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Fiber Bragg Grating Spectra in Graded-index
Multimode Optical Fibers

Ying-Gang Nan, Junjun Pan, Fu Liu, Xuehao Hu, and Patrice Mégret

Abstract—In this paper, we describe a simulation method to
analyze the spectral properties of fiber Bragg gratings written
in silica-based multimode graded-index fiber, and compare the
simulation results with experimental spectra measured in Bragg
gratings made in a commercially available graded-index silica
fiber. The simulation provides the locations of the resonance
wavelengths and uses the coupled-mode theory and the modal
field equations to find the detail of the reflection and transmission
spectra. A good agreement between the simulation and the
experimental results is found.

Index Terms—Fiber Bragg gratings (FBGs), multimode fiber
(MMF), graded-index, coupling coefficient, FBG spectra.

I. INTRODUCTION

F IBER Bragg gratings in multimode optical fibers (MMF)
have attracted more and more attention due to their

excellent properties useful for many applications [1]–[6]. For
example, (1) mode group multiplexing can be used to multiply
the capacity of high-speed data transmission in [1] for optical
communications, and (2) a gold-coated MMF Tilted Fiber
Bragg grating (TFBG) depicts a refractometer with a sensitiv-
ity of 134.89 nm/RIU, an enhancement of approximately 22 %
compared to TFBG of single-mode fiber for sensing in [2].
The spectral characteristics of FBGs have been investigated
by many researchers and interesting results are disclosed
in articles [7]–[12]. In [7], many types of gratings were
investigated including uniform, apodized, chirped, discrete
phase-shifted, and superstructure gratings; short-period and
long-period gratings; symmetric and tilted gratings; cladding-
mode and radiation-mode coupling gratings. However, for the
uniform fiber Bragg grating computation, only the singlemode
fiber was analyzed [7]. For FBGs in multimode fibers, [11] and
[8] report the characteristics of the experimental spectra and
the number of the principal modes, respectively. Computation
of the FBG spectra are discussed in [9] and [10], where this
latter presents a numerical method based on the fourth-order
Runge-Kutta formula to solve the coupled-mode equations
between the LP01 and LP11 modes, without any experimental
verification. The authors in [9] report a method describing
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mode coupling effects in MMF by using the transfer matrix
formalism. This method results in a concise equation to
compute the FBG spectra in multimode graded-index fiber, and
two experimental systems are used to measure the reflection
spectra.

Although these simulation methods are helpful to under-
stand the properties of the FBG spectra in multimode grade-
index fiber, most of them are limited to the coupling between
a few number of modes. In this work, we use the coupled-
mode equations to compute the coupling between much more
modes of the optical fiber. Moreover, the relations between the
spectra profile and the FBG structures (i.e., symmetric and
asymmetric) are investigated in this work. In particular, we
compute the interactions between all the mode groups [8] and
the cross-mode groups [3] that can propagate into the fiber.
This finally gives the theoretical reflection spectra and trans-
mission spectra, that can be compared with the experimental
ones.

The paper is organized as follows. In the section II, we
detail the simulation carried out to compute the grating spectra,
whereas experimental results are presented in section III and
IV.

II. THEORY AND SIMULATION

To compute the FBG spectra in a multimode graded-index
fiber, two theoretical tools are needed (1) the propagation
equations in a graded-index fiber, and (2) the coupled-mode
theory. These two theories are well-known, and can be found
in many books like [13]–[16]

Firstly, the resonance wavelengths are calculated among
all the mode groups and cross-mode groups. Then, all the
coupling coefficients of the mode groups and the cross-mode
groups are computed by applying the coupled-mode theory.
From the resonance wavelengths and the coupling coefficients,
the FBG spectra of the graded-index multimode fiber are
simulated when appropriate boundary conditions are specified.

A. Resonance Wavelength calculations

For a parabolic graded-index (GI) multimode fibers (MMF),
the refractive index profile is given by

n2(r) =

{
n2co

(
1 − 2∆ r2

a2

)
0 ≤ r ≤ a,

n2cl r ≥ a,
(1)

where a is the core radius, nco and ncl are the refractive indices
at r = 0 and r = a, respectively, and ∆ = (n2co−n2cl)/2n2co is
the index difference between the core and the cladding. The
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estimated number N of modes that can propagate in GI MMF
is given by [16]

N =
V 2

4
, (2)

where V = (2πaNA)/λ is the normalized frequency with
NA =

√
n2co − n2cl = nco

√
2∆ the numerical aperture.

