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Abstract. We axiomatize a class of existentially closed differential expansions of expo-
nential topological fields where the derivation is an E-derivation. We apply our results to
differential expansions of, on the one hand the field of real numbers endowed with exp(x),
the classical exponential function defined by its power series expansion, and on the other
hand the field of p-adic numbers endowed with the function exp(px) defined on the subring
of p-adic integers where p is a prime number strictly bigger than 2 (or with exp(4x) when
p = 2).

1. Introduction

The problem we address here is the following: given an elementary class of existentially
closed exponential topological fields of characteristic 0 (where possibly the exponential
function E is partially defined) whether the class of existentially closed differential expan-
sions is again an elementary class and if this is the case how it can be axiomatized. The
model-complete theories of exponential fields we include in our analysis are the theory of
the field of real numbers with the exponential function and the field of p-adic numbers with
the exponential function restricted to the subring of p-adic integers. The derivations δ we
consider are E-derivations, namely δ(E(x)) = δ(x)E(x). We answer the question above as
follows.

We place ourselves in topological fields endowed with a definable V -topology, namely a
definable topology which is either induced by an archimedean absolute value or a non-trivial
valuation [23, Section 3]. The condition that the topology is a V -topology is not directly
used, but all our examples are endowed with such topology and at some point we assume
that our fields satisfy an implicit function theorem which is known to hold for polynomial
functions for t-henselian fields (see [23] and section 3.4).

Given an L-theory T of fields, where L is a relational expansion of the language of fields
together with a unary function symbol for the exponential function, we denote by Tδ the
L∪{δ}-theory consisting of T together with an axiom expressing that δ is an E-derivation
(but δ is not assumed to be continuous).

Then given a model-complete theory T of topological L-fields endowed with a definable
V -topology, we axiomatize the class of existentially closed expansions by an E-derivation of
models of T , provided the class of models of T satisfy two properties: an implicit function
theorem and the lack of flat functions (Theorem 4.4). Those two properties are known
to hold when T is the theory of (R, exp), or T is the theory of (Qp, Ep), where Qp is the
field of p-adic numbers, or T is the theory of (Cp, Ep), where Cp is the completion of the
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algebraic closure of Qp. Note that in these last cases, the exponential function is only
partially defined (on the valuation ring) and E2(x) := exp(4x), Ep(x) := exp(px), p 6= 2.

The model-completeness of the theory T := Th(R, exp) was shown by A. Wilkie [28], of
the theory T := Th(Qp, Ep) or T = Th(Cp, Ep) by N. Mariaule [17], [18] (section 5).

The implicit function theorem is stated in the form of a first-order scheme of axioms
(IFT)e (for definable functions corresponding to exponential polynomials, see Definition
3.14) but even if we denote the lack of flat function property by the acronym (LFF) (Defi-
nition 3.18), it is not clear that it is a first-order property in general.

The axiomatisation that we give of the existentially closed models of Tδ is explicit; we
call the scheme of axioms (DL)E and it expresses the property that when certain systems
of exponential polynomials have a regular solution, then they have a differential solution
close to that solution (Definition 4.2).

We separate the two issues: whether the axiomatisation we propose indeed axiomatizes
the existentially closed differential expansions (Theorem 4.9) and whether any differential
expansion of a model of T can be embedded in a model of this scheme of axioms (Theorem
4.6). To sum up our main result can be stated as follows.

Theorem (later Theorem 4.4) Let T be a model-complete theory of topological L-
fields endowed with a definable V -topology. Assume that K |= T and that the differential
expansion Kδ is a model of Tδ∪(DL)E . Then Kδ is existentially closed in the class of models
of Tδ. In particular if the theory Tδ ∪ (DL)E is consistent, then it is model-complete. In
case the models of T satisfy an implicit function theorem, namely the scheme (IFT)e and
have the lack of flat functions property (LFF), then the theory Tδ ∪ (DL)E is consistent.

Our main technical tool is the fact that (partial) exponential fields can be equipped with
a closure operation ecl, defined using Khovanskii systems, which has the exchange property,
and which coincides with the closure operation cl defined using E-derivations [14] (section
2.3). Otherwise we proceed along the same lines as in the model-completeness proof of
(R, exp).

Independently, this question has also been considered by A. Fornasiero and E. Kaplan
in the following setting. Given an o-minimal expansion K of an ordered field which is
model-complete and expanded with a compatible derivation [10], they show that indeed
the class of existentially closed differential expansions is elementary and they provide an
axiomatization. A derivation δ is compatible with K if for any 0-definable C1-function
f : U → K, where U is an open subset of some cartesian product Kn, we have δf(ū) =∑n

i=1
∂f
∂xi

(ū)δ(ui), for any ū ∈ U . In particular in case K expands an exponential field,
such derivation δ is an E-derivation. Their results apply to o-minimal fields K extending
the field of real numbers R and admitting an expansion to all restricted analytic functions.
In order to show that there is a compatible derivation, they have at their disposal the
quantifier elimination result of J. Denef and L. van den Dries on the expansion Ran of R
with all these functions (with restricted division) and its extension by L. van den Dries, A.
Macintyre and D. Marker for Ran,exp, where exp is the exponential function given by the
classical power series [8].

So when δ is a compatible derivation, in case of (R, exp), by uniqueness of the model-
completion, one gets, following either approaches, the same class of existentially closed
exponential differential fields. However, it is unclear in an ordered exponential field model
of the theory of (R, exp) whether any E-derivation is compatible. (We cannot apply the
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argument used by A. Fornasiero and E. Kaplan since we don’t have quantifier-elimination
in the language of ordered fields together with the exponential function.)

The plan of the paper is as follows.
In section 2, we review the notion of partial exponential fields and of the corresponding

closure operator, denoted by ecl-closure (Definition 2.12). It was introduced by A. Mac-
intyre using the work of A. Khovanskii [16], then it plays a crucial role in the proof of A.
Wilkie of the model-completeness of (R, exp). Later in a purely algebraic context, J. Kirby
linked the ecl-closure with the cl-closure, defined through E-derivations (Definition 2.9).
He showed that the two closure operators coincide using a result of J. Ax on the Schanuel
property in differential fields of characteristic 0. Using that last result, we show, under
some conditions, how to extend an E-derivation (Lemma 2.15, Corollary 2.17) with some
required properties (following the classical case, but replacing algebraic independence by
ecl-independence). Then in section 3, we recall the notion of E-varieties, generic points
and torsors. We also recall the setting of fields endowed with a definable topology [20]. We
define the class of differential expansions of exponential fields models of a model-complete
theory T for which we can show that the theory we describe and denote by T ∗δ is con-
sistent, namely those satisfying an implicit function theorem (IFT)e (see Definition 3.14)
and a property (LFF) on differential ideals called the lack of flat functions in the ordered
case (see Definition 3.18). Both properties were shown to hold in o-minimal expansions of
real-closed fields (or more generally in definably complete ordered fields), as well as in the
classes of valued fields mentioned above, as shown by N. Mariaule (see section 3.5).

In section 4, we finally introduce the theory T ∗δ consisting of the theory T together with
an axiom stating that δ is an E-derivation and a scheme of axioms (DL)E . We show first
that if the class of models of T satisfy (IFT)e and (LFF), then we can embed any model of
Tδ in a model of T ∗δ . Then we show that a model of T ∗δ is existentially closed in the class of
models of Tδ. The scheme of axioms (DL)E can be compared to the axiomatization of M.
Singer of the closed ordered differential fields, denoted by CODF. We also give a geometric
interpretation of the scheme (DL)E , which is a priori not first-order.

In section 5, we give examples of topological fields to which we may apply our results.
Finally, in the last section, we show how to endow a topological exponential field of

cardinality ℵ1 which is first-countable and separable with an E-derivation which satisfies
this scheme of axioms. When the topology is induced by an ordering we point out that such
ordered field can also be made a model of CODF. This kind of construction (for CODF)
may be found in the work of M. Singer, and in the theses of C. Michaux and Q. Brouette.

Acknowledgments: Part of these results appeared in the PhD thesis of Nathalie Reg-
nault [24].

2. E-derivations

2.1. Preliminaries. We only consider commutative rings R of characteristic 0 with 1 6= 0.
Let N∗ := N \ {0}, R∗ := R \ {0}. Denote by I(R) the subgroup of the invertible elements
of (R∗, ·, 1). Given an ordered set (I,<), denote I≥j := {i ∈ I : i ≥ j} (respectively
I>j := {i ∈ I : i > j}).

Let Lrings := {+, ·,−, 0, 1} be the language of rings; we will work in different expansions
L of Lrings such as LE := Lrings ∪ {E} and LE,δ := Lrings ∪ {E, δ} where E, δ are unary
functions. The L-formulas will be possibly with parameters and when we want to specify
them we will use L(B) with B a set of constants. Similarly L-definable sets will possibly
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be definable with parameters. Our notation for tuples will be flexible: x (respectively a)
will denote a tuple of variables (respectively a tuple of elements) but sometimes in order
to stress that we deal with tuples we will use x̄, respectively ā, or bold letters e.g. x, a. In
this section we will not make the distinction between an L-structureM and its domain M
whereas from subsection 3.4 on, we will distinguish them.

Definition 2.1. [6] An E-ring R is a ring equipped with a morphism E from the additive
group (R,+, 0) to the multiplicative group I(R) satisfying E(0) = 1 and ∀x∀y (E(x+ y) =
E(x) · E(y)). (So an E-ring can be endowed with an LE-structure.) An E-field is a field
which is an E-ring.

We will also consider partial E-fields, and so the corresponding language contains a
unary predicate for the domain of the exponential function. We will first define partial
E-domains.

Definition 2.2. Let F be an integral domain, namely a commutative ring with no non-zero
zero-divisors. A partial E-domain is a two-sorted structure

((F,+F , ·F , 0F , 1F ), (A,+A, 0A), E),

where (A,+A, 0A) is an abelian group and E : (A,+A, 0A)→ (I(F ), ·F , 1F ) is a group morphism.
We identify (A,+A, 0A) with an additive subgroup of (F,+F , 0F ) and to stress it, we will
denote it by A(F ). When the domain of E is clear from the context, we will also simply
use the notation (F,E), even though E is only partially defined.

A partial E-field F is a partial E-domain which is a field. A partial E-subfield F0 is a
partial E-field which is a two-sorted substructure. We denote by F0(ā)E , where ā ⊆ F , the
smallest partial E-subfield of F containing F0 and ā and by F0〈ā〉E the smallest partial
E-subring generated by F0 and ā. When F0 = Q, we denote Q〈ā〉E simply by 〈ā〉E . To
make the distinction with the Lrings-substructure, we denote by Q[ā] the subring generated
by ā.

Note that in [14, Definition 2.2], one uses a stronger notion of partial E-fields, namely one
requires that A(F ) is a Q-vector space, namely one endows A(F ) with scalar multiplications
(·q)q∈Q. Since we don’t use that stronger notion, instead when given two partial E-fields
F0 ⊆ F , we require that A(F0) is a pure subgroup of A(F ) (see definition below).

Notation 2.3. Let F0, F be two partial E-fields with F0 a substructure of F . Then the
subgroup A(F0) is pure in A(F ) iff for any a ∈ A(F ) and n ∈ N∗, if na ∈ A(F0), then
a ∈ A(F0). We use the notation A(F0) ⊆1 A(F ).

Examples 2.1.

(1) Let F be a partial E-field and consider the field of Laurent series F ((t)) (or more
generally a Hahn field (see below)). Then, regardless of whether we put a topology

on F ((t)), we can always define exp(x) :=
∑

i≥0
xi

i! for x ∈ tF [[t]]. Indeed, by

Neumann’s Lemma, the element exp(x) ∈ F [[t]] [?, chapter 8, section 5, Lemma].
Then, we extend E on A(F ) ⊕ tF [[t]] as follows. Write r ∈ A(F ) ⊕ tF [[t]] as
r0 + r1 where r0 ∈ A(F ) and r1 ∈ t.F [[t]]. Define E on A(F ) ⊕ tF [[t]] as follows:
E(r0 + r1) := E(r0)exp(r1). So F ((t)) can be endowed with a structure of a partial
E-field with A(F ((t))) := A(F )⊕ tF [[t]].
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(2) More generally, under the same assumption on F , let (G,+,−, 0, <) be an abelian
totally ordered group, then the Hahn field F ((G)) can be endowed with a struc-
ture of a partial E-field, defining E on the elements r ∈ A(F ) ⊕ F ((G>0)) simi-
larly. Namely decompose r as r0 + r1 with r0 ∈ A(F ) and r1 ∈ F ((G>0)). Then
exp(r1) ∈ F ((G≥0)) again by Neumann’s Lemma and define E(r) := E(r0)exp(r1).
So A(F ((G))) = A(F )⊕ F ((G>0)).

(3) Let R̄ := (R,+,−, ·, 0, 1, E) where E(x) = exp(x) defined above.
(4) Let C̄ := (C,+,−, ·, 0, 1, E) where E(x) = exp(x).
(5) Let p be a prime number; when p = 2 set Ep(x) := exp(p2x) and when p > 2, set

Ep(x) = exp(px). Let Cp be the completion of the algebraic closure of the field
of p-adic numbers Qp (in C). As examples of partial E-fields, we have the field of
p-adic numbers Q̄p := (Qp,+,−, ·, 0, 1, Ep) or C̄p := (Cp,+,−, ·, 0, 1, Ep). In these
two cases, Ep is defined on the valuation ring Zp of Qp (respectively on the valuation
ring Op of Cp).

We will investigate these examples further in section 5. Note that, when the field F

is endowed with a field topology and when limn→∞
∑n

i≥0
xi

i! exists, we can consider the

(partial) function x 7→ exp(x) := limn→∞
∑n

i≥0
xi

i! . One can check that the domain of

exp(x) is a subgroup and a Q-vector space whenever F is closed under roots.

Definition 2.4. Let R be a (partial) E-ring. An E-derivation δ is a unary function on R
satisfying:

(1) δ(a+ b) = δ(a) + δ(b),
(2) the Leibnitz rule: δ(ab) = δ(a)b+ aδ(b),
(3) δ(E(a)) = δ(a)E(a).

We will denote the differential expansion of R by Rδ.

For example, let Fδ be a differential E-field (δ can be the trivial derivation). We have
already seen how to extend E on F [[t]]. Then we extend δ on the field of Laurent series
F ((t)) by setting δ(t) = 1 and by requiring it to be strongly additive. Then δ is again

an E-derivation on F ((t)). Indeed, for x ∈ tF [[t]], we have δ(exp(x)) =
∑

i≥0 δ(
xi

i! ) =

δ(x)exp(x) and for x ∈ F [[t]] with x = r0 + r1 where r0 ∈ A(F ) and r1 ∈ tF [[t]], we
have δ(E(r0 + r1)) = E(r0)exp(r1)δ(r1) + δ(r0)E(r0)exp(r1) = δ(x)E(x). This makes
(F ((t)), F [[t]], exp, δ) a differential (partial) E-field.

Notation 2.5. Let δ be an E-derivation on R. For m > 0 and a ∈ R, we define

δm(a) := δ ◦ . . . ◦ δ︸ ︷︷ ︸
m times

(a), with δ0(a) := a,

and δ̄m(a) as the finite sequence (δ0(a), δ(a), . . . , δm(a)) ∈ Rm+1.
Similarly, given an element a = (a1, . . . , an) ∈ Rn, we write

δ̄m(a) := (a1, . . . , an, . . . , δ
m(a1), . . . , δm(an)) ∈ R(m+1)n.

Denote by Q〈a〉E,δ the E-differential subring of R generated by a and Q.

