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Abstract Electre Tri is a set of methods designed to sort alternatives evaluated on several
criteria into ordered categories. In these methods, alternatives are assigned to categories by
comparing them with reference profiles that represent either the boundary or central elements
of the category. The original Electre Tri-B method uses one limiting profile for separating a
category from the category below. A more recent method, Electre Tri-nB, allows one to use
several limiting profiles for the same purpose. We investigate the properties of Electre Tri-nB
using a conjoint measurement framework. When the number of limiting profiles used to define
each category is not restricted, Electre Tri-nB is easy to characterize axiomatically and is
found to be equivalent to several other methods proposed in the literature. We extend this result
in various directions.
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1 Introduction

Electre Tri1 is a family of methods for sorting alternatives evaluated on several criteria into
ordered categories. The principle of these methods is that they assign an alternative to a category
by comparing it with profiles specifying levels on each criterion. Comparisons are made by using
an outranking relation which is typical of the Electre methods. In its original version, ETri-B
(Yu, 1992, Roy and Bouyssou, 1993), each profile represents the limit between a category and the
category below. Therefore, they are called limiting profiles. In contrast, in ETri-C (Almeida-Dias
et al., 2010), each category is represented by a typical profile, therefore called central profile.
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For an introduction to the Electre methods, we refer the reader to Belton and Stewart
(2001, Ch. 8). Overviews of these methods can be found in Roy and Bouyssou (1993, Ch. 5 &
6), Figueira et al. (2010), Figueira et al. (2013), and Figueira et al. (2016).

Recently, Fernández et al. (2017) proposed a method called Electre Tri-nB. It is an ex-
tension of ETri-B, and, thus, uses limiting profiles. Whereas ETri-B uses one limiting profile
per category, ETri-nB allows one to use several limiting profiles for each category.

ETri-nB deserves close attention for at least two reasons. First, as explained in Bouyssou
and Marchant (2015), ETri can be considered as a real success story within the Electre family
of methods. A closely related model, the NonCompensatory Sorting (NCS) model, has received a
fairly complete axiomatic analysis in Bouyssou and Marchant (2007a,b). ETri has been applied
to a large variety of real world problems (see the references in Almeida-Dias et al., 2010, Sect. 6,
as well as Bisdorff et al., 2015, Ch. 6, 10, 12, 13, 15, 16). Many techniques have been proposed for
the elicitation of the parameters of this method (see the references in Bouyssou and Marchant,
2015, Sect. 1).

Second, the extension presented with ETri-nB is most welcome. Since outranking relations
are not necessarily complete, one may easily argue that it is natural to try to characterize a
category using several limiting profiles, instead of just one. Moreover, compared to ETri-B,
ETri-nB gives more flexibility to the decision-maker to define categories using limiting profiles,
as observed by Fernández et al. (2017, Remark 3, p. 217) 2.

In this paper, we analyze ETri-nB from a theoretical point of view. Our aim is to give a
complete characterization of this method without any supplementary hypotheses. This is, in a
sense, in contrast with Bouyssou and Marchant (2007a,b) who characterize a model close to
ETri-B, which is not exactly ETri-B (it differs from it, in particular, by considering “quasi-
criteria” instead of the more general “pseudo-criteria” used in ETri-B, see Roy and Bouyssou,
1993, pp. 55–56, for definitions). As far as we know, this is the first time that an axiomatic
foundation is provided for a complete outranking method (encompassing the construction of the
outranking relation and the exploitation phase). The usefulness of such axiomatic analyses has
been discussed elsewhere and will not be repeated here (Bouyssou and Pirlot, 2015, Dekel and
Lipman, 2010, Gilboa et al., 2019). Our main finding is that, if the number of profiles used to
delimit each category is not restricted, the axiomatic analysis of ETri-nB is easy and rests on a
condition, linearity, that is familiar in the analysis of sorting models (Goldstein, 1991, Bouyssou
and Marchant, 2007a,b, 2010, Greco et al., 2004, Słowiński et al., 2002, Greco et al., 2001b). Our
simple result shows the equivalence between ETri-nB and many other sorting models proposed
in the literature. It could also allow one to use elicitation or learning techniques developed for
these other models for the application of ETri-nB. This is useful since Fernández et al. (2017)
did not propose any elicitation technique (an elicitation technique was suggested afterwards in
Fernández et al., 2019).

The rest of this text is organized as follows. In the next section, we recall the definitions
of ETri-B and ETri-nB. We motivate the theoretical investigation that follows by analyzing
an example of an ETri-nB model. Section 3 introduces our notation and framework. Section 4
presents our main results about the pseudo-conjunctive version of ETri-nB. Section 5 presents
various extensions of these results. A final section discusses our findings. An appendix, containing
supplementary material to this paper, will allow us to keep the text of manageable length. Its
content will be detailed when needed.

2 Let us also mention that Fernández et al. (2017) is the last paper on Electre methods published by Bernard
Roy, the founding father of Electre methods, before he passed away at the end of 2017.
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2 ETri-nB: definitions and examples

For the ease of future reference, we first recall the definitions of ETri-B and ETri-nB. For keep-
ing it simple, we limit ourselves to sorting alternatives into two categories, say the “acceptable”
and the “unacceptable”. For a more detailed description, we refer the reader to Yu (1992), Roy
and Bouyssou (1993), Mousseau et al. (2000), Fernández et al. (2017). We refer to Bouyssou and
Marchant (2015) for an analysis of the importance of the various Electre Tri methods within
the set of all Electre methods.

In the second subsection, we informally analyze an example of an ETri-nB model in order
to motivate the theoretical investigation conducted in the rest of the paper.

2.1 ETri-B and ETri-nB

All Electre Tri methods are based on the definition of an outranking relation. There are
several ways of defining such a relation.

2.1.1 The outranking relations in Electre III and in Electre I

A crisp outranking relation S (with asymmetric part P ) comparing pairs of alternatives as in
Electre III (see Roy and Bouyssou, 1993, p. 284–289) is built by cutting a valued relation σ
at a certain level λ. The value associated to each pair in the relation σ is called the outranking
credibility index. It implements (see formula (1) below) the principle of outranking, i.e., an alter-
native x outranks an alternative y if x is at least as good as y on a sufficiently important set of
criteria (concordance) and x is unacceptably worse than y on no criterion (non-discordance). Let
x, y be two alternatives respectively represented by their evaluations (g1(x), . . . gi(x), . . . gn(x)),
(g1(y), . . . , gi(y), . . . , gn(y)) w.r.t. n criteria. For all i = 1, . . . , n, gi is a real valued function
defined on the set of alternatives.

The concordance index c(x, y) =
∑n

i=1 wici(gi(x), gi(y)), where wi ≥ 0 is the importance
weight of criterion i (we assume w.l.o.g. that weights sum up to 1) and ci(gi(x), gi(y)) is a
function represented in Figure 1. Its definition involves the determination of qti (resp. pti), the
indifference (resp. preference) threshold. These two thresholds are nonnegative and such that
pti ≥ qti.

gi(xi)− gi(yi)

1

−qti−pti 0

ci(gi(xi), gi(yi))

−vti

di(gi(xi), gi(yi))

Fig. 1 Shapes of the single criterion concordance index ci(gi(x), gi(y)) (gray) and the discordance index
di(gi(x), gi(y)) (black dashed) in Electre III. The two indices are a function of the difference gi(x) − gi(y)
and the three nonnegative thresholds: vti ≥ pti ≥ qti ≥ 0.
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The discordance index di(gi(x), gi(y)), also represented in Figure 1, uses an additional pa-
rameter vti, the veto threshold 3 (that is such that vti ≥ pti, so that we have vti ≥ pti ≥ qti ≥ 0)
.

The outranking credibility index σ(x, y) is computed as follows:

σ(x, y) = c(x, y)
∏

i:di(gi(x),gi(y))>c(x,y)

1− di(gi(x), gi(y))

1− c(x, y)
. (1)

Alternative x outranks alternative y, i.e., xSy, if σ(x, y) ≥ λ, with .5 ≤ λ ≤ 1.
In order that x outranks y, c(x, y) has to be greater than or equal to λ. This index is “locally

compensatory” in the sense that, for each i, there is an interval (namely, [−pti,−qti]) for the
differences gi(x) − gi(y) on which the single criterion concordance index increases linearly and
these indices are aggregated using a weighted sum. Discordance also is gradual in a certain
zone (namely [−vti,−pti]); it comes into play only when the discordance index di(gi(x), gi(y)) is
greater than the overall concordance index c(x, y).

A simpler, more ordinal, version of the construction of an outranking relation stands in the
spirit of Electre I. It is also more amenable to theoretical investigation: see the characterization
of outranking relations (Bouyssou and Pirlot, 2016) and the analysis of the noncompensatory
sorting model (Bouyssou and Marchant, 2007a,b). It differs from the above mainly by the shapes
of the single criterion concordance and discordance indices (see Figure 2).

gi(x)− gi(y)

1

−qti
= −pti

0

ci(gi(x), gi(y))

−vti

di(gi(x), gi(y))

Fig. 2 Shapes of the single criterion concordance index ci(gi(x), gi(y)) (gray) and the discordance index
di(gi(x), gi(y)) (black dashed) in the style of Electre I. The two indices are a function of the difference
gi(x) − gi(y) and the three nonnegative thresholds: vti ≥ pti ≥ qti ≥ 0 Filled (resp. empty) circles indicate
included (resp. excluded) values.

The preference and indifference thresholds are confounded, which implies that there is no lin-
ear “compensatory” part in ci(gi(x), gi(y)); discordance only occurs in an all-or-nothing manner.
The overall concordance index c(x, y) =

∑n
i=1 wici(gi(x), gi(y)), as above. In this construction,

x outranks y, i.e., xSy, if σ(x, y) ≥ λ, with

σ(x, y) = c(x, y)

n∏
i=1

(1− di(gi(x), gi(y))), (2)

3 For the sake of simplicity, the thresholds qti, pti and vti are taken as constant. Nothing in the sequel depends on
this option. They could be considered as variable provided appropriate conditions are enforced, actually ensuring
that the corresponding weak preference, preference and veto relations form an homogenous chain of semiorders
(see Roy and Bouyssou, 1993, p. 56 and pp. 140–141 for details).
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i.e., xSy if c(x, y) ≥ λ and di(gi(x), gi(y)) = 0, for all i. Note that

c(x, y) =
∑

i:gi(x)≥gi(y)−qti

wi.

We thus have c(x, y) ≥ λ if the sum of the weights of the criteria on which x is indifferent or
strictly preferred to y is at least equal to λ. Subsets of criteria of which the sum of the weights
is at least λ will be called winning coalitions (of criteria).

Notice that both the Electre III outranking relation defined by means of (1) and the
Electre I outranking relation defined by means of (2) respect the dominance relation4 ≥.
This is easily seen by observing that both formulae (1) and (2) are nondecreasing in gi(x) and
nonincreasing in gi(y), for all i. We note this fact in the following proposition for further reference.

Proposition 1 Let S denote an outranking relation of Electre III or Electre I type. The
relation S respects the dominance relation ≥, i.e., for all alternatives x, y, z, w,

[xSy, z ≥ x and y ≥ w] ⇒ zSw.