In this work, we use a commercially available graded-index
MMF (Corning 50/125), with a core diameter, a cladding
diameter and a numerical aperture of 50 µm, 125 µm and
0.2, respectively [17]. Using (2), the estimated number N
of modes LPlv that can propagate in this fiber is N ≈ 100
as nco ≈ 1.4585 and λ = 1550 nm. Although there is
a significant number of modes LPlv that can propagate, a
detailed analysis of the individual modal propagation constants
βlv in GI MMF [18], [19] reveals that modes LPlv can be
clustered in groups of modes indexed by m = l + 2v − 1:
each mode within a group has the same propagation constant
βm [13], and this propagation constant significantly changes
from mode group to mode group.

There are different methods to analyze the mode prop-
agation in parabolic graded-index multimode fiber, such as
infinite medium approximation [19], [20], perturbation approx-
imation [21], variational analysis [22], rigorous scalar wave
analysis [23], and staircase approximation [24]. In this work,
we use the infinite medium approximation method to analyze
the characteristics of the modes propagation in our fiber. Using
the expression of the propagation constants in [19], [20], the
normalized propagation constant b is expressed as

b = 1− 2m

V
, (3)

where m is the order of the mode group.
Fig. 1 plots Eq. (3), i.e., b versus the normalized frequency

V number, and shows that the number of such mode groups
corresponds to the expression derived in [8], [18], [25]

M =
√
N =

V

2
. (4)

Fig. 1. Plots of V number and normalized propagation constant for a parabolic
graded-index fiber, and the refractive index profile (inset).

For the graded-index multimode Corning 50/125 fiber, for
V ≈ 20, the number M of mode groups is M ≈ 10 which
agrees with the results of Fig. 1.

In the following, we will use the subscript m to describe a
mode group, and we will consider m = 1, 2, 3, . . . , 10 for the
GI Corning 50/125 MMF. The effective refractive index nm
of the mth mode group can be expressed as [3], [8], [13]

nm = nco
√
1− 4m∆/V. (5)

Following reference [8], the cross-mode group parameter
is used to describe a mode stimulated by the two neighboring
mode groups m and m+1 in a fiber Bragg structure. According
to the Bragg wavelength equation λBragg = 2neffΛ, the
resonance wavelengths of the mth mode group and mth cross-
mode group are given by

λm = 2nmΛ, (6a)
λcrossm = (nm + nm+1)Λ. (6b)

Using (5), (6a) and (6b), the wavelength spacing between two
adjacent mode group reflection peaks is equal to [8]

∆λ =
λ20NA

2πan2co
. (7)

Table I gives the computed resonance wavelengths of the
mth mode group and mth cross-mode group for a grating
period of Λ = 530 nm that corresponds to the one made
experimentally in section III.

TABLE I
DISTRIBUTION OF COMPUTED BRAGG RESONANCE WAVELENGTHS IN

CORNING 50/125 GI MMF FIBER

m nm λm (nm) λcross
m (nm)

1 1.4601 1547.66 1546.92
2 1.4587 1546.19 1545.45
3 1.4573 1544.71 1543.97
4 1.4559 1543.23 1542.49
5 1.4545 1541.75 1541.00
6 1.4531 1540.26 1539.52
7 1.4517 1538.78 1538.04
8 1.4503 1537.29 1536.55
9 1.4489 1535.81 1535.06

10 1.4475 1534.32

B. Coupling Theory

The fiber Bragg grating (FBG) is a periodic variation of
the refractive index of the core, which generates a wavelength
specific dielectric mirror. It reflects particular wavelengths of
the light and transmits all others. Fig. 2 shows the schematic
of an FBG in the fiber, and illustrates the symmetry of the
grating structure relative to the fiber axis.

Currently, there are many different methods to compute the
FBG spectra in the optical fiber such as coupling equation
method [7], transverse matrix method [26], and Monte Carlo
method [27]. Here we use the coupled-mode equations as a
straightforward and accurate method to get the FBG spectra
in the MMF. To simplify, two approximations are nevertheless
made:
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Fig. 2. Schematic of FBG with symmetrical and asymmetrical structures in
GI MMF Fiber.

• according to Olshansky’s selection rules, the coupling is
dominant by transitions between neighboring two mode
groups [13], [18], [25];

• ”synchronous approximation” [7] and simplified mode
differential equation are used [15].