In section 2.3, we will consider in general the problem of extending E-derivations but
first it is convenient to recall the notion of E-polynomials and differential E-polynomials.
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2.2. Free exponential rings. The construction of free E-rings Z[X]E on finitely many
variables X := (X1, . . . , Xn) (and more generally free E-rings R[X]E over (R,E)) can be
found in many places in the literature. We believe it is initially due to B. Dahn. The
elements of these rings are called E-polynomials in the indeterminates X. Here we will
briefly recall their construction, following [6] and [16]. When n = 1, we will use the
variable X and since we will also use differential E-polynomials, we will also allow X to
denote a tuple of countably many variables.

Let R be an E-ring. Then the ring R[X]E is constructed by stages as follows: let
R−1 := R, R0 := R[X] and A0 the ideal generated by X in R[X]. Then R0 = R⊕A0. Let
E−1 = E on R composed by the embedding of R−1 into R0.

For k ≥ 0, set Rk = Rk−1⊕Ak and let tAk be a multiplicative copy of the additive group
Ak.

For instance for k = 1, we get R1 = R0[tA0 ] and A1 is a direct summand of R0 in R1.
Then, put Rk+1 := Rk[t

Ak ] and let Ak+1 be the free Rk−submodule generated by ta with
a ∈ Ak − {0}. We have Rk+1 = Rk ⊕Ak+1.

By induction on k ≥ 0, one shows the following isomorphism: Rk+1
∼= R0[tA0⊕...⊕Ak ],

using the fact that R0[tA0⊕···⊕Ak ] ∼= R0[tA0⊕···⊕Ak−1 ][tAk ] [16, Lemma 2].
We define the map Ek : Rk → Rk+1, k ≥ 0, as follows: Ek(r

′ + a) = Ek−1(r′)ta, where
r′ ∈ Rk−1 and a ∈ Ak.

Finally let R[X]E :=
⋃
k≥0Rk and extend E on R[X]E by setting E(f) := Ek(f) for

f ∈ Rk. It is easy to check that it is well-defined. Let f ∈ Rk+1, then f = fk + g
where fk ∈ Rk and g ∈ Ak+1. So E(f) = E(fk)t

g. By definition E(fk) = Ek(fk) and
so if fk = fk−1 + gk with fk−1 ∈ Rk−1 and gk ∈ Ak, we have E(fk−1) = Ek−1(fk−1)tgk .
Unravelling f in this way, we get that E(f) = E(f0)tg+gk+...+g0 with f = f0+g0+· · ·+gk+g,
f0 ∈ R, g0 ∈ A0, . . . , gk ∈ Ak, g ∈ Ak+1.

Finally note that the above construction can be extended when R is a partial E-domain,
the only change is that we only define E(f) for f as written above when f0 ∈ A(R).

Using the construction of R[X]E as an increasing union of group rings, one can define on
the elements of R[X]E an analogue of the degree function for ordinary polynomials which
measures the complexity of the elements; it takes its values in the class On of ordinals and
was described for instance in [6, 1.9] for exponential polynomials in one variable. Here we
deal with exponential polynomials in more than one variable and so we follow [16, section
1.8].

Let us denote by totdegX(p) the total degree of p, namely the maximum of {
∑m

j=1 ij : for

each monomial Xi1
1 · · ·Xim

m occurring (nontrivially) in p with i1, . . . , im ∈ N , m ∈ N≥1}.
Then one defines a height function h (with values in N) which detects at which stage of

the construction the (non-zero) element is introduced.
Let p(X) ∈ R[X]E , then h(p(X)) = k, if p ∈ Rk \ Rk−1, k > 0 and h(p(X)) = 0 if

p ∈ R[X].
Using the freeness of the construction, one defines a function rk

rk : R[X]E → N :

If p = 0, set rk(p) := 0,
if p ∈ R[X] \ {0}, set rk(p) := totdegX(p) + 1 and

if p ∈ Rk, k > 0, let p =
∑d

i=1 riE(ai), where ri ∈ Rk−1, ai ∈ Ak−1 \ {0}. Set rk(p) := d.
Finally, one defines the complexity function ord

ord : R[X]E → On
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as follows. Write p ∈ Rk as p = p0 + p1 + · · ·+ pk with p0 ∈ R0, pi ∈ Ai, 1 ≤ i ≤ k. Define

ord(p) :=
∑k

i=0 ω
i.rk(pi).

Note that if p0 = 0, then there is q ∈ R[X]E such that ord(E(q).p) < ord(p) (the proof
is exactly the same as the one in [6, Lemma 1.10]).

On R[X]E , we define n E-derivations ∂Xi as follows: ∂Xi � R = 0 and ∂XiXj = δij , where
δij is the Kronecker symbol, 1 ≤ i, j ≤ n [6, Lemma 3.2].

Notation 2.6. Let X := (X1, . . . , Xn) and let δ be an E-derivation on R. We con-
sider R{X}E the ring of differential E-polynomials over R in n differential indeterminates
X1, · · · , Xn, obtained by extending δ on R[X]E first by setting δj+1(Xi) = δ(δj(Xi)),
1 ≤ i ≤ n, j ∈ ω, with by convention δ0(Xi) := Xi. Then by induction for k > 0 and

p ∈ Rk \ Rk−1, writing p =
∑d

i=1 riE(ai) with ri ∈ Rk−1 and ai ∈ Ak−1 \ {0}, we define

δ(p) =
∑d

i=1(δ(ri) + riδ(ai))E(ai). So δ is an E-derivation by construction and R{X}E is
the E-polynomial ring in indeterminates δj(Xi)), 1 ≤ i ≤ n, j ∈ ω.

Let p(X) ∈ R{X}E . Let m ∈ N be the (differential) order of p (denoted by δ-ord(p))
as classically defined in differential algebra [15, page 75] (if m = 0, then p is an ordinary
E-polynomial). In particular we have that p can be written as p∗(δ̄m(X)) with δ̄m(X) =
(X1, . . . , Xn, δ(X1), . . . , δ(Xn), . . . , δm(X1), . . . , δm(Xn)) and p∗ an ordinary E-polynomial.

Lemma 2.7. Let δ be an E-derivation on R. Let p ∈ R[X]E. Then there exists pδ ∈ R[X]E

such that in the ring R{X}E, δ(p) =
∑n

j=1 δ(Xj)∂Xjp+ pδ. Moreover there is a tuple ē of

elements of R such that p ∈ 〈ē〉E [X]E and pδ ∈ Q(〈ē〉E , δ(ē))[X]E . Furthermore whenever
δ is trivial on R, pδ = 0.

Proof: Decompose p as: p = p0 +
∑k

i=1 pi, with p0 ∈ R[X] and pi ∈ Ai, i > 0. We proceed
by induction on ord(p), namely we assume that for all q ∈ R[X]E with ord(q) < ord(p), we
have δ(q(X)) =

∑n
j=1 δ(Xj)∂Xjq + qδ with qδ satisfying the conditions of the statement of

the lemma.
If ord(p) ∈ ω, namely p ∈ R[X], the statement of the lemma is well-known. Write

p(X) =
∑
ai1,··· ,inX

i1
1 · · ·Xin

n , define pδ :=
∑
δ(ai1,··· ,in)Xi1

1 · · ·Xin
n . Then δ(p(X)) =∑n

j=1 δ(Xj)∂Xjp + pδ. Note that pδ ∈ δ(R)[X] and ord(pδ) ≤ ord(p). If p is monic and

n = 1, then ord(pδ) < ord(p).
Now assume that ord(p) ≥ ω and that the induction hypothesis holds.
Let k > 0 and p ∈ Rk \ Rk−1. By additivity of the derivation, the way ord has been

defined and the induction hypothesis, it suffices to prove it for p ∈ Ak. Let p =
∑d

i=1 riE(ai)

with ri ∈ Rk−1 and ai ∈ Ak−1 \ {0}. By definition, δ(p) =
∑d

i=1(δ(ri) + riδ(ai))E(ai) and

by induction hypothesis, δ(ri) =
∑n

j=1 δ(Xj)∂Xjri + ri
δ and δ(ai) =

∑n
j=1 δ(Xj)∂Xjai +

ai
δ. So we get that δ(p) =

∑n
j=1 δ(Xj)∂Xj (p) +

∑d
i=1E(ai)(ri

δ + riai
δ). Define pδ :=∑d

i=1E(ai)(ri
δ + riai

δ) (†).
Let ei, ci be tuples of elements of R such that ri ∈ 〈ei〉E [X]E , ai ∈ 〈ci〉E [X]E . Then

by induction hypothesis, rδi ∈ Q(〈ei〉E , δ(ei))[X]E , aδi ∈ Q(〈ci〉E , δ(ci))[X]E . Let ē :=
(e1, . . . , ed) and c̄ := (c1, . . . , cd). We have that p ∈ 〈ē, c̄〉E [X]E and by (†),
pδ ∈ Q(〈ē, c̄〉E , δ(ē), δ(c̄))[X]E and if δ is trivial on R, then pδ = 0. �

Remark 2.8. Note that the map sending p ∈ R[X]E to pδ is an E-derivation since the set
of E-derivations on R{X}E is an R{X}E-module.

2.3. Khovanskii systems. Let Fδ be an expansion of a partial E-field by an E-derivation
δ (see Definition 2.4). Note that in [6], the condition of being an E-derivation was relaxed
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to: δ(E(x)) = rδ(x)E(x), for some r ∈ R∗. However if δ is an E-derivation, then rδ is
also an E-derivation, with r ∈ R. More generally, the set of E-derivations on R forms a
R-module. Using E-derivations, J. Kirby defined a closure operator cl in E-rings and he
showed that cl induces a pregeometry on subsets of R [14, Lemma 4.4, Proposition 4.5] (in
particular it has the exchange property).

Definition 2.9. [14, Definition 4.3] Let R be a partial E-ring and let A be a subset of R.
Then,

clR(A) := {u ∈ R : δ(u) = 0 for any E − derivation δ vanishing on A}.

If A ⊆ R, then clR(A) is an E-subring and if R is field, it is an E-subfield.

Note that in the algebraic case, when an element a is algebraic over a subfield endowed
with a trivial derivation δ, then δ(a) = 0 as well. Later, we will see an analog of this
property in the case of E-derivation working with another closure operator, namely ecl (see
Lemma 2.15).

Notation 2.10. Let R be an E-ring. In section 2.2, we recalled the construction of the
ring of E-polynomials in X := (X1, . . . , Xn) over R. These E-polynomials induce functions
from Rn to R and we will denote the corresponding ring of functions by R[x]E , where
x := (x1, . . . , xn) [6].

Note that when R is a partial E-domain, we get the same ring of E-polynomials but
with an E-polynomial we can only associate a partially defined function on R (since E is
only defined on A(R)).

A necessary condition on R under which the map sending an E-polynomial p(X) to the
corresponding function p(x) is injective, is the following: there exist n E-derivations ∂i on
R[x]E , which are trivial on R and satisfy ∂i(xj) = δij [6, Proposition 4.1]. The proof uses
the complexity function ord on exponential polynomials. It holds for instance when R = C
or R [6, Corollary 4.2]. Let f ∈ R[x]E , we denote by ∂if , the function corresponding to the
differential E-polynomial ∂Xif .

Notation 2.11. Given f1, . . . , fn ∈ R[X]E , f̄ := (f1, . . . , fn), we will denote by Jf̄ (X), the

Jacobian matrix:

 ∂X1f1 · · · ∂Xnf1
...

. . .
...

∂X1fn · · · ∂Xnfn

 .

As usual, we denote by det(Jf̄ (X)) the determinant of the matrix Jf̄ (X); note that it is

an E-polynomial. When we evaluate either Jf̄ (X) or its determinant at an n-tuple b ∈ Rn,

we denote the corresponding values by Jf̄ (b), respectively det(Jf̄ (b)).

Definition 2.12. [16], [14, Definition 3.1] Let B ⊆ R be partial E-domains. We will adopt
the following convention. A Khovanskii system over B is a quantifier-free LE(B)-formula
in free variables x := (x1, . . . , xn) of the form

Hf̄ (x) :=

n∧
i=1

fi(x) = 0 ∧ det(Jf̄ (x)) 6= 0,

for some f1, , fn ∈ B[X]E . (We will sometimes omit the subscript f̄ in the above formula
and possibly make explicit the coefficients c̄ ∈ B of the E-polynomials f̄ in which case, we
will use Hc̄(x).)
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Let a ∈ R, then a ∈ eclR(B) if for some f1, . . . , fn ∈ B[X]E and a2, . . . , an ∈ R
Hf̄ (a, a2, . . . , an) holds

(assuming that ai ∈ A(R), 1 ≤ i ≤ n, if needed for the fi’s to be defined).

The operator ecl was used by A. Wilkie in his proof of the model-completeness of the
theory of (R̄, exp), where R̄ denotes the ordered field of real numbers [28], (see also [13]).
Then J. Kirby extracted ecl from this o-minimal setting and showed that it coincides with
the closure operator cl defined above (see Definition 2.9) [14, Theorem 1.1, Propositions
4.7, 7.1]. Since the operator clF on subsets of an E-field F induces a pregeometry, we get
a notion of dimension dimF as follows:

Definition 2.13. Let F be a partial E-field, let x := (x1, . . . , xn) and let C ⊆ A(F ) with
C = clF (C), then for m ≤ n,

dimF (x/C) = m if there exist xi1 , . . . , xim with 1 ≤ i1 < . . . < im ≤ n such that

xij /∈ cl(xi` , C; 1 ≤ ` 6= j ≤ m) and xi ∈ clF (xi1 , . . . , xim , C), 1 ≤ i ≤ n.

In order to show that cl ⊆ ecl, J. Kirby uses a result of J. Ax on the Schanuel property
in differential fields of characteristic 0 [14, Theorem 5.1], in order to show the following
inequality:

td(x, E(x)/C)− `dimQ(x/C) ≥ dim(x/C), (†)
where td(x, E(x)/C) denotes the transcendence degree of the field extension Q(x, E(x), C)
of Q(C) and `dimQ(x/C) the dimension of the quotient of two Q-vector spaces: 〈x, C〉Q
generated by x and C, and 〈C〉Q generated by C. (When C = ∅, `dimQ(x/C) is simply the
linear dimension of the Q-vector-space generated by x.)

From now on we will not make the distinction between the dimension induced by the
closure operator eclF or by the operator clF .

Let M0 ⊆ M1 be two L-structures. Recall that the notation M0 ⊆ecM1 means that
any existential formula with parameters in M0 satisfied in M1 is also satisfied in M0. Let
us note some straightforward properties of the eclF relation (and how it depends on F ).

Remark 2.14. Let F0 ⊆ F1 be two partial E-fields. Suppose that F0 ⊆ec F1, then

(1) A(F0) ⊆1 A(F1) (see Notation 2.3),
(2) eclF1(F0) = F0, provided the number of solutions to a Khovanskii system in F1 is

finite, and
(3) let ϕ(x1, . . . , xk, ȳ) be an existential formula, let a ∈ F0, then if dimF0(ϕ(F0,a)/〈a〉E) ≥

k, then dimF1(ϕ(F1,a)/〈a〉E) ≥ k.

Proof: All these properties are rather straightforward. For convenience of the reader, we
will indicate a proof for (2) and (3).

