
Appendix: To appear as supplementary material

A Binary relations
We use a standard vocabulary for binary relations. For the convenience of the
reader and in order to avoid any misunderstanding, we detail our vocabulary here.
A binary relation T on a set Z is a subset of Z × Z. For x, y ∈ Z, as is usual, we
will often write x T y instead of (x, y) ∈ T .

Let T be a binary relation on Z. We define:

• the asymmetric part Tα of T as x Tα y ⇔ [x T y and Not [y T x]],

• the symmetric part T ι of T as x T ι y ⇔ [x T y and y T x],

• the symmetric complement T σ of T as x T σ y ⇔ [Not [x T y] and Not [y T x]],

for all x, y ∈ Z.
A binary relation T on Z is said to be:

(i) reflexive if x T x,

(ii) irreflexive if Not [x T x],

(iii) complete if x T y or y T x,

(iv) symmetric if x T y implies y T x,

(v) asymmetric if x T y implies Not [y T x],

(vi) antisymmetric if [x T y and y T x] ⇒ x = y,

(vii) transitive if [x T y and y T z] ⇒ x T z,

(viii) Ferrers if [x T y and z T w] ⇒ [x T w or z T y],

(ix) semitransitive if [x T y and y T z] ⇒ [x T w or w T z],

for all x, y, z, w ∈ Z.
We list below a number of remarkable structures. A binary relation T on Z is

said to be:

(i) a weak order (or complete preorder) if it is complete and transitive,

(ii) a linear order if it is an antisymmetric weak order,

(iii) a semiorder if it is reflexive, Ferrers and semitransitive,

i



(iv) a strict semiorder if it is irreflexive, Ferrers and semitransitive,

(v) an equivalence if it is reflexive, symmetric, and transitive,

(vi) a partial order if it is reflexive, antisymmetric and transitive.

Notice that a reflexive and Ferrers relation must be complete. Similarly an ir-
reflexive and Ferrers relation must be asymmetric.

When T is an equivalence relation on Z, the set of equivalence classes of T on
Z is denoted Z/T . A partition of Z is a collection of nonempty subsets of Z that
are pairwise disjoint and such that the union of the elements in this collection is
Z. It is clear that, when T is an equivalence relation on Z, Z/T is a partition of
Z.

When T on Z is a semiorder, its asymmetric part Tα is irreflexive, Ferrers and
semitransitive, i.e., a strict semiorder.

Any Ferrers and semitransitive T on Z (which includes semiorders and strict
semiorders) induces a weak order Two on Z that is defined as follows:

a Two b if ∀c ∈ Z, [b T c ⇒ a T c] and [c T a ⇒ c T b]. (7)

If T is a semiorder and V is its asymmetric part, it follows that Two = V wo. The
weak order induced by a semiorder is identical to the one induced by its asymmetric
part.

Let T and V be two semiorders on Z such that T ⊆ V . We say that (T , V ) is
a nested chain of semiorders. Let Two (resp. V wo) be the weak order on Z induced
by T (resp. V ). If a nested chain of semiorders T ⊆ V is such that the relation
Two∩V wo is complete (and therefore is a weak order), we say that the nested chain
of semiorders (T , V ) is homogeneous (Doignon et al., 1988).

Finally, let us note that T is a semiorder on a finite set Z iff there are a real-
valued function f on Z and a positive number s > 0 such that, for all a, b ∈ Z,
a T b ⇔ f(a) ≥ f(b)− s

B Sketch of the proof of Proposition 4
Suppose that Max(T ,B) is empty. Let x ∈ B. By hypothesis, x does not belong
to Max(T ,B). This implies that there is w1 ∈ B such that w1 T

α x. Clearly, this
implies that w1 is distinct from x, because Tα is irreflexive. But w1 does not belong
to Max(T ,B). This implies that there is w2 ∈ B such that w2 Tα w1. Clearly,
this implies that w2 is distinct from both w1 and x. Continuing the reasoning
leads to postulating the existence of a chain of elements wi, i ∈ N+, that are all
distinct (otherwise, the transitivity of Tα will lead to violate irreflexivity). This
violates the finiteness of B. Hence, Max(T ,B) must be nonempty. The proof that
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Min(T ,B) must be nonempty is similar. The fact that, for all x, y ∈ Max(T ,B),
we have Not [x Tα y] is clear from the definition of Max(T ,B). The same is clearly
true with Min(T ,B).

