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A B S T R A C T

Event classification is inherently sequential and multimodal. Therefore, deep neural models need to dynam-
ically focus on the most relevant time window and/or modality of a video. In this study, we propose the
Multimodal Attentive Fusion Network (MAFnet), an architecture that can dynamically fuse visual and audio
information for event recognition. Inspired by prior studies in neuroscience, we couple both modalities at
different levels of visual and audio paths. Furthermore, the network dynamically highlights a modality at a
given time window relevant to classify events. Experimental results in AVE (Audio-Visual Event), UCF51, and
Kinetics-Sounds datasets show that the approach can effectively improve the accuracy in audio-visual event
classification. Code is available at: https://github.com/numediart/MAFnet
. Introduction

Event recognition is an active research area in machine learn-
ng. It has numerous potential applications such as video surveil-
ance [1], autonomous driving [2], sports analysis [3], and content-
ased retrieval [4]. Thanks to the collection of large video datasets
uch as YouTube-8M [5], Kinetics [6] and Sports-1M [7], event recog-
ition performance has improved during recent years. However, com-
ared to the success of image classification, event recognition is still
challenging task due to the high computational complexity. The

urrent state-of-the-art performance remains not as accurate as human
erformance.

Inspired by the success of image classification [8,9], current models
or visual event recognition use convolutional neural networks (CNN).
everal methods have been explored to process the temporal infor-
ation such as two-streams network [10], recurrent neural network

RNN) [11], and three-dimensional convolution (3D CNN) [12], to
ame a few. However, all these works ignore an important information
resent in video: acoustic features.

Video understanding is a natural human ability. From an early age,
umans are able to understand events or actions based on image, video
s well as sound. However, most contemporary approaches ignore the
coustic information. It is obvious that the acoustic signal can be useful
or event recognition. For example, two musical instruments may be
ifficult to distinguish based on the visual information but can produce
istinct sounds or the object of interest may be occluded. Furthermore,
ome actions such as Whistling are visually subtle but can be recognized
ased on acoustic features.

∗ Corresponding author at: University of Mons, Numediart Institute, 20 Place du Parc, Mons, Belgium.
E-mail addresses: mathildebrousmiche@gmail.com, mathilde.brousmiche@usherbrooke.ca (M. Brousmiche).

Given the potential of sound to facilitate event recognition, re-
searchers have attempted to combine the audio and visual signals [13–
21]. Still, audio-visual event recognition is not easy as it is difficult to
effectively use the audio information. In fact, audio can be corrupted
with irrelevant background noise and sounds. Moreover, some event
such as Shaking hands does not produce a particular sound signature.

Visual and audio information are different types of signals. There-
fore, how to exploit the maximum relevant information coming from
both modalities? There is not a simple answer. In real life situations,
scenes are dynamics and the respective contribution of audio and video
to the scene (or object) understanding evolves through time. Effective
solutions should be adaptive and take into consideration the fact that
the dynamics of visual and acoustics inputs are very different and
change with the actions in the scene.

In the context of deep learning, visual and audio paths do not have
the same complexity and therefore the same learning dynamics during
training. Indeed, the visual and audio paths do not have the same
learning speed, the number of iterations necessary to train a network
based on visual information is not the same as for a network based
on audio. This can lead to a generalization problem when training
modalities together.

Therefore, we propose the Multimodal Attentive Fusion network
(MAFnet) to dynamically fuse visual and audio information for event
recognition. Respective contributions of the modalities are dynamically
weighted through time via an attention mechanism that weights visual
and audio features. Modalities interact with each other at different
levels (different layers) of the network. A score highlights a modality
vailable online 8 April 2022
566-2535/© 2022 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.inffus.2022.03.001
eceived 19 August 2020; Received in revised form 22 September 2021; Accepted
 18 March 2022

http://www.elsevier.com/locate/inffus
http://www.elsevier.com/locate/inffus
https://github.com/numediart/MAFnet
mailto:mathildebrousmiche@gmail.com
mailto:mathilde.brousmiche@usherbrooke.ca
https://doi.org/10.1016/j.inffus.2022.03.001
https://doi.org/10.1016/j.inffus.2022.03.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.03.001&domain=pdf