(2) Suppose that u ∈ eclF1(F0). So we can find u1, . . . , un ∈ F1 and a tuple f̄ of n+ 1 E-
polynomials f1, . . . , fn+1 with coefficients in F0 such that Hf̄ (u, u1, . . . , un) holds. Suppose
the number of n + 1-tuples of solutions of the Khovanskii system Hf̄ is finite and equal
to ` > 0. Then we can express by an existential formula with parameters in F0 that it
has at least ` solutions (in F1). Since F0 ⊆ec F1, that formula holds in F0, so the tuple
(u, u1, . . . , un) should appear among the solutions, otherwise we would get one more solution
in F1, a contradiction.
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(3) Let b1, . . . , bk ∈ F0, k > 1, be eclF0-independent over 〈a〉E and be such that
ϕ(b1, . . . , bk,a) holds. Let us show that b1, . . . , bk remain eclF1-independent over 〈a〉E . We
proceed by contradiction assuming for instance that bk ∈ eclF1(b1, . . . , bk−1, 〈a〉E). So there
are ` ≥ 1 and E-polynomials f1, . . . , f` with coefficients in 〈b1, . . . , bk−1,a〉E and u2, . . . , u` ∈
F1 such that Hf̄ (bk, u2, . . . , u`) holds. Since F0 ⊆ec F1, we can find u′2, . . . , u

′
` ∈ F0 such that

Hf̄ (bk, u
′
2, . . . , u

′
`) holds, witnessing that bk ∈ eclF0(b1, . . . , bk−1, 〈a〉E), a contradiction. �

Recall that in the case of the field of real numbers, A. Khovanskii showed that the number
of solutions of a Khovanskii system is not only finite but it is bounded independently of
the coefficients of the system [28, Proposition 3.1] (he considered the field of real numbers
expanded with a Pfaffian chain of functions).

Lemma 2.15. Let F0 ⊆ F1 ⊆ F , where F0 is a partial E-domain endowed with an E-
derivation δ, F1 is a partial E-field and F is an E-field extension of F1, which is endowed
with an E-derivation extending δ. Then eclF1(F0) can be endowed with a (unique) E-
derivation extending δ.

Proof: Let u ∈ eclF1(F0), so for some n, there exist u1 = u, u2, . . . , un ∈ F1 such that
H(u1, . . . , un) holds in F1, for some Khovanskii system over F0. Set u := (u1, . . . , un) and
X := (X1, . . . , Xn). Let f1, . . . , fn ∈ F0[X]E be such that

(1)
n∧
i=1

fi(u) = 0 ∧ det(Jf̄ (u)) 6= 0.

Let δ∗ be the given extension of δ to F . Applying δ∗ to f1(u), . . . , fn(u), and using that
the E-polynomials f δ

∗
1 , . . . , f δ

∗
n obtained in Lemma 2.7 are equal to f δ1 , . . . , f

δ
n, we get

(2)

 f δ1 (u)
...

f δn(u)

+ Jf̄ (u)

 δ∗(u1)
...

δ∗(un)

 =

 δ(f1(u))
...

δ∗(fn(u))

 = 0

So,

(3)

 δ∗(u1)
...

δ∗(un)

 = −Jf̄ (u)−1 ·

 f δ1 (u)
...

f δn(u)


Note that Jf̄ (X)−1 = J∗

f̄
(X)(det(Jf̄ (X))−1, where J∗

f̄
(X) is the adjugate of Jf̄ (X). So

Jf̄ (X)−1 is a matrix whose entries are rational E-functions with denominator det(Jf̄ (X)).

Since ecl has finite character, we may assume that fi ∈ Q(〈ei〉E)[X]E for some tuple ei
and f δi ∈ Q(〈ei〉E , δ(ei))[X]E (see Lemma 2.7). Let ē := (e1, . . . , en); so we can express
each δ(ui), 1 ≤ i ≤ n, as an E-rational function ti,f̄ (u) with coefficients in Q(〈ē, δ(ē)〉E).

So δ(ui) still belongs to eclF1(F0) since eclF1(F0) is a partial E-subfield of F1.
We can also express the successive derivatives δ`(ui), 1 ≤ i ≤ n, ` ∈ N, ` ≥ 2, as

E-rational function t`
i,f̄

(u) with coefficients in Q(〈δ̄`(ē)〉E). Note that the E-polynomial

appearing in the denominator is a power of det(Jf̄ (X)). We set t1
i,f̄

(u) = ti,f̄ (u). We

can proceed in the same way for every element of eclF1(F0) and so it is endowed with an
E-derivation extending δ on F0. By construction it does not depend on the extension F
(also since ecl = cl there is only one such E-derivation extending δ on F0). �
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For later use, we need to make explicit the form of the rational functions t`
i,f̄

(u) as a

function of u but also of the coefficients of f̄ (see section 4.4).

Notation 2.16. By equation (3), we have δ(y0
i ) := ti,f̄ (y0) where y0 := (y0

1, . . . , y
0
n) and

ti,f̄ (y0) is obtained by multiplying the matrix−Jf̄ (y0)−1 by the column vector

 f δ1 (y0)
...

f δn(y0)

 .

Now by Lemma 2.7, there are tuples x0
i ∈ F0 such that fi belongs to Q〈x0

i 〉E [X]E and

f δi ∈ Q(〈x0
i 〉E , δ(x0

i ))[X]E . To f δi , we associate an E-rational function f δ,∗i by replacing
δ(x0

i ) by the tuple x1
i .

Let x̄j := (xj1, . . . ,x
j
n) with 0 ≤ j. Then we re-write ti,f̄ (y0) as an E-rational function

with coefficients in Q, namely as t∗
i,f̄

(y0; x̄0, x̄1)), 1 ≤ i ≤ n. Set t1,∗
i,f̄

:= t∗
i,f̄

and t1,∗
f̄

:=

(t1,∗
1,f̄
, . . . , t1,∗

n,f̄
). Then we define t2,∗

i,f̄
by applying δ and substituting tj,f̄ (y0) to δ(y0

j ), 1 ≤
j ≤ n, and x̄j to δ(x̄j−1), 2 ≥ j ≥ 1. So we get an E-rational function t2,∗

i,f̄
(y0; x̄0, x̄1, x̄2),

1 ≤ i ≤ n. We iterate this procedure, namely we apply δ to t`,∗
i,f̄

, we substitute t1,∗
k,f̄

(y0) to

δ(y0
k), 1 ≤ k ≤ n, and x̄j+1 to δ(x̄j), j ≥ 0, to obtain t`+1,∗

i,f̄
(y0; x̄0, . . . , x̄`+1), 1 ≤ i ≤ n.

We denote t`+1,∗
f̄

:= (t`+1,∗
1,f̄

, . . . , t`+1,∗
n,f̄

).

Corollary 2.17. Let F0 ⊆ F1 be two partial E-fields and let δ be an E-derivation on F0.
Assume that we have an E-field extension F of F1 which is endowed with an E-derivation
D extending δ.

Let c1, . . . , c` ∈ F1 are eclF1-independent over F0 and d1, . . . , d` ∈ F0, then there is on
F1 an E-derivation δ̃ extending δ such that δ̃(ci) = di, 1 ≤ i ≤ `.

Let c1, . . . , c` ∈ F1 be eclF -independent over F0. Then, for any choice of d1, . . . , d` ∈ F1,
there is an E-derivation δ̃ (on F ) extending δ on F0 and such that δ̃(ci) = di, 1 ≤ i ≤ `.

Proof: Let c1, . . . , c` ∈ F1 be eclF1-independent over F0 and d1, . . . , d` ∈ F0. There are `
E-derivations δi on F1 which are zero on F0 and such that δi(cj) = δij , 1 ≤ i, j ≤ ` [14,

Proposition 7.1]. Set F̃ be the field of fractions of 〈F0, c〉E ⊆ F1, with c := (c1, . . . , c`)

and consider δ̃ := D�F̃ +
∑`

i=1(di −D(ci))δi�F̃ . We have δ̃(F̃ ) ⊆ F0. Then we consider a

maximal partial E-field extension F2 of F̃ included in F1 and endowed with a derivation
δ2 extending δ̃. By the preceding lemma F2 = eclF1(F2). If it is properly included in F1,
we can choose an element a ∈ F1 \ eclF1(F2) and construct an E-derivation extending δ2 on
the E-subring generated by F2 and a, sending a to 1 (or to any element of F2). Then we
extend that derivation on the field of fractions of 〈F2, c〉E , contradicting the maximality of
F2.

Now let d1, . . . , d` ∈ F1 and assume c1, . . . , c` ∈ F1 are eclF -independent over F0. Again
there are ` E-derivations δi on F which are zero on F0 and such that δi(cj) = δij , 1 ≤ i, j ≤
`.

We define δ̃ as D +
∑`

i=1(di − D(ci))δi; since the set of E-derivations on F forms an
F -module, this is an E-derivation which extends δ by construction and which sends ci to

di, 1 ≤ i ≤ `. Let F ′1 be the field of fractions of 〈F0, δ̃
n
(c);n ∈ N〉E ; it is a partial E-field

closed under δ̃. We proceed as in the first part of the proof in order to show that a maximal
partial E-field extension of F ′1 endowed with a derivation extending δ̃, is equal to F . �



12 FRANÇOISE POINT(†) AND NATHALIE REGNAULT

3. E-varieties and topological exponential fields

3.1. E-varieties. Let K be a (partial) E-field. Let f ∈ K[X]E , X := (X1, . . . , Xn), and
a ∈ Kn. Denote by ∇f := (∂X1f(X), . . . , ∂Xnf(X)) and ∇f(a) := (∂X1f(a), . . . , ∂Xnf(a)).

Definition 3.1. Let g1, . . . , gm ∈ K[X]E and let

Vn(g1, . . . , gm) := {a ∈ Kn :
m∧
i=1

gi(a) = 0}.

By E-variety (defined over K), we mean a definable subset of some Kn of the form Vn(ḡ)

for some ḡ ∈ K[X]E . When we consider the elements of an E-variety in an extension K̃ of

K, we denote the set of these elements by V (K̃). Let V be an E-variety, then a is a regular
point of V if for some ḡ, V = Vn(ḡ) and ∇g1(a), . . . ,∇gm(a) are linearly independent over
K (note that this implies that m ≤ n).

In the following, we will make a partition of variables of the gi’s and consider the regular
zeroes with respect to a subset of the set of variables.

Notation 3.2. Let 0 < n0 ≤ n and let f ∈ K[X]E . Denote by

(4) ∇n0f := (∂Xn−n0+1f, . . . , ∂Xnf).

Consider the following subset of Vn(ḡ), with m ≤ n0:
(5)

V reg
n,n0

(ḡ) := {b ∈ Kn :
m∧
i=1

gi(b) = 0 & ∇n0g1(b), . . . ,∇n0gm(b) are K−linearly independent}.

Note if m > n0, then V reg
n,n0(ḡ) = ∅. In case n0 = n, we simply denote V reg

n,n (ḡ) by V reg
n (ḡ)

(or V reg(ḡ)).

Furthermore, we need the following variant. Let ī := (i1, . . . , in0) be a strictly increasing
tuple of natural numbers between 1 and n (of length 1 ≤ n0 ≤ n). Then for f ∈ K[X]E ,
we denote by

(6) ∇īf := (∂Xi1
f, . . . , ∂Xin0

f).

We consider the following subset of Vn(ḡ), with m ≤ n0 = |̄i|:
(7)

V reg
ī

(ḡ) := {b ∈ Kn :
m∧
i=1

gi(b) = 0 & ∇īg1(b), . . . ,∇īgm(b) are K−linearly independent}.

We will denote the formulas corresponding to these definable sets by x ∈ Vn(ḡ), respec-
tively x ∈ V reg

n (ḡ).

3.2. Generic points. Let K ⊆ L be partial E-fields. In section 2.3, we have seen that
eclL is a closure operator which coincides with clL to which we associated the dimension
function dimL(·/K) (see Definition 2.13). As usual one defines the dimension of a definable
subset B ⊆ Ln and the notion of generic points in B.

Definition 3.3. Let B be a definable subset of Ln defined over K. The dimension of B
over K is defined as dimL(B/K) := sup{dimL(b/K) : b ∈ B}. Let b ∈ B, then b is a
generic point of B over K if dimL(b/K) = dimL(B/K).

We will need the following notion of subtuples.
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Notation 3.4. Let a := (a1, . . . , an) be an n-tuple in K and let X := (X1, . . . , Xn).
Let 0 < m < n and let {i1, . . . , im}∪̇{j1, . . . , jn−m} be a partition of {1, . . . , n}, with
1 ≤ i1 < . . . < im ≤ n and 1 ≤ j1 < . . . < jn−m ≤ n.

A m-subtuple of a is a m-tuple denoted by a[m] of the form (ai1 , . . . , aim) and we denote
by a[n−m] := (aj1 , . . . , ajn−m).

Given an E-polynomial f(X) ∈ K[X]E , we denote either by f(a[n−m], Xi1 , . . . , Xim) or
by fa[n−m]

(Xi1 , . . . , Xim) the E-polynomial obtained from f when substituting for Xji the
element aji , 1 ≤ i ≤ n−m. We adopt the same convention for LE-terms.

Remark 3.5. Let f̄ = (f1, . . . , fm) ⊆ K[X]E , a := (a1, . . . , an) ∈ V reg
n (f̄) ⊆ Ln, 1 ≤ m ≤

n. Then:

(1) There is a m-subtuple a[m] of a and a Khovanskii system over K〈a[n−m]〉E such
that Hf̄a[n−m]

(a[m]) holds.

(2) In particular dimL(a/K) ≤ n−m and if Vn(f̄) = V reg
n (f̄), then dimL(Vn(f̄)/K) ≤

n−m.

3.3. E-ideals and differentiation. Let R be a partial E-ring. Let X := (X1, . . . , Xn)
and Xî be the tuple X where Xi is removed, 1 ≤ i ≤ n. Similarly for a ∈ Rn, we denote
aî := (a1, . . . , ai−1, ai+1, . . . , an).

Definition 3.6. Let I ⊆ R be an ideal of R. Then I is an E-ideal if

(r ∈ I → E(r)− 1 ∈ I).

A prime E-ideal is a prime ideal which is an E-ideal.

In R[X]E , an example of a prime E-ideal is AnnR[X]E (a) := {f ∈ R[X]E : f(a) = 0}.
(When the context is clear we will omit the superscript R[X]E .)

As usual the definition of E-ideal is set-up in such a way that if I ⊆ R is an E-ideal,
then on the quotient R/I, we have a well-defined exponential function given by:

E(r + I) := E(r) + I

for r ∈ A(R). So (R/I,E) is a again a partial E-ring.

We now recall a result from A. Macintyre on E-ideals closed under partial derivation.
Note that the proof is purely algebraic, using that one can measure the complexity of
exponential polynomials (see section 2.2).

Fact 3.7. [16, Theorem 15 and Corollary] Let R be a partial E-domain. Let 1 ≤ i ≤ n.
Let I ⊆ R[X]E be an E-ideal closed under the E-derivation ∂Xi. Then either I = 0 or
I contains a non-zero element of R[Xî]

E. In particular, if I 6= 0 is closed under all E-

derivations ∂Xi, 1 ≤ i ≤ n and R is a field, then I = R[X]E.

Let K ⊆ L be partial E-fields. A consequence of Fact 3.7 is that eclL-independent
elements over K do not satisfy any hidden exponential-algebraic relations over K.

Corollary 3.8. Let a := (a1, . . . , an) ∈ Ln be such that a1, . . . , an are eclL-independent
over K. Then there is no g ∈ K[X]E \ {0} such that g(a) = 0.

Proof. By the way of contradiction assume there is g ∈ K[X]E \ {0} be such that g(a) = 0.
Then for i = 1, . . . , n, ∂Xig(a) = 0 otherwise ai ∈ eclL(K(aî)). (Indeed, letting h(X) :=
g(aî, X), we would have Hh(ai).) Hence the ideal Ann(a) is an E-ideal, closed under all
partial E-derivations ∂Xi , 1 ≤ i ≤ n. So by Fact 3.7, since Ann(a) 6= 0, it is equal to
K[X]E , a contradiction. �
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Let Kδ be an expansion of the partial E-field K by an E-derivation δ and let K̃ be an
E-field extending K. Let A ⊆ K̃n. Let IK(A) ⊆ K[X]E be the set of E-polynomials with

coefficients in K which vanish on A, namely IK(A) =
⋂

a∈AAnn
K[X]E (a). Note that it is

an E-ideal as an intersection of E-ideals.