Suppose now that x ∈ B and there is no y ∈ Max(T ,B) such that y T x. If
x ∈ Max(T ,B), the contradiction is established, because T is reflexive. Suppose,
hence, that x /∈ Max(T ,B). There is w1 ∈ B such that w1 Tα x. But it is
impossible that w1 belongs to Max(T ,B). This implies that there is w2 ∈ B such
that w2 Tα w1. Because, Tα is transitive, it is impossible that w2 ∈ Max(T ,B).
Because Tα is asymmetric are transitive, it is impossible that w2 is identical to w1

or to x. Continuing the same reasoning, leads to postulating the existence of a
chain of elements wi, i ∈ N+, that are all distinct. This violates the finiteness of
B. Hence, there exists y ∈ Max(T ,B) such that y T x. The proof that if x ∈ B,
there is z ∈ Min(T ,B) such that x T z is similar. 2

C Example: Minimally acceptable alternatives for
rational evaluations with one decimal digit

The ETri-nB model specified in Section 2.2 uses two profiles p1 = (8, 7, 5) and
p2 = (5, 6, 8). The indifference, preference and veto thresholds are, respectively,
qti = 1, pti = 2 and vti = 4, the same for all criteria i = 1, 2, 3. All criteria have
the same weight wi =

1
3

and the cutting threshold λ = .6. We apply this model to
the set X of alternatives whose evaluations are rational numbers with one decimal
digit ranging in [0, 10]. The set of minimally acceptable alternatives is determined
below.

For x ∈ X to be acceptable, c(x, p1) or c(x, p2) has to be at least equal to
λ = .6. We develop the consequences of this condition for p1, the case of p2 being
similar. This condition entails that xi must be strictly greater than p1i − 2 for at
least two criteria. We distinguish two cases: Case 1: xi is strictly greater than
p1i − 2 on all three criteria; Case 2: xi is strictly greater than p1i − 2 on exactly two
criteria and less than this value on the third criterion.

C.1 Case 1

Let ci be shorthand for ci(x, p
1), i = 1, 2, 3. If x ∈ A, c(x, p1) =

∑3
i=1 wici =

1/3
∑3

i=1 ci ≥ .6. If xi is strictly greater than p1i − 2 for all i, then we have∑3
i=1 ci ≥ 1.8 with ci > 0 for all i. The alternative y = (7, 6, 4) is the minimal one

realizing c(y, p1) = 1. With respect to (7, 6, 4), we may decrease all coordinates by
a total of 1.2 while remaining in A. For instance, for x = (6.5, 5.8, 3.5), we have∑3

i=1 ci = 1.8 and x is minimally acceptable. There are actually
(
11
2

)
= 55 ordered

partitions of 12 objects (12 tenths) in three nonempty subsets. Among them, 3
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partitions have a class of cardinal 10, which we must exclude. Hence, there are
52 ways of decreasing each coordinate of (7, 6, 4) by at least one tenth, for a total
amount of 12/10 while yielding rational coordinates with one decimal digit, that
are respectively strictly greater than 6, 5, 3. To this we have to add the different
ways of decreasing two of the coordinates of (7, 6, 4) by a total amount of 12/10,
while keeping unchanged the value of the third coordinate. There are 3× 7 = 21
such alternatives. Hence there are 52 + 21 = 73 minimally acceptable elements of
this type for p1 and 73 for p2.

C.2 Case 2

The second type of minimally acceptable elements x satisfies xi > p1i − 2 for two
values of i; the other coordinate does not satisfy this inequality. Assume that
the latter coordinate is i = 3. The condition c(x, p1) ≥ .6 is only satisfied in the
following 6 cases:

1. (x1, x2) = (7, 6) and x3 < 3; in such a case c(x, p1) = 2/3;

2. (x1, x2) = (6.9, 6) or (7, 6.9) and x3 < 3; in such a case c(x, p1) = 19/30;

3. (x1, x2) = (6.8, 6) or (6.9, 5.9) or (7, 5.8) and x3 < 3; in such a case c(x, p1) =
6/10;

Let us now compute in each case, the minimal value of x3 such that σ(x, p1) ≥ .6.

1. If x3 = 1.6, d3(1.6, 5) = 0.7 > 2/3 = c(x, p1). We have 1−d3(1.6,5)
1−c(x,p1

= 3/10
1/3

=

9/10. Therefore σ((7, 6, 1.6), p1) = 2/3 × 9/10 = .6. Taking x3 < 1.6 would
lead to an unacceptable alternative. Hence (7, 6, 1.6) is minimal in A.

2. If x3 = 1.7, d3(1.7, 5) = 0.65 > 19/30 = c(x, p1). We have 1−d3(1.7,5)
1−c(x,p1

=
7/20
11/30

= 21/22. Therefore, for (x1, x2) = (6.9, 6) or (7, 6.9), σ((x1, x2, 1.7), p
1) =

19/30 × 21/22 ≈ .6045 > .6. Taking x3 < 1.7 would lead to unacceptable
alternatives. Hence (6.9, 6, 1.7) and (7, 5.9, 1.7) are minimal in A.

3. If x3 = 1.8, d3(1.8, 5) = 0.6 = c(x, p1). We have σ((x1, x2, 1.8), p
1) =

c((x1, x2, 1.8), p
1) = .6, for (x1, x2) = (6.8, 6) or (6.9, 5.9) or (7, 5.8). Tak-

ing x3 < 1.8 would lead to unacceptable alternatives. Hence (6.8, 6, 1.8),
(6.9, 5.9, 1.8) and (7, 5.8, 1.8) are minimal in A.