Information Fusion 85 (2022) 52–59M. Brousmiche et al.
at a given time window that may be effective to recognize the event.
We also propose to go further than the simple fusion by coupling
modalities with a lateral connection between visual and audio paths
of MAFnet. Moreover, to overcome the incompatibility of learning
dynamics between visual and audio paths, we propose to randomly
drop the update of the visual path during training. We evaluate our
architecture on multiple datasets: Kinetics-Sound [6], UCF51 [22] and
AVE [19]. In addition, we evaluate the contribution of each module of
MAFnet with an ablation study.

2. Related work

2.1. Visual event recognition

Inspired by the success of image classification, convolutional neural
networks (CNN) have also been applied in visual event recognition.
Several methods have been proposed to take advantage of the temporal
information. The usage of recurrent neural networks (RNN) on top
of 2D convolutional layers is investigated in [11,23,24] to take into
account long-term dependencies. Li et al. went further by proposing a
convolutional long-short term memory (LSTM) [25]. Another approach
was to extend 2D convolution kernels to 3D convolution kernels to
learn spatio-temporal features [6,7,12]. In addition, to reduce com-
plexity, the 3D convolution is decomposed into two convolutions: a
spatial 2D convolution and a temporal 1D convolution [26,27]. An-
other strategy was to capture fine low-level motion by calculating
optical flow [10,28,29]. However, all these techniques do not exploit
an important part of the video classification: the acoustic information.

2.2. Audio-visual event recognition

In recent years, only few works exploited the information present in
the audio signal. The concatenation is used in [13,30] to fuse the visual
and audio paths to exploit the information from the two modalities.
Long et al. went further by testing different levels of fusion in the
network [21]. These networks integrated the visual and audio informa-
tion with hard fusion without exploiting a possible interaction between
visual and audio paths. These works did not study more complex fusion
techniques such as multimodal compact bilinear pooling (MCB) [31]
or dual multimodal residual fusion (DMR) [19]. Furthermore, they did
not take into account the different learning dynamics of the different
modalities.

2.3. Audio-visual event detection

The release of the AVE dataset [19] has stimulated research in
audio-visual event detection. For example, an audio-guided visual at-
tention mechanism is introduced in [19] to learn which visual region to
look at based on the visual and audio information. Lin et al. proposed
to learn global and local event information in a sequence to sequence
manner [32]. Finally, Wu et al. extracted the global representation of
one modality and found the local segments that are relevant to the
event in the other modality and vice versa [33]. In our work, we
propose to better integrate audio-visual information by computing a
global feature with an attention module to include only the relevant
information present in the modalities. In addition, instead of visual
spatial attention, we propose to use an attention mechanism on the
audio feature maps based on the visual information, called modality
conditioning. Indeed, we observed that the visual modality has more
information to contribute to the audio path of MAFnet than the reverse.
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2.4. Modality conditioning

Modality conditioning is the influence of a modality on another
modality. It is the interaction between the paths of each modality
inside the neural network. Interactions can be created by simple op-
erations between paths such as an element-wise multiplication [20] or
a sum [34] at different levels of the network.

More complex approaches to condition modalities have been ex-
plored, for example, the attention mechanism. Attention models were
first proposed for object detection [35] and then used for other ap-
plications such as natural language processing with the self-attention
mechanism [36]. Attention has been applied to video classification un-
der the form of temporal and/or spatial attention [21,37,38]. However,
these models did not include an interaction between modality paths.
Only Tian et al. proposes to realize the interaction between paths by
implementing visual attention guided by audio to condition vision [19].

Another approach to condition one modality with the other is the
conditional normalization (CN). Instead of focusing attention on a par-
ticular region of space or a particular time window, the CN highlights
some feature maps based on a given input. Various forms of CN have
proven to be highly effective across a number of domains and modal-
ities: image stylization [39], speech recognition [40], visual question
answering [41] and audio question answering [42]. As presented in our
previous work [43], we propose to condition the audio path with the
visual information by using the Feature-wise Linear Modulation (FiLM)
method [44]. The FiLM layer highlights audio feature maps based on
visual information.