2.1.2 ETri-B

The sorting of an alternative x into category A (acceptable) or Uu (unacceptable) is based upon
the comparison of x with a limiting profile p using the relation S.

In the pessimistic version of ETri-B, now known, following Almeida-Dias et al. (2010), as
the pseudo-conjunctive version (ETri-B-pc), we have, for all x ∈ X,

x ∈ A ⇔ x S p.

In the optimistic version of Electre Tri, now known as the pseudo-disjunctive version (ETri-B-pd),
we have, for all x ∈ X,

x ∈ A ⇔ Not [p P x],

where P is the asymmetric part of S. Consequently, we have x ∈ U ⇔ p P x.

2.1.3 ETri-nB

We now have a set of k limiting profiles P = {p1, p2, . . . , pk}. This set of limiting profiles must
be such that, for all p, q ∈ P, we have Not [p P q].

In the pseudo-conjunctive version of ETri-nB (ETri-nB-pc, for short), we have that

x ∈ A ⇔
{
x S p for some p ∈ P, and
Not [q P x] for all q ∈ P,

and x ∈ U , otherwise.
In the pseudo-disjunctive version of ETri-nB (ETri-nB-pd, for short), we have that

x ∈ U ⇔
{
p P x for some p ∈ P, and
Not [x P q] for all q ∈ P,

4 The (weak) dominance relation ≥ is a reflexive and transitive relation on the set of alternatives, that is defined
as follows: x ≥ y if gi(x) ≥i gi(y), for all i. This is the relation denoted ∆F by Roy and Bouyssou (1993, p. 61),
F referring to a family of criteria.
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and x ∈ A, otherwise.
ETri-B-pc and ETri-B-pd are particular cases of ETri-nB-pc and ETri-nB-pd, respec-

tively. In this section, we consider only ETri-nB-pc and omit the suffix “pc”. We shall only turn
back, briefly, to ETri-nB-pd in Section 5.6. Following Fernández et al. (2017), unless otherwise
mentioned, we use the Electre III outranking relation S defined by means of (1). The version
of ETri-nB using the Electre I outranking relation S defined via (2) will be referred to as
ETri-nB-I.

Remark 1 Using Proposition 1, it is easy to see that ETri-nB and ETri-nB-I respect the dom-
inance relation ≥, i.e., are monotone w.r.t. this relation. In particular, if y dominates the ac-
ceptable alternative x, then y is acceptable. Symmetrically, if x is unacceptable and dominates
y, then y is unacceptable.

2.1.4 The family of Electre Tri methods

To ease the reading, we summarize the different variants of the ETri methods considered in the
sequel as well as their interrelationships. The variants of ETri-nB appear in Table 1 on the left.
Their version using only one limiting profile, i.e., the different variants of ETri-B, appear on the
right of the same table.

(a) ETri-nB with veto (e) ETri-B with veto
(b) ETri-nB without veto (f) ETri-B without veto
(c) ETri-nB-I with veto (g) ETri-B-I with veto
(d) ETri-nB-I without veto (h) ETri-B-I without veto.

Table 1 Variants of ETri-nB and ETri-B.

Model (a) contains model (b), which contains model (d). Model (c) (resp. (d)) differs from
model (a) (resp. (b)) in that it uses the outranking relation in Electre I instead of Electre III.

The relationships between the ETri-B models are the same as between the homologous ETri-
nB models. The NonCompensatory Sorting (NCS) model analyzed by Bouyssou and Marchant
(2007a,b) generalizes (h), while the NCS model with veto generalizes (g). In both cases, the
generalization lies in that the winning coalitions of criteria are not necessarily determined by
means of additive weights. Model (h) is called the Majority Rule sorting model (MR-Sort) in the
literature (Leroy et al., 2011, Sobrie et al., 2019).

Note that another type of ETri methods has been proposed, namely ETri-C (Almeida-Dias
et al., 2010) and ETri-nC (Almeida-Dias et al., 2012). These are based on a different logic (using
central profiles instead of limiting profiles) as analyzed in Bouyssou and Marchant (2015). We
shall not consider them in this paper for lack of place.

2.2 An example of an ETri-nB model

Consider alternatives evaluated on three criteria. Each criterion value belongs to the [0, 10] in-
terval. In practice, such evaluations have a limited precision. Let us assume that evaluations are
integers or half-integers.

Assume that the alternatives are partitioned into two classes A and U by an ETri-nB model
with 2 limiting profiles. Let these profiles be p1 = (8, 7, 5) and p2 = (5, 6, 8). The indifference,
preference and veto thresholds are, respectively, qti = 1, pti = 2 and vti = 4, the same for all
criteria i = 1, 2, 3. All criteria have the same weight wi =

1
3 and the cutting threshold λ = .6.
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It is readily verified that p1Sp2 and p2Sp1 so that none of the profiles strictly outranks the
other.

2.2.1 Minimally acceptable alternatives

Let us apply the above model. The set of possible evaluations for criterion i is Xi = {0, .5, 1, 1.5,
. . . , 9.5, 10}, for i = 1, 2, 3, and the set of all possible alternatives is X =

∏3
i=1 Xi. Each alterna-

tive is thus represented by an evaluation vector: for any x ∈ X, x = (x1, x2, x3), with xi = gi(x),
i = 1, 2, 3. Since each alternative is identified with its evaluation vector, the dominance relation
≥ on X is asymmetric. Therefore, it is a partial order.

Since ETri-nB is monotone w.r.t. the dominance relation ≥, which is a partial order on
X, and since there are finitely many alternatives, the set A of acceptable alternatives has a
finite number of minimal elements A∗ that we shall call minimally acceptable alternatives (see
Section 4.2 for further justification). The set A is the set of alternatives that dominate at least
one alternative in A∗. It contains A∗. Decreasing the performance of a minimally acceptable
alternative by any amount on any criterion produces an unacceptable alternative.

Let us determine the set A∗. We first focus on p1. Given the granularity of the evaluations,
for satisfying c(x, p1) ≥ .6, the index ci(xi, p

1
i ), which takes only the values 0, .5 and 1,

– must be 1 for two criteria i ∈ {1, 2, 3}; it can be 0 for the third one,
– or must be 1 for one criterion and take the value .5 on the other two.

Consider the alternatives of the form x = (7, 6, x3). For them, c(x, p1) ≥ 2
3 > .6. We have

d3(x3, p
1
3) = .75 if x3 = 1.5 and d3(x3, p

1
3) = .5 if x3 = 2. Therefore σ(7, 6, 1.5) = 2

3×
1/4
1/3 = .5 < .6

and σ(7, 6, 2) = 2
3 > .6 since d3(2, p

1
3) = .5 < c(x, p1). Therefore, (7, 6, 2) is minimal in A and,

by a similar reasoning, we have that (7, 4, 4) and (5, 6, 4) are also minimal.
Consider now the second type of minimal alternatives. For example, for x = (7, 5.5, 3.5), we

have σ(x, p1) = c(x, p1) = 1×1/3+1/2×1/3+1/2×1/3 = 2/3 > 0.6. Clearly, none of the perfor-
mances of x can be decreased by .5 without resulting in an unacceptable alternative. Therefore,
(7, 5.5, 3.5) is minimal and, by a similar reasoning, we see that (6.5, 6, 3.5) and (6.5, 5.5, 4) are
minimal too.

Applying the same analysis to the second profile p2, yields the complete description of the set
A∗ of minimally acceptable elements displayed in Table 2 (the first (resp. second) row corresponds
to profile p1 (resp. p2)).

(7, 6, 2) (7, 4, 4) (5, 6, 4) (7, 5.5, 3.5) (6.5, 6, 3.5) (6.5, 5.5, 4)
(4, 5, 5) (4, 3, 7) (2, 5, 7) (4, 4.5, 6.5) (3.5, 5, 6.5) (3.5, 4.5, 7).

Table 2 List of minimally acceptable alternatives in case evaluations are integers or half-integers.

None of these 12 alternatives dominates another. The number of elements in A∗ is thus 12.

Remark 2 Let us briefly discuss the consequences of using a similar ETri-nB-I model, using the
Electre I outranking relation, instead of the more classical version above. We keep the same two
limiting profiles p1, p2 and the same parameters except for qti and pti that we both set equal to
1 and vti that we set to 3. It is easy to see that there are three minimally acceptable alternatives
w.r.t. p1 which are (7, 6, 2), (7, 4, 4) and (5, 6, 4). The minimally acceptable alternatives w.r.t. p2
are (4, 5, 5), (4, 3, 7) and (2, 5, 7). The number of minimally acceptable alternatives is half the one
in Table 2. The minimally acceptable alternatives in this simplified model are identical to the
first three ones in each row of Table 2. The last three ones in each row are not “represented” in the
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simplified model. They correspond to alternatives for which the distinction between thresholds
pti and qti plays an important role.

2.2.2 Observations

We emphasize the following observations supported by the above example.

1. From the analysis of the above example, it results that an alternative is assigned to A by the
ETri-nB model iff it is equal or dominates one of the twelve alternatives listed in Table 2.
Therefore, this model is equivalent to another ETri-nB model with different parameters. The
latter has the 12 alternatives P ′ = {p′1, . . . , p′j , . . . , p′12} listed in Table 2 as limiting profiles.
For all i = 1, 2, 3, w′

i = 1/3, pt′i = qt′i = 0 and vt′i is a large number, e.g., vt′i = 10. We
set λ′ = 1. With this model, c′(x, p′j) ≥ λ′ = 1 iff xi ≥ p′

j
i for all i. There is no veto effect

since di(xi, p
′j
i ) ≤ c′(x, p′

j
) whenever the condition c′(x, p′

j
) ≥ λ′ is fulfilled and whatever

the value of vt′i. We call such a model an unanimous ETri-nB model in the sequel.
2. While the scale Xi of each criterion i = 1, 2, 3 has 21 levels (all integers and half integers

between 0 and 10), only 6 of them are distinguished by appearing as distinct values of the
ith coordinate in the 12 minimally acceptable alternatives listed in Table 2. The ETri-nB
model distinguishes only the 7 classes of equivalent evaluations that are delimited by these 6
values. For instance, on the scale of criterion i = 1, the 6 values that make a difference are
7, 6.5, 5, 3, 2.5, 1. They are the different values taken by the first coordinate of the alternatives
in Table 2. This means that the model’s assignments to A or U induce a weak order ≿1 on
X1 that is coarser than the natural order on the set of integers and half-integers in [0, 1]. This
weak order ≿1 (with its asymmetric part denoted ≻1 and its symmetric part ∼1) on X1 is as
follows:

[10 ∼1 9.5 ∼1 9 ∼1 8.5 ∼1 8 ∼1 7.5 ∼1 7] ≻1 6.5 ≻1 [6 ∼1 5.5 ∼1 5]

≻1 [4.5 ∼1 4 ∼1 3.5 ∼1 3] ≻1 2.5 ≻1 [2 ∼1 .5 ∼1 1] ≻1 [0.5 ∼1 0].

This implies, for example, the following. If the evaluation of x on the first criterion is 6,
decreasing it to 5 does not change the assignment of the alternative. Such a weak order with
7 equivalence classes is defined on each criterion by the model.