The power differential equations for two counter-propagating
mode groups m and l can be found in [10], [28]. Furthermore,
for a uniform grating, the coupling coefficient of two mode
groups is described by the following equation [7], [13], [29]

κm,l(z) =
υωϵ0
8

∫∫
Scos

∆ϵ(z)ψ⃗mψ⃗
∗
l dS , (8)

where Scos is the cross-section of the grating, ω is the
angular frequency, ϵ0 is dielectric permittivity of the free
space, ∆ϵ(z) = 2nδn(z), δn(z) is the refractive index change
in the core, and υ is the fringe visibility. In the particular
of the self-coupling, the coefficient κm,m is simply written
as κm. The most important parameter in (8) is the trans-
verse field profile distribution (ψ⃗m(r, φ)). Here, we use the
weak guiding approximation as a concise and straightforward
method to compute the transverse field profile because most
practical graded-index MMFs, including the one used in our
experiment, are weakly guiding, that is the relative index
difference ∆ ≪ 1 [13]. In this approximation, the modes are
assumed to be nearly transverse and have an arbitrary state of
polarization [13]. Now, in theory, if we put the field profile
equation of mode groups m and m + 1 into (8), we obtain
κm,m+1. However, in practice, the grating diameter is usually
less than the fiber core diameter, and depending of the setup
alignment, two FBG structures are possible, i.e., symmetric
and asymmetric as shown in Fig. 2. The cross-section Scos

is expressed in polar coordinates as
∫ r∗

0

∫ φ∗

0
rdrdφ, where

r∗ and φ∗ represent the grating radius (0 to d
2 ) and the fiber

cross-section angles (≤ 2π). For centered and symmetrical
gratings, ∆ϵ(r, φ, z) has a cylindrical symmetry around the
fiber axis and κm,m+1 is zero. For asymmetric gratings,
∆ϵ(r, φ, z) is no longer centered on the fiber axis, and has no
longer a cylindrical symmetry. This impacts all the coupling
coefficients, but the effect is much more visible on κm,m+1

that is no longer equal to zero.
On the one hand, the radius of the grating (d2 in Fig. 2)

influences the values of the self-coupling coefficients κm in
(8). In this simulation, the refractive index change and the
fringe visibility are δn = 8.5×10−4 and υ = 0.1, respectively.
Moreover, the cross-section Scos is a circle centered on the
fiber axis with r∗ = d

2 and φ∗ = 2π (symmetrical grating).

Figure 3 represents the self-coupling coefficients distribution
among different mode groups (first five mode groups) with
the increase of the radius of the grating (d2 ) in the cross
section of fiber core. As mode groups are made of a mixture

Fig. 3. Distribution of self-coupling coefficients in different mode groups for
symmetrical gratings with radius ( d

2
).

of LP modes [13], we computed the coupling coefficients as
an average. For example, the third mode group (m = 3) is
a combination of LP21 and LP02 [19], so we evaluate κ3
by (κLP21

+ κLP02
)/2. It is clear in Fig. 3 that the self-

coupling coefficient decreases with the increase of the order
of the mode group, i.e., κm+1 < κm when d

2 < 20 µm. All
the mode groups reach the maximal self-coupling coefficient
when the grating fully covers the core (d2 = 25 µm). Therefore,
for given δn and υ, the first mode group (m = 1) shows
a dominant resonance peak reflectivity in the FBG spectra
during the inscription, and the maximal reflectivities of the
other mode groups depend on the d

2 .
On the other hand, the FBG position inside the core relative

to the fiber axis also influences the amplitude of the coupling
coefficients. To see this effect, we assume the grating to be
located in a circle of radius d

2 = 4 µm, but shifted vertically
or horizontally relative to the fiber axis as shown in Fig. 4.
The first three coupling coefficients (first mode group κ1, first

Fig. 4. The evolution of grating locations with two directions: (a) a to e, and
(b) F to J in cross section of the fiber core in the polar coordinates.

cross-mode group κcross1 = κ1,2, and second mode group
κ2) are computed and monitored with the evolution of the
grating locations. Fig. 5 shows that κ1 has the same behavior
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vertically and horizontally, whereas it is not the case for the
other coefficients. It is due to the angular dependence of the
modes: LP01 is independent of φ, whereas LP11 varies in
cos(φ) or sin(φ).

Fig. 5. The evolution of coupling coefficients under different grating locations.