3. Multimodal Attentive Fusion Network

Inspired by the ability of humans to pay attention to different
regions, instants and modalities [47], we propose to compute a score
for each modality and for each time window with the modality &
temporal attention module. The attention module combines modality
and temporal information to create a global feature containing the
relevant multimodal and temporal information.

In addition to the fusion with the attention module, we propose to
go further than modality fusion at high level and include interaction
between visual and audio paths with a FiLM layer. In this section, we
overview the Multimodal Attentive Fusion Network (MAFnet) and then
detail the different components of the network.

3.1. Overview of the Multimodal Attentive Fusion Network (MAFnet)

Fig. 1 presents the architecture of MAFnet. As in [19], we split
each video into 𝑇 non-overlapping clips, where each clip is 1s long.
We extract information for 𝐾 = 2 modalities (visual and audio in-
formation). For each clip, we extract visual and audio feature maps
with pretrained convolutional neural networks. So, we have 2 input
sequences: {𝐹 1

1 ,… , 𝐹 1
𝑇 }, 𝐹

1
𝑡 ∈ R𝐻𝑣×𝑊𝑣×𝐷𝑣 for the visual information and

{𝐹 2
1 ,… , 𝐹 2

𝑇 }, 𝐹
2
𝑡 ∈ R𝐻𝑎×𝑊𝑎×𝐷𝑎 for the audio information. 𝐻 , 𝑊 and 𝐷

are respectively the height, the width and the number of feature maps.
We reduce the feature maps with average pooling and feed the

visual features (({𝑥11,… , 𝑥1𝑇 }, 𝑥
1
𝑡 ∈ R𝐷𝑣 ) and audio features ({𝑥21,… , 𝑥2𝑇 },

𝑥2𝑡 ∈ R𝐷𝑎 ) in the modality & temporal attention module. This module
is the combination of temporal and modality attentions. It attempts
to learn the attention scores 𝜆𝑘𝑡 with 𝑡 = 1,… , 𝑇 and 𝑘 = 1,… , 𝐾
to weight temporal and modality dimensions. We therefore obtain a
temporal-multimodal representation of the entire video. The output of
the network is 𝑦 ∈ R𝑁 with 𝑁 the number of classes.

To go further than a simple fusion, we implement a lateral connec-
tion between visual and audio paths with the FiLM layer [44]. With a
FiLM layer, the visual modality influences the audio modality. Greater
importance is given to some of the audio feature maps based on the
visual information. The FiLM layer is placed directly at the output of
the audio feature extractor before reducing feature maps into vectors.
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Fig. 1. Multimodal Attentive Fusion Network (MAFnet): one video is split into 𝑇 non-overlapping clips. Then, audio and visual information are extracted with two pretrained
CNNs: DenseNet [45] for visual features and VGGish [46] for audio features. The clip features are further fed into the modality & temporal attention module to build a global
feature comprising multimodal and temporal information. This global feature is then used to predict the label of the video. A lateral connection between visual and audio paths
is created through a FiLM layer [44].
Fig. 2. Attention mechanisms. (a) Temporal attention: a score 𝛼 is computed for
each time window and the video-level feature representation 𝑜𝑡𝑒𝑚𝑝 with the sum. (b)
Modality attention: a score 𝜑 is computed for each modality and the multimodal feature
representation 𝑜𝑚𝑜𝑑 with the concatenation. (c) Temporal & modality attention: a score 𝜆
is computed for each time window AND modality and the global feature representation
𝑜 with the combination of the sum over time windows and the concatenation over
modalities.

3.2. Temporal attention

The aim of temporal attention [21,33] is to assign a positive weight
score to each clip descriptors extracted from the video (Fig. 2(a)). The
score can be interpreted as the relative contribution of each clip to the
recognition of the target action, or the relative importance of each clip
to generate an accurate global video representation.

