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Higher spin gauge fields

Gauge connection in hs(4) ⊂ U(so(2, 3))

W (x, Y ) =
∑∞
s=1Ws(x, Y )

• W1 = A

• W2 = eaPa + ωabMab

• W3 = eaaPaPa + ωaa,bMabPa
+Xaa,bbMabMab

• ...

Oscillator realisation of so(2, 3) ∼ sp(4)

• Weyl algebra (Yα = (yα, ȳα̇) , ?)
sp(4) oscillators : [Yα, Yβ ]? = 2iCαβ

• Mab ∼ yαyα + ȳα̇ȳα̇ Pa ∼ yαȳα̇
Spectrum
Coefficients of Y 2(s−1) are spin s gauge fields

• Bosonic model : integer spins
W (x;Y ) = W (x;−Y )

• Minimal bosonic model : even spins
W (x;Y ) = −W (x, iY )

Why studying massless higher spin fields?

• They correspond to existing representations of Poincaré/(anti-)de Sitter algebra

• Draw the line between no-go theorems and yes-go examples

• Expected to behave well in the UV because of the infinitely many symmetries

• Proposed holographic dualities with theories with various conserved currents (e.g. free fields)

• Appear in string theory

Propagating d.o.f. : Central On Mass Shell Theorem (COMST)

AdS4 vacuum

• Ω = haPa +$abMab

• dΩ + Ω ? Ω = 0

Weyl zero-form

• C0 = φ

• C1 = F abMab

• C2 = Caa,bbMabMab

• ...

Free unfolded equations

dC + Ω ? C − C ? π(Ω) = 0
dW + [Ω,W ]? = Σ(h, h, C)

Spin 2 example

∇Lea + ωabe
b = 0

∇Lωab + Λh[aeb] = ecedCac,bd

Infinite tower of equations for C
and its derivatives.
In particular:

�Caa,bb = mΛ,2 Caa,bb Spin 3

Vasiliev’s equations

Field equations

• dA+A ? A = Φ ? J

• dΦ +A ? Φ− Φ ? π(A) = 0

The source J is a Z-space 2-form
and a space-time 0-form.

Cartan integration

• A(G) = G−1 ? (d+A′) ? G

• Φ(G) = G−1 ? Φ′ ? π(G)

• A′µ = 0

• dxA′ = dxΦ′ = 0

Master fields

Auxiliary coordinates Zα
• [Zα, Zβ ]? = −2iCαβ

[Yα, Zα] = 0

• Usually, normal ordering of Y −Z
and Y + Z

Master fields on X4 × Y4 ×Z4

• Connection A = dxµAµ+dZαAα

• Zero-form Φ

X4 × Z4 is the base manifold while
Y4 is the fiber

Perturbation theory

Perturbative expansion

• AdS vacuum A(0) = Ω Φ(0) = 0

• Perturbative moduli : (Φ′(n), G(n))

• Linearized Weyl tensors Φ(1) = C(1)

Normal ordered homotopy integration

• W := A|Z=dZ=0

• Linearization gives COMST

• Adding O(Z2) to G(1) preserves COMST

• Non-local interactions

Weyl ordered homotopy integration

• Perturbatively exact solution

• Z-dependence of master fields factorises

• Φ = Φ(1) = C
A = Ω

At linear order, G(1) relates them

Observables
Zero-form charges∫

d4Z TrY [W (C) ? eiMZ ]

• Constructed from Wilson lines

• Factorize with master fields

• Give CFT3 correlators in factorised gauge

• Fully gauge invariant
Sensible to integration constants Φ′(n)

p-form observables

• Involve generalised frame field

• Sensible to large gauge functions

Particle and black hole modes
Initial data

C(1) = L−1 ? Φ′(1) ? L

• L is AdS gauge function: Ω = L−1 ? dL

Particle mode

Φ
′(1)
pt. = Pe1,j1|e2,j2
∼ pe1,j1|e2,j2(y, ȳ) exp(iyMȳ)

• pe1,j1|e2,j2(y, ȳ) are polynomials

• eigenfunctions of the Cartan generators

Black-hole-like mode

Φ
′(1)
bh. = Pe1,j1|e2,j2 ? κy
∼ pe1,j1|e2,j2(i∂y, ȳ)δ2(y + iMȳ)

• C(1)
bh. is singular at the origin of global co-

ordinates

• j = 0 : static and spherically symmetric
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Asymptotically anti-de Sitter perturbative scheme

Minimally non-local scheme

• Deformed COMST on X4×Y4

• Use higher order moduli to
impose minimal non-locality
of interaction vertices

• Compute observables on
X4 × Y4

Asymptotically AdS scheme

• Use higher order moduli to
impose asymptotically AdS
boundary conditions

• COMST on ∂X4 × Y4

• Compute observables on
X4 × Y4 ×Z4