Definition 3.9. For A ⊆ K̃n, let τ(A) ⊆ K̃2n be the E-torsor of A (over K), namely:

τ(A) := {(a,b) ∈ K̃2n : a ∈ A and

n∑
i=1

∂Xif(a)bi + f δ(a) = 0 for all f(X) ∈ IK(A)}.

In case K̃ is endowed with a derivation δ̃ extending δ, if a ∈ A, then (a, δ̃(a)) ∈ τ(A).

Note that if we can find f1(X), . . . , fm(X) ∈ AnnK[X]E (a), a ∈ A, 1 ≤ m ≤ n such that
∇f1(a), . . . ,∇fm(a) are K-linearly independent, then setting

Ta := {b ∈ K̃n :
n∑
i=1

∂Xif(a)bi = 0 for all f(X) ∈ AnnK[X]E (a)},

we have that `dim(Ta) ≤ n−m.

Lemma 3.10. Let K ⊆ec K̃ be partial E-fields, and let δ be an E-derivation on K. Let
f̄ = (f1, . . . , fm) ⊆ K[X]E, m ≤ n. Suppose that there are (a,b) ∈ K̃2n such that (a,b) ∈
τ(V reg

n (f̄)) and dimK∗(a) = n − m. Then there is an E-derivation δ̃ (on an elementary

extension of K, as partial E-fields) extending δ such that δ̃(ai) = bi, for i = 1, . . . , n.

Proof. Since K ⊆ec K̃ as partial E-fields, there is an embedding (of partial E-fields) of K̃ in
a non-principal ultrapower K∗ of K (which is the identity on K). Let δ∗ be the derivation
induced by δ on K∗.

Since a ∈ V reg
n (f̄), we have that ∇f1(a), . . . ,∇fm(a) are K̃-linearly independent. By

permuting the coordinates of a, assume∇mf1(a), . . . ,∇mfm(a) are K̃-linearly independent.
Set a[n−m] := (a1, . . . , an−m) and a[m] := (an−m+1, . . . , an). Note that det(Jf̄a[n−m]

(a[m])) 6=

0. Since a[m] ∈ eclK̃(a[n−m]), a1, . . . , an−m are eclK
∗
-independent.

By Corollary 2.17, there is an E-derivation δ̃ on K∗ extending δ on K and such that
δ̃(ai) = bi, 1 ≤ i ≤ n−m.

By assumption (a,b) ∈ τ(V reg
n (f̄)). In particular

∧m
i=1

∑n
j=1 ∂Xjfi(a)bj + f δi (a) = 0.

Breaking the sum
∑n

j=1 ∂Xjfi(a)bj in two parts:
∑n−m

j=1 ∂Xjfi(a)bj ,
∑n

j=n−m+1 ∂Xjfi(a)bj ,
we get:

(8)

 bn−m+1
...
bn

 = −(Jf̄a[n−m]
(a[m]))

−1

 f δ1 (a)−
∑n−m

j=1 ∂Xjf1(a)bj
...

f δm(a)−
∑n−m

j=1 ∂Xjfm(a)bj


Since δ̃(ai) = bi, 1 ≤ i ≤ n−m, we get that δ̃(a) = b. �

Remark 3.11. Keeping the same notation as the above lemma, we will show later (see
Proposition 3.22) that, under the condition that K satisfies an implicit function theorem
(see Definition 3.14), in a sufficiently saturated elementary extension of K, we can find a

tuple a ∈ V reg
n (f̄) with dimK∗(a) = n−m.



EXPONENTIAL TOPOLOGICAL FIELDS WITH A GENERIC DERIVATION 15

3.4. Topological E-fields. In section 2, we introduced the notion of a partial E-field F
as a two-sorted structure (F,A(F ), E) where F is a field and A(F ) is an additive group
(that we identified with a subgroup of the additive group of F ) and E : A(F ) → F ∗, a
morphism from A(F ) to the multiplicative group of F .

In this section we will revert to a one-sorted setting and we work with topological fields,
namely the field operations, together with the exponential function are continuous (when
defined). Let L− be a relational extension of LE and let L := L− ∪ {−1}. Starting with a
two-sorted structure (K,A(K), E) which is a partial E-field, we will consider L-structures
K with domain K and with the convention that the domain of E is A(K), an additive
subgroup of K. Classically one requires that the functions are defined everywhere and so
for instance, one extends −1 by the rule 0−1 = 0. Instead here we proceed as follows. We
use the fact that one can associate with any L-term t(x1, . . . , xn) a quantifier-free formula
Dt(x1, . . . , xn) which exactly holds on the domain of definition (also denoted by Dt) of t (see
for instance [?, Section 2]). (One works by induction on the complexity of terms in a similar
way as we did in section 2.) Furthermore letting ∂it(x1, . . . , xn) be the formal derivative
of t with respect to xi (with the rule ∂(E(x)) = E(x)), Dt(x1, . . . , xn)↔ D∂it(x1, . . . , xn),
1 ≤ i ≤ n. The advantage of proceeding in this way, instead of extending the functions
when undefined, is that one can then require that the terms induce continuous functions
(or continuously differentiable (i.e. C1-functions), or C∞, or analytic functions) on their
domains of definition.

Let V denote a basis of neighbourhoods of 0. Then (K,V) is a topological L-field if V
induces an Hausdorff (non-discrete) topology such that the functions of L are interpreted by
C1-functions on their domains of definition and that each relation and its complement is the
union of an open set and an E-variety. So w.l.o.g. we may assume that every quantifier-free
L-formula is a finite disjunction of quantifier-free formulas of the form:∧

j∈J
tj(x) = 0 ∧ x ∈ O,

where tj(x) is an L-term, j ∈ J (J finite) and O is a definable open set by a conjunction
of basic formulas. We will say that K is endowed with a definable topology if there is an
L-formula χ(x,y) such that a basis of neighbourhoods of 0 in K is given by χ(K,d), where
d ∈ Kn, n = |y|. Note that if K is endowed with a definable topology, then any field
K0 elementary equivalent to K can be endowed with a definable topology using the same
formula χ(x,y). Moreover if K is endowed with a definable topology with corresponding

formula χ(x,y) and K̃ an elementary extension of K endowed with a topology induced by χ,

then K̃ is a topological extension of K [11, Definition 2.3]. As usual, the cartesian products
of K are endowed with the product topology. Let x be a m-tuple, we will denote by χ̄(x,y)
the formula

∧m
i=1 χ(xi,y).

Notation 3.12. Let (K,V) ⊆ (K̃,W) be two topological L-fields with (K̃,W) be a topo-
logical extension of (K,V), as defined in [11, Definition 2.3], namely K is an L-substructure

of K̃ and for any V ∈ V there exists W ∈ W such that V = W ∩K. Let WK := {W ∈ W :
W ∩K ∈ V}.

On elements a, b ∈ K̃ we have the equivalence relation a ∼WK
b which means that a− b

belongs to every element of WK . (We will also use the notation a ∼K b.)

We will say that a non zero element a ∈ K̃ is K-small if a ∼WK
0 (that we abbreviate

by a ∼K 0).
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Let K be a topological field. Then a subset Z ⊆ K is bounded away from 0 if 0 does
not belong to the closure of Z. The topology on K is a V -topology if whenever X,Y ⊆ K
are bounded away from 0, then XY is bounded away from 0. One calls such fields V -
topological fields [23, Section 3]. By results of Kowalsky-Dürbaum, and Fleischer if K is
a V -topological field then its topology is either induced by an archimedean absolute value
or by a non-trivial valuation [23, Theorem 3.1]. One can define a notion of topological
henselianity (t-henselianity) for V -topological fields [23, Theorem 7.2]. One can show that
one can embed any V -topological field in a t-henselian field [12, Lemma 2.2] and a t-
henselian field satisfies the implicit function theorem for polynomial maps [23, Theorem
7.4], [12, Fact 2.4]. In the following, we will need an analog of that property for exponential
polynomials.

3.5. Implicit function theorem. From now on, we will assume that K is a topological
L-field where the topology is a V -topology and it is definable with corresponding formula
χ.

Notation 3.13. [28, Definition 4.4] Let S be a neighbourhood system in Kn, namely
a non-empty collection of open non-empty definable neighbourhoods closed under finite
intersection. Let a ∈ Kn, we will denote by Sa the neighbourhood system consisting of all
definable neighbourhoods of a.

Denote by Dn(S)− := {(f, U) : U ∈ S, f : U → K a C∞-function, definable in K}.
One defines on Dn(S)− an equivalence relation ∼ as follows: (f1, U1) ∼ (f2, U2) if there is
U ⊆ U1 ∩ U2 such that f1 � U = f2 � U . Let Dn(S) := Dn(S)−/ ∼. We denote by [f, U ]
the equivalence class containing (f, U).

Denote by Dn
an(S)− := {(f, U) : U ∈ S, f : U → K an analytic function, definable in K }

and by Dn
an(S) := Dn

an(S)−/ ∼.

We now introduce the following implicit function theorem hypothesis (IFT)e that we put
on the class of fields under consideration. The implicit function theorem for C1-functions,
or C∞-functions, or analytic functions is classically proven in fields like R, Qp (or more
generally complete (non-discrete) valued fields (of rank 1)) [2, section 1.5]. A. Wilkie
stated it for any field K elementary equivalent to an expansion of the field of reals [28,
section 4.3], T. Servi recasted the results of Wilkie in definably complete expansions of
ordered fields [26].

Definition 3.14. Let n = `+m, n > 1, `,m > 0, let (a,b) ∈ K`+m. Let f1(x,y), . . . , fm(x,y)
be definable C1-functions in K, |x| = `, |y| = m, denote f̄(a,y) = (f1(a,y), . . . , fm(a,y))
by f̄a(y). Then K satisfies (IFT) if the following holds. Assume that f̄a(b) = 0 and that
det(Jf̄a(b)) 6= 0 (see Notation 2.11). Then there are neighbourhoods Oa ⊆ K` of a (respec-

tively Obi ⊆ K, 1 ≤ i ≤ m, of bi) and C1-functions gi(x) : Oa → Obi , 1 ≤ i ≤ m, such that
setting ḡ := (g1, . . . , gm) and ¯̀ := (1, . . . , `),

ḡ(a) = b ∧(9)

∀ x ∈ Oa

(
f̄(x, ḡ(x)) = 0 ∧ Jḡ(x) = −(∇mf̄(x, ḡ(x))−1∇¯̀f̄(x, ḡ(x)))

)
∧(10)

∀ x ∈ Oa ∀ y ∈ Ob (f̄(x,y) = 0↔ y = ḡ(x)).(11)

We denote by (IFT)e the corresponding scheme when the functions f1(x,y), . . . , fm(x,y)
are those induced by the exponential polynomials (with coefficients in K).
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Notation 3.15. As noted in [28, 4.3], when the topology on K is definable, this implies that
whenever the functions fi are definable (respectively C∞), the gi’s are definable (respectively
C∞), using the above equations (9), (10), (11). If, when the functions fi, 1 ≤ i ≤ m, are
analytic functions in a neighbourhood of (a,b), the functions ḡ in the scheme (IFT) are
also analytic in a neighbourhood of a, we will denote the corresponding scheme (IFT)an.

Notation 3.16. [28, below Notation 4.6] Keeping the same notation as in Notation 3.13
and Definition 3.14, and assuming that K satisfies (IFT), we may define a map

ˆ: Dn(S(a,b))
− → D`(Sa)− : f 7→ f̂

sending the function f � Oa × Ob → K, where Ob := Ob1 × . . . × Obm , to the function

f̂ : Oa → K : x 7→ f(x, g1(x), . . . , gm(x)).
It is convenient to introduce an (`+m)-tuple (g̃) of functions defined as follows: g̃i(x) = xi

for 1 ≤ i ≤ ` and g̃`+i := gi(x), 1 ≤ i ≤ m. With this notation f̂(x) = f(g̃(x)).

Lemma 3.17. Suppose K satisfies (IFT)e. Let (a,b) ∈ K`+m and let f1, . . . , fm, h ∈
D`+m(S(a,b)). Let f̄ := (f1, . . . , fm) and assume that f̄(a,b) = 0 & det(Jf̄a(b)) 6= 0.

Then, keeping the same notations as above, the sequence of vectors ∇f̄(a,b), ∇h(a,b) is

K-linearly independent iff ∇ĥ(a) 6= 0.

Proof: The proof is the same as the one of [28, Lemma 4.7] (and it was also used in [17]
(see [17, Lemma 5.1.3])). �

We will need the following lack of flat functions (LFF) property [28, Lemma 4.5], [26,
Lemma 25].

Definition 3.18. We say that K satisfies (LFF) if the following holds.
(1) The map sending an element of K[X]E to the corresponding function in K[x]E (pos-

sibly partially defined, is injective (see Notation 2.10),
(2) Let S be a neighbourhood system in Kn and let M be a subring of Dn(S) closed

under differentiation. Let I ⊆ M be a finitely generated ideal closed under differentiation
and let [g1, U1], . . . , [gs, Us] be generators for I. Let Z be the set of common zeroes of gi,
1 ≤ i ≤ s, in U1 ∩ . . . ∩ Us. Then there is U ∈ S such that U ∩ Z is an open subset of Kn.

In case K is either real-closed or an ordered field which is definably complete, then (LFF)
holds in general. Indeed, in that last case, it follows from the following property of solutions
of systems of linear differential equations [26, Theorem 8], [28, Proof of Lemma 4.5]:
given a non-empty open interval U of K and a system of linear differential equations with
coefficients in the ring R of C1-functions from U to K, there is a unique solution of that
system in R.

If in K, (IFT)an holds and if we restrict M to be a subring of Dn
an(S), then the corre-

sponding property (2) above holds.

Observe that given a finite given number of elements of K[x]E , we can put them in a
noetherian differential subring of K[x]E . Indeed, using the complexity function ord defined
in K[X]E , this is always possible to find such a ring. An exponential polynomial corresponds
to an LE-term and those are constructed by induction in finitely many steps. So we place
ourselves in the ordinary polynomial ring (over K) generated by all the (finitely many) sub-
terms appearing in the construction and their derivatives. This subring of K[x]E is closed
under differentiation and noetherian. So in such a ring we may apply property (LFF).
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W.l.o.g. we may place ourselves in a subring of K0[x]E , where K0 is a finitely generated
subfield of K.

The next result was first observed for (R̄, exp) by A. Wilkie [28] but note that it also
holds without the assumption of noetherianity, for definably complete structures by G.
Jones and A. Wilkie [13]. Then it was re-used in [17, Proposition 5.1.4] in the case of the
valued field (Qp, Ep); there one applied the version (IFT)an of the implicit function theorem
for analytic functions.

Proposition 3.19. [28, Theorem 4.9] Assume that K satisfies (IFT)e and (LFF).
Let r ∈ Kn and let Rn be a noetherian subring of Dn(Sr) closed under differentiation.

Let f1, . . . , fm ∈ Rn, 1 ≤ m ≤ n, and assume r ∈ V reg
n (f1, . . . , fm). Then, exactly one of

the following is true:

(a) n = m; or,
(b) m < n and for all h ∈ Rn with h(r) = 0, h vanishes on U ∩ V reg

n (f1, . . . , fm) for
some open neighbourhood U containing r,

(c) m < n and for some h ∈ Rn, r ∈ V reg
n (f1, . . . , fm, h).

�

Note that later, we will not appeal to the above proposition directly, but instead we will
go over the main lines of its proof.

We will end the section by showing, that in case K satisfies (IFT)e, that we can find
ecl-independent, K-small elements in an elementary extension of K, using the following
immediate consequence of (IFT)e.

