Linearized gauge functions and the COMST in Vasiliev's higher spin gravity

David De Filippi¹, Carlo Iazeolla², Per Sundell³

¹Service de Physique de l'Univers, Champs et Gravitation, UMONS (Mons, Belgium) ²NSR Physics Department, G. Marconi University (Rome, Italy) and INFN Sezione di Napoli (Naples, Italy) ³Departamento de Ciencias Físicas, Universidad Andres Bello (Santiago, Chile)

Higher spin gauge fields

Gauge connection in $hs(4) \subset \mathcal{U}(so(2,3))$

- $W(x,Y) = \sum_{s=1}^{\infty} W_s(x,Y)$
- $W_1 = A$
- $W_2 = e^a P_a + \omega^{ab} M_{ab}$
- $W_3 = e^{aa} P_a P_a + \omega^{aa,b} M_{ab} P_a + X^{aa,bb} M_{ab} M_{ab}$

Why studying massless higher spin fields?

- $\bullet\,$ They correspond to existing representations of Poincaré/(anti-)de Sitter algebra
- Draw the line between no-go theorems and yes-go examples
- Expected to behave well in the UV because of the infinitely many symmetries
- Proposed holographic dualities with theories with various conserved currents (e.g. free fields)
- Appear in string theory

Propagating d.o.f. : Central On Mass Shell Theorem (COMST)

Oscillator realisation of $so(2,3) \sim sp(4)$

- Weyl algebra $(Y_{\underline{\alpha}} = (y_{\alpha}, \bar{y}_{\dot{\alpha}}), \star)$ sp(4) oscillators : $[Y_{\underline{\alpha}}, Y_{\underline{\beta}}]_{\star} = 2iC_{\underline{\alpha}\underline{\beta}}$
- $M_{ab} \sim y_{\alpha} y_{\alpha} + \bar{y}_{\dot{\alpha}} \bar{y}_{\dot{\alpha}}$ $P_a \sim y_{\alpha} \bar{y}_{\dot{\alpha}}$

Spectrum

Coefficients of $Y^{2(s-1)}$ are spin s gauge fields

- Bosonic model : integer spins W(x;Y) = W(x;-Y)
- Minimal bosonic model : even spins W(x;Y) = -W(x,iY)

AdS_4 vacuum

• $\Omega = h^a P_a + \varpi^{ab} M_{ab}$

• $d\Omega + \Omega \star \Omega = 0$

Weyl zero-form

• $C_0 = \phi$

• $C_1 = F^{ab} M_{ab}$

• $C_2 = C^{aa,bb} M_{ab} M_{ab}$

• ...

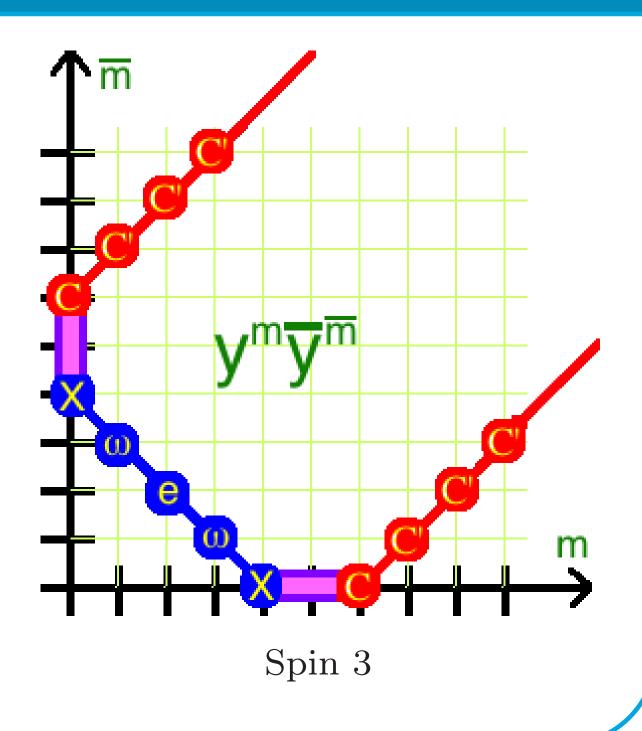
Free unfolded equations $dC + \Omega \star C - C \star \pi(\Omega) = 0$

