield of 60%. After that, the key building block 1 was
obtained from 7 in 38% yield using alkyne benzannulation with
platinum(II) chloride (PtCl2) as a catalyst. In order to examine
the suitability and efficiency of the cyclodehydrogenation from
phenanthrene-based precursor, two model compounds as the
“cutouts” from the 6-CZGNR-(2,1), namely 2,11-di-tert-butyl-
6,15-didodecyldibenzo[hi,uv]phenanthro[3,4,5,6-bcdef ]-
ovalene (2) and 1,4-bis(9,9′-didodecyl-[3,3′-biphenanthren]-5-
yl)benzene (3), were prepared before the ribbon synthesis.
Specifically, the corresponding phenanthrene-based oligomer
precursors 1,4-bis(6-(3-(tert-butyl)phenyl)-10-dodecylphe-
nanthren-4-yl)benzene (8) and 1,4-bis(9,9′-didodecyl-[3,3′-
biphenanthren]-5-yl)benzene (9) were synthesized through
monomer 1 by Suzuki coupling with (3-(tert-butyl)phenyl)-
boronic acid and 2-(9-dodecylphenanthren-3-yl)-4,4,5,5-tetra-
methyl-1,3,2-dioxaborolane, respectively. Remarkably, the
Scholl reaction of 8 and 9 gave the model compounds 2 and 3
an excellent isolated yield (2, 91%; 3, 88%) by using iron(III)
chloride (FeCl3, 3.5 equiv/H) as the Lewis acid and oxidant.27

The successful formation of 2 and 3 was first confirmed by
MALDI-TOF MS analysis, in which the observed isotopic
distribution patterns matched well with the calculated spectra
(Figure 2a). Because of the poor solubility of 2 and 3 in common
organic solvents, we measured their solid-state NMR (Figures
S16−17), in which the correct ratio between aliphatic and
aromatic protons for both compounds were determined.
To confirm the chemical structure of model compound 3, we

conducted micro FT-IR and FT-Raman measurements and
compared obtained results to DFT-calculated spectra (Figure
2b). In the IR spectrum, the analysis is restricted to the C−H
out-of-plane bending region (650−1000 cm−1), where signifi-
cant fingerprints of the topology of polycyclic aromatic
hydrocarbons and graphene molecules are found.28 Clearly,
the experimental IR peaks are in full accordance with the
calculated IR transitions (further details are reported in the SI).
The FT-Raman spectrum of 3 agrees well with the DFT results,
revealing the characteristic nuclear displacement patterns of the
D and G modes, as expected for graphene molecules (the
representation of such nuclear displacements is reported in the
SI). In particular, the weak feature observed at 1301 cm−1 is a
convolution of several contributions, assigned to collective D-
like ring-breathing modes coupled with in-plane CH bending
modes in the graphenic unit and CH2 twisting modes in the side
chains. The strong line observed at 1338 cm−1 also displays a D-
like nuclear displacement pattern featuring ring-breathing
displacements localized at the center of the graphene molecule.
The broad and structured band observed at 1604 cm−1 is
assigned to several computed G modes; each of them shows the
characteristic ring stretching pattern with different localization
and displacement direction. Thus, the observed good corre-
spondence between the vibrational spectra simulated by DFT
and the experiments supports the successful synthesis of
compound 3.
Structural studies of model compounds 2 and 3 were further

carried out at the molecular level using scanning tunneling
microscopy (STM) (Figure 2c,d). The self-assembly of 2 and 3
at the 1,2,4-trichlorobenzene (TCB)/highly oriented pyrolytic
graphite (HOPG) interface revealed that the adsorbed long alkyl
chains align along the main symmetry axes and thus define the
molecular orientation. The size and shape of these features agree

well with the simulation results for 2 and 3, providing clear
confirmation of their chemical identities. We also compared
their assemblies to gain insight into intermolecular interactions
that may be relevant to the nonplanar geometry. Compound 2
assembles into a chiral lamellar network in which the bulky tert-
butyl groups space out the polyaromatic cores within the rows at
1.8 nm. As a result, each dodecyl chain has close van der Waals
contact only with one other alkyl chain from the neighboring
rows. Compound 3 also forms a chiral 2D network but with a
much more complex structure. In a tentative molecular model,
half of the alkyl chains (colored in violet) are desorbed into
solution. At the same time, the remaining dodecyl groups at the
zigzag sites dimerize with zigzag chains from neighboring rows
similarly to 2. The dodecyls at cove sites form a second alkyl
chain layer on top of the dimerized zigzag chains (see inset in the
top right corner of Figure 2d).

