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Energy challenges: a matter of storage? MOlecular Solar Thermal systems (MOST)

To store solar energy, chemical storage appears to be a promising approach with systems known as MOST [1]. The working principle of
Sun as renewable energy source \ v those systems is based on iterative closed cycles of photoisomerization and back-isomerization between a parent compound and its
| metastable isomer (Figure 1). Energy is stored within the metastable isomer which possesses a certain half-life time and thermal energy
is released during the thermal back-isomerization process [2] [3].
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Azobenzenes with their E->Z photoisomerization are Charging process - Photoisomerization
among the most widely studied molecular

photoswitches and appear as good candidates.
However, properties such as the storage enthalpy,
spectroscopic properties and the half-life time need to
be improved.
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Improving azobenzene MOST properties: our strategy i
At UMONS, two strategies are considered to
optimize azobenzene-based chromophores for
MOST applications; (i) the replacement of one
phenyl group by a thiazolyl moiety is envisaged
to red shift the absorption of the
chromophores in the visible region [4], and (ii) &N
the grafting of several azobenzene residues at N
selected positions all along a polymer )\
backbone appears as an elegant strategy to S \N
enhance the storage enthalpy and the \ / Discharging process — Heat released
N metaStab_Ie isomer  half-life  time  upon — Figure 1. Working principle of a MOST system: the azobenzene case [3].
Figure 2. Primary structure of a peptoid. cooperating effects [5-6]. Figure 3. (E)-4-(thiazol-2-yldiazenyl) aniline [4].
Exemple of helical secondary structures with (S)-1-phenylethyl side chain [7].
Peptoids of interest : solid support synthesis [\ 4 Isomers
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Structural characterization of the synthesized peptoids: MSMS spectra
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Figure 4. MSMS analyzes of peptoids 1-4 (Ecol = 12eV).

Photoisomerization experiments: LC-MS quantification of PSD

Peptoid solutions were irradiated with a lampe lightningcure LC8 L9588-03 visible lamp (ca. 400-700 nm) to induce azobenzene isomerization. After different irradiation times, solutions were analyzed by liquid chromatography (Waters
Alliance 2695) coupled to mass spectrometry (Waters QToF Premier, ESI (+)) in order to discriminate stereoisomers and to quantify the photostationnary state distribution (PSD).
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Figure 5. HPLC-MS analyzes of peptoids 1-4 after 1 hour of visible irradiation.
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