Remark 3.20. Let K satisfying (IFT)e. Let f1, . . . , fm ∈ K[x,y]E, and (a,b) ∈ K`+m,
with |x| = `, |y| = m. Let a ∈ K`, b ∈ Km. Assume that Hf̄a(b) holds, namely f̄(a,b) = 0

and det(Jf̄a(b)) 6= 0 (see Definition 2.12). Then, b is an isolated zero of the system

f̄a(y) = 0.
Note that if the field K is in addition separable as a topological space, then eclK(B)

is countable whenever B is countable. (Indeed the number of Khovanskii systems with
coefficients in B is countable and each such system has at most countably many solutions
since each solution is isolated.)

Lemma 3.21. Let K satisfy (IFT)e. Let K1 be a |K|+-saturated elementary extension of
K. Then there is an element t ∈ K1 \ eclK1(K) with t ∼K 0. More generally for every
n ∈ N∗ there are n elements t1, . . . , tn ∈ K1 ecl-independent over K and K-small.

Proof. Consider the partial type tpK(x) consisting of L(K)-formulas expressing that x ∼K 0
and x /∈ ecl(K). The first property is expressed by the set of formulas χ(x, ā), where ā varies
in K and the second property by ¬∃ȳ Hf̄ (x, ȳ) where f̄ varies in K[X, Ȳ ]E . By Remark

3.20, this set of formulas is finitely satisfiable. So tpK(x) is realized in a |K|+-saturated
extension of K (see for instance [19, Theorem 4.3.12]).

Then by induction on n, assume we found n elements t1, . . . , tn ecl-independent over
K and K-small. Consider the partial type tpK(t1,...,tn)(x) consisting of L(K(t1, . . . , tn))-

formulas expressing that x ∼K 0 and x /∈ eclK1(K(t1, . . . , tn)). Again by Remark 3.20, it is
finitely satisfiable and so it is realized in K1 by an element tn+1 such that t1, . . . , tn+1 are
ecl-independent over K and K-small. �

Proposition 3.22. Let K satisfy (IFT)e. Let f̄ = (f1, . . . , fm) ⊆ K[X]E, |X| = n > m.
Suppose that there is a ∈ V reg

n (f̄) ∩Kn.
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Then there is an elementary L-extension K̃ of K and b ∈ V reg
n (f̄)∩ K̃n with b−a ∼K 0̄

and dimK̃(b/K) = n−m. In particular, b is a generic point of V reg
n (f̄) ∩ K̃n.

Proof. Let a ∈ V reg
n (f̄), then ∇f1(a), . . . ,∇fm(a) are linearly independent over K. By

permuting the variables X1, . . . , Xn, assume that ∇mf1(a), . . . ,∇mfm(a) are K-linearly
independent (see Notation 3.2). So we have det(Jf̄a[n−m]

(a[m])) 6= 0, with a := (a[n−m],a[m])

(see Notation 3.4). By (IFT)e, there are definable neighbourhoods O ⊆ Kn−m of a[n−m],
O′ ⊆ Km of a[m] and definable functions g1, . . . , gm from O → O′ such that a[m] = g(a[n−m])

and such that for all x ∈ O,
∧m
i=1 fi(x, g1(x), . . . , gm(x)) = 0. By Lemma 3.21, there is an

elementary LE-extension K̃ of K containing n−m K-small elements t1, . . . , tn−m which are
ecl-independent over K.
Let t[n−m] := (t1, . . . , tn−m) and b := a[n−m] + t[n−m] ∈ Kn−m. Then b ∈ K̃ are ecl-

independent over K, a− b ∼K 0 and
∧n
i=1 fi(b, g1(b), . . . , gm(b)) = 0. �

4. Topological differential exponential fields

4.1. Differential fields expansions. Throughout this section, we will place ourselves in
the same setting as in subsection 3.4; in particular the language L is a relational expansion
of LE ∪ {−1}. Again, we assume that the topological L-field K is endowed with a definable
field topology with corresponding formula χ and that this topology is a V -topology.

Let Lδ be the expansion of L by an E-derivation δ and given K, let Kδ denotes the
expansion of K by an E-derivation δ.

Given an L-theory T of topological L-fields, we denote by Tδ the theory T together with
the axioms of an E-derivation (see Definition 2.4). In particular if K |= T , then Kδ is a
model of Tδ.

Any Lδ-term t(x) with x = (x1, . . . , xn) is equivalent, modulo the theory of differ-
ential E-fields, to an Lδ-term t∗(δ̄m1(x1), . . . , δ̄mn(xn)) where t∗ is an L-term, for some
(m1, . . . ,mn) ∈ Nn. By possibly adding tautological conjunctions like δk(xi) = δk(xi)
if needed, we may assume that all the mi’s are equal. We use the following notation
δ̄m(x) := (x, δ(x), . . . , δm(x)), with δi(x) := (δi(x1), . . . , δi(xn)), 1 ≤ i ≤ m. Recall that we
associated with any L-term t∗ a quantifier-free formula Dt∗ and its domain of definition.

Therefore, we may associate with any quantifier-free Lδ-formula ϕ(x) an equivalent Lδ-
formula, modulo the theory of differential E-fields, of the form ϕ∗,m(δ̄m(x)), m ∈ N, where
ϕ∗,m is an L-quantifier-free formula which arises by uniformly replacing every occurrence
of δm(xi) by a new variable xmi in ϕ with the following choice for the order of variables
ϕ∗,m(x0, . . . ,xm), where xi = (xi1, . . . , x

i
n), 0 ≤ i ≤ m; furthermore since we made the

convention that the functions are not everywhere defined, we assume in addition that
the formula ϕ∗,m(x0, . . . ,xm) contains for each term t∗(x0, . . . ,xm) the quantifier-free L-
formula D∗t (x

0, . . . ,xm). Let Tϕ be the set of Lδ-terms occurring in ϕ.
Furthermore since we are only interested in existentially closed models, we will add new

variables (that we will quantify existentially) and we replace in the formula ϕ∗,m(x0, . . . ,xm),
each occurrence of an L-subterm of the form s−1 by a new variable u together with the
existential formula ∃u us = 1, in order to transform atomic L-formulas into atomic L−-
formulas in variables x0, . . . ,xm, ū. Note that δ(u) is expressed in terms of s, δ(s). So we
get

(12) ϕ(x) ∧
∧
t∈Tϕ

Dt∗(δ̄
m(x))↔ ∃ū ϕ∗,m− (δ̄m(x), ū) ∧

∧
t∈Tϕ

Dt∗(δ̄
m(x)),
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where now ϕ∗,m− is a quantifier-free L−-formula. We will call the least such m, the order
of the quantifier-free Lδ-formula ϕ. We will call an atomic formula of the form s(y) = 0
an L−-equation (or LE-equation), where s(y) is an L−-term. We will usually drop the
superscript m in the formula ϕ∗,m− . We will make the following notational simplifications:
we will no longer specify that we work on the domains of definitions of our terms.

4.2. Scheme (DL)E. Given a model-complete theory T of topological L-fields, we consider
the class of existentially closed differential expansions of models of T and under additional
assumptions on the class of models of T , we will show that this class is elementary and we
produce an axiomatisation. Namely, by a scheme of first-order axioms, we will express that
certain systems of differential exponential equations have a solution. In order to determine
which ones, we first associate, using the process explained above, to a quantifier-free Lδ-
formula ϕ(x) of order m, a quantifier-free L−-formula ϕ∗,m− (δ̄m(x), ū). From now on, we will
make the additional hypothesis that ϕ(x) is a finite conjunction of basic formulas (namely
either an atomic formula or the negation of an atomic formula), and one can easily check
that the associated formula ϕ∗,m− (δ̄m(x), ū) is also a finite conjunction of basic formulas.
Since the derivation extends in a unique way to the ecl-closure, we enumerate partitions
of the variables into two subsets: a first one where we impose no conditions and the other
one where we express that there are regular solutions of an E-variety over this first subset
of variables.

Definition 4.1. Let Kδ be a differential topological L-field.
We start with a (finite) system E-polynomial equations (x0, . . . ,xm) ∈ V over K where

V denotes the corresponding E-variety and xi := (xi1, . . . , x
i
n), 1 ≤ i ≤ m.

Let n ≥ `0 ≥ `1 ≥ . . . ≥ `m−1 ≥ 0 and set xi[`i] := (xi1, . . . , x
i
`i

), 0 ≤ i ≤ m −
1. Let zj,i be a tuple of new variables, `i + 1 ≤ j ≤ n, 0 ≤ i ≤ m − 1 and let z̄ :=
(z(`i+1),i, . . . , zn,i)0≤i≤m−1. Set ¯̀ := (`0, `1, . . . , `m−1).

We then define a Khovanskii formula H¯̀(x0, . . . ,xm−1, z̄), as

H¯̀(x0, . . . ,xm−1, z̄) :=
m−1∧
i=0

n∧
j=`i+1

Hf̄j,i
(xij , zj,i),

where Hf̄j,i
(xij , zj,i) are Khovanskii systems (see Definition 2.12) expressing that each el-

ement xij , `i + 1 ≤ j ≤ n, of the subtuple (xi`i+1, . . . , x
i
n) of xi is in the eclK-closure of

x0
[`0], . . . ,x

i
[`i]

, and f̄j,i is a tuple of E-polynomials with coefficients in K(xi[`i], . . . ,x
0
[`0]),

0 ≤ i ≤ m− 1.
Then a prepared system (x0,x1

[`0], . . . ,x
m
[`m−1], z̄) ∈ V

prep
H (with corresponding Khovanskii

formula H¯̀) is a conjunction of basic L−(K)-formulas consisting of:

(1) a Khovanskii formula H¯̀(x0, . . . ,xm−1, z̄) (keeping the above notation),
(2) a conjunction of E-polynomial equations (x0,x1

[`0], . . . ,x
m
[`m−1], z̄) ∈ VH obtained

from the initial system (x0, . . . ,xm) ∈ V and the Khovanskii systems Hf̄j,i
(xij , zj,i),

by replacing every tuple of variables (xk+1
j , zj,k+1), 0 ≤ k ≤ m− 1, `k + 1 ≤ j ≤ n,

by the tuple t1,∗
f̄j,k+1

of E-rational functions (over K) in xkj , zj,k,x
k
[`k], . . . ,x

1
[`1],x

0
[`0]

introduced in Notation 2.16, obtained by clearing denominators and
(3) a conjunction of negation of atomic formulas saying that the denominators of the

terms t1,∗
f̄j,k+1

are non-zero.
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So a prepared system consists of the conjunction of two conditions of the form: be-
longing to some E-variety and to the complement of such definable set that we will call
an E-Zariski open set. As usual we denote the set of solutions in K of the formula
(x0,x1

[`0], . . . ,x
m
[`m−1], z̄) ∈ V

prep
H by V prep

H (K).

We allow the case where there is no Khovankii formula H¯̀ and in this case the formula
(x0, . . . ,xm) ∈ V prep

∅ (with empty tuple z̄) is equal to (x0, . . . ,xm) ∈ V .
We let K0 be the subfield of K generated by the elements of K occurring in the formula

(x0,x1
[`0], . . . ,x

m
[`m−1], z̄) ∈ V

prep
H . We will say that K0 is associated with (V,H).

Let f̄ be a tuple of E-polynomials and let O be the (E-Zariski) open set such that

V prep
H (K) = V (f̄) ∩O. Let N := n+

∑m−2
j=0 `j + |z̄|.

Then we say that the system (x0,x1
[`0], . . . ,x

m
[`m−1], z̄) ∈ V

prep
H is well prepared over K0

if there is a tuple of E-polynomials h̄(x0,x1
[`0], . . . ,x

m
[`m−1], z̄) with coefficients in K0 and if

there are (non-empty) tuple of indices ī := (i1, . . . , ip), 1 ≤ i1 < . . . < ip ≤ `m−1 among the
indices of the tuple xm[`m−1] and another tuple of indices j̄ := (j1, . . . , jr) among the indices

of the tuple (x0,x1
[`0], . . . ,x

m−1
[`m−2], z̄), 1 ≤ j1 < . . . < jr < N such that V reg

N+`m−1,(j̄ ,̄i)
(h̄)∩O =

V prep
H (K).

From now on we will not insist on which are the variables occurring in the formula
(x0,x1

[`0], . . . ,x
m
[`m−1], z̄) ∈ V

prep
H and we will simply denote it by (x0,x1, . . . ,xm, z̄) ∈ V prep

H .

Definition 4.2. The scheme (DL)E has the following form: for each (finite) system E-
polynomial equations (x0, . . . ,xm) ∈ Vn over K and associated prepared system
(x0,x1, . . . ,xm, z̄) ∈ V prep

H with Khovanskii formulaH¯̀(x0, . . . ,xm−1, z̄), with ¯̀ := (`0, . . . , `m−1),
n ≥ `0 ≥ . . . ≥ `m−1, letting O be an E-Zariski open set such that V prep

H (K) = Vn ∩ O,
and further assuming it is well-prepared by a tuple of E-polynomials h̄ with the property
that V reg

N+`m−1,(j̄ ,̄i)
(h̄) ∩ O = V prep

H (K) with N := n +
∑m−2

j=0 `j + |z̄|, ī := (i1, . . . , ip),

1 ≤ i1 < . . . < ip ≤ `m−1 among the indices of the tuple xm[`m−1] and another tu-

ple of indices j̄ := (j1, . . . , jr) among the indices of the tuple (x0,x1
[`0], . . . ,x

m−1
[`m−2], z̄),

1 ≤ j1 < . . . < jr < N , we have:

∀d̄ ∀x0 . . . ∀xm
(
∃z̄
(
(x0, . . . ,xm, z̄) ∈ V reg

ī
(h1, . . . , hp))→

(∃α ∃w̄ (δ̄m(α), w̄) ∈ V reg
ī

(h1, . . . , hp) ∧ χ((δ̄m(α), w̄)− (x0, . . . ,xm, z̄), d̄))
)
.

Note that by quantifying over the coefficients of h1, . . . , hp, this scheme is first-order.

Remark 4.3. In a model Kδ |= Tδ of the scheme (DL)E , the differential points are dense
in all cartesian products of K. Let O ⊆ Km+1 and (a0, . . . , am) ∈ O. Consider the system
xm = am, then it is well-prepared since taking h := xm−am, (∂x0h, . . . , ∂xmh) = (0, . . . , 0, 1)
and so the tuple (a0, . . . , am−1, am) ∈ V reg(h). So we find a differential solution b such that
δm(b) = am and δ̄m−1(b) is close to (a0, . . . , am−1). This is analogous to [11, Lemma 3.12].

The same argument shows that the subfield of constants CK is dense in K (and recall that
since δ is an E-derivation, CK is a partial E-subfield of K which is relatively algebraically
closed in K). We even have that eclK(CK) = CK by Lemmas 2.7, 2.15.

Recall that we always work with topological fields endowed with a definable V -topology
with corresponding formula χ. The main result of this section is:

Theorem 4.4. Let T be a model-complete theory of topological L-fields. Assume that
K |= T and that the differential expansion Kδ is a model of Tδ ∪ (DL)E. Then Kδ is
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existentially closed in the class of models of Tδ. In particular if the theory Tδ ∪ (DL)E
is consistent, then it is model-complete. Assume that the models of T satisfy either the
schemes (IFT)e and (LFF) or satisfy (IFT)an, then the theory Tδ ∪ (DL)E is consistent
and so it is the model-companion of the theory Tδ.

The above theorem will follow from Theorems 4.6 and 4.9.
The strategy of the proof is the following. First show that a model Kδ |= Tδ satisfying

(IFT)e and (LFF) can be embedded in K̃δ |= Tδ ∪ (DL)E (Theorem 4.6). Second show
that if Tδ ∪ (DL)E is consistent, then it axiomatizes the existentially closed models of Tδ
(Theorem 4.9).