Figure 2. (a) High-resolution MALDI-TOF mass spectra of 2 and 3.
(b) Experimental and simulated FT-IR and Raman spectra of 3. (c)
STM and tentative molecular models of two enantiomeric domains
formed by 2 at the TCB/HOPG interface. Unit cell: a = 1.8± 0.1 nm, b
= 2.65 ± 0.05 nm, angle = 90.2° ± 0.5°. Imaging parameters: Iset = 60
pA, Ubias = +0.2 V. (d) STM and a tentative molecular model of 3 self-
assembled at TCB/HOPG interface. White arrows indicate the
directions of the main symmetric axes of graphite. Unit cell: a = 1.6
± 0.1 nm, b = 7.5 ± 0.1 nm, angle = 89.6° ± 0.7°. Imaging parameters:
Iset = 850 pA, Ubias = +0.3 V. In the overlaid molecular model, the
desorbed alkyl chains are colored in violet (only the base CH2 groups
are shown). The inset in the top left corner shows a force field (MM+)
optimized geometry of alkyl chains packed into a double-decker
lamellar structure. For clarity, enlarged panels c and d are available in SI.
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Synthesis and Characterization of 6-CZGNR-(2,1).
Toward the synthesis of 6-CZGNR-(2,1), the polymerization
of 1was first performed by the AA-type Yamamoto reaction with
Ni catalyst in toluene and dimethylformamide (DMF) for 3
days. The MALDI-TOF mass spectrum of the resultant snake-
like poly(1,4-di(phenanthren-4-yl))benzene precursor 10 in-
dicates that the m/z intervals are well consistent with the exact
mass of the repeating unit (765 g mol−1) (Figure 3a). Then, the
large-molecular weight fraction of the corresponding polymer
(10) was fractionated with the help of recycling preparative gel
permeation chromatography (GPC). The analytical GPC
analysis against linear polystyrene standard revealed that the
number-average molecular weight (Mn) of the polymer 10 is
around 24 800 g mol−1 with a narrow dispersity of ∼1.2 (Figure
S2). Finally, the phenanthrene-based polymer precursor 10 was
“graphitized” into 6-CZGNR-(2,1) through the Scholl reaction
in dichloromethane solution with iron(III) chloride (FeCl3, 15
equiv/H) as the Lewis acid and oxidant. On the basis of theMn
of precursor 10, the average length of 6-CZGNR-(2,1) is
estimated to be ∼20 nm, which is superior to other reported
cove-edged GNRs.12,15,16 Interestingly, DFT simulation mani-
fests that 6-CZGNR-(2,1) with periodic cove-zigzag edges
adopt a nonplanar geometry with alternate up−down
conformation along the edges (Scheme 1).
The successful formation of 6-CZGNR-(2,1) was demon-

strated by FT-IR, Raman and solid-state NMR investigations.
FTIR analysis of polymer 10 and 6-CZGNR-(2,1) revealed the
disappearance of the signal triad from aromatic C−H stretching
vibrations at 3026, 3051, and 3075 cm−1 after the “graphitiza-
tion” (Figure 3b).29 In addition, out-of-plane (opla) C−H
deformation bands at 731, 773, 811, and 845 cm−1 typical for
mono- and disubstituted benzene rings were attenuated. This is

accompanied by appearance of a broad peak in a range of
800∼850 cm−1, which can be assigned to the opla band typical
for aromatic C−H at the cove position and zigzag edge. In the
Raman spectrum of 6-CZGNR-(2,1), an intense and sharp G-
band peak and a broader D-band peak were observed at 1600
and 1324 cm−1, respectively, which are typical for the GNRs
with fine “graphitized” structure (Figure 3c).27,30,31 The rather
broad D band is justified by the conformation dependence of the
simulated Raman spectra (Figure S26). Meanwhile, well-
resolved double-resonance signals are also observed at 2648,
2913, and 3197 cm−1, which can be respectively assigned to 2D,
D + G and 2G peaks. The frequency of the radial breathing-like
mode (νRBLM) is nearly independent of the edge structure and
can be estimated roughly by νRBLM = 3222/w cm−1, in which
w(Å) is the width of the GNR.30 The RBLMof 6-CZGNR-(2,1)
with a width of w = 11.2 Å can thus be estimated to be 288 cm−1,
which is in good agreement with the experimental result of 283
cm−1 (see the inset picture in Figure 3c). Moreover, the solid-
state 1H and 13C{1H}MAS NMR experiments (Figures S18 and
S19) confirm the successful cyclodehydrogenation of polymer
10 toward 6-CZGNR-(2,1). The presence of delocalized
electrons in the core of GNR increases the 1H line widths
significantly due to paramagnetic relaxation effects. A less π-
stacking of the GNR core can be further identified by the 2D
1H−1H DQ-SQ NMR correlation spectra, showing a reduced
spread of the 1H−1H autocorrelation signals between the
aromatic protons (only up to ∼12 ppm), compared to those
planar GNRs with stronger π−π interactions (up to ∼15
ppm).27,32,33

Optical Properties of 2, 3, and 6-CZGNR-(2,1). Thanks
to the curved geometry and the dodecyl chains installed on the