According to the simulation results, the following conclu-
sion are drawn:

• For the first mode group, κ1 shows the same values for the
locations that have the same distance to the core center.
In other words, the first mode group coupling coefficient
is the independent of the fiber polarization. κ1 reaches
its maximum value when the grating is centered on the
fiber axis;

• For the second mode group, κ2, shows an opposite ten-
dency with the evolution of the grating locations. When
LP11 is expressed with the sin(φ) function, κ2 shows a
minimum value in location c, and a maximum value in
location H . κ2 shows totally an opposite response to the
grating locations evolution when LP11 is expressed as
cos(φ) function;

• For the first cross-mode group, κcross1 shows a more com-
plex dependence with the grating locations. When LP11

is expressed with the sin(φ) function, κcross1 equals to 0
in locations F , G, H , I , and J , respectively. However,
κcross1 equals to 0 in locations a, b, c, d, and e when LP11

is expressed with the cos(φ) function. It should be noted
that κcross1 always equals to 0 when grating location at the
core center, highlighting the fact that the cross-coupling
is not possible in symmetric grating.

C. Bragg grating Spectra for symmetric structures

After we get the coupling coefficients of the FBG, the
coupled first-order differential equations of two mode groups
are analytically solved when appropriate boundary conditions
are specified. If Rm and Sm are the amplitudes of the
normalized forward and counter propagating mode group m,
respectively, the solutions of the coupled equations, with the
boundary conditions Rm(−L/2) = 1 and Sm(L/2) = 0, are

given in [29] as

Rm(z) =
αc cosh(αc(

L
2 − z)) + iτ sinh(αc(

L
2 − z))

αc cosh(αcL) + iτ sinh(αcL)
eiτ(z+

L
2 ),

(9)

Sm(z) =
iκm sinh(αc(

L
2 − z))

αc cosh(αcL) + iτ sinh(αcL)
e−iτ(z+L

2 ). (10)

where αc =
√
κ2m − τ2 and τ is phase mismatch.

It is worth to note that Rm(−L/2) = 1 for any m implicitly
means that all the modes carry the same power before entering
the grating.

The solutions for the mode group have the same shapes as
the solutions for the FBG in singlemode fiber [7]; therefore
we get the reflected amplitudes Bm at z = −L/2,

Bm =
Sm(−L/2)
Rm(−L/2)

. (11)

and from which the corresponding reflectivities are computed
by

rm = |Bm|2. (12)

or explicitly

rm =
sinh2(|κm|L

√
1− |τ/κm|2)

cosh2(|κm|L
√

1− |τ/κm|2)− |τ/κm|2
. (13)

In this simulation, if we set the length of the grating,
radius of the grating, refractive index change in the core,
and the fringe visibility equal to L = 9mm, d = 8 µm,
δn = 8.5 × 10−4, and υ = 0.1, respectively, we obtain
the maximum reflectivity (τ = 0) of each mode group as
shown in Fig. 6. For the FBG inscribed in this graded-index

Fig. 6. The change of the reflectivity among different mode groups in grating
length L = 9mm.

MMF, the first mode group (m = 1) shows the maximum
reflectivity, and the highest-order mode group (m = 10) shows
the lowest reflectivity. We also notice that the reflectivities of
the higher-order mode groups are significantly decreasing with
the increase of the order of the group modes.

In [8], [10], the large resonance wavelengths spacing be-
tween two adjacent mode groups is reported, and it also
demonstrated by the calculation in Table I. It is clear that
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the individual mode group resonances do not overlap. As a
result, the reflection spectrum of the grating is computed by
the sum of the reflection spectra of each mode group.

r =

10∑
m=1

rm. (14)

and the transmission spectrum is

t = 1− r (15)

For a 9 mm-long FBG in graded index multimode fiber, the
reflection and transmission spectrum are shown in Fig. 7.

Fig. 7. Reflection and transmission spectra for FBG in graded index fiber
with L = 9mm.

In the next section, we will design FBG in graded-index
fiber and measure the reflection and transmission spectra to
assess the above numerical simulations.

III. EXPERIMENT

A. Experimental set-up

In this work, we use a commercially available parabolic
graded-index MMF (Corning 50/125), with a core diameter, a
cladding diameter and a numerical aperture of 50 µm, 125 µm
and 0.2, respectively [17]. These fibers are hydrogen-loaded
under 205 bar and 55 °C for 60 h to improve the photosensi-
tivity [30].