3. In the process of aiding a decision maker (DM) to make a decision by eliciting her prefer-
ence in a question-and-answer session, ETri-nB may be a useful tool because the principle of
concordance/non-discordance at the root of the method is intuitively appealing. The perspec-
tive is different when the parameters of the method are not elicited through actual interaction
with a DM but have to be learned on the basis of an (often limited) number of assignment
examples. The minimal number of examples that allows us to determine a sorting model is
important whenever learning the model is the issue. Assume that an oracle tells you that
ETri-nB is the model used by the DM for sorting the alternatives into two categories A and
U . The oracle gives you the values of all the model’s parameters including the number and
the definition of limiting profiles. What is the minimal number of assignment questions you
have to ask the DM just to verify that the oracle is not cheating on you? The most efficient
questioning strategy is asking the decision maker to assign all minimally acceptable alterna-
tives (that can be determined according to the model indicated by the oracle). If the DM
assigns them all to A, then it is still necessary to ask her to assign all maximally unacceptable
alternatives. If the DM assigns them all to U , then the oracle’s model is the right one. So, in
particular, the number of minimally acceptable alternatives (i.e., the limiting profiles of the
unanimous ETri-nB equivalent model) is important in a learning context. From this point of
view, ETri-nB appears as rather complex since the set of minimally acceptable alternatives
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it induces tends to be large. In the above example with 3 criteria, 2 limiting profiles and
criteria scales composed of integers and half-integers, this number is 12. It grows rapidly,
for instance, with the criteria scales precision. If we apply the same model to the case the
criteria scales are rational numbers with one decimal digit ranging in [0,10] (i.e., 101 levels
on each criterion scale instead of 21), the number of minimally acceptable alternatives grows
up to 192 (see Supplementary material, Appendix C). Therefore, in a learning perspective,
the question of approximating an ETri-nB model by a simpler one, i.e., a model determining
relatively few minimally acceptable alternatives is important.

2.3 Goal of the paper

In Sections 3 and 4, we analyze, in a conjoint measurement framework (Krantz et al., 1971, Ch. 6
and 7), an assignment model, Model (E), that is closely related to the ETri-nB-I method pre-
sented above. Just as ETri-nB generalizes ETri-B, Model (E) generalizes the noncompensatory
sorting model studied by Bouyssou and Marchant (2007a,b) to the case in which several limiting
profiles are used to sort the alternatives.

We place ourselves in a conjoint measurement framework because it is the usual one in decision
theory and it has been used in previous works analyzing the Electre methods. Analyzing sorting
methods in this framework means that any alternative in a Cartesian product can be sorted into
categories and that an a priori linear ordering of each criterion scale is not postulated. A weak
order on each criterion scale, if it exists, will be revealed by the partition. Working in such a
framework does not restrict the generality of the study. Indeed, in case each criterion scale is
linearly ordered and a partition respects the dominance relation determined by these orders, then
the partition does reveal a weak order on each scale, possibly coarser than the a priori linear
orders, but compatible with them. This was illustrated in item 2 of Section 2.2.2.

Our main finding is that, if the number of limiting profiles is not bounded above, the axiomatic
analysis of Model (E) is easy and rests on a condition, linearity, that is familiar in the analysis
of sorting models (Goldstein, 1991, Bouyssou and Marchant, 2007a,b, 2010, Greco et al., 2004,
Słowiński et al., 2002, Greco et al., 2001b). Our simple result shows the equivalence between
Model (E) and several other sorting models, in particular, the unanimous model introduced
above in the example.

We prove, in Section 5.2, that the ETri-nB model, which uses the Electre III outranking
relation, is equivalent to the ETri-nB-I model and to the Decomposable model (D1) (that
will be defined below, in Section 3.2). By “equivalent”, we mean that, for all particular ETri-
nB model, there is an ETri-nB-I model that determines the same partition. The parameters
of these equivalent models are possibly different. In particular, we emphasize that the sets of
limiting profiles used in equivalent models usually differ, also in cardinality. Our theoretical
analysis gives insight into the issue of learning such models on the basis of assignment examples
(see Section 6.2).

3 Notation and framework

Although the analyses presented in this paper can easily be extended to cover the case of several
ordered categories, we will mostly limit ourselves to the study of the case of two ordered cate-
gories. This will allow us to keep things simple, while giving us a sufficiently rich framework to
present our main points.
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Similarly, we suppose throughout that the set of objects to be sorted is finite. This is hardly
a limitation with applications of sorting methods in mind. The extension to the general case is
not difficult but calls for developments that would obscure our main messages 5.

3.1 The setting

Let n ≥ 2 be an integer and X = X1×X2×· · ·×Xn be a finite set of objects6. Elements x, y, z, . . .
of X will be interpreted as alternatives evaluated on a set N = {1, 2, . . . , n} of attributes 7. Any
element x ∈ X is thus an n-dimensional vector x = (x1, . . . , xi, . . . , xn), with xi ∈ Xi, for all
i ∈ N . For all x, y ∈ X and i ∈ N , we denote by (xi, y−i) the element w ∈ X such that wi = xi

and, for all j ̸= i, wj = yj . In other words, w = (xi, y−i) is obtained by replacing the ith
component of y, i.e., yi, by xi.

Our primitives consist in a twofold partition ⟨A,U⟩ of the set X. This means that the sets
A and U are nonempty and disjoint and that their union is the entire set X. Our central aim is
to study various models allowing to represent the information contained in ⟨A,U⟩. We interpret
the partition ⟨A,U⟩ as the result of a sorting method applied to the alternatives in X. Although
the ordering of the categories is not part of our primitives, it is useful to interpret the set A as
containing Acceptable objects, while U contains Unacceptable ones.

We say that an attribute i ∈ N is influential for ⟨A,U⟩ if there are xi, yi ∈ Xi and a−i ∈
X−i such that (xi, a−i) ∈ A and (yi, a−i) ∈ U . We say that an attribute is degenerate if it is
not influential. Note that the fact that ⟨A,U⟩ is a partition implies that there is at least one
influential attribute in N . A degenerate attribute has no influence whatsoever on the sorting of
the alternatives and may be suppressed from N . Hence, we suppose henceforth that all attributes
are influential for ⟨A,U⟩.

A twofold partition ⟨A,U⟩ induces on each i ∈ N a binary relation defined letting, for all
i ∈ N and all xi, yi ∈ Xi,

xi ∼i yi if
[
∀a−i ∈ X−i, (yi, a−i) ∈ A ⇔ (xi, a−i) ∈ A

]
. (3)

This relation is always reflexive, symmetric and transitive, i.e., is an equivalence. We omit the
simple proof of the following (see Bouyssou and Marchant, 2007a, Lemma 1, p. 220).

Lemma 1 For all x, y ∈ X and all i ∈ N ,

1. [y ∈ A and xi ∼i yi] ⇒ (xi, y−i) ∈ A,
2. [xj ∼j yj, for all j ∈ N ] ⇒ [x ∈ A ⇔ y ∈ A].

This lemma will be used to justify the convention made later in Section 4.1.

3.2 A general measurement framework

Goldstein (1991) suggested the use of conjoint measurement techniques for the analysis of twofold
and threefold partitions of a set of multi-attributed alternatives. His analysis was rediscovered

5 In fact our framework allows us to deal with some infinite sets of objects: all that is really required is that
the set of equivalence classes of each set Xi under the equivalence ∼i is finite, see below.

6 Note that, in contrast with Section 2, the sets Xi are not necessarily sets of real numbers. They also need not
be the range of a function gi evaluating the alternatives w.r.t. criterion i. The set Xi can be any finite set, not
necessarily ordered a priori.

7 We use a standard vocabulary for binary relations. For the convenience of the reader, all terms that are used
in the main text are defined in Appendix A, given as supplementary material. See also, e.g., Aleskerov et al.
(2007), Doignon et al. (1988), Pirlot and Vincke (1992), Roubens and Vincke (1985).
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and developed in Greco et al. (2001b) and Słowiński et al. (2002). We briefly recall here the main
points of the analysis in the above papers for the case of twofold partitions. We follow Bouyssou
and Marchant (2007a).

Let ⟨A,U⟩ be a partition of X. Consider a measurement model, henceforth the Decomposable
model, in which, for all x ∈ X,

x ∈ A ⇔ F (u1(x1), u2(x2), . . . , un(xn)) > 0, (D1)

where ui is a real-valued function on Xi and F is a real-valued function on
∏n

i=1 ui(Xi) that is
nondecreasing in each argument 8. The special case of Model (D1) in which F is supposed to be
increasing in each argument, is called Model (D2). Model (D2) contains as a particular case the
additive model for sorting in which, for all x ∈ X,

x ∈ A ⇔
n∑

i=1

ui(xi) > 0, (Add)

that is at the heart of the UTADIS technique (Jacquet-Lagrèze, 1995) and its variants (Zo-
pounidis and Doumpos, 2000a,b, Greco et al., 2010). It is easy to check 9 that there are twofold
partitions that can be obtained in Model (D2) but that cannot be obtained in Model (Add) (see
Supplementary material, Appendix E).

In order to analyze Model (D1), we define on each Xi the binary relation ≿i letting, for all
xi, yi ∈ Xi,

xi ≿i yi if [for all a−i ∈ X−i, (yi, a−i) ∈ A ⇒ (xi, a−i) ∈ A]. (4)

It is not difficult to see that, by construction, ≿i is reflexive and transitive. We denote by ≻i

(resp. ∼i) the asymmetric (resp. symmetric) part of ≿i (hence, the relation ∼i coincides with
the one defined by (3)).

We say that the partition ⟨A,U⟩ is linear on attribute i ∈ N (condition i-linear) if, for all
xi, yi ∈ Xi and all a−i, b−i ∈ X−i,

(xi, a−i) ∈ A
and

(yi, b−i) ∈ A

 ⇒

 (yi, a−i) ∈ A,
or

(xi, b−i) ∈ A.
(i-linear)

The partition is said to be linear if it is i-linear, for all i ∈ N . This condition was first proposed in
Goldstein (1991), under the name “context-independence”, and generalized in Greco et al. (2001b)
and Słowiński et al. (2002) (these authors call it “cancellation property”). The adaptation of this
condition to the study of binary relations, adaptation first suggested by Goldstein (1991), is
central in the analysis of the nontransitive decomposable models presented in Bouyssou and
Pirlot (1999, 2002, 2004).

The following lemma takes note of the consequences of condition i-linear on the relation ≿i

and shows that linearity is necessary for Model (D1). Its proof can be found in Bouyssou and
Marchant (2007a, Lemma 5, p. 221).

Lemma 2 1. Condition i-linear holds iff ≿i is complete,
2. If a partition ⟨A,U⟩ has a representation in Model (D1) then it is linear.

8 In Model (D1), notice that we could have chosen to replace the strict inequality by a nonstrict one. The two
versions of the model are equivalent, as shown in Bouyssou and Marchant (2007a, Rem. 8, p. 222). The same is
true for Model (D2).

9 When X is finite, it is clear that the variant of Model (Add) in which the strict inequality is replaced by a
nonstrict one is equivalent to Model (Add).
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The following proposition is due to Goldstein (1991, Theorem 2) and Greco et al. (2001b,
Theorem 2.1, Part 2).

