

In vitro study of dendronized nanoparticles designed for theranostics in breast cancer context

Thomas Gevart ¹, Cyril Michel ¹, Sébastien Boutry ^{1,2} , Lionel Larbanoix ¹, Barbara Freis ^{1, 3}, Maria Ramirez ³, Sylvie Begin ³, Sophie Laurent ^{1,2}

- ¹ General, Organic and Biomedical Chemistry Unit, UMONS, Mons, Belgium,
- ² Center for microscopy and molecular imaging, UMONS-ULB, Gosselies, Belgium
- ³ Institute of Physics and Chemistry of Materials of Strasbourg, UMR 7504, Strasbourg, France

Introduction

project Theraget develop targeted multifunctional nanoplatforms that allow therapy diagnosis, (theranostic) and follow up diagnosis in breast and ovarian cancer context.

Theranostic:

- Diagnostic with MRI (iron oxide nanoparticles IONPs)
- > Therapy using magnetic hyperthermia, a local elevation of temperature (alternative magnetic field)^[1]

In vitro experiments must be done first, such as cytotoxicity tests and evaluation of IONPs internalization.

Material & methods

IONPs are

- > Synthesis: thermal decomposition + coated with dendrons^[2]
- > Conjugated to targeting ligands : cRGD and peptide 22 (which are recognize by integrin $aV\beta_3$ and EGFR)

Integrins $aV\beta_3 \rightarrow overexpressed$ in tumoral environment for neovascularization^[3,4].

Peptide 22 -> promising **EGFR** specific triple negative breast cancer cell binding peptide [5].

LDH Release: unviable cells will release LDH in the extracellular medium. This extracellular LDH is quantified.

Neutral red: viable cells internalize the neutral red dye into lysosomes and keep it even after washing.

Internalization: measured using iron quantification in biological matrix method^[6]

Cytotoxicity

NPs cytotoxicity evaluated by neutral red assay (2 hours of exposure)

Internalization study

Iron internalized by MDA-MB-231 cells after 24h exposure of 50 µg/mL nanoparticles

After 24 hours exposure to 50 µg/mL iron, MDA-MB-231 cells have internalized:

> IONPs@DD_P22: 1,72 ± 0,08 pg_{iron} / cell > IONPs@DD: 0,34 ± 0,14 pg_{iron} / cell

Discussion

Considering the number of replicates, it seems that:

- > Peptide 22 is a good candidate to increase IONPs internalization into MDA-MB-231. However, this value could be greater as compared to litterature.
- > IONPs synthesis will be modified in order to increase the number of targeting ligands on the NPs surface.
- \triangleright Our IONPs are not toxic below 150 µg/mL, after 2 hours of incubation.
- For next steps, we won't use more concentrated solutions.
- > More measurements must be done at exposure times up to 24h.

Theraget project; is a 5 universities, compagnies collaboration all over Europe (France, Belgium, Greece, Romania) supported by EuroNanoMed

References

- [1] Iacovita C et al. Pharmaceutics; **6**,12(5):424 (2020).
- [2] Cotin G et al. Nanotechnology **13**;30(37):374002 (2019).
- [3] Garcia-Ribeiro R.S et al. Int. J. Nanomedicine **14**:5911-5924 (2019).
- [4] Georgoulis A et al. Ultrastruct. Pathol. **Dec;36**(6):387-99 (2012). [5] Hossein-Nejad-Ariani H et al. Sci. Rep. 9, 2723 (2019).
- [6] Boutry S et al. Contrast Media Mol. Imaging 4(6):299-304 (2009).