The FBG fabrication system that we used is a femtosecond
pulses laser at 400 nm [3], the period of the phase mask is
1060 nm, and the length of grating is 9 mm. In this work,
gratings are inscribed in the same GI multimode fiber with
different grating structures (i.e. symmetric and asymmetric)
and the same grating length (9 mm). A super-wideband light
source (from Amonics) across 1250 nm to 1650 nm, and an
optical spectrum analyzer (AQ6370 from YOKOGAWA) with
a resolution of 0.02 nm in 600 nm to 1700 nm are connected
by the GI MMF (Corning 50/125) to measure the transmission
spectra of the FBG during the inscriptions. This OSA has a
free space input structure, so that there is no mode filtering
when connecting multimode fibers directly to its input [31]. In
that way, we avoid any SMF-MMF structure, that will distort
the spectrum measurements.

We experimentally notice that the FBG spectra are highly
linked to beam focusing locations. Figure 8 represents the
schematic of the beam focusing inscription setup. The position

Fig. 8. The schematic of the beam focusing locations: (a) in the fiber core
center; (b) small offset of the center; and (c) far away from the center.

of the grating in the core of the fiber is changed by varying
the beam focusing point using a micrometer stage (MAX313D
from THORLABS company) mounted below the fiber holder.
As the beam power has a symmetrical distribution on both
sides of the focusing point, symmetrical and asymmetrical
grating structures are related to fiber position relative the beam
axis, as shown in Fig. 8 (a) and Fig. 8 (b) or (c), respectively.

B. Symmetrical Gratings
Figure 9 represents the evolution of the transmission spec-

trum during the inscription of a 9 mm-long grating (#1) when
the inscription beam is focused in the core center as shown in
Fig. 8 (a). The theoretical resonance wavelengths of the mth

mode group and mth neighboring cross-mode group are given
in Table I and compared with an experimental spectrum of
grating #1 in Fig. 9, where the black and red dotted lines
represent the resonance wavelength locations of the mode
groups and the cross-mode groups, respectively. It should be
noted that the cross-mode group peaks did not appear in
Fig. 9, which means that the grating is a symmetrical one
as expected. The experimental resonance wavelengths have
a good agreement with the computed results for the mode
group peaks labelled as λ1, λ2, λ3, λ4, and λ5. Moreover, the
experimental wavelength spacing between two adjacent mode
groups is 1.48 nm which is consistent with the computation
value of 1.47 nm.
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Fig. 9. Experimental FBG spectrum evolution for a 9 mm-long FBG #1 in a
parabolic graded-index fiber with a symmetrical grating structure.

C. Asymmetrical Gratings

Figure 10 shows an FBG spectrum for a 9 mm-long grating
(#2) written with a beam slightly off the center as depicted in
Fig. 8 (b). It should be noted that now subpeaks appeared

Fig. 10. Experimental FBG spectrum evolution for a 9 mm-long FBG #2 in
a parabolic graded-index fiber with an asymmetrical grating structure.

between two adjacent mode group peaks. These subpeaks
correspond to the cross-mode groups created by the coupling
between two neighbouring mode groups. The experimental
resonance wavelengths also have a good agreement with the
computed results (see Table I) as shown by the red dotted
lines. To further investigate the relation between the beam
focusing location and the spectra profile, the focusing point
is moved far away from the core center (i.e. Fig. 8 (c)), and
Fig. 11 shows the corresponding FBG spectra. It is clearly
seen that the cross-mode group peaks are much more stronger
in that case. Comparing Figs. 9, 10, and 11, it is clearly
seen that: 1) the appearance of the cross-mode groups peaks
is highly dependent on the beam focusing positions; 2) the
peak power of the higher-order mode groups (λ2, λ3, λ4, and

Fig. 11. Experimental FBG spectrum evolution for a 9 mm-long FBG #3 in
a parabolic graded-index fiber with an asymmetrical grating structure.

λ5) relative to the first mode group (λ1) decreases with the
increase of beam focusing offset from the core center; 3) the
locations of the resonance wavelength of the mode groups and
the cross-mode groups are independent of the locations of the
beam focusing point, and are in good agreement with their
theoretical values; and 4) the wavelength spacing between two
adjacent mode groups is also independent of the locations of
the beam focusing point.