 $dW + [\Omega, W]_{\star} = \Sigma(h, h, C)$ Spin 2 example

 $\nabla^L e^a + \omega^a{}_b e^b = 0$ $\nabla^L \omega^{ab} + \Lambda h^{[a} e^{b]} = e^c e^d C_{ac,bd}$

Infinite tower of equations for Cand its derivatives.In particular:

$$\Box C_{aa,bb} = m_{\Lambda,2} C_{aa,bb}$$



LA LIBERTÉ DE CHERCHER

Université de Mons

UM()MS

Master fields		Vasiliev's equations	
Auxiliary coordinates $Z_{\underline{\alpha}}$	Master fields on $\mathcal{X}_4 imes \mathcal{Y}_4 imes \mathcal{Z}_4$	Field equations	Cartan integration
• $[Z_{\underline{\alpha}}, Z_{\underline{\beta}}]_{\star} = -2iC_{\underline{\alpha}\underline{\beta}}$	• Connection $A = dx^{\mu}A_{\mu} + dZ^{\underline{\alpha}}A_{\underline{\alpha}}$	• $dA + A \star A = \Phi \star J$	• $A^{(G)} = G^{-1} \star (d + A') \star G$
$[Y_{\underline{\alpha}}, Z_{\underline{\alpha}}] = 0$	• Zero-form Φ	• $d\Phi + A \star \Phi - \Phi \star \pi(A) = 0$	• $\Phi^{(G)} = G^{-1} \star \Phi' \star \pi(G)$
• Usually, normal ordering of $Y - Z$ and $Y + Z$	$\mathcal{X}_4 \times \mathcal{Z}_4$ is the base manifold while \mathcal{V}_4 is the fiber	The source J is a Z -space 2-form	• $A'_{\mu} = 0$

and Y + Z

\mathcal{Y}_4 is the fiber

and a space-time 0-form.

• $d_x A' = d_x \Phi' = 0$

Perturbation theory

Perturbative expansion

- AdS vacuum $A^{(0)} = \Omega$ $\Phi^{(0)} = 0$
- Perturbative moduli : $(\Phi'^{(n)}, G^{(n)})$
- Linearized Weyl tensors $\Phi^{(1)} = C^{(1)}$

Normal ordered homotopy integration

- $W := A|_{Z=dZ=0}$
- Linearization gives COMST
- Adding $O(Z^2)$ to $G^{(1)}$ preserves COMST
- Non-local interactions

Weyl ordered homotopy integration

- Perturbatively exact solution
- Z-dependence of master fields factorises
- $\Phi = \Phi^{(1)} = C$

Particle and black hole modes

Initial data

- $C^{(1)} = L^{-1} \star \Phi'^{(1)} \star L$
- L is AdS gauge function: $\Omega = L^{-1} \star dL$

Particle mode

 $\Phi_{\text{pt.}}^{\prime(1)} = \mathcal{P}_{e_1, j_1 | e_2, j_2}$ $\sim p_{e_1, j_1 | e_2, j_2}(y, \bar{y}) \exp(iyM\bar{y})$

- $p_{e_1,j_1|e_2,j_2}(y,\bar{y})$ are polynomials
- eigenfunctions of the Cartan generators

Black-hole-like mode

 $\Phi_{\text{bh.}}^{\prime(1)} = \mathcal{P}_{e_1, j_1 | e_2, j_2} \star \kappa_y$ $\sim p_{e_1, j_1 | e_2, j_2} (i\partial_y, \bar{y}) \delta^2 (y + iM\bar{y})$