Technically, for a given modality, given the input feature 𝑋′ =
{𝑥′1,… , 𝑥′𝑇 }, 𝑥

′
𝑡 ∈ R𝐷, the corresponding score 𝛼 = {𝛼1,… , 𝛼𝑇 } over the

𝑇 feature vectors is computed by

𝑧𝑡 = 𝑔𝑎𝑡𝑡(𝑥′𝑡; 𝜃𝑎𝑡𝑡) = 𝑅𝑒𝐿𝑈 (𝑊 𝑇
𝑡𝑒𝑚𝑝𝑥

′
𝑡 + 𝑏) (1)

𝛼𝑡 =
exp(𝑧𝑡)

∑𝑇
𝑗=1 exp(𝑧𝑗 )

(2)

where 𝑔𝑎𝑡𝑡 is the temporal attention network parameterized by 𝜃𝑎𝑡𝑡. 𝑔𝑎𝑡𝑡
can take different forms such as a perceptron. 𝑧𝑡 is an intermediate
attention score, normalized with the softmax function.

We compute the video-level feature representation 𝑜𝑡𝑒𝑚𝑝 with the
weighted sum of the clip features. The weights are the scores computed
by the temporal attention module:

𝑜𝑡𝑒𝑚𝑝 =
𝑇
∑

𝛼𝑡𝑥
′
𝑡 (3)
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𝑡=1
Fig. 3. Visualization of the scores 𝜆𝑘𝑡 determined by the modality & temporal attention
module for a video labeled Frying (food) of the AVE dataset.

3.3. Modality attention

In the context of speech recognition, Zhou et al. proposed a modality
attention mechanism [48]. The attention mechanism fuses input from
multiple modalities into a single representation by weighted summing
the information from individual modalities. We propose to use a sim-
ilar mechanism but use the concatenation of the weighted modalities
instead of the sum (Fig. 2(b)). In Section 4.5, we discuss the choice of
the modality fusion.

The attention module computes a score for each modality, the
score is proportional to the importance of the modality for the video
classification.

Technically, at a given time, given the input feature 𝑋′ = {𝑥′1,… ,
𝑥′𝐾}, 𝑥𝑘 ∈ R𝐷𝑘 with 𝐾 the number of modalities. The score for each
modality is computed by:

𝑧𝑘 = ℎ𝑎𝑡𝑡(𝑥′𝑘; 𝜃𝑎𝑡𝑡) = 𝑅𝑒𝐿𝑈 (𝑊 𝑇
𝑚𝑜𝑑𝑥

′𝑘 + 𝑏) (4)

𝜑𝑘 =
exp(𝑧𝑘)

∑𝐾
𝑗=1 exp(𝑧𝑗 )

(5)

where ℎ𝑎𝑡𝑡 is the attention network parameterized by 𝜃𝑎𝑡𝑡 and 𝑧𝑘 is an
intermediate attention score, normalized with the softmax function.

The multimodal feature 𝑜𝑚𝑜𝑑 is obtained by fusing the weighted
unimodal features with a concatenation:

𝑜𝑚𝑜𝑑 = 𝑐𝑜𝑛𝑐𝑎𝑡([𝜑1𝑥′1,… , 𝜑𝐾𝑥′𝐾 ]) (6)

The modality attention module can dynamically choose the most
relevant modality for a better classification of the events. Indeed, we
can imagine that Frying (food) or Truck have strong visual information
while Violin or Flute have strong audio information.

3.4. Modality & temporal attention module

We can combine the temporal and the modality attention modules
to constitute the modality & temporal attention module (Fig. 2(c)). The
aim of the modality & temporal attention module is to assign a positive
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Fig. 4. Lateral connection between visual and audio paths through FiLM layer: The
FiLM layer inside the residual block uses the visual features to modulate the audio
feature maps. 𝛾 and 𝛽 parameters are computed from a dense layer having its input
from the visual features.

score for each modality and clip. Indeed, for example in Fig. 3, we see
that most of the time the audio information is more relevant than the
visual information except for the last clip where you can clearly see the
food frying. This visual clip has the largest score and can be identified
as the most relevant to classify the video as Frying (food).