We begin by realizing one instance of the scheme (DL)E in a differential extension of Kδ.

Lemma 4.5. Let Kδ |= Tδ and suppose K satisfies (IFT)e. Let M be a |K|+-saturated ele-
mentary L-extension of K. Consider a (finite) system E-polynomial equations (x0, . . . ,xm) ∈
Vn over K, a Khovanskii formula H¯̀(x0, . . . ,xm−1, z̄) with ¯̀ = (`0, . . . , `m−1), n ≥ `0 ≥
. . . ≥ `m−1, and the associated prepared system (x0,x1, . . . ,xm, z̄) ∈ V prep

H . Assume it is
well-prepared by h̄ := (h1, . . . , hp), 1 ≤ p ≤ `m−1, over a finitely generated subfield K0 of
K. Fix d̄ ∈ K. Assume that for some a := (a0 . . . ,am) ∈ K, |ai| = n, 0 ≤ i ≤ m, we
have for some ū ∈ K, |ū| = |z̄|, that

K |= (a0, . . . ,am, ū) ∈ V reg
ī

(h1, . . . , hp).

Then, we can find a tuple of elements γ̄ ∈ M and we can extend δ on eclM (K, γ̄) (and
then to M) such that for some (δ̄m(α), ũ) ∈ eclM (K, γ̄), we have:

eclM (K, γ̄) |= (δ̄m(α), ũ) ∈ V reg
ī

(h1, . . . , hp) ∧ χ̄((δ̄m(α), ũ)− (a, ū), d̄).

Proof. First let us observe that the saturation hypothesis on M will only be used in order
to find K-small elements which are ecl-independent over K.

For ease of notation, suppose first that m = 1. Suppose the Khovanskii formula H¯̀ is of

the form
∧n−`
i=1 Hi(x

0
`+i, z`+i), 0 < ` < n. Let a := (a0,a1) and let ū := (u`+1, . . . ,un) ∈ K

be such that

K |=
n−∧̀
i=1

Hi(a
0
`+i,u`+i).

Let ni := |u`+i|, 1 ≤ i ≤ n− ` and N be the length of (a0, ū).
We have assumed that V prep

H is well-prepared over K0 and so there is a tuple of E-
polynomials h̄ := (h1(x0, z̄,x1

[`]), . . . , hk(x
0, z̄,x1

[`])) with ∇h1(a0, ū,a1
[`]), . . . ,∇hk(a

0, ū,a1
` )

are K-linearly independent, with k < N + `. Furthermore, for some tuple of increasing
indices ī := (i1, . . . , ip), 1 ≤ i1 < . . . < ip ≤ `, we decompose a1

[`] accordingly into two sub-

tuples: a1
[p] and a1

[`−p] (see Notation 3.4), allowing if p = `, a1
[`−p] to be an empty tuple, and

we get that the determinant of the matrix (∇īh1 (a0,ū,a1
[p−`]

)(a
1
[p]), . . . ,∇īhp (a0,ū,a1

[p−`]
)(a

1
[p]))

is nonzero. Assume that (a0, ū,a1
[`]) ∈ V

reg
ī

(h1, . . . , hp).

Decompose the tuple of variables (v1, . . . , v`) as (v[`−p], vi1 , . . . , vip) and set ȳ = (x0, z̄, v[`−p]).
Then we apply directly hypothesis (IFT)e. There exist O1 a definable neighbourhood of
(a0, ū,a1

[p−`]) and O2 a definable neighbourhood of a1
[p] and definable C∞ functions gi from
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O1 to O2, 1 ≤ i ≤ p, such that
p∧
i=1

gi(a
0, ū,a1

[`−p]) = a1
i ∧ ∀ ȳ ∈ O1 (

p∧
i=1

hi(ȳ, g1(ȳ), . . . , gp(ȳ)) = 0).

Recall that we put the product topology on M Ñ with Ñ = N + (` − p) (the length of

(a0, ū,a1
[`−p])). Let π be the projection sending a tuple (a0,u,a1

[p−`]) ∈M
Ñ to the subtuple

a0
[`] ∈M

` and πi the projection sending (a0,u,a1
[`−p]) to the subtuple (a0

`+i,u`+i) ∈Mni+1,

1 ≤ i ≤ n− `.
Let (a0

`+i,u`+i) be regular zeroes of each system Hi(x
0
`+i, z`+i), 1 ≤ i ≤ n − `, over

Q(c̄,a0
[`]), where c̄ is the tuple of coefficients (in K) of the E-polynomials occurring in Hi.

For each 1 ≤ i ≤ n− `, we apply (IFT)e in M and find a neighbourhood O1,1 of a0
[`] with

O1,1 ⊆ π(O1) and a neighbourhood O1,`+i of (a0
`+i,u`+i) with O1,`+i ⊆ πi(O1) and definable

functions fi,1, . . . , fi,ni from O1,1 to O1,`+i such that

(13)

n−∧̀
i=1

fi,1(a0
[`]) = a0

`+i ∧
ni∧
j=1

fi,j(a
0
[`]) = u`+i,j ∧ ∀ ȳ ∈ O1,1 (

n−∧̀
i=1

Hi(fi,1(ȳ), . . . , fi,ni(ȳ))).

Let f̄i := (fi,1(w̄), . . . , fi,ni(w̄)) with w̄ = (w1, . . . , w`). Applying f̄i to (a0
[`] + t[`]), we get

a solution to each system Hi(x
0
`+i, z`+i), close to (a0

`+i,u`+i), 1 ≤ i ≤ n − `. Denote this
solution by (a′`+i,u

′
`+i), 1 ≤ i ≤ n− `. Let

(ã, ũ) := (a0
[`] + t[`],a

1
[`−p], a

′
`+1, . . . , a

′
n,u

′
`+1, . . . ,u

′
n).

Since (ã, ũ) belongs to O1(M), we may apply the functions g1, . . . , gp in order to obtain

(g1(ã, ũ), . . . , gp(ã, ũ)) ∈ Vp(h̄ã,ũ). Set (b̃1, . . . , b̃`) := (g1(ã, ũ), . . . , gp(ã, ũ),a1
[`−p]).

Since now a0
1 + t1, . . . , a

0
` + t` are eclM -independent over K, we may define

(14) δ(a0
1 + t1) := b̃1, . . . , δ(a

0
` + t`) := b̃`.

Note that the values of the successive derivatives of b̃1, . . . , b̃` are determined since the last
part of the tuple, namely a1

[`−p], is in K and we can express δ(b̃1), . . . , δ(b̃p) using that

(b̃1, . . . , b̃p) is a regular zero of Vp(h̄ã,ũ). Note that b̃1, . . . , b̃` ∈ eclM (K,a0
[`] + t[`]). By

equation (13), a′`+1, . . . , a
′
n ∈ eclM (c̄,a0

[`] + t[`]), we can also express their derivatives in

terms of a0
[`] + t[`], a

′
`+1, . . . , a

′
n, the witnesses u′`+1, . . . ,u

′
n and the derivatives of a0

[`] + t[`],

namely b̃1, . . . , b̃`. So first we extend δ on eclM (K,a0
[`] + t[`]) sending the tuple a0

[`] + t[`]

to (b̃1, . . . , b̃`) and then by Corollary 2.17 to M . This extension is uniquely determined on

the subfield of M generated by K, a0
[`] + t[`], a

′
`+1, . . . , a

′
n,u

′
`+1, . . . ,u

′
n and b̃1, . . . , b̃` (see

Lemma 2.15).
Assume now that m > 1. Then we proceed as before, replacing in the above discussion

a1
[`] by am[`m−1] and a0

` by a0
`0
,a1
`1
, . . . ,am−1

`m−1
, �

Theorem 4.6. Let K |= T and suppose K satisfies (IFT)e. Then the differential expansion

Kδ can be embedded in a model K̃δ of Tδ ∪ (DL)E.

Proof: We adapt [11, Lemma 3.7] and [11, Proposition 3.9] to this exponential setting.

The differential extension K̃δ will be built as the union of a chain of differential extensions
of Kδ which will be in addition L-elementary extensions of K. In particular, we get that
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K̃ is an L-elementary extension of K. We first construct such extension K̃δ where all the
instances of the scheme (DL)E with coefficients in K are satisfied using transfinite induction

and then we repeat the construction replacing in the previous argument Kδ by K̃δ and we
do it ω times. The union of this chain of elementary extensions will be a model of the
scheme (DL)E and an elementary extension of K.

It suffices to show that given an instance of the scheme (DL)E , we can find an Lδ-
elementary extension K1 of Kδ. This was achieved in Lemma 4.5. �

Recall that L is a first-order language satisfying the assumptions of section 3.4.
Now let us show that we can always associate with a quantifier-free Lδ(K)-formula, a

prepared system.

Definition 4.7. Let Kδ be a differential topological L-field. Let ϕ(x) be a finite conjunction
of basic Lδ(K)-formulas of order m with x := (x1, . . . , xn). We associated with ϕ(x) a

L−(K)-formula ϕ∗,m− (δ̄m(x), ū) which is of the form (δ̄m(x), ū) ∈ V ∩ Õ, where V is an

E-variety and Õ a definable open subset (see equation 12).
Denote by xi := (xi1, . . . , x

i
n), 0 ≤ i ≤ m with x0 = x = (x1, . . . , xn). Since the extra-

variables ū that we added in order to only consider L−-terms, are in the LE-definable
closure of x0 (and in particular in the eclK-closure) of x0, . . . ,xm, we will assume that they
occur within x0.

We associated with (x0, . . . ,xm) ∈ V a Khovanskii formula H¯̀(x0, . . . ,xm−1, z̄) with
extra variables z̄ and tuple of indices n ≥ `0 ≥ `1 ≥ . . . ≥ `m−1 ≥ 0. We constructed a
formula (x0, . . . ,xm, z̄) ∈ V prep

H such that V prep
H (K) is of the form V (f̄)∩O for some tuple

of E-polynomials f̄ an definable open set O (see Definition 4.1).

Set ϕ∗H(x0, . . . ,xm, z̄) to be the formula (x0, . . . ,xm, z̄) ∈ V prep
H ∩ O ∩ Õ. From now on

rename O the open set O ∩ Õ.

Let c̄ be new constant symbols that will be interpreted by the parameters coming from
K in the Khovanskii formula.

Note that in case we do have a non-trivial relation between the xi, 0 ≤ i ≤ m− 1, with
coefficients in Q(c̄), they cannot be all ecl-independent over Q(c̄) by Corollary 3.8.

In the next lemma we will show that we may always assume that a prepared system is
well-prepared, whenever we look for solutions of that system outside the ecl-closure of the
subfield generated by the coefficients of the E-polynomials occurring in the system.

Lemma 4.8. Let K satisfy (IFT)e together with (LFF). Suppose Kδ satisfies the scheme
(DL)E. Let V (f̄) be an E-variety over K, H an Khovankii formula and let V prep

H be the
corresponding prepared system. Assume that V prep

H (K) = V (f̄) ∩ O, where O is an open
set. Let K0 be a finitely generated subfield of K associated with (V,H).

Suppose (a0,a1
[`0], . . . ,a

m
[`m−1], ū) ∈ V prep

H (K)\eclK(K0) and that f̄a0,a1
[`0]

,...,am−1
[`m−2]

,ū[Xm
[`m−1]] ∈

(K[Xm
[`m−1]]

E)
|f̄ | \ {0}. Then there is a differential point in V (f̄) close to (a0, . . . ,am).

Proof: We will do the proof in the case m = 1, for the general case replace a1
[`0] by am[`m−1].

Set `0 = `.
We show that we can find a tuple of E-polynomials h̄ and a tuple (s1, s2, r) such that the

system is well-prepared and there is a neighbourhood of (s1, s2, r) included in V prep
H (K).
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Let f̄x0,z̄,x1 be a tuple of E-polynomials f̄x0,z̄,x1 such that

V prep
H := {x1

[`] ∈ V (f̄x0,z̄) &
n−∧̀
i=1

Hi(x1,`+i, z̄`+i)}.

Let s′1 := (s′1,1, . . . , s
′
1,n), s′2 := (s′2,`+1, . . . , s

′
2,n) with |s′2,`+i| = |z̄`+i|, 1 ≤ i ≤ n − `,

N = |x0|+ |z̄|, let

S(a0,ū,a1
[`]

) := {(s′1, s′2, r′) ∈ KN+` : |s′1| = |x0|, |s′2| = |z̄|, |r′| = ` &

r′ ∈ V`(f̄s′1,s′2) &
n−∧̀
i=1

Hi(s
′
1,`+i, s

′
2,`+i) & (s′1, s

′
2, r
′) /∈ ecl(K0)} ∩ (a0, ū,a1

[`]) + χ̄(K, d̄).

The set S(a0,ū,a1
[`]

) is non-empty since it contains (a0, ū,a1
[`]). Let RN+` be a noetherian

subring ofK0[x0, z̄,x1
[`]]

E closed under differentiation and containing f̄(x0, z̄,x1
[`]) associated

to the corresponding the E-polynomials. Let M be the ring of germs in DN+`(S(a0,ū,a1
[`]

))

induced by the elements of RN+`. Denote by R<ωN+` the set of all finite tuples of elements
of RN+`.

Let Ann := {(s′1, s′2, r′) ∈ S(a0,ū,a1
[`]

) : for some q̄ ∈ R<ωN+`, (s′1, s
′
2, r
′) ∈ V (q̄)}.

By assumption the tuple ((a0, ū,a1
[`]), f̄) belongs to Ann.

Suppose that we have ((s1,n, s2,n, rn), q̄n) ∈ Ann, n ∈ N∗, with the ideals 〈q̄n〉 forming
an increasing chain. By noetherianity of RN+`, we can assume such a chain is finite and
there is m0 such that for all m ≥ m0, 〈q̄m0〉 = 〈q̄m〉, for all m ≥ m0.

So we may choose among (s′1, s
′
2, r
′) ∈ S(a0,ū,a1

[`]
), those such that there is q̄ ∈ R<ωN+` such

that ((s′1, s
′
2, r
′), q̄) ∈ Ann and 〈q̄〉 maximal in RN+` with, letting q̄ = (q1, . . . , qk):

• first choosing those such that the tuple of indices ī := (i1, . . . , ip) with 1 ≤ i1 < . . . <
ip ≤ ` such that the determinant of the matrix (∇īq1 (s1,s2)(r), . . . ,∇īqp (s1,s2)(r)) is nonzero,
is of maximal length,
• second choosing, among the first ones, those such that ∇q1(s′1, s

′
2, r
′), . . . ,∇qk(s′1, s′2, r′)

are K-linearly independent with k maximal.
Note that by definition of S(a0,ū,a1

[`]
), we have that k < N + `.

Note also that the first condition can always be satisfied. By assumption on (a0, ū,a1
[`]),

we have that f̄a0,a1
[`]
,ū[x1

[`]] ∈ (K[x1
[`]]

E)
|f̄ |\{0}. So, consider the ideal J := {q ∈ RN+` : q(s1,s2)(r) =

0}. If J is closed under all partial derivatives ∂xi , then by Fact 3.7, we get a contradiction
since J cannot be equal to K[x1

[`]]
E .

Let j̄ := (j1, . . . , jk−p) be a tuple of increasing indices among {1, . . . , N} such that
(∂yj1 qp+1,r′(s

′
1, s
′
2), . . . , ∂yjk−p

qk,r′(s
′
1, s
′
2)) are K-linearly independent. (So the determinant

of the matrix (∇j̄qp+1 r′(s
′
1, s
′
2), . . . ,∇j̄qk r′(s′1, s′2)) is nonzero.)