IV. DISCUSSION

The spectra evolution versus time of the symmetrical grating
(Fig. 9) and the asymmetrical gratings (Figs. 10 and 11)
in parabolic graded-index MMF are analyzed to extract the
reflectivities of the lower-order mode groups (λ1 and λ2).
Fig. 12 displays of the reflectivities of grating #1 at times
3 and 5, grating #2 at times 4 and 7, and grating #3 at times
4 and 6, where the times were chosen to have nearly the same
reflectivities for the fundamental mode λ1 in graph (a), and
then in graph (b). It is noticed that the reflectivity of the

Fig. 12. The reflectivity distribution of two lower-order mode groups for
which the fundamental mode peak show approximately the same power.

second mode group (λ2) has approximately the same value
for gratings #1 and #2, but is significantly lower for grating

This article has been accepted for publication in IEEE/OSA Journal of Lightwave Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JLT.2022.3228506

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

#3. This could correspond to the power transfer to the cross-
mode group due to the coupling between the adjacent mode
groups, as the strength of the mode coupling is highly linked
to the asymmetry of the grating structure.

From the reflectivity r1 of the first mode group in Fig. 12,
the maximum coupling coefficients of gratings #1, #2, and
#3 are computed by the relation

r1 = tanh2(κ1L). (16)

leading to a coupling coefficient κ1 approximately equal to
0.1970/mm in Fig. 12 (a), and 0.2525/mm in Fig. 12 (b),
respectively. After we got the κ1 in experimental spectra,
using Eq. (8), the refractive index change can be calculated
which will be used to compute the values of r2 to r10 in the
simulation.

Fig. 13 shows the measured (dotted lines) spectra and the
computed (red solid lines) with fitting parameters of r1 =
0.86 and the grating length equal to 9 mm. The full width at

Fig. 13. Comparing between the computed and the experimental spectrums
where the r1 = 0.86 in a 9 mm-long FBG.

half maximum (FWHM) of the measured spectra agrees with
the simulation, such as the FWHM of the first mode group.
Moreover, it is clear that the FBG experimental reflectivity
spectra and and the computed one are in good agreement.

To explore the reliability of the simulation method and the
relation between the FBG spectra and the coupling coefficient
(mainly influenced by the refractive index changes of the
fiber core), we investigate a 9 mm-long FBG with |κ1| =
0.2525/mm which corresponds to r1 = 0.94 in Fig. 12 (b).
Figure 14 shows the computed and experimentally measured
spectra for this 9 mm-long FBG with higher reflectivity in
the fundamental mode. It is clear that all the reflectivities
of the mode groups are increased with the increase of the
refractive index change in the core. It is again found that
the experimental spectrum has a good agreement with the
simulated one. Moreover, the FWHM of the mode groups is
also broader in Fig. 14 than in Fig. 13. For example, in Fig. 13
and Fig. 14, the FWHM of the first mode group are 1.088 nm
and 1.568 nm in the computed spectra, respectively.

Fig. 14. Comparing between the computed and the experimental spectrums
where the r1 = 0.94 in a 9 mm-long FBG.

V. CONCLUSION

A numerical method has been presented to compute the
FBG spectra in the multimode graded-index fiber. In this sim-
ulation, we discuss the location of the resonance wavelengths
of the FBG. It is shown that the agreement between the
experimental spectra and the computed resonance wavelengths
is quite good. The reflectivity of all the mode groups are
investigated. The reflection and transmission spectra of FBG
in Corning 50/125 fiber are obtained using the coupling mode
theory.

Among the experimental gratings, two structures are in-
vestigated, i.e., the symmetrical and asymmetrical gratings.
It is clear that a significant coupling happened between two
adjacent mode groups in the FBGs with the asymmetrical
structure. This structure will create cross-mode resonance
peaks in the spectrum. on the other hand, for a symmetrical
grating, only the mode group resonance peaks are present in
the spectra. The amplitude of the cross-mode groups is also
highly influenced by the power distribution among each mode
group resonance peak. A lower amplitude second mode group
peak (λ2) is found in the asymmetrical gratings compared
with the symmetrical gratings within the same reflectivity
fundamental mode in the experimental spectra. Compared with
the FBG simulation spectra, the experimental spectra show a
good agreement with the computed ones among the power
distribution and resonance wavelengths locations in the mode
groups and the cross-mode groups. Thus, it is an excellent
candidate to analyze the properties of FBG spectra in graded-
index multimode optical fiber.
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