If we have the input:

𝑋′ =
⎡

⎢

⎢

⎣

𝑥′11 ⋯ 𝑥′1𝑡 ⋯ 𝑥′1𝑇
⋯ ⋯

𝑥′𝐾1 ⋯ 𝑥′𝐾𝑡 ⋯ 𝑥′𝐾𝑇

⎤

⎥

⎥

⎦

(7)

The equations of the attention module become:

𝑧𝑘𝑡 = 𝑓𝑎𝑡𝑡(𝑥′𝑘𝑡 ; 𝜃𝑎𝑡𝑡) = 𝑅𝑒𝐿𝑈 (𝑊 𝑇
𝑚𝑜𝑑+𝑡𝑒𝑚𝑝𝑥

′𝑘
𝑡 + 𝑏) (8)

𝜆𝑘𝑡 =
exp(𝑧𝑘𝑡 )

∑𝑇
𝑗=1

∑𝐾
𝑙=1 exp(𝑧

𝑙
𝑗 )

(9)

𝑜 = 𝑐𝑜𝑛𝑐𝑎𝑡(
[

𝑇
∑

𝑡=1
𝜆1𝑡 𝑥

′1
𝑡 ,… ,

𝑇
∑

𝑡=1
𝜆𝐾𝑡 𝑥

′𝐾
𝑡
]

) (10)

We add a dense layer in the path of each modality before the
attention module because the attention module needs each modality
to have the same dimension.

3.5. Lateral connection

We propose to go further than the ‘‘simple’’ fusion at high level by
including a lateral connection to condition audio with vision. Indeed
most approaches do not exploit a possible interaction between the
different paths. As presented in our previous work [43], the Feature-
wise Linear Modulation (FiLM) layer can create a lateral connection
between visual and audio paths. We use visual features as input to the
FiLM layer to highlight feature maps of the audio modality (Fig. 4).

More formally, FiLM learns functions 𝑓 and ℎ to compute 𝛾𝑡,𝑐 and
𝛽𝑡,𝑐 as a function of input 𝑥1𝑡 :

𝛾𝑡,𝑐 = 𝑓𝑐 (𝑥1𝑡 ) 𝛽𝑡,𝑐 = ℎ𝑐 (𝑥1𝑡 ) (11)

𝛾𝑡,𝑐 and 𝛽𝑡,𝑐 modulate the activations 𝐅2
𝑡,𝑐 , whose subscripts refer

to the 𝑡th input and 𝑐th audio feature map, via a feature-wise affine
transformation:

𝐹 𝑖𝐿𝑀(𝐅2
𝑡,𝑐 |𝛾𝑡,𝑐 , 𝛽𝑡,𝑐 ) = 𝛾𝑡,𝑐𝐅2

𝑡,𝑐 + 𝛽𝑡,𝑐 (12)

𝑓 and ℎ can be arbitrary functions which are typically implemented
with neural networks. FiLM layers allow to manipulate feature maps of
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a target according to an input by scaling them up or down, negating
them, shutting them off, selectively thresholding them (when followed
by a ReLU).

3.6. Audio-visual training

Wang et al. noticed in [49] that multi-modal networks are prone
to overfitting due to their increased capacity and different modalities
overfit and generalize at different rates. So, they proposed a complex
Gradient-Blending training. Xiao et al. noticed also different dynamic
of training depending on the modality [34] and propose to randomly
drop the audio path during the training. Unlike [34], when training
unimodal networks, we notice that the audio network need more epoch
to reach overfitting compared to the visual network. Therefore, we
follow the idea of [34] and randomly drop the upgrade of the visual
path, to train more the audio path.

4. Experimental results

4.1. Datasets

We evaluate our network on three public datasets: AVE [19],
UCF51 [22] and Kinetics-Sounds [14].