Proposition 2 Let ⟨A,U⟩ be a twofold partition of a set X. Then:

(i) there is a representation of ⟨A,U⟩ in Model (D1) iff it is linear,
(ii) if ⟨A,U⟩ has a representation in Model (D1), it has a representation in which, for all i ∈ N ,

ui is a numerical representation of ≿i,
(iii) moreover, Models (D1) and (D2) are equivalent.

Proof See, e.g., Bouyssou and Marchant (2007a, Proposition 6, p. 222) ⊓⊔

3.3 Partitions respecting a dominance relation

Footnote 6 has emphasized that it is not necessarily the case that Xi is a subset of the reals and
the range of a function gi evaluating the alternatives w.r.t. criterion i, for all i ∈ N . In the case
a partition respects the dominance relation determined by pre-existing linear orderings of the
criteria scales (see Remark 1, for a definition), we note the following result.

Proposition 3 Let X =
∏n

i=1 Xi, where the finite set Xi is endowed with a linear order ≥i, for
all i. Let ⟨A,U⟩ be a twofold partition of X which respects the dominance relation ≥ determined
by the linear orders ≥i. Then ⟨A,U⟩ is linear and the weak order ≿i induced by the partition is
compatible with the linear order ≥i, for all i, i.e., for all xi, yi ∈ Xi, xi ≥i yi entails xi ≿i yi.

Proof If xi ≥i yi, condition (4) is fulfilled, since the partition respects dominance, and therefore
xi ≿i yi. Since ≥i is complete, so is ≿i, for all i. Therefore ⟨A,U⟩ is linear (Lemma 2.1). ⊓⊔

The fact that, in general, ≿i does not distinguish (i.e., considers as equivalent) some pairs
that are strictly ordered by ≥i is illustrated in Section 2.2.2, item 2.

We noticed in Remark 1, that ETri-nB-pc and ETri-nB-I-pc respect the dominance relation.
Therefore, we have the following corollary of Proposition 3.

Corollary 1 The twofold partitions determined by ETri-nB-pc and ETri-nB-I-pc are linear.

3.4 Interpretations of the Decomposable model (D1)

The framework offered by the Decomposable model (D1) is quite flexible. It contains many other
sorting models as particular cases. We already observed that it contains Model (Add) as a par-
ticular case. Bouyssou and Marchant (2007a) have reviewed various possible interpretations of
Model (D1). They have shown that both the pseudo-conjunctive and the pseudo-disjunctive vari-
ants of ETri-B-I (see Table 1) enter into this framework. In particular, they have characterized,
within the Decomposable model, the NCS model, which is a generalization (without additive
weights) of ETri-B-I (pseudo-conjunctive).

Greco et al. (2001b, Theorem 2.1, Parts 3 and 4) (see also Słowiński et al., 2002, Theorem
2.1) have proposed two equivalent reformulations of the Decomposable model (D1). The first one
uses “at least” decision rules. The second one uses a binary relation to compare alternatives to a
profile. We refer to Bouyssou and Marchant (2007a) and to the original papers for details.
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4 Main Results

4.1 Definitions

The following definition synthesizes the main features of ETri-nB-I-pc, the version of ETri-nB-
pc using the Electre I outranking relation (see Section 2.1). The main differences w.r.t. ETri-
nB-I-pc are that: (i) we do not suppose that the real-valued functions gi are given beforehand
and (ii) we do not use additive weights combined with a threshold to determine the winning
coalitions. Actually, the model defined below is a multi-profile version of the noncompensatory
sorting model with veto analyzed in Bouyssou and Marchant (2007a), exactly in the same way
as ETri-nB is a multi-profile version of ETri-B. For notational simplicity, we shall refer to it
as Model (E) (“E ”, for Electre Tri) in the sequel.

Definition 1 We say that a partition ⟨A,U⟩ has a representation in Model (E) if:

– for all i ∈ N , there is a semiorder Si on Xi (with asymmetric part Pi and symmetric part Ii),
– for all i ∈ N , there is a strict semiorder Vi on Xi that is included in Pi and is the asymmetric

part of a semiorder Ui,
– (Si, Ui) is a homogeneous nested chain of semiorders and Wi = Swo

i ∩ Uwo
i is a weak order

that is compatible with both Si and Ui,
– there is a set of subsets of attributes F ⊆ 2N such that, for all I, J ∈ 2N , [I ∈ F and I ⊆ J ]

⇒ J ∈ F ,
– there is a binary relation S on X (with symmetric part I and asymmetric part P ) defined by

x S y ⇔ [S(x, y) ∈ F and V (y, x) = ∅] ,

– there is a set P = {p1, . . . , pk} ⊆ X of k limiting profiles, such that for all p, q ∈ P, Not [p P q],

such that

x ∈ A ⇔
{
x S p for some p ∈ P and
Not [q P x] for all q ∈ P,

(E)

where
S(x, y) = {i ∈ N : xi Si yi},

and
V (x, y) = {i ∈ N : xi Vi yi}.

We then say that ⟨(Si, Vi)i∈N ,F ,P⟩ is a representation of ⟨A,U⟩ in Model (E). Model (Ec)
is the particular case of Model (E), in which there is a representation that shows no discordance
effects, i.e., in which all relations Vi are empty. Model (Eu) is the particular case of Model (E),
in which there is a representation that requires unanimity, i.e., such that F = {N}.

(E) ⟨(Si, Vi)i∈N ,F ,P⟩ General model
(Ec) ⟨(Si,∅)i∈N ,F ,P⟩ Based on concordance
(Eu) ⟨(Si,∅)i∈N ,F = {N},P⟩ Based on unanimity

Table 3 Model (E) and its variants.

Table 3 summarizes the models defined above. It should be clear that (E) is closely related to
ETri-nB-I-pc (see Remark 3 below). It does not use criteria but uses attributes, as is traditional
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in conjoint measurement. Moreover, it does not use an additive weighting scheme combined with
a threshold to determine winning coalitions but uses instead a general family F of subsets of
attributes that is compatible with inclusion (see also Bouyssou and Marchant, 2007a). Note
that, when the set of limiting profiles P is restricted to be a singleton, Model (E) is exactly the
noncompensatory sorting model (NCS) studied by Bouyssou and Marchant (2007a).

Remark 3 Any partition determined by an ETri-nB-I-pc model has a representation in Model
(E). We illustrate this fact using the example of the ETri-nB-I-pc model described in Remark 2.
Note that this way of constructing a representation in Model (E) is applicable to any ETri-nB-
I-pc model.

For all i = 1, 2, 3, Xi is the set of integers and half-integers between 0 and 10. The semiorder
Si on Xi is defined using the threshold pti = qti = 1, i.e., for all xi, yi ∈ Xi, xiSiyi iff xi ≥ yi−1.
We have xiSiyi iff ci(xi, yi) = 1. Similarly, the strict semiorder Vi is defined using the threshold
vti = 3 by xiViyi iff xi > yi + 3. We have xiViyi iff di(yi, xi) = 1. The subsets of attributes
in F are all sets of two or three attributes since c(x, y) ≥ .6 if and only if, for at least two
criteria, xiSiyi and, therefore, |S(x, y)| ≥ 2. The pair (x, y) belongs to the outranking relation
S iff |S(x, y)| = |{i : xiSiyi}| ≥ 2 and V (y, x) = {i : yiVixi} = ∅, i.e., it is never the case that
yi ≥ xi + 3.5. With these definitions of Si, Vi and F , the acceptable alternatives in the example
are exactly these which satisfy (E).

It is easy to see that the model in the example is equivalent to a model based on unanimity,
i.e., a model (Eu), using as limiting profiles the three first alternatives in each row of Table 2
and the natural order ≥ as the relation Si on Xi.

Remark 4 It is clear that Model (Eu) is a particular case of Model (Ec): if unanimity is required
to have x S y, the veto relations Vi play no role and can always be taken to be empty.

The following lemma takes note of elementary consequences of the fact that (Si, Ui) is a
homogeneous nested chain of semiorders (we remind the reader that the necessary definitions are
recalled in Appendix A, as supplementary material).

Lemma 3 Let ⟨A,U⟩ be a twofold partition of X. If ⟨A,U⟩ is representable in (E) then, for all
a = (ai, a−i), b = (bi, b−i) ∈ X, all i ∈ N and all ci ∈ Xi,

a S b and bi Wi ci ⇒ a S (ci, b−i), (5a)
a P b and bi Wi ci ⇒ a P (ci, b−i), (5b)
a S b and ci Wi ai ⇒ (ci, a−i) S b, (5c)
a P b and ci Wi ai ⇒ (ci, a−i) P b, (5d)

where Wi denotes a weak order that is compatible with the homogeneous nested chain of semiorders
(Si, Ui).

Proof Let a′ = (ci, a−i) and b′ = (ci, b−i). Let us show that (5a) holds. Suppose that a S b, so
that S(a, b) ∈ F and V (b, a) = ∅. Because bi Wi ci, we know that S(a, b′) ⊇ S(a, b). Hence,
we have S(a, b′) ∈ F . Similarly, we know that V (b, a) = ∅, so that Not [bi Vi ai]. It is therefore
impossible that ci Vi ai since bi Wi ci would imply bi Vi ai, a contradiction. Hence, V (b′, a) = ∅
and we have a S b′.

Let us show that (5b) holds. Because a P b implies a S b, we know from (5a) that a S b′.
Suppose now that b′ S a so that S(b′, a) ∈ F and V (a, b′) = ∅. Because bi Wi ci, ci Si ai implies
bi Si ai, so that S(b, a) ⊇ S(b′, a), implying S(b, a) ∈ F . Similarly, we know that V (a, b′) = ∅,
so that Not [ai Vi ci]. It is therefore impossible that ai Vi bi, since bi Wi ci would imply ai Vi ci,
a contradiction. Hence, we must have V (a, b) = ∅, so that we have b S a, a contradiction.

The proof of (5c) and (5d) is similar. ⊓⊔
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The next lemma shows that Model (E) implies linearity.

Lemma 4 Let ⟨A,U⟩ be a twofold partition of X =
∏n

i=1 Xi. If ⟨A,U⟩ has a representation in
Model (E) then it is linear.

Proof Suppose that we have (xi, a−i) ∈ A, (yi, b−i) ∈ A. Defining the relations Wi as in Lemma 3,
we have either xi Wi yi or yi Wi xi. Suppose that xi Wi yi. Because (yi, b−i) ∈ A, we know
that (yi, b−i) S p, for some p ∈ P, and Not [q P (yi, b−i)] for all q ∈ P, Lemma 3 implies that
(xi, b−i) S p and Not [q P (xi, b−i)] for all q ∈ P. Hence, (xi, b−i) ∈ A. The case yi Wi xi is
similar: we start with (xi, a−i) ∈ A to conclude that (yi, a−i) ∈ A. Hence, linearity holds. ⊓⊔

In view of Lemma 4, we therefore know from Lemma 2 that in Model (E) there is, on each
attribute i ∈ N , a weak order ≿i on Xi that is compatible with the partition ⟨A,U⟩.