Denote by ((s1, s2, r), h̄) such a maximal tuple, with h̄ := (h1(x0, z̄,x1
[`]), . . . , hk(x

0, z̄,x1
[`])) ∈

R<ωN+`.
We consider the map Λ : (v1, . . . , vN , vN+1, . . . , vN+`) 7→ det(∇īh1, . . . ,∇īhp,∇j̄hp+1, . . . ,∇j̄hk).

By construction Λ(s1, s2, r) 6= 0 so it doesn’t vanish on a neighbourhood of (s1, s2, r). So,
there is a neighbourhood U0 of (s1, s2, r) where Λ � U0 is invertible.
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We will use the notation (s1, s2, r)[N+`−k] for the subtuple of (s1, s2, r) obtained when

only considering the indices in {1, . . . , N + `} which do not occur neither in ī nor in j̄.
We have a map ˆ : DN+`(S(s1,s2,r)) → DN+`−k(S(s1,s2,r)[N+`−k]

) (applying (IFT)e to

(h1, . . . , hk). Consider RN+`[Λ
−1] and let M ⊆ DN+`−k(S(s1,s2,r)[N+`−k]

) be its image by

the map .̂ Let I := {g ∈M : g((s1, s2, r)[N+`−k]) = 0} be an ideal in M .

If I = {0}, then for any fj occurring in the tuple f̄ , since f̂j ∈ I, fj vanishes in a
neighbourhood Wj of (s1, s2, r). So it suffices to apply the scheme (DL)E to the pair
(h̄ī,W ) where W =

⋂
Wj , in order to find in V (K) ∩W a differential tuple.

If I 6= {0}, let us show that we contradict the choice of h1, . . . , hk. By (LFF), I is

not closed under differentiation. So there is h ∈ I with ∇ĥ(s1, s2, r)[N+`−k] 6= 0. Since

h ∈ I, there is some s ≥ 1 such that Λsh ∈ RN+`. Let h̃ := Λsh. Using the same

argument as in [28, Theorem 4.9], we get that ∇ˆ̃
h(s1, s2, r)[N+`−k] 6= 0 and so we can

add h̃ to h1, . . . , hk contradicting maximality (and the fact that (s1, s2, r) /∈ eclK(K0)).

(Indeed using Lemma 3.17, we have that ∇h1(s1, s2, r), . . . ,∇hk(s1, s2, r),∇h̃(s1, s2, r) are
K-linearly independent.) �

Theorem 4.9. Let T be a model-complete theory of topological L-fields. Assume that
K |= T and that K satisfy (IFT)e and (LFF). Assume that the differential expansion Kδ
is a model of Tδ ∪ (DL)E. Then Kδ is existentially closed in the class of models of Tδ. In
particular if the theory Tδ ∪ (DL)E is consistent, then it is model-complete.

Proof: Let Kδ |= Tδ ∪ (DL)E and suppose that Kδ ⊆ K̃δ with K̃δ |= Tδ. W.l.o.g. we may
assume that K is ℵ1-saturated.

Let x = (x1, . . . , xn) and ξ(x) be a quantifier-free Lδ(K)-formula of order m and assume

that for some tuple a ∈ K̃δ, K̃δ |= ξ(a). Since T is model-complete and Kδ |= T , we may
assume that we are in the case where m ≥ 1. We may assume that ξ(x) is of the form
ϕ(x) ∧ (δ̄m(x) ∈ O), where ϕ(x) is a conjunction of Lδ(K)-equations and O is an L(K)-

definable open subset of some cartesian product of K̃. Furthermore using equation 12 (and
since we are quantifying existentially), we may assume ξ(x) is equivalent to a formula of
the form ϕ∗,m− (δ̄m(x)) ∧ δ̄m(x) ∈ O, where ϕ∗,m− is a conjunction of L−(K)-equations (with
possibly a smaller definable open set O). Denote by V the E-variety corresponding to
ϕ∗,m− (K).

Let K0 be the finitely generated subfield of coefficients occurring in the formula ϕ∗,m− .

First note that if a1, . . . , an ∈ eclK̃(K), then their successive derivatives can be expressed
in terms of ai, ūi and some tuples of elements of K, 1 ≤ i ≤ n (see Notation 2.16). By

existentially quantifying over the elements of K̃ \K, we can transform the Lδ(K)-formula
ϕ into an existential L(K)-formula and use the fact that T is model-complete.

Set ai := δi(a), 0 ≤ i ≤ m. If all ai, 0 ≤ i ≤ m, are ecl-independent over K, then by
Corollary 3.8, there are no non trivial E-polynomial vanishing on (a0, . . . ,am), so we may
assume that the formula is of the form δ̄m(x) ∈ O. In that case we may conclude using the
density of differential points (see Remark 4.3).

So from now on, let us assume this is not the case.
If all ai, 0 ≤ i ≤ m−1, are ecl-independent over K, then the tuple (ai, 0 ≤ i ≤ m−1), is

a fortiori ecl-independent over K0. We first construct prepared system (with no Khovanskii
formula) with a solution in K\ecl(K0), using that K is ℵ1-saturated and T model-complete.
Then we apply the scheme (DL)E and Lemma 4.8 to find a differential solution in K as
close as we wish to δ̄(a) (and so satisfying ξ(x)).
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So, from now on, assume furthermore there is at least a non-trivial ecl-relation over K
that occurs within the tuple δ̄m−1(a). Let a0

[`] = (a1, . . . , a`) be the longest sub-tuple of

a = (a1, . . . , an) which is ecl-independent over K (which we may assume by re-indexing to
be an initial subtuple since ecl has the exchange property and by the remark made at the
beginning such tuple is not empty). Then we consider the ecl-relations among a1 over K
and a0

[`]. Note that we certainly have ecl-relations among a1
[n−`] and a0. Again we possibly

re-index the subtuple a1
[`] such that these ecl-relations occur among the co-initial part of

a1
[`]. We rename the corresponding subtuple ã1 and possibly permute the indices of ã0 to

match indices. We proceed in this way getting successively ã2, . . . , ãm−1.

Namely, suppose we got ãi, 0 ≤ i < m − 1. We consider the ecl-relations among ai+1

over K and ã0, . . . ãi. Again we re-index in order that the ecl-relations only occur in the

co-initial part of ai+1 and we rename the corresponding subtuple ãi+1 as well as possibly

permuting the indices of ã0, . . . , ãi to match indices. Assume the length of ãi is equal to
`i, 0 ≤ i ≤ m− 1 and by the way it was constructed n ≥ ` = `0 ≥ `1 ≥ . . . ≥ `m−1 ≥ 0.

For sake of simplicity let us assume that m = 1. Let H1(a`+1, ū`+1), . . . ,Hn−`(an, ūn)
be n − ` Khovanskii systems over K(a[`]), setting a[`] = a0

[`], witnessing that a`+1, . . . , an

belong to eclL(K(a[`])).
It implies that we can express δ(a`+i), δ(ū`+i) in terms of a, ū`+i, δ(a1), . . . , δ(a`), 1 ≤

i ≤ n − ` and finitely many elements of K and their derivative occurring as coefficients
of the E-polynomials appearing in the Khovanskii systems (see Notation 2.16). Let ū :=
(ū`+1, . . . , ūn).

Let V prep
H be the corresponding prepared system (see Definition 4.1). Since T is model-

complete, there exists γ̄ ∈ O(K) and z̄ ∈ K such that ϕ∗H(γ̄, z̄) holds. Further we may

assume that γ̄ /∈ eclK(K0) since K is ℵ1-saturated.
Then we apply Lemma 4.8 (and the scheme (DL)E) to get a differential solution δ̄m(α) ∈

K in V ∩O. So Kδ |= ξ(α). �

4.3. Geometric version of the scheme (DL)E. In this section we translate in geometric
terms the scheme (DL)E . It is similar in spirit to the differential lifting scheme introduced
by Pierce and Pillay, which gave another axiomatization of the class of differentially closed
fields of characteristic 0 [21].

For n ≤ m ∈ N∗, let πmn : Km → Kn be the projection onto the first n coordinates and
let π2m

(n,n) : Km ×Km → Kn ×Kn : (x, y) 7→ (πmn (x), πmn (y)).

Definition 4.10. Let Kδ |= Tδ, then Kδ satisfies the scheme (DLg)E if the following

holds. Let K̃ be a |K|+-saturated L-elementary extension of K. Let W := W (f̄) ⊆ K̃2n

be an E-variety defined over K and let χ̄(K,d) be a neighbourhood of 0 in K2n with d

in K. Suppose that 0 ≤ dimK̃(π2n
n (W )/K) = ` < n. Let a be a generic point of π2n

n (W )
with a[`] a subtuple of a of ecl-independent elements over K and let (a,b) be a generic

point of W . Let u`+i be tuples of elements in K̃, 1 ≤ i ≤ n − `, witnessing that each

component of a[n−`] belongs to eclK̃(K,a[`]). Set ū := (u`+1, . . . ,un) ∈ K̃m and assume

that (a,b) ∈ π2(n+m)
(n,n) (τ(AnnK[X]E (a, ū)), |X| = m+n, then we can find a differential point

(α, δ(α)) ∈W ∩K2n with χ̄((α, δ(α))− (a,b),d).
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The scheme (DLg)E as stated is not first-order. The first issue concerns expressing that
a tuple is generic and the second is that a priori we have to consider all the E-polynomials
in an annihilator. Concerning the second one, keeping the same notations as in Definition

4.10, one only needs the E-polynomials in AnnK[X]E (a, ū) occurring in the Khovanskii
systems used to express that each component of a[n−`] belongs to ecl(K,a[`]).

Now let us indicate why the models of Tδ that satisfy (DLg)E are existentially closed (in
the class of models of Tδ) and conversely.

First, suppose Kδ satisfies the scheme (DLg)E and let us show that Kδ satisfies (DL)E .
So as in Definition 4.2, let H¯̀(x0, . . . ,xm−1, z̄) be a Khovanskii formula and let

h̄(x0,x1
[`0], . . . ,x

m−1
[`m−2], z̄,x

m
[`m−1]) be a p-tuple of E-polynomials with coefficients in K and

let ī := (i1, . . . , ip), 1 ≤ i1 < . . . < ip ≤ `m−1, be indices of variables among xm[`m−1].

Consider a neighbourhood χ̄(K, d̄) of 0 and suppose H¯̀(a0, . . . ,am−1, ū) holds and that

(a0,a1
[`0], . . . ,a

m−1
[`m−2], ū,a

m
[`m−1]) ∈ V

reg
ī

(h̄).

Set ā := (a0,a1, . . . ,am−1, ū) and b̄ := (a1, . . . ,am, w̄), where w̄ = t̄(ā) for t̄ a tuple of L-
terms obtained as in Notation 2.16, from Khovanskii systems occurring inH¯̀(a0, . . . ,am−1, ū)
witnessing the ecl-relations among the tuple (a0, . . . ,am−1). Let n be the length of the tuple
(ā, ū).
Let W be the E-variety defined over K by the equations: (x0,x1

[`0], . . . ,x
m−1
[`m−2], z̄,x

m
[`m−1]) ∈

V reg
ī

(h̄)∧H¯̀(x0, . . . ,xm−1, z̄)∧ ȳ = t̄(x0, . . . ,xm−1, z̄) in ((x0, . . . ,xm−1, z̄); (x1, . . . ,xm, ȳ).

Then proceed as in Lemma 4.5 and find a generic point ã of π2n
n (W ) in an elementary

extension K̃ of K close to ā w.r.to χ̄(K̃, d̄) and a tuple b̃ (close to b̄ w.r.to χ̄(K̃, d̄)) such

that there is a derivation in K̃ sending ã to b̃. So we have that (ã, b̃) ∈ τ(AnnK[X]E (ã)).

Then we use (DLg)E to find a differential point (α, δ̄(α)) ∈W (K) and close to (ã, b̃).

Second, suppose Kδ satisfies the scheme (DL)E and consider an E-variety W ⊆ K̃2n

defined over K and a a generic point of π2n
n (W ). Let ū witnessing the ecl-dependence

relations among the tuple a so that a Khovanskii formula H`(a, ū) holds. By reordering
the tuple a, we may assume that a1, . . . , a` are ecl-independent, 1 ≤ ` ≤ n − 1. Con-
struct the corresponding variety W prep

H`
as in Definition 4.1. Since a is a generic point

of π2n
n (W ) and dim(π2n

n (W )) > 0, a 6⊆ ecl(K). Note that the assumption (a,b) ∈
π

2(n+m)
(n,n) (τ(AnnK[X]E (a, ū)) implies that finding a point in W prep

H`
is equivalent to find a

point in W . Then using Lemma 4.8, where we show that we can reduce ourselves to con-
sider a well-prepared variety and how to use (DL)E in order to find a differential point close
to (a,b).

5. Model-complete theories of (partial) exponential fields

In this section, we apply our previous results to theories of topological fields K where
the topology is defined by either an ordering < or by a (non-trivial) valuation map v. In
the case of valued field K := (K, v) we will replace the valuation map by a binary relation
div defined as follows:

v(a) ≤ v(b) iff a div b.

Denote by OK be the valuation ring of K and MK the maximal ideal of OK . Let D
be a binary function symbol for division in the valuation ring OK , defined as follows:

D(x, y) :=

{ x
y if v(x) ≥ v(y) and y 6= 0,

0 otherwise,
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5.1. The real numbers. A. Wilkie showed that the theory of (R̄, exp) where R̄ is the
ordered field of real numbers is model-complete [28, Second MainTheorem]. So setting
T := Th(R̄, exp), Theorem 4.4 holds for models of T since they also satisfy the implicit
function theorem scheme (IFT) and the lack of flat functions (LFF).

5.2. The p-adic numbers. Let (Qp, v) be the valued field of p-adic numbers. A. Macintyre
showed that the theory of Qp admits quantifier elimination in the language of fields together
with the binary relation symbol div and for each n ≥ 2, the predicates Pn defined by
Pn(x) iff ∃y yn = x.

Then J. Denef and L. van den Dries showed that the theory of the valuation ring Zp
of Qp (or the theory of Qp) enriched by all restricted power series with coefficients in Zp
together with the predicates Pn, n ≥ 2 and the binary function D : Z2

p → Zp for division in
Zp, admits quantifier elimination [5, Theorem (1.1)]. N. Mariaule showed that the theory of
the valuation ring Zp of Qp expanded by the exponential function Ep(x) (see Examples 2.1
(5)) together with for each n ≥ 2 the so-called decomposition functions for Ep(x) is model-
complete [17, Theorem 4.4.5]. We will recall below precisely what are these decomposition
functions [17, Chapter 4].

From that one can easily deduce that the theory of the partial exponential valued field
(Qp, Ep) is model-complete in the language of fields together with the predicates Pn, n ≥ 2,
the binary function div, the exponential function Ep(x) and the decomposition functions.
(Note that N. Mariaule proves strong model-completeness [7, section 2 (2.2)]). So again
Theorem 4.4 holds for T = Th(Qp, Ep).

Now let us recall what are these decomposition functions. They are the analog of the
functions sin and cos in the real case, but their definition is more complicated since Qp has
infinitely many proper algebraic extensions.

The field Qp is bounded, namely for each fixed d ≥ 2 it has only finitely many algebraic
extensions of degree d. So one may define a chain of finite algebraic extensions Kn of Qp

with the following properties:

(1) Kn contains any extension of degree n of Qp,
(2) Kn is the splitting field of an irreducible polynomial qn ∈ Q[X] of degree Nn.