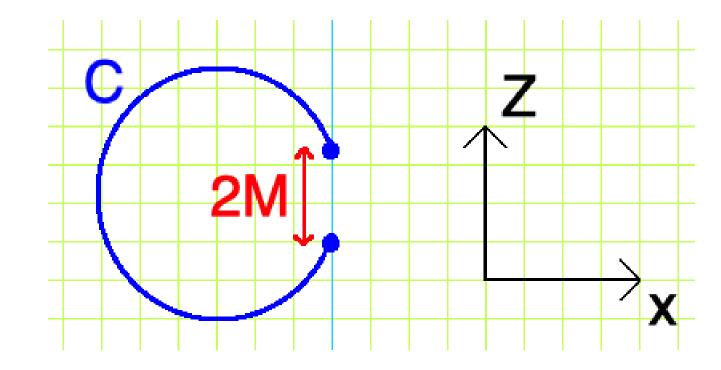
•
$$C_{\rm bh.}^{(1)}$$
 is singular at the origin of global co-

Observables

Zero-form charges

 $\int d^4 Z \operatorname{Tr}_Y[W(C) \star e^{iMZ}]$

• Constructed from Wilson lines



- Factorize with master fields
- Give CFT_3 correlators in factorised gauge
- Fully gauge invariant Sensible to integration constants $\Phi'^{(n)}$

p-form observables

 $A = \Omega$

At linear order, $G^{(1)}$ relates them

ordinates

• j = 0: static and spherically symmetric

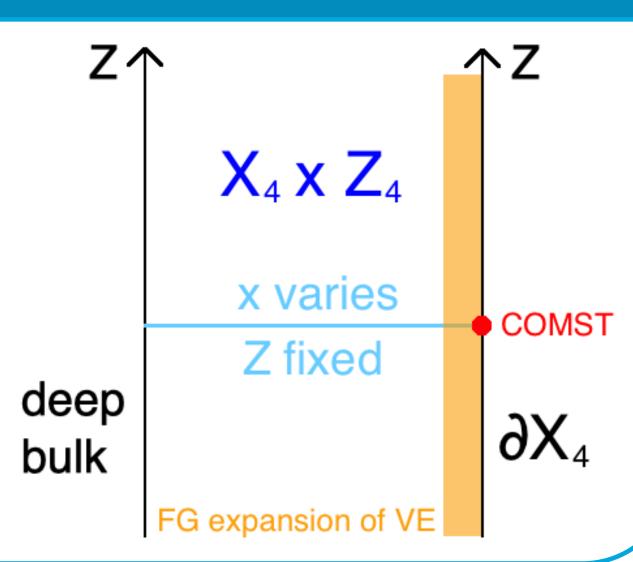
• Involve generalised frame field

• Sensible to large gauge functions

Asymptotically anti-de Sitter perturbative scheme

Minimally non-local scheme

- Deformed COMST on $\mathcal{X}_4 \times \mathcal{Y}_4$
- Use higher order moduli to impose minimal non-locality of interaction vertices
- Compute observables on $\mathcal{X}_4 \times \mathcal{Y}_4$
- Asymptotically AdS scheme
- Use higher order moduli to impose asymptotically AdS boundary conditions
- COMST on $\partial \mathcal{X}_4 \times \mathcal{Y}_4$
- Compute observables on $\mathcal{X}_4 \times \mathcal{Y}_4 \times \mathcal{Z}_4$



Acknowledgements

D.D.F. is a Research Fellow at the F.R.S.-FNRS (Belgium). The work of C.I. was supported in part by the Russian Science Foundation grant 14-42-00047 in association with the Lebedev Physical Institute in Moscow. P.S. acknowledges the support of Conicyt grant DPI 2014-0115, Fondecyt Regular grants 1151107 and 1140296, and the NSF China Contracts No. 11775110 and 11690034

Reference

arXiv:1905.06325