Convention For the analysis of ⟨A,U⟩ on X =
∏n

i=1 Xi, it is not useful to keep in Xi elements
that are equivalent w.r.t. the equivalence relation ∼i. Indeed, if xi ∼i yi then (xi, a−i) ∈ A iff
(yi, a−i) ∈ A (see Lemma 1).

In order to simplify the analysis, it is not restrictive to suppose that we work with Xi/∼i

(i.e., the set of equivalence classes in Xi for the equivalence ∼i) instead of Xi and, thus, on∏n
i=1[Xi/∼i] instead of

∏n
i=1 Xi. This amounts to supposing that the equivalence ∼i becomes

the identity relation. We systematically make this hypothesis below. This is w.l.o.g. since the
properties of a partition on

∏n
i=1[Xi/∼i] can immediately be extended to a partition on

∏n
i=1 Xi

(see Lemma 1) and is done for convenience only. In order to simplify notation, we suppose
below that we are dealing with partitions on

∏n
i=1 Xi for which all relations ∼i are trivial. Our

convention implies that each relation ≿i is antisymmetric, so that the sets Xi are linearly ordered
by ≿i.

Let us define the relation ≿ on X letting, for all x, y ∈ X,

x ≿ y ⇔ xi ≿i yi, for all i ∈ N.

It is clear that the relation ≿ plays the role of a dominance relation in our conjoint measurement
framework. It is a partial order on X, being reflexive, antisymmetric, and transitive. This partial
order is obtained as a “direct product of chains” (the relations ≿i on each Xi) as defined in
Caspard et al. (2012, p. 119).

Before we turn to our main results, it will be useful to take note of a few elementary observa-
tions about maximal and minimal elements in partially ordered sets (posets), referring to Davey
and Priestley (2002), for more details.

4.2 Minimal and maximal elements in posets

Let T be a binary relation on a set Z. An element x ∈ B ⊆ Z is maximal (resp. minimal) in B
for T if there is no y ∈ B such that y Tα x (resp. x Tα y), where Tα denotes the asymmetric part
of T . The set of all maximal (resp. minimal) elements in B ⊆ Z for T is denoted by Max(T ,B)
(resp. Min(T ,B)).

For the record, the following proposition recalls some well-known facts about maximal and
minimal elements of partial orders on finite sets (Davey and Priestley, 2002, p. 16). We sketch
its proof in Appendix B for completeness.
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Proposition 4 Let T be a partial order (i.e., a reflexive, antisymmetric and transitive relation)
on a nonempty set Z. Let B be a finite nonempty subset of Z. Then the set of maximal elements,
Max(T ,B), and the set of minimal elements, Min(T ,B), in B for T are both nonempty. For
all x, y ∈ Max(T ,B) (resp. Min(T ,B)) we have Not[x Tα y]. Moreover, for all x ∈ B, there is
y ∈ Max(T ,B) and z ∈ Min(T ,B) such that y T x and x T z.

We will apply the above proposition to the proper nonempty subset A of the finite set
X =

∏n
i=1 Xi, partially ordered by ≿.

4.3 A characterization of Model (E)

We know that ≿ is a partial order on X =
∏n

i=1 Xi. Because ⟨A,U⟩ is a twofold partition of X,
we know that A ≠ ∅. Because we have supposed X to be finite, so is A. Hence, we can apply
Proposition 4 to conclude that the set A∗ = Min(≿,A) is nonempty.

We are now fully equipped to present our main result.

Theorem 1 Let X =
∏n

i=1 Xi be a finite set and ⟨A,U⟩ be a twofold partition of X. The
partition ⟨A,U⟩ has a representation in Model (E) iff it is linear. This representation can always
be taken to be ⟨(≿i, Vi = ∅)i∈N ,F = {N},P = A∗⟩.

Proof We know from Lemma 4 that Model (E) implies linearity. Let us prove the converse
implication. Take, for each i ∈ N , Si = ≿i and Vi = ∅. Take F = {N}. Hence, we have S = ≿.
Take P = A∗. Using Proposition 4, we know that A∗ is nonempty and that, for all p, q ∈ A∗, we
have Not [p ≻ q]. Hence, taking P = A∗ leads to an admissible set of profiles in Model (E).

If x ∈ A, we use Proposition 4 to conclude that there is y ∈ A∗ such that x ≿ y, so that
we have x ≿ p, for some p ∈ P. Suppose now that, for some q ∈ P, we have q ≻ x. Using the
fact that ≿ is a partial order, we obtain q ≻ p, contradicting the fact that p, q ∈ A∗, in view of
Proposition 4. Suppose now that x ∈ U . Supposing that x ≿ p, for some p ∈ P = A∗, would lead
to x ∈ A, a contradiction. This completes the proof. ⊓⊔

Remark 5 In the representation in Model (E) built in Theorem 1, the relation S is a partial
order. When this is so, the condition stating that Not [q P x] for all q ∈ P and all x ∈ A, is
automatically verified. Indeed, suppose that, for some q ∈ P and some x ∈ A, we have q P x.
Because x ∈ A, there is p ∈ P such that x S p. Transitivity leads to q P p, violating the condition
on the set of profiles.

Remark 6 Under our convention that ≿i is antisymmetric, for all i ∈ N , it is clear that, if we
are only interested in representations with F = {N}, the set P must be taken equal to A∗.
Hence, the representation built above is unique, under our convention about antisymmetry and
the constraint that F = {N}. Without the constraint that F = {N}, uniqueness does not obtain
any more, as shown, e.g., by Example 1 below. Since this is not important for our purposes, we
do not investigate this point further in this text.

4.4 Example

We illustrate the construction of the representation in Theorem 1 with the example below.

Example 1 Let X =
∏3

i=1 Xi with X1 = X2 = X3 = {39, 37, 34, 30, 25}. Hence, X contains
53 = 125 objects.
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Define the twofold partition ⟨A,U⟩ letting:

(x1, x2, x3) ∈ A ⇔ x1 + x2 + x3 ≥ 106.

In this twofold partition, the set A contains 32 objects, while U contains the remaining 93
objects.

It is easy to check that all attributes are influential for this partition and that, on each
attribute i ∈ N , we have 39 ≻i 37 ≻i 34 ≻i 30 ≻i 25. For instance, for attribute 1, we have:

(39, 37, 30) ∈ A (37, 37, 30) /∈ A,

(37, 39, 30) ∈ A (34, 39, 30) /∈ A,

(34, 39, 34) ∈ A (30, 39, 34) /∈ A,

(30, 39, 37) ∈ A (25, 39, 37) /∈ A.

This twofold partition has an obvious representation in Model (Add). Hence it is linear and
also has a representation in Model (E). Considering the representation built in Theorem 1 with
Si = ≿i, Vi = ∅, P = A∗ and F = {N}, we obtain 10 a representation that uses the following 12
profiles:

(37, 37, 34) (39, 34, 34) (39, 37, 30) (37, 30, 39)

(37, 34, 37) (34, 39, 34) (39, 30, 37) (30, 39, 37)

(34, 37, 37) (34, 34, 39) (37, 39, 30) (30, 37, 39).

(6)

It is clear that these twelve profiles are pairwise incomparable w.r.t. S = ≿.
For instance, the object (39, 30, 39) belongs to A, because 39 + 30 + 39 = 108 ≥ 106. This

object outranks (meaning here, dominates) the two profiles (39, 30, 37) and (37, 30, 39), but no
other.

Notice that this twofold partition is also determined by an ETri-nB-pc model with a single
limiting profile p1 = (39, 39, 39), thresholds qti = 0, pti = 9, vti = 14, for i = 1, 2, 3 and
λ = 16/27.

5 Remarks and extensions

5.1 Positioning Model (E) w.r.t. other sorting models

Theorem 1 gives a simple characterization of Model (E). It makes no restriction on the size of
the set of profiles P, except that it is finite.

The proof of Theorem 1 builds a representation of any partition ⟨A,U⟩ satisfying linearity in
a special case of Model (E), Model (Eu). This shows that Models (Eu) and (E) are equivalent.
Because, (Eu) is a particular case of Model (Ec), this also shows that Models (E), (Eu) and
(Ec) are equivalent.

In view of Proposition 2, Model (E) is equivalent to Model (D1) and, hence, to Model (D2).
However, Model (Add) is not equivalent to Model (E). An example of a linear partition that is
not representable in Model (Add) is given in Appendix E, as supplementary material. Note also
that a characterization of Model (Add) in case X is a finite set is known but requires a countably
infinite scheme of axioms (see Bouyssou and Marchant, 2008, Appendix B, and especially, Remark
31, p. 32).

10 We omit details and the reader is invited to check this example using, e.g., his/her favorite spreadsheet
software.
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Because Model (D2) contains Model (Add) as a particular case, the same is true for Model
(E).

We summarize our observations in the following.

Proposition 5 1. Models (E), (Ec), and (Eu) are equivalent.
2. Models (E), (D1), and (D2) are equivalent.
3. Model (Add) is a particular case of Model (E) but not vice versa.

The above proposition allows us to position rather precisely Model (E) within the family of
all sorting models.

Remark 7 As observed in Section 4.1, when the set P of limiting profiles is restricted to a
singleton, Model (E) is the noncompensatory sorting model. The twofold partitions ⟨A,U⟩ that
can be represented in this model have been characterized as being linear and 3v-graded (see
Bouyssou and Marchant, 2007a). The latter property implies that the weak order ≿i induced by
the partition on Xi, for all i, distinguishes at most three equivalence classes of evaluations on
criterion i. In case there is no veto effect, ≿i distinguishes at most two equivalence classes on Xi

(2-graded). This result characterizes the twofold partitions representable in the noncompensatory
sorting model within the set of linear twofold partitions. In other words, it characterizes the
particular case of Model (E) with one limiting profile within the general Model (E).

5.2 Model (E) vs. ETri-nB-pc

In order to position Model (E) w.r.t. ETri-nB-pc, we assume that, for all i, Xi is the range of a
real-valued function gi evaluating the alternatives w.r.t. criterion i. We know that Model (E) is
equivalent to Model (Eu). These models are characterized by linearity. But all partitions obtained
with the original method ETri-nB-pc satisfy linearity (by Corollary 1). Therefore, ETri-nB-pc
is a particular case of Model (E).

Conversely, Model (Eu) is a particular case of ETri-nB-pc that is obtained taking the cutting
level λ to be 1 and, on all criteria, the preference and indifference thresholds to be equal. Since
unanimity is required, veto thresholds play no role. Since Model (Eu) is equivalent to Model (E),
Model (E) is a particular case of ETri-nB-pc.

The same can be said of ETri-nB-I-pc, since this model also satisfies linearity (by Corollary 1)
and contains the unanimous model (Eu). This is also true of the versions without veto of ETri-
nB-pc and ETri-nB-I-pc. Therefore, (E) and all four models in the left part of Table 1 are
equivalent models.

We take note of this in the next proposition.

Proposition 6 Models (E), ETri-nB-pc (with or without veto) and ETri-nB-I-pc (with or
without veto) are equivalent models11.

The relationship of (E) with ETri-nB-I-pc is however tighter than with ETri-nB-pc. Indeed,
as shown in Remark 3, any ETri-nB-I-pc model has a straightforward representation in Model
(E) that does not make use of the unanimous model.