One may further assume that qn ∈ Zp[X]. Let βn be a root of qn and let Kn = Qp(βn),
OKn = Zp[βn]. Then OKn is a Zp-module with basis 1, βn, . . . , β

Nn−1
n . Let y ∈ OKn and

write it as
∑Nn−1

i=0 xiβ
i
n. Then Ep(y) =

∏Nn−1
i=0 Ep(xiβ

i
n), with xi ∈ Zp and one adds the

decomposition functions for each Ep(xβ
i
n), namely functions from Zp to Zp which allows

to express Ep(xβ
i
n) in OKn . Namely, write Ep(xβ

i
n) =

∑Nn−1
j=0 c̃i,j,n(x)βin. Conversely,

one has: (c̃i,j,n(x))i<Nn = V −1(Ep((β
j
n)σx))σ∈Gal(Kn/Qp), where V is the Vandermonde

matrix associated to the roots of qn. Finally since det(V ) might be of strictly positive
valuation, one has to multiply the c̃i,j,n(x) by the norm NKn/Qp

(det(V )) in order to obtain
the decomposition functions ci,j,n(x) [17, page 66]. Let LpEC be the language LE together
with the predicates Pn, n > 1, and the decomposition functions ci,j,n, 0 ≤ j ≤ Nn, i, n ∈ N∗.
Then the LpEC-theory T of (Qp, Ep) is model-complete [17, Theorem 4.4.5]. Since Qp

satisfies the analytic version of the implicit function theorem, we may apply Theorem
4.4. Note that we made a slight formal extension of our former result since we not only
use the exponential function Ep but also the decomposition functions, but in view of the
relationships described above between the decomposition functions and the exponential
function Ep, there is no problem in doing so. The key point being able to transform an
LpEC,δ-term t(x1, . . . , xn) into an LpEC-term t∗ in δ̄m1(x1), . . . , δ̄mn(xn).
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5.3. The completion of the algebraic closure of the p-adic numbers. Let Cp be the
completion of the algebraic closure of the field Qp of p-adic numbers. As a valued field, Cp
is a model of the theory ACVF0,p of algebraically closed valued fields of characteristic 0 and
residue characteristic p. It admits quantifier elimination in the language {+,−, ·, 0, 1,div}
[25]. (Note that A. Robinson only proved model-completeness of the theory but the quan-
tifier elimination result is easily deduced.) N. Mariaule showed that the theory of the
valuation ring Op of Cp endowed with the exponential function Ep(x) is model-complete
[17, Theorem 6.2.11]. From that one can easily deduce that the theory T of the partial
exponential valued field (Cp,div, Ep) is model-complete. Since Cp also satisfies the analytic
version of the implicit function theorem, we may apply Theorem 4.4. (Note that in this
case since Cp is algebraically closed, one does not need to add additional functions such as
the decomposition functions).

5.4. Non-standard extensions of Qp. Let (K, v) be a valued field extending (Qp, v).
Let OK be the valuation ring of K and let OK〈ξ〉 be the ring of strictly convergent power
series over OK in ξ := (ξ1, . . . , ξm). An element f(ξ) is given by

∑
ν∈Nn aνξ

ν , where
ξν = ξν11 . . . ξνnn and v(aν) 7→ +∞, when |ν| = ν1 + . . . + νn 7→ +∞. Such f defines a

function from OKn to OK defined by f(u) =

{ ∑
ν∈Nn aνu

ν for u ∈ OnK ,
0 otherwise

The language Lan is the language of rings augmented by a n-ary function symbol for
each f ∈ OK〈ξ〉 and n ≥ 1. Let D be a binary function symbol for division restricted
to the valuation ring as defined above. Let Lan,div := Lan ∪ {div} ∪ {Pn : n ≥ 2}. and

LDan,div := Lan,div ∪ {D}. Let K denote the Lan,div-structure with domain K and the above
interpretation of the symbols of the language. In view of the way the functions f are
interpreted in both Qp and K, we have that Qp is an Lan,div-substructure of K. Then using
the quantifier elimination theorem of J. Denef and L. van den Dries, that if K is a model
of ThLan,div

(Qp), then K is an elementary Lan,div-extension of Qp. Now if we restrict the
language Lan,div to the language LpEC , we get that the theory T of K in this restricted
language is also model-complete (and in fact equal to the theory of (Qp, Ep). In order to
apply Theorem 4.4 to Kδ, we need to check that K satisfies IFTan

E . A way to do this is to get
a universal axiomatisation of ThLan,div

(Qp). It will imply that any definable function from
OnK to OK is piecewise given by Lan,div-terms and so analytic functions. (This argument
was used for Ran in [8].)

We express that K∗/(K∗)n ∼= Q∗p/(Q∗p)n and that cosets representative of the subgroup of

nth powers can be found in N, namely for every x ∈ K∗ there exist λ, r ∈ N with 0 ≤ r < n,
0 ≤ λ < pβ(n) and β(n) = 2v(n) + 1 and Pn(xλpr) [1, Lemma 4.2]. This can be expressed
by a finite disjunction and translates the fact that v(K∗) is a Z-group

Then we express that K is henselian in the following way. Let p(X) ∈ OK [X] be an
ordinary polynomial of degree n. Then one defines a function hn : On+1

K → OK sending
(a0, . . . , an, b) 7→ u with anb

n+. . .+a1b+a0 = 0, v(p(b)) > 0, v(∂Xp(b)) = 0 and v(u−b) > 0
and to 0 otherwise [4, Definition 3.2.10].

So this gives us a non-standard model of T to which we may apply Theorem 4.4.

6. Construction of models of the scheme (DL)E

In this section we will place ourselves in the same setting as in section 4.1. We show how
to endow certain exponential topological fields K endowed with a V -topology, satisfying
(IFT)e and (LFF) with a derivation in such a way they become a model of the scheme
(DL)E . One can follow a similar strategy as in [3], [24] to endow certain (ordered) fields



EXPONENTIAL TOPOLOGICAL FIELDS WITH A GENERIC DERIVATION 31

with a derivation in such a way they become a model of the scheme (DL) introduced
in [11], generalizing for certain differential topological fields the axiomatization CODF of
closed ordered differential fields given by M. Singer in [27].

In the proposition below, we will assume that the field K, as a topological space, is
separable and first-countable and so its cardinality is at most 2ℵ0 .

Proposition 6.1. Let L be a countable language and K be a topological L-field of cardinality
ℵ1, endowed with a V -topology, which is definable with corresponding formula χ. Assume
that K as topological space, is first-countable and separable. Suppose K satisfies (IFT)e and
(LFF). Then we can endow K with a derivation δ such that Kδ is a model of the scheme
(DL)E.

Proof: Let {χ(K, d̄i) : d̄i ∈ K, i ∈ ω} be a countable basis of neighbourhoods of 0 and
further assume, setting Wi := χ(K, d̄i) that Wi+1 + Wi+1 ⊆ Wi. Let D be a countable
dense subset of K. Let K0 be the (countable, dense) L-substructure of K generated by
(d̄i)i∈ω and D. Moreover, we may assume, by Lowenheim-Skolem theorem, that K0 is an
elementary substructure of K. Express K as K0(B) with B a subset of elements of K which
are ecl-independent over K0 (so |B| = ℵ1). Set B := (tα)α<ℵ1 .

Claim 6.2. For each Wi, i ∈ ω, and each ` ∈ ω, there are elements s1, . . . , s` ∈ Wi that
are ecl-independent over K0 and with the property that sj − tj ∈ K0, 1 ≤ j ≤ `.

Proof of Claim:
Fix Wi a neighbourhood of 0 in K and choose t0, . . . , t` ∈ B, ` ∈ ω. Since K0 is dense

in K, there are for each 0 ≤ j ≤ `, rji ∈ K0 such that tj − rji ∈ Wi. Set sj := tj − rji,
0 ≤ j ≤ `. The elements s1, . . . , s` ∈ K, are ecl-independent over K0 and belong to Wi. �

We will express K as the union of an elementary chain of countable subfields K0 � Kα
endowed with a derivation δα, α < ℵ1, starting by putting on K0 the trivial derivation δ0.

By induction on α, assume we have constructed K0 ⊆ Kα � K a countable L-elementary
substructure of K and suppose Kα is endowed with a derivation δα. We want to find an
L-elementary extension Kα+1 of Kα endowed with a derivation δα+1 with the following
property. Given a neighbourhood of zero Wj and a (finite) system E-polynomial equations
(x0, . . . ,xm) ∈ V with coefficients in Kα, a Khovanskii formula H¯̀(x0, . . . ,xm−1, z̄) and
associated prepared system (x0,x1, . . . ,xm, z̄) ∈ V prep

H , and tuple of E-polynomials h̄ over
Kα witnessing that V prep

H is well-prepared over a finitely generated subfield of Kα (see
Definition 4.1), if there are (a0, . . . ,am, b̄) ∈ V reg

ī
(h1, . . . , hp) for some ā := (a0, . . . ,am)

and b̄ ∈ Kα, then we can find β, ū ∈ Kα+1 such that (δ̄mα+1(β), ū) ∈ V reg
ī

(h1, . . . , hp) ∧
(δ̄mα+1(β), ū)− (a0, . . . ,am, b̄) ∈Wj .

Let x̄ := (x0, . . . ,xm), x := x0, |x| = n and, keeping the notations of Definition 4.1, set

Fα :={
(
(x̄ ∈ V ), H(x0, . . . ,xm−1, z̄), (x̄, z̄) ∈ V prep

H , (h1, . . . , hp)
)

:

K |= ∃x̄∃z̄ (x̄, z̄) ∈ V reg
ī

(h1, . . . , hp) with |̄i| = p, (x̄ ∈ V ) varying over all

L(Kα)−equations, H over the Khovanskii formulas over Kα, (h1, . . . , hp) a tuple in

Kα[Xm]E witnessing that V prep
H is well− prepared}.

We will construct a differential extension Kα+1 of Kα containing tα, satisfying the scheme
(DL)E relative to Fα, using Lemma 4.5. Note that Lemma 4.5 had an hypothesis of
saturation but it was only to ensure the existence of ecl-independent elements (over K0).
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The property that these ecl-independent elements were K0-small is replaced by finding
elements s1, . . . , s` ∈Wj , ecl-independent and congruent to t1, . . . , t` modulo K0.

Let
(
(x̄ ∈ V ), H(x0, . . . ,xm−1, z̄), (x̄, z̄) ∈ V prep

H , (h1, . . . , hp)
)
∈ Fα,

where (x̄ ∈ V ) be a conjunction of L−(Kα)-equations, H¯̀(x0, . . . ,xm−1, z̄) a Khovanskii
formula, and (h1, . . . , hp) ∈ Kα[Xm]E witnessing that V prep

H can be well-prepared.
Let a := (a1, . . . , an), ā := (a0, . . . ,am), ū ∈ Kα be such that (ā, ū) ∈ V reg

ī
(h1, . . . , hp)

with |̄i| = p. Let Wj be a fixed neighbourhood of zero. Then by Claim 6.2 and Lemma

4.5, there is an elementary extension of Kα inside K, a derivation δ̃α extending δα on

Kα and a finite tuple γ̄ of elements in K such that for some δ̃
m

α (β) ∈ eclK(Kα, γ̄) we

have (δ̃α
m

(β), ũ) ∈ V reg
ī

(h1, . . . , hp) and δ̃
m

α (β) − ā ∈ Wj . Furthermore by Remark 3.20,

eclK(Kα, γ̄) is countable. In case tα does not belong to eclK(Kα, γ̄), we define δ̃α(tα) = 1.
Then let Kα,1 = ecl(Kα(tα, γ̄).

We enumerate Fα and the extension Kα,i corresponds to where the ith tuple in Fα has

a differential solution close to the algebraic one in Wj . Set K(1)
α :=

⋃
iKα,i. Then we redo

the construction with K(1)
α in place of Kα with a smaller neighbourhood of zero, say Wj+1.

Set Kα+1 :=
⋃
mK

(m)
α . Note that Kα+1 is countable.

So we described what happens at successor ordinals and at limit ordinals we simply take
the union of the subfields we have constructed so far. Finally we express K as the union
of a chain of differential subfields Kα and given a (finite) system E-polynomial equations
(x0, . . . ,xm) ∈ V with coefficients in K, a Khovanskii formula H¯̀(x0, . . . ,xm−1, z̄) and
associated prepared system (x0,x1, . . . ,xm, z̄) ∈ V prep

H , and tuple of E-polynomials h̄ over
K witnessing that V prep

H is well-prepared over a finitely generated subfield of K. We can
find an index α such that the well-prepared system has all its coefficients in Kα and we
may assume that we have a solution (ā, ū) in Kα belonging to V reg

ī
(h1, . . . , hp). Then given

a neighbourhood Wi of 0, we can find β, ũ ∈ Kα+1 such that (δ̄m(β), ũ ∈ V reg
ī

(h1, . . . , hp)

and each component of (δ̄m(β), ũ) is Wi-close to (ā, ū). �

Denote by L0 the reduct of L where we remove the exponential function and denote by
T0 the theory of the L0-reducts of the models of T . Let us assume that T0 admits quantifier
elimination. Then in [11], we showed that the class of existentially closed models of T0,δ was
elementary, assuming that the models of T satisfied Hypothesis (I). That last property is
an analog for topological fields of the property of being large, as introduced by F. Pop [22]).
Let us first recall the following notation. Given a differential polynomial p(X) ∈ K{X} of
order m > 0, with |X| = 1, the separant sp of p is defined as sp := ∂

∂δm(x)p ∈ K{X}.

Definition 6.3. [11, Definition 3.5] The scheme of axioms (DL) is the following: given a
model K of T0,δ, K satisfies (DL) if for every differential polynomial p(X) ∈ K{X} with
|X| = 1 and ordX(p) = m > 1, for variables y = (y0, . . . , ym) it holds in K that

∀z
(
(∃y(p∗(y) = 0 ∧ s∗p(y) 6= 0)→ ∃x

(
p(x) = 0 ∧ sp(x) 6= 0 ∧ χτ (δ̄m(x)− y, z)

))
.

By quantifying over coefficients, the axiom scheme (DL) can be expressed in the language
L−,δ.

Corollary 6.4. Let K be a topological L-field satisfying (IFT)e and (LFF) endowed with a
V -topology which is definable with corresponding formula χ. Assume that K is of cardinality
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ℵ1 and as a topological space, first-countable and separable. Then we can endow K with a
derivation δ such that Kδ is a model of the schemes (DL)E ∪ (DL).

Proof. We modify the proof of proposition above by also considering the instances of the
scheme (DL) and alternating between solving a formula from scheme (DL)E to solving a
formula from scheme (DL). We observe that if t1, . . . , tn are ecl-independent, then they are
also algebraically independent by Corollary 3.8. �

Corollary 6.5. Let K be an ordered real-closed exponential field. Assume that K is of
cardinality ℵ1 with a countable dense subfield. Then we can endow K with a derivation δ
such that Kδ is a model of CODF together with the scheme (DL)E. �

Remark 6.6. Now let us record a few cases when K is separable and first-countable. First,
suppose that (K, v) is an henselian perfect valued field of equicharacteristic 0, with value
group G. Denote by {tg ∈ K : g ∈ G & v(tg) = g}, a family of elements of K whose set of
values is G. Then by a result of Kaplansky, the residue field k isomorphically embeds in the
valuation ring of K [9, Lemma 3.8]. Assume that k is countable and |G| = ℵ0. Consider
the subring of K generated by k and {tg : g ∈ G>0}, then it is dense in the valuation
ring of K. Since the inverse operation is continuous, K has a dense countable subfield. A
countable basis of neighbourhoods of 0 is given by the balls Wg := {x ∈ K : v(x) > g},
where g ∈ G>0.

Second, suppose now that (K,≤) is an ordered real-closed field. Either K is archimedean
and so it embeds into R. So assume that the archimedean valuation on K is non trivial.
The residue field with respect to this archimedean valuation embeds in R. In case the value
group G