AVE is a subset of AudioSet [52]. The dataset consists of 4143
videos from 28 event classes. Each video lasts 10 s. It covers a wide
range of audio-visual events from different domains, e.g., human activ-
ities, animal activities, music performances, and vehicle sounds.

UCF51 is the second part of the UCF101 dataset [22]. Only the
videos of the new 51 classes have sound information. UCF51 dataset
consists of 6836 videos from 51 event classes. It concentrates on human
actions. The mean video length is 7.0 s. The dataset is partitioned into
three splits for training and testing.

Kinetics-Sounds is a subset of the Kinetics dataset [6] and consists
of only action classes that are potentially recognizable both visually
and aurally. It consists of 21945 videos from 32 events categories. The
mean video length is 9.7 s.

4.2. Feature extraction

Audio and visual features can easily be extracted from a new
video using trained models [19,21,32,33]. The extracted features are
significantly smaller in size than the raw RGB frame and audio data
and allow working with smaller networks.

Visual feature extraction. We use an ImageNet pre-trained deep learn-
ing model named DenseNet [45] to extract visual features from video.
The video is split into 𝑇 clips. As in [19], we choose 𝑇 = 10, so each
clip is one second long without overlapping. For each clip, we extract
the output of the DenseNet last convolutional layer for 16 RGB video
frames with a global average pooling over the 16 frames to generate
one 7 × 7 × 1920 dimensional feature map.

Audio feature extraction. We use a VGG-like network [46] pre-trained
on AudioSet to extract audio features. Again, the video is split into𝑇 =
10 clips of one second each without overlapping. For each clip, we
extract the output of the last convolutional layer of the network to
generate one 12 × 8 × 512 dimensional feature map.

4.3. Implementation details

The number of filters in the Residual Block and the number of
neurons of the hidden dense layer is 512. Batch normalization is
used after hidden dense layers. The network is trained with cross-
entropy loss and Adam optimizer with an initial learning rate of 0.001.
Early stopping based on the validation accuracy is done, the training
is stopped when the validation accuracy does not improve since 50
epochs. During training, we randomly do not update the weights of the
visual path. The model is implemented in Tensorflow [53].

As UCF51 and Kinetics-Sounds datasets have different video lengths,
feature vectors are zero padded to obtain the same length.
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Table 1
Comparison with state-of-the-art on AVE, UCF51 and Kinetics-Sound datasets. Each model was trained based on code available online. Models are split into two types: end-to-end
training and feature extraction. End-to-end training models are trained on larger datasets and then fine-tuned on a smaller dataset. By contrast, feature extraction models are
trained on feature previously extracted from the video. Depending on the model, input can be visual frame (V) and/or audio (A).

Model Inputs Pretrained dataset Accuracy [%]

AVE UCF51 Kinetics-Sound

End-to-end training

I3D [6] V Kinetics 73.28 86.92 80.22
R(2+1)D [26] V Sports1M + Kinetics 79.19 95.54 79.10
SlowFast [50] V Kinetics 80.41 91.78 81.91
MARS [51] V Kinetics 79.44 97.83 –

Model Inputs Extraction network AVE UCF51 Kinetics-Sound

Feature extraction

Attention Cluster [30] V + A DenseNet (V) + VGGish (A) 80.71 84.79 73.91
DMRN [19] (our feat.) V + A DenseNet (V) + VGGish (A) 80.96 82.93 77.5
DMRN [19] (their feat.) V + A VGG19(V) + VGGish-PCA(A) 85.02 81.04 –
MAFnet (our) V + A DenseNet (V) + VGGish (A) 90.86 86.72 83.94
Fig. 5. Output prediction of different visual only (V) models and audio-visual (AV) models for some example of the AVE dataset. Each model predicts one class per video. (Green:
correct prediction, Red: False prediction). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.4. Event recognition performance

Table 1 presents event recognition results of MAFnet on AVE,
UCF51 and Kinetics-Sounds datasets. We also compare our result with
several state-of-the-art methods using different modalities, i.e. audio (A)
and visual frames (V). For the UCF51 dataset, we report the average
accuracy over three testing splits.