11 We emphasize that, by equivalent models, we mean that any partition that has a representation in one of
the three models, also has a representation in the two other models, using an appropriate set of parameters. In
particular, not only the limiting profiles used in these models are generally different but also the numbers of
limiting profiles differ.
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5.3 Unanimous representations

The reader may be perplexed by the fact that the proof of Theorem 1 builds a representation in
Model (E) in which F = {N}. This is indeed a very particular form of representation. Notice that
there are linear partitions of which the sole representation in Model (E) is a unanimous one, i.e.,
with F = {N}. The curious reader will find such an example in Appendix D, as supplementary
material. Hence, representations with F = {N} are sometimes quite useful and even, may be the
only possible ones. We show below that obtaining such a representation from a representation
based on concordance, i.e., in Model (Ec), is easy.

Any representation in Model (E) can be transformed into a representation with F = {N}.
This is a direct consequence of Theorem 1. When the representation is without discordance, we
show below that the process of building A and then deriving A∗ can be avoided.

Suppose we know a representation ⟨(Si,∅)i∈N ,F ,P⟩ of the partition ⟨A,U⟩ in (E) (in fact,
in (Ec)) and that F ̸= {N}.

We want to find a representation such that F = {N}. Theorem 1 ensures that such a rep-
resentation exists. It can be built quite efficiently, independently of the construction used in
Theorem 1.

Let F∗ = Min(⊇,F), the set of minimal elements in F w.r.t. inclusion. For each i ∈ N , let
x0
i be the unique element in Xi that is minimal for the linear order ≿i. Define x0 accordingly.

Moreover, let:
P ′ = {(x0

−I , pI), for all p ∈ P and I ∈ F∗}.
It is clear that ⟨(Si,∅)i∈N , {N},P ′⟩ is a representation of the partition ⟨A,U⟩ in (E).

5.4 Variable set of winning coalitions F

A rather natural generalization of Model (E), called (Ẽ), is as follows. Instead of considering
a single family of winning coalitions F that is used to build the relation S and compare each
alternative in X to all profiles in P, we could use a family Fp that would be specific to each
profile p ∈ P, with a relation Sp that now depends on the profile.

The analysis of Model (Ẽ) is easy. It is simple to check that Model (Ẽ) implies linearity.
Indeed, for each relation Sp, Lemma 3 holds and, hence, linearity cannot be violated. This shows
that Model (Ẽ) is a particular case of Model (E) and, hence, is equivalent to it.

5.5 More than two categories

Our analysis of Model (E) can easily be extended to cover the case of an arbitrary number
of categories. Because this would require the introduction of a rather cumbersome framework,
without adding much to the analysis of two categories, we do not formalize this point. We briefly
indicate how this can be done, leaving the details to the interested readers.

Linearity has been generalized to cope with more than two categories. This is done in Słowiński
et al. (2002) and Bouyssou and Marchant (2007b). The intuition behind this generalization is
simple. It guarantees that there is a weak order on each attribute that is compatible with the
ordered partition.

When X is finite, this condition is necessary and sufficient to characterize the obvious gener-
alization of Model (D1) that uses more than one threshold, instead of the single threshold 0 (see,
e.g., Bouyssou and Marchant, 2007b, Prop. 7, p. 250). Moreover, it is easy to check that this con-
dition is satisfied by the natural generalization of Model (E) that uses more than two categories
(this involves working with of a set of profiles P for each of the induced twofold partitions).
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Now, the technique used in the proof of Theorem 1 easily allows one to define a family of
profiles for each of the induced twofold partitions. It just remains to check that these families of
profiles satisfy the constraints put forward in Fernández et al. (2017, Condition 1, p. 216). This
is immediate.

5.6 Pseudo-disjunctive ETri-nB

Up to this point, we have investigated the properties of Model (E) which is closely linked to ETri-
nB-pc and some of its variants. We now briefly examine ETri-nB-pd (defined in Section 2.1.3).

Let us first observe, as in Remark 1, that ETri-nB-pd and ETri-nB-I-pd respect the dom-
inance relation. Therefore, by Proposition 3, we have that these models satisfy linearity. Hence
all partitions determined either by ETri-nB-pd or by ETri-nB-I-pd have a representation in
Model (E).

Whether or not these models are equivalent to Model (E) is still unclear. The interested
reader may refer to Bouyssou et al. (2020, Section 5), for a theoretical look at ETri-nB-pd. This
reference contains examples showing that the study of this model is more complex than that
of the pseudo-conjunctive version. These examples suggest that ETri-nB-pd might be strictly
included in Model (E), but this question remains open.

The extra complexity involved in studying the pseudo-disjunctive model was already pointed
out by Bouyssou and Marchant (2015) in the case of ETri-B-pd. Their analysis concludes that
this is mainly due to the fact that ETri-B-pc and ETri-B-pd are not dual of each other (see
Bouyssou et al., 2020, Section 5.3, for more detail).

6 Discussion

6.1 Summary

Using classical tools from conjoint measurement, we have proposed a new interpretation of the
Decomposable model (D1) introduced by Goldstein, i.e., of linear twofold partitions of a finite
product set X =

∏n
i=1 Xi. Any such partition can be represented in Model (E) using an appropri-

ate set of limiting profiles. It can also always be represented in Model (Eu), the unanimous model,
using as limiting profiles the set of minimally acceptable elements in X. Some linear twofold par-
titions have a unique representation in Model (E). It is then a unanimous one. Some other linear
twofold partitions have several representations in model (E), one of which is unanimous.

In case Xi is a finite subset endowed with a linear ordering ≥i (e.g., Xi is the range of the
real-valued evaluation function gi w.r.t. criterion i) and the partition ⟨A,U⟩ of X =

∏n
i=1 Xi

respects dominance, then it is linear w.r.t. the weak order ≿i on Xi that is compatible with the
linear order ≥i on Xi. Any such twofold partition is representable in Model ETri-nB-pc using
an appropriate set of limiting profiles and other model parameters (thresholds, additive criteria
weights). It can also be represented in model ETri-nB-I-pc (again with appropriate, possibly
different, limiting profiles and parameters). Of course, it can also be represented in Models
(D1) or in Model (E) (possibly using a set of winning coalitions F that cannot be represented
by additive weights and a threshold). Since all these models contain as a particular case the
unanimous model (Eu), it may happen that the sole representation of the twofold partition in
these models is the unanimous one. In some cases, but not always, there exists a more synthetic
representation with fewer limiting profiles and a nontrivial set of winning coalitions.

Note that any sorting model producing partitions respecting dominance and able to determine
any partition generated by the unanimous model is equivalent to Model (D1). Not all sorting
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models respecting dominance however are able to determine any partition produced by the
unanimous model. For example, the additive model (Add) is strictly included in Model (D1).

Somewhat surprisingly, while Bernard Roy had always championed outranking approaches as
an alternative to the classical additive value function model, it turns out that the last Electre
method that he published before he passed away, Electre Tri-nB, contains the additive value
function model for sorting as a particular case. We think that this unexpected conclusion is a
plea for the development of axiomatic studies in the field of decision with multiple attributes, as
already advocated in Bouyssou et al. (1993), more than 25 years ago.

6.2 Perspectives for elicitation and learning

As a preliminary remark, let us observe the following. We have established that Electre Tri
sorting models with multiple limiting profiles have the same expressive power be they based on
Electre I (ETri-nB-I) or Electre III (ETri-nB) outranking relations. This does not imply
that one should systematically opt for the simpler model based on Electre I (ETri-nB-I) in an
elicitation or a learning process. In such a process, the crisp preference thresholds in Electre I
may not fit with the decision maker’s insights, while she may be receptive to the more gradual
preference model in Electre III. Similarly, learning a model based on Electre III may be at
an advantage even though the model has more parameters and assignment examples are scarce.
The more “continuous” character of the preferences in Electre III may allow for different
optimization techniques (especially with the variant of Electre III proposed by Mousseau and
Dias (2004)). In any case, since assignment examples or other preference information are typically
scarce in MCDA, model indeterminacy is generally an issue. Therefore, attention should be paid
to not using exceedingly general models. In particular, the number of limiting profiles considered
should be kept to a minimum (using a model based on Electre III or on Electre III).

In the rest of this section, we focus on situations in which a model of assignment respecting
dominance has to be learned solely on the basis of assignment examples. We thus assume that
either we do not have the opportunity to interact with a decision maker or, if such a possibility
exists, we decided to only ask her questions in terms of assignments to the classes of the partition.
In such a perspective, the intuitive content of the underlying models plays no role, while mastering
the complexity of these models is important as observed in Section 2.2.2, item 3.

ETri-nB-pc is equivalent to Model (E), which is equivalent to the Decomposable model (D1)
and thus to the model based on “at least” decision rules (see Section 3.4). Techniques have been
proposed to learn a decision rule model (see Greco et al., 1999, 2001a,c, Słowiński et al., 2002,
Greco et al., 2016, and, for a recent application of these techniques, Abastante et al., 2014). A
large scale recent application to the detection of frauds in car loans applications is described in
Błaszczyński et al. (2021). The dataset involves 26 187 loans among which 405 were fraudulently
obtained. The dominance-based rough set approach (DRSA) is applied. It determines “at least”
decision rules, which approximately reproduce the partition in fraudulent and non-fraudulent
loans. The approach outperforms two classical machine learning techniques (random forest and
support vector machine). Methods such as DRSA can directly be used to learn an ETri-nB-pc
model since a limiting profile can immediately be deduced from any “at least” decision rule d.
Indeed, the latter specifies minimal levels to be attained on a subset Nd ⊆ N of criteria in
order to be assigned to category A. A minimally acceptable element associated to such a rule
is the n-tuple whose components corresponding to the criteria in Nd are set to the minimal
levels specified in the rule. The components corresponding to any criterion i ̸∈ Nd are set to
the minimal element in Xi (w.r.t. the linear order ≥i). An alternative satisfies rule d iff it is at
least as good as the minimally acceptable element associated to the rule. This correspondence
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between rules and minimally acceptable elements provides a description of the partition in the
unanimous model Eu.

Because Model (D1) is quite general and the learning sets of assignment examples usually
of limited size, using these techniques is not entirely straightforward and, e.g., may lead, in
the decision rule model, to a large number of rules. Moreover, these techniques, when used for
learning an ETri-nB-pc model, produce indeed an ETri-nB-pc model but under the form of a
unanimous model, i.e., in terms of a set of minimally acceptable alternatives, not under a more
compact form, even when there is one.

Having at hand alternative descriptions of Model (D1) may offer an opportunity to control
the complexity of the learned models. It is therefore important to investigate particular cases
of Model (E), in which the cardinality of the set of profiles P is restricted. Unfortunately, the
problem seems to be difficult. This is the subject of a companion paper that deals with these more
technical issues (Bouyssou et al., 2021a). This companion paper only analyzes the particular case
of two profiles coupled with unanimity. Even in this apparently simple case, the problem is not
easy. Hence, our analysis also leaves open the study of the gain of expressiveness brought by
increasing the size of the set of profiles. Going from a single profile, the case studied in Bouyssou
and Marchant (2007a), to an arbitrarily large number of profiles, the case implicitly studied in
Section 4, leads to a huge gain in expressiveness. Is this gain already present when going from
a single profile to a small number of profiles? This question is clearly important as a guide
to learning the parameters of ETri-nB. Our analysis of the case of two profiles coupled with
unanimity shows that it is unlikely that a purely axiomatic investigation will allow us to obtain
clear answers to this question. Hence, this is also a plea to combine axiomatic work with other
types of work, e.g., based on computer simulations.