There are thus 6 minimally acceptable alternatives with their third coordinate
smaller than p13 − 3. By symmetry, there are 6 minimally acceptable alternatives
having a third coordinate smaller than p1i − 3. Therefore, there are 18 minimally
acceptable alternatives of the second type for p1 and similarly for p2.

Summing up, the total number of minimally acceptable alternatives is 2×(73+
18) = 182. None of these dominates another, as it can be easily verified.
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D Example: A linear partition having only a unan-
imous representation in model (E)

The example has n = 4 and X1 = X2 = X3 = X4 = {0, 1, 2}. We let A = {x ∈
X :

∑4
i=1 xi ≥ 6}. There are 34 = 81 objects in X, 15 are in A, while 66 are in U .

Observe first that, on all attributes, we have 2 ≻i 1 ≻i 0. Indeed, with i = 1,
we have:

(2, 0, 2, 2) ∈ A, (1, 0, 2, 2) ∈ U ,
(1, 1, 2, 2) ∈ A, (0, 1, 2, 2) ∈ U .

The same relations clearly hold on all attributes since the problem is symmetric.
This partition clearly has a representation in Model (E) with F = {N} and

a set of profiles consisting of all 10 objects in the class 6 (i.e., having a sum
of components equal to 6). By construction, these 10 profiles are not linked by
dominance (this is a representation in model (Ec)).

Our objective is to try obtaining a representation in Model (E) using a set F
that is not reduced to {N}. Notice first that bringing the veto relations into play
will not help us do so. Indeed, it is easy to check that if a representation exists
in model (E), a representation exists in Model (Ec) (because whatever xi, we can
find a−i such that (xi, a−i) ∈ A). Hence, let us try to find a representation in
Model (Ec).

This clearly excludes to take any object in the class 6 as a profile. Indeed, a
family F that is not reduced to {N} would then imply that some object in a class
strictly lower than 6 belongs to A, which is false. Hence, we must take as profiles
objects belonging to the class 7 or 8.

Because profiles cannot dominate one another, if we take the object (2, 2, 2, 2)
as a profile, it must be the only one. We know that (2, 2, 1, 1) ∈ A. Hence, we
must have {1, 2} ∈ F . This is contradictory. Indeed, since {1, 2} ∈ F , we should
have (2, 2, 0, 0) ∈ A, a contradiction.

Hence the set of profiles must consist exclusively of objects belonging to the
class 7.

Suppose that there is a unique profile, e.g., (2, 2, 2, 1). It is clear that the set
{1, 2, 3} must be included in all elements of F (otherwise we would have an object
in the class 5 belonging to A). Because (2, 2, 2, 0) ∈ A, it must be true that {1, 2, 3}
is an element of F , which must therefore be equal to {{1, 2, 3}, {1, 2, 3, 4}}. This
is contradictory since we know that (0, 2, 2, 2) ∈ A. It is easy to see that, the
problem being symmetric, it is therefore impossible to have a representation using
a single profile from the class 7.

A similar reasoning can be made if we consider the cases of two or three profiles
from the class 7 as profiles.
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Suppose finally that we choose all four profiles from the class 7: (1, 2, 2, 2),
(2, 1, 2, 2), (2, 2, 1, 2), and (2, 2, 2, 1). Using the same reasoning as above, the set
F must contain the sets {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, and {1, 2, 3}, since (0, 2, 2, 2),
(2, 0, 2, 2), (2, 2, 0, 2) and (2, 2, 2, 0) are all in A. But this is contradictory since this
would imply that (0, 1, 2, 2) ∈ A (since (2, 1, 2, 2) is a profile and {2, 3, 4} ∈ F).

Therefore, the only possible representation of this partition in Model (E) must
use as profiles all 10 elements in the class 6 together with F = {N}.

E An example of linear partition not representable
in Model (Add)

Let X =
∏4

i=1Xi, where Xi = {0, 1}. Let A = {1100, 0011, 1110, 1101, 1011, 0111, 1111}
and U the complement of A in X. The partition ⟨A,U⟩ respects the dominance
relation determined by the natural order on Xi, for all i. This partition cannot be
represented in Model (Add). Assuming the contrary would entail the following:

u1(1) + u2(1) + u3(0) + u4(0) > 0

u1(0) + u2(0) + u3(1) + u4(1) > 0.

This implies that
∑4

i=1 ui(1) +
∑4

i=1 ui(0) > 0. Since 1010 and 0101 belong yo U ,
we should also a have:

u1(1) + u2(0) + u3(1) + u4(0) ≤ 0

u1(0) + u2(1) + u3(0) + u4(1) ≤ 0.

Therefore we must have
∑4

i=1 ui(1) +
∑4

i=1 ui(0) ≤ 0, a contradiction.
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