Unlike our method, the Attention Cluster network [30] does not ex-
ploit the modality interaction at several levels. It comprises an attention
mechanism that works independently inside each modality, followed
by a concatenation of the vector of each modality. DMRN [19] com-
prises a lateral connection that projects from audio to visual features
before the concatenation. It highlights image pixels based on sound
information, while MAFnet highlights audio features maps based on
visual information.

MAFnet obtains the best accuracy performance on the AVE dataset
among methods based on end-to-end training or feature extraction.
End-to-end training methods have the advantage of being trained on
larger datasets such as Sports1M or Kinetics to avoid overfitting and
then the entire network is fine-tuned on smaller datasets. As the AVE
dataset was built as an audio-visual set, the audio information is
as important as the visual information. Therefore, as the end-to-end
models take into account only the visual information, performances
decreases. Furthermore, the AVE dataset includes classes from different
events unlike Sports1M and Kinetics datasets which include classes
from human activities only. Models based on feature extraction obtain
slightly better results than end-to-end training methods due to the use
of audio information.

The UCF51 dataset comprises fewer classes with relevant audio
information. Indeed, it contains classes that do not produce a particular
56
sound signature or event video with irrelevant background noise. Our
network is then not as good as end-to-end training models which
take advantage of pretraining on larger datasets and fine-tuning the
entire network. On the other hand, models using feature extraction do
not fine-tune extractor networks. However, MAFnet is the best model
among the architectures that use audio-visual features.

The Kinetics-Sound dataset as well as the UCF51 dataset is centered
on human action but comprises classes potentially recognizable both
visually and aurally. Therefore, when the dataset comprises relevant
audio and visual information, our network provides the best result.
It is capable to take advantage of both modalities. Moreover, it has
better integration of the audio and visual information than the other
audio-visual models.

Fig. 5 shows examples of output prediction from the different
models. For examples (a) to (e), we observe that the background might
impact the choice of the class. The raceway is classified as Race car,
auto racing even if there is a bus (example a) or a motorcycle (example
c). The field with a herd is classified as Goat (example e). Moreover,
some specific elements in the video can fool models. The spoon and
the plate (example b) may influence the I3D model in the choice of the
Frying (food) class. In example (d), visual models may be fooled by the
round shape of the pan. In the case of examples (c) and (e), the audio
modality is not distinctive enough to help the network.

We also note that some instruments can be difficult to distinguish
(example f and g) or are occluded (example h). Some videos include
several classes but are annotated with only one class (example i). Others
are visually indistinctive (example j) but can be classified thanks to the
audio modality.
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Fig. 6. Accuracy of the event recognition of the AVE dataset when using different rates
of dropping the weight update of the visual path during training.

4.5. Model analysis and discussion

In this section, we report studies to identify the impact of each
module of the MAFnet. We work with the AVE dataset as the dataset
assures the presence of the two modalities. We analyze the training
method, the impact of the temporal attention, the modality attention
and the combination of the two attentions, compare different fusion
techniques and the impact of the modality conditioning.

Training method: Drop off . Visual and audio paths do not have the
same learning speed. Even without the additional convolutional layers
comprised in FiLM, the training of the audio path needs more iterations
than for the visual training. Inspired from [34], we investigate a new
multimodal training technique by randomly dropping the update of
the visual weights to allow the audio path to train longer. In Fig. 6,
we report the accuracy in function of the dropping rate of the weight
update of the visual path. Dropping too often the visual path decreases
results compared to training without dropping. We suppose that the
visual path is not trained enough. It is also observed that not dropping
enough the visual path gives also slightly poorer results. We suppose
that the network cannot exploit enough sound information. Further-
more, it looses visual information as the visual path is not trained as
much as needed.

Fusion techniques comparison. MAFnet creates a multimodal feature
by concatenating the information coming from the visual and au-
dio paths. We analyze the importance of using unimodal information
versus multimodal information in the case of event recognition. We
also test different fusion techniques present in the literature to de-
termine the best fusion method: addition, concatenation, multimodal
compact bilinear pooling (MCB) [31] and the multimodal residual
fusion (DMR) [19].