Instead of constraining the number of limiting profiles in the unanimous model, an alternative
approach would consist of exploring ETri-nB-pc or ETri-nB-I-pc with restricted number of
limiting profiles12. Models ETri-nB-I-pc and (E) with one limiting profile are well-known. Model
(E) with one limiting profile is the noncompensatory sorting (NCS) model characterized by
Bouyssou and Marchant (2007a). The particular case in which the winning coalitions can be
represented by additive weights and a majority threshold corresponds to model ETri-nB-I-pc
with one limiting profile. In the absence of veto, this model is known as MR-Sort (Leroy et al.,
2011, Sobrie et al., 2019)

Several methods have been proposed for learning Model (E) with one limiting profile (Be-
lahcène et al., 2018) or its particular case Model ETri-nB-I-pc with one limiting profile (Leroy
et al., 2011, Sobrie et al., 2019, 2017). These methods rely on various techniques such as mixed
integer programming (MIP), Boolean satisfiability algorithms (SAT, MaxSAT) or metaheuristics.
The size of sets of assignment examples that exact methods (such as MIP, SAT or MaxSAT) can
deal with is limited. In contrast, the metaheuristic designed by Sobrie et al. (2013, 2019) or that
by Olteanu and Meyer (2014) competes with state-of-the-art machine learning algorithms on real
datasets (Tehrani et al., 2012b,a). The size of these datasets, which are benchmarks commonly
used in machine learning, ranges from 120 to 1728 alternatives, the number of attributes, from
3 to 8 and the number of categories, from 2 to 9.

12 With such models, even with one limiting profile, the number of minimally acceptable alternatives (i.e., the
number of limiting profiles in the equivalent unanimous model) can be large. In the simplest case of ETri-nB-I-pc
with one limiting profile and no veto, a minimally acceptable alternative takes the values of the limiting profile
minus the indifference threshold qti on a minimal winning coalition of criteria and the minimal value in Xi on all
other criteria. If the model is such that a coalition is winning whenever it contains at least n/2 criteria (this is
obtained by setting all criteria weights to 1/n and the cutting level λ to 1/2), then the number of minimal winning
coalitions is maximal and is equal to the Sperner number

( n
⌈n/2⌉

)
(see, e.g., Caspard et al., 2012, pp. 116-118).

Therefore, for such a model, the maximal number of minimally acceptable alternatives is equal to this number.
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Characterizing Model (E) with a fixed small number (e.g., 2 or 3) of limiting profiles seems
very difficult. The only thing that can easily be provided is an upper bound on the number
of equivalence classes of the relations ≿i induced by the corresponding twofold partition on the
scale Xi of each criterion (see Observation 2 in Section 2.2.2, for an illustration) and correlatively,
an upper bound on the maximal number of minimally acceptable alternatives (see footnote 14).
Extending the approaches referred to above for learning models with more than one limiting
profile has not been done yet and does not seem straightforward either. In case a formulation
for learning such models when the number of limiting profiles is limited to 2 or 3 would prove
operational, then an incremental learning approach could be envisaged. Start with fitting Model
(E) with one limiting profile to the data. If assignment accuracy is not satisfactory, proceed with
fitting a model with two profiles, etc.

Turning to the learning of an ETri-nB-pc model (using an Electre III outranking relation),
observe first that the case with one limiting profile corresponds to the classical Electre Tri-pc
model. Much effort has been devoted to develop learning methods for this model (e.g., Mousseau
and Słowiński, 1998, Ngo The and Mousseau, 2002, Doumpos et al., 2009). The genetic algorithm
proposed by Doumpos et al. (2009) has been tested on a real dataset (in the banking sector)
involving 100 alternatives evaluated on 7 criteria and assigned to 3 categories. It has also been
tested on artificial datasets, involving up to 1000 alternatives in the learning set, assigned to
categories using randomly generated ETri models. No exact methods have been developed to
date to learn ETri-nB-pc. The genetic algorithm proposed by Fernández et al. (2019) for learning
ETri-nB-pc has shown good performance on a real case study involving 81 assignment examples
(R & D projects) evaluated on 4 criteria assigned to 8 categories. It has also been tested on
artificial datasets assigned to categories by randomly generated ETri-nB-pc (using 5 limiting
profiles in each category boundary).

In conclusion, the general approach, based on the decision rule model and techniques, with-
out restrictions on the generality of Model (D1), is available but does not allow to easily control
the simplicity of the learned model (see Greco et al., 2000, Dembczyński et al., 2003). Current
methods, such as the genetic algorithm proposed by Fernández et al. (2019) are usable. Unfor-
tunately, the scalability of these algorithms is difficult to assess since they have not been tested
on common benchmark datasets 13 .

Alternative approaches remain to be developed. Ideally, they should fulfill the following three
requirements.

1. Focus on a well-defined, preferably characterized, family of assignment models forming a
proper subset of all assignment models (D1) respecting the linearity property or the domi-
nance relation.

2. The models in this family should have a compact description, i.e., there should be a synthetic,
interpretable, manner of describing the set of minimally acceptable alternatives.

3. Learning these models should be computationally tractable, i.e., there should be an algorithm
able to fit, in reasonable computing time, a model in the family to a set of assignment examples
involving several hundreds up to a few thousands assignments.

Model (E) and ETri-nB-pc with a restricted number of limiting profiles fulfill the first
requirement and the second but not the third (except perhaps for Model (E) with one limiting
profile). The additive model (Add) is a candidate that checks all three boxes. It is closely related
with the UTADIS technique and its variants (as already mentioned in Section 3.2). However, its
interpretation is quite at a distance from that of Electre based models, which rely on the idea

13 Incidentally, we came across the recent paper by Silva et al. (2021) in which the decision rule approach (DRSA)
is applied to the rating of sovereign risk; the results are then compared with those obtained using an additive
model and MR-Sort. Unfortunately, the dataset involved is a small one (36 countries).



24

of one or several limiting profiles and outranking relations. These are interpreted as expressing
requirements on each criterion that an alternative should ideally fulfill in order to be acceptable.
A challenging research issue is thus to define a family of models within the Decomposable model
(D1) that are in the spirit of the Electre methods and fulfills the above three requirements.

6.3 Future research and work in progress

Theorem 1 is a simple result that establishes the equivalence of the Decomposable model (D1)
with ETri-nB-pc and related models in the spirit of Electre Tri. Besides issues related to
learning, this result leaves open a number of interesting problems that we intend to deal with in
later studies. Among them, let us mention the following sets of questions.

Algorithmic questions. Is it easy to test whether a partition ⟨A,U⟩ satisfies linearity? Are
there efficient algorithms to find a linear partition close to a partition that is not linear? Is it
easy to test whether it is possible to build a linear partition on the basis of partial information
about A and U? Similar questions arise, when there is a supplementary constraint on the size of
the set of profiles.

Combinatorial questions. Given a set X =
∏n

i=1 Xi, can we devise (easy to evaluate) formulae
for the maximal number of objects in A∗ (this is related to the size of the largest antichain 14 in
a direct product of chains, see Sander, 1993, for the case of the direct product of chains of the
same length)? What is the number of twofold partitions of X =

∏n
i=1 Xi that can be represented

in Model (E) (this is related to the famous problem of Dedekind numbers, see Kahn, 2002,
Kisielewicz, 1988, Ersek Uyanık et al., 2017)?

Questions linked to the number of profiles. Given a learning set of assignment examples that
is compatible with Model (D1), what is the minimal number of limiting profiles of a unanimous
model (or of a Model (E) or of an ETri-nB-pc model) that exactly restores the assignments?
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Appendix: To appear as supplementary material

A Binary relations

We use a standard vocabulary for binary relations. For the convenience of the reader and in order to avoid any
misunderstanding, we detail our vocabulary here. A binary relation T on a set Z is a subset of Z×Z. For x, y ∈ Z,
as is usual, we will often write x T y instead of (x, y) ∈ T .

Let T be a binary relation on Z. We define:

– the asymmetric part Tα of T as x Tα y ⇔ [x T y and Not [y T x]],
– the symmetric part T ι of T as x T ι y ⇔ [x T y and y T x],
– the symmetric complement Tσ of T as x Tσ y ⇔ [Not [x T y] and Not [y T x]],

for all x, y ∈ Z.
A binary relation T on Z is said to be:

(i) reflexive if x T x,
(ii) irreflexive if Not [x T x],
(iii) complete if x T y or y T x,
(iv) symmetric if x T y implies y T x,
(v) asymmetric if x T y implies Not [y T x],
(vi) antisymmetric if [x T y and y T x] ⇒ x = y,
(vii) transitive if [x T y and y T z] ⇒ x T z,
(viii) Ferrers if [x T y and z T w] ⇒ [x T w or z T y],
(ix) semitransitive if [x T y and y T z] ⇒ [x T w or w T z],

for all x, y, z, w ∈ Z.
We list below a number of remarkable structures. A binary relation T on Z is said to be:

(i) a weak order (or complete preorder) if it is complete and transitive,
(ii) a linear order if it is an antisymmetric weak order,
(iii) a semiorder if it is reflexive, Ferrers and semitransitive,
(iv) a strict semiorder if it is irreflexive, Ferrers and semitransitive,
(v) an equivalence if it is reflexive, symmetric, and transitive,
(vi) a partial order if it is reflexive, antisymmetric and transitive.

Notice that a reflexive and Ferrers relation must be complete. Similarly an irreflexive and Ferrers relation must
be asymmetric.

When T is an equivalence relation on Z, the set of equivalence classes of T on Z is denoted Z/T . A partition
of Z is a collection of nonempty subsets of Z that are pairwise disjoint and such that the union of the elements
in this collection is Z. It is clear that, when T is an equivalence relation on Z, Z/T is a partition of Z.

When T on Z is a semiorder, its asymmetric part Tα is irreflexive, Ferrers and semitransitive, i.e., a strict
semiorder.

Any Ferrers and semitransitive T on Z (which includes semiorders and strict semiorders) induces a weak order
Two on Z that is defined as follows:

a Two b if ∀c ∈ Z, [b T c ⇒ a T c] and [c T a ⇒ c T b]. (7)

If T is a semiorder and V is its asymmetric part, it follows that Two = V wo. The weak order induced by a
semiorder is identical to the one induced by its asymmetric part.

Let T and V be two semiorders on Z such that T ⊆ V . We say that (T , V ) is a nested chain of semiorders.
Let Two (resp. V wo) be the weak order on Z induced by T (resp. V ). If a nested chain of semiorders T ⊆ V is
such that the relation Two ∩ V wo is complete (and therefore is a weak order), we say that the nested chain of
semiorders (T , V ) is homogeneous (Doignon et al., 1988).