Figure 3. (a) MALDI-TOF mass spectrum of polymer precursor 10 in the linear mode. (b) FTIR spectra of 10 and 6-CZGNR-(2,1). (c) Raman
spectrum of the 6-CZGNR-(2,1)measured at 532 nm. (d) UV−vis absorption spectra of the 6-CZGNR-(2,1) in NMP solution (0.1 mg mL−1), and
model compounds 2 and 3 in CH2Cl2 solution (1 × 10−5 M). The simulated spectra of 2 and 3 are also displayed.
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edges, the 6-CZGNR-(2,1) could be easily dispersed upon
sonication in common organic solvents, such as N-methyl-2-
pyrrolidone (NMP) and tetrahydrofuran. Interestingly, the
same nonplanarity seems to be responsible for the weak affinity
of GNRs to form ordered structures on HOPG and Au(111): in
all of our experiments, only empty surface, unstructured
aggregates, or previously reported contaminants34,35 were
observed (Figures S12−S15). As shown in Figure 3d, the
UV−vis absorption spectrum of 6-CZGNR-(2,1) was recorded
in NMP (0.1 mg/mL) and compared with that of model
compounds 2 and 3 in CH2Cl2 solution (1 × 10−5 M). For
model compounds 2 and 3, the absorption peaks with the
longest wavelength occur at 475 and 544 nm, respectively, which
are in excellent agreement with the result of time-dependent
DFT calculations (Figure S22 and Table S8). Compared to 2
and 3, the absorption of 6-CZGNR-(2,1) in NMP solution
displays a considerable red-shift into the near-infrared (NIR)
region with a large and broad absorption peak at ∼835 nm. The
optical bandgap of 6-CZGNR-(2,1) is estimated to be 0.99 eV
from the onset of the absorption (1250 nm), which is a record-
low value compared with those of reported solution-phase
processable GNRs.20,23−25 The difference between the exper-
imental and computed absorption spectra for 6-CZGNR-(2,1)
(computed for the tetramer) is small with the longest calculated
wavelength lying at 1349 nm, in very good agreement with the
measured value. The first excited state is associated with a strong
HOMO to LUMO transition (Table S9) for all the studied
structures.
THz Study of 6-CZGNR-(2,1). To study the charge

transport properties of 6-CZGNR-(2,1), we employed con-
tact-free, optical-pump THz-probe (OPTP) spectroscopy.36,37

In OPTP measurements, charge carriers are generated via
photoexciting a drop-casted film of 6-CZGNR-(2,1) by a 3.10
eV laser pulse. The complex conductivity of the photogenerated
charge carriers is subsequently probed by a single-cycle THz
pulse. As shown in Figure 4a, we observed a rapid, subpico-

second rise in the real conductivity, reflecting the photo-
generation of free charges in the 6-CZGNR-(2,1). The
subsequent rapid decay can be attributed to carrier trapping,
and/or the formation of bound electron−hole pairs, that is,
exciton formation. Both the real and imaginary conductivity
dynamics are fully consistent with the previous results for other
GNRs.20,21,39 Furthermore, the frequency-resolved THz con-
ductivity at ∼0.8 ps after photoexcitation is shown in Figure 4b.
The Drude-Smith (DS) model can well describe the
conductivity response (see details in SI), where the transport

of free charges is assumed to experience backscattering processes
due to, for example, structural deformation and conjugational
defects.38,39 In the DS model, a parameter c represents the
backscattering probability for carrier transport, and the value of c
ranges from 0 (free charge) to −1 (preferential backscattering).
From the DS fitting, we obtained the DS charge scattering time τ
to be 29± 2 fs, as well as the backscattering rate c to be−0.97±
0.01. This yields the macroscopic charge mobility (μmacro) for
the thin film to be ∼18 cm2 V−1 s−1 by taking into account the
backscattering contribution: μmacro = μ(1 + c). The μmacro
mobility of the 6-CZGNR-(2,1) thin film is among the highest
reported values for the GNRs thin film.20 Note that this
relatively high inferred charge carrier mobility originates
primarily from the small effective mass of the unique GNRs.
The DS charge scattering time determined here is very similar to
the values (∼30 fs) previously reported for various other
GNRs.37

■ CONCLUSION
In summary, we have demonstrated a new family of curved
GNRs containing periodic cove-zigzag edge structures, namely
N-CZGNR-(n,m). Apart from the topological nonplanar
geometry induced by the cove unit along both edges of the
resultant GNRs, the bandgap of such GNRs can be readily tuned
from semiconducting to near-metallic by varying the parameters
n and m. Moreover, we present the first synthesis of a periodic
cove-zigzag edged GNRs (6-CZGNR-(2,1)) through two-step
solution synthesis from a S-shaped key monomer (1).
Remarkably, the achieved 6-CZGNR-(2,1) exhibits a record-
narrow optical bandgap of 0.99 eV and a small effective mass,
which results in high carrier mobility of up to 20 cm2 V−1s−1.
Therefore, our study opens a door for the synthesis of curved
GNRs through the incorporation of periodic cove units along
the zigzag-edged GNR backbone and will largely increase the
members of the cove-edged GNR family available for diverse
GNR-based device studies.

■ EXPERIMENTAL SECTION
The full experimental details and characterization methods can be
found in the Supporting Information.
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