As we want to test the fusion techniques, the experiments are made
without the FiLM layer. In the case of the unimodal network, the
network comprises only the temporal attention module without the
modality attention module as only one modality is present.

From the results in Table 2, and as expected, we conclude that the
dataset is easier to classify using visual information only than sound
information only. Multimodal information increases the performance
compared to unimodal. Concatenation has the best result and is even
slightly better than more complex fusion techniques like MCB or DMR.

Attention analysis. In this section, we analyze the impact of each at-
tention module. Table 3 presents the event recognition results without
attention, with temporal attention only and with modality attention
only. Again, the network does not comprise the FiLM layer for this
ablation study. The temporal attention allows to take into account the
temporal context and dynamically highlights particular time windows.
Not each time window comprises relevant information for the classifica-
tion. The modality attention highlights a modality. Indeed, depending
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Table 2
Comparison unimodal versus multimodal event recog-
nition and the use of different fusion techniques on
AVE dataset.
Fusion technique Accuracy [%]

Visual 75.63
Audio 69.29
Addition 84.77
Concatenation 89.34
MCB 88.83
DMR 87.56

Table 3
Ablation study of the modality & temporal attention
module on the AVE dataset.
Attention type Accuracy [%]

Without attention 87.82
Temporal attention 88.92
Modality attention 88.66
Modality & temporal attention 89.34

Table 4
Evaluation of the lateral connection between visual
and audio paths with FiLM layer on the AVE dataset.
Modality conditioning Accuracy [%]

Add residual block without
modality conditioning

86.55

Conditioning of both modalities 87.62
Conditioning of audio by vision 90.86
Conditioning of vision by audio 90.61

Fig. 7. T-SNE visualization of the embedding of the residual block just before (left)
and after (right) the FiLM layer in the audio path.

on the video a modality can have more importance than the other.
Each attention module has a positive impact on the accuracy and the
combination of both attentions gets the best result.

Modality conditioning analysis. In this section, we analyze the impact
of the lateral connection, the modality conditioning ( Table 4). It is
observed that adding FiLM in visual and audio path provides better
results than without any conditioning. However, conditioning only one
modality is better than conditioning both modalities whatever the con-
ditioned modality. The best result is obtained when visual conditions
audio. We suppose that vision contributes more to audio than the other
way. This is in accordance with previous observations in [43]. When
one modality can statistically drive the other, it might be more efficient
to use only one FiLM layer that projects from the driving modality to
the other. In that situation, a second FiLM layer to drive attention from
the dependent modality to the driving one might be counterproductive.

Fig. 7 compares the embedding of the residual block just before
and after the FiLM layer in the audio path (Fig. 4). We use average
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pooling and t-SNE [54] to reduce the embedding dimension to 2D. We
observe a better clustering of the different classes after including the
visual information in the audio path.

5. Conclusion

We proposed the Multi-level Attention Fusion (MAFnet) in the
context of event recognition task. Our network includes a modality &
temporal attention module. It dynamically associates a score to each
modality at each time window to highlight the relevant modality and
time window. To go further than a simple late fusion, we condition
one modality with the other with a FiLM layer. It highlights selected
audio feature maps based on visual information. Finally, to take into
account the different learning dynamics of each modality, we randomly
drop the weight update of the visual path. We evaluate our network on
three datasets and achieve better accuracy than the current audio-visual
models.

MAFnet shows promising results for audiovisual data fusion in the
context of event classification. When exploiting audio-visual data, the
fusion of the two modalities is not the only important element, the
conditioning between the modalities paths is necessary to make the best
use of the audio-visual information. Conditioning with the FiLM layer
modifies the hidden representation of audio modalities based on visual
information. In view of the conditioning results, future research should
investigate the interaction between the audio and visual path at dif-
ferent levels of the architecture as well as study different conditioning
methods.
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