Finally, let us note that T is a semiorder on a finite set Z iff there are a real-valued function f on Z and a
positive number s > 0 such that, for all a, b ∈ Z, a T b ⇔ f(a) ≥ f(b)− s

B Sketch of the proof of Proposition 4

Suppose that Max(T ,B) is empty. Let x ∈ B. By hypothesis, x does not belong to Max(T ,B). This implies that
there is w1 ∈ B such that w1 Tα x. Clearly, this implies that w1 is distinct from x, because Tα is irreflexive. But
w1 does not belong to Max(T ,B). This implies that there is w2 ∈ B such that w2 Tα w1. Clearly, this implies
that w2 is distinct from both w1 and x. Continuing the reasoning leads to postulating the existence of a chain of
elements wi, i ∈ N+, that are all distinct (otherwise, the transitivity of Tα will lead to violate irreflexivity). This
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violates the finiteness of B. Hence, Max(T ,B) must be nonempty. The proof that Min(T ,B) must be nonempty
is similar. The fact that, for all x, y ∈ Max(T ,B), we have Not [x Tα y] is clear from the definition of Max(T ,B).
The same is clearly true with Min(T ,B).

Suppose now that x ∈ B and there is no y ∈ Max(T ,B) such that y T x. If x ∈ Max(T ,B), the contradiction is
established, because T is reflexive. Suppose, hence, that x /∈ Max(T ,B). There is w1 ∈ B such that w1 Tα x. But
it is impossible that w1 belongs to Max(T ,B). This implies that there is w2 ∈ B such that w2 Tα w1. Because,
Tα is transitive, it is impossible that w2 ∈ Max(T ,B). Because Tα is asymmetric are transitive, it is impossible
that w2 is identical to w1 or to x. Continuing the same reasoning, leads to postulating the existence of a chain
of elements wi, i ∈ N+, that are all distinct. This violates the finiteness of B. Hence, there exists y ∈ Max(T ,B)
such that y T x. The proof that if x ∈ B, there is z ∈ Min(T ,B) such that x T z is similar. 2

C Example: Minimally acceptable alternatives for rational evaluations with one
decimal digit

The ETri-nB model specified in Section 2.2 uses two profiles p1 = (8, 7, 5) and p2 = (5, 6, 8). The indifference,
preference and veto thresholds are, respectively, qti = 1, pti = 2 and vti = 4, the same for all criteria i = 1, 2, 3.
All criteria have the same weight wi =

1
3

and the cutting threshold λ = .6. We apply this model to the set X of
alternatives whose evaluations are rational numbers with one decimal digit ranging in [0, 10]. The set of minimally
acceptable alternatives is determined below.

For x ∈ X to be acceptable, c(x, p1) or c(x, p2) has to be at least equal to λ = .6. We develop the consequences
of this condition for p1, the case of p2 being similar. This condition entails that xi must be strictly greater than
p1i − 2 for at least two criteria. We distinguish two cases: Case 1: xi is strictly greater than p1i − 2 on all three
criteria; Case 2: xi is strictly greater than p1i − 2 on exactly two criteria and less than this value on the third
criterion.

C.1 Case 1

Let ci be shorthand for ci(x, p
1), i = 1, 2, 3. If x ∈ A, c(x, p1) =

∑3
i=1 wici = 1/3

∑3
i=1 ci ≥ .6. If xi is strictly

greater than p1i − 2 for all i, then we have
∑3

i=1 ci ≥ 1.8 with ci > 0 for all i. The alternative y = (7, 6, 4) is
the minimal one realizing c(y, p1) = 1. With respect to (7, 6, 4), we may decrease all coordinates by a total of 1.2
while remaining in A. For instance, for x = (6.5, 5.8, 3.5), we have

∑3
i=1 ci = 1.8 and x is minimally acceptable.

There are actually
(11
2

)
= 55 ordered partitions of 12 objects (12 tenths) in three nonempty subsets. Among

them, 3 partitions have a class of cardinal 10, which we must exclude. Hence, there are 52 ways of decreasing each
coordinate of (7, 6, 4) by at least one tenth, for a total amount of 12/10 while yielding rational coordinates with
one decimal digit, that are respectively strictly greater than 6, 5, 3. To this we have to add the different ways of
decreasing two of the coordinates of (7, 6, 4) by a total amount of 12/10, while keeping unchanged the value of
the third coordinate. There are 3× 7 = 21 such alternatives. Hence there are 52 + 21 = 73 minimally acceptable
elements of this type for p1 and 73 for p2.

C.2 Case 2

The second type of minimally acceptable elements x satisfies xi > p1i − 2 for two values of i; the other coordinate
does not satisfy this inequality. Assume that the latter coordinate is i = 3. The condition c(x, p1) ≥ .6 is only
satisfied in the following 6 cases:

1. (x1, x2) = (7, 6) and x3 < 3; in such a case c(x, p1) = 2/3;
2. (x1, x2) = (6.9, 6) or (7, 6.9) and x3 < 3; in such a case c(x, p1) = 19/30;
3. (x1, x2) = (6.8, 6) or (6.9, 5.9) or (7, 5.8) and x3 < 3; in such a case c(x, p1) = 6/10;

Let us now compute in each case, the minimal value of x3 such that σ(x, p1) ≥ .6.

1. If x3 = 1.6, d3(1.6, 5) = 0.7 > 2/3 = c(x, p1). We have 1−d3(1.6,5)

1−c(x,p1
=

3/10
1/3

= 9/10. Therefore σ((7, 6, 1.6), p1) =
2/3× 9/10 = .6. Taking x3 < 1.6 would lead to an unacceptable alternative. Hence (7, 6, 1.6) is minimal in A.

2. If x3 = 1.7, d3(1.7, 5) = 0.65 > 19/30 = c(x, p1). We have 1−d3(1.7,5)

1−c(x,p1
=

7/20
11/30

= 21/22. Therefore, for

(x1, x2) = (6.9, 6) or (7, 6.9), σ((x1, x2, 1.7), p1) = 19/30 × 21/22 ≈ .6045 > .6. Taking x3 < 1.7 would lead
to unacceptable alternatives. Hence (6.9, 6, 1.7) and (7, 5.9, 1.7) are minimal in A.
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3. If x3 = 1.8, d3(1.8, 5) = 0.6 = c(x, p1). We have σ((x1, x2, 1.8), p1) = c((x1, x2, 1.8), p1) = .6, for (x1, x2) =
(6.8, 6) or (6.9, 5.9) or (7, 5.8). Taking x3 < 1.8 would lead to unacceptable alternatives. Hence (6.8, 6, 1.8),
(6.9, 5.9, 1.8) and (7, 5.8, 1.8) are minimal in A.

There are thus 6 minimally acceptable alternatives with their third coordinate smaller than p13 − 3. By symmetry,
there are 6 minimally acceptable alternatives having a third coordinate smaller than p1i − 3. Therefore, there are
18 minimally acceptable alternatives of the second type for p1 and similarly for p2.

Summing up, the total number of minimally acceptable alternatives is 2 × (73 + 18) = 182. None of these
dominates another, as it can be easily verified.

D Example: A linear partition having only a unanimous representation in model
(E)

The example has n = 4 and X1 = X2 = X3 = X4 = {0, 1, 2}. We let A = {x ∈ X :
∑4

i=1 xi ≥ 6}. There are
34 = 81 objects in X, 15 are in A, while 66 are in U .

Observe first that, on all attributes, we have 2 ≻i 1 ≻i 0. Indeed, with i = 1, we have:

(2, 0, 2, 2) ∈ A, (1, 0, 2, 2) ∈ U ,

(1, 1, 2, 2) ∈ A, (0, 1, 2, 2) ∈ U .

The same relations clearly hold on all attributes since the problem is symmetric.
This partition clearly has a representation in Model (E) with F = {N} and a set of profiles consisting of all

10 objects in the class 6 (i.e., having a sum of components equal to 6). By construction, these 10 profiles are not
linked by dominance (this is a representation in model (Ec)).

Our objective is to try obtaining a representation in Model (E) using a set F that is not reduced to {N}.
Notice first that bringing the veto relations into play will not help us do so. Indeed, it is easy to check that if a
representation exists in model (E), a representation exists in Model (Ec) (because whatever xi, we can find a−i

such that (xi, a−i) ∈ A). Hence, let us try to find a representation in Model (Ec).
This clearly excludes to take any object in the class 6 as a profile. Indeed, a family F that is not reduced to

{N} would then imply that some object in a class strictly lower than 6 belongs to A, which is false. Hence, we
must take as profiles objects belonging to the class 7 or 8.

Because profiles cannot dominate one another, if we take the object (2, 2, 2, 2) as a profile, it must be the
only one. We know that (2, 2, 1, 1) ∈ A. Hence, we must have {1, 2} ∈ F . This is contradictory. Indeed, since
{1, 2} ∈ F , we should have (2, 2, 0, 0) ∈ A, a contradiction.

Hence the set of profiles must consist exclusively of objects belonging to the class 7.
Suppose that there is a unique profile, e.g., (2, 2, 2, 1). It is clear that the set {1, 2, 3} must be included in

all elements of F (otherwise we would have an object in the class 5 belonging to A). Because (2, 2, 2, 0) ∈ A,
it must be true that {1, 2, 3} is an element of F , which must therefore be equal to {{1, 2, 3}, {1, 2, 3, 4}}. This
is contradictory since we know that (0, 2, 2, 2) ∈ A. It is easy to see that, the problem being symmetric, it is
therefore impossible to have a representation using a single profile from the class 7.

A similar reasoning can be made if we consider the cases of two or three profiles from the class 7 as profiles.
Suppose finally that we choose all four profiles from the class 7: (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), and (2, 2, 2, 1).

Using the same reasoning as above, the set F must contain the sets {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, and {1, 2, 3}, since
(0, 2, 2, 2), (2, 0, 2, 2), (2, 2, 0, 2) and (2, 2, 2, 0) are all in A. But this is contradictory since this would imply that
(0, 1, 2, 2) ∈ A (since (2, 1, 2, 2) is a profile and {2, 3, 4} ∈ F).

Therefore, the only possible representation of this partition in Model (E) must use as profiles all 10 elements
in the class 6 together with F = {N}.

E An example of linear partition not representable in Model (Add)

Let X =
∏4

i=1 Xi, where Xi = {0, 1}. Let A = {1100, 0011, 1110, 1101, 1011, 0111, 1111} and U the complement
of A in X. The partition ⟨A,U⟩ respects the dominance relation determined by the natural order on Xi, for all
i. This partition cannot be represented in Model (Add). Assuming the contrary would entail the following:

u1(1) + u2(1) + u3(0) + u4(0) > 0

u1(0) + u2(0) + u3(1) + u4(1) > 0.
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This implies that
∑4

i=1 ui(1) +
∑4

i=1 ui(0) > 0. Since 1010 and 0101 belong yo U , we should also a have:

u1(1) + u2(0) + u3(1) + u4(0) ≤ 0

u1(0) + u2(1) + u3(0) + u4(1) ≤ 0.

Therefore we must have
∑4

i=1 ui(1) +
∑4

i=1 ui(0) ≤ 0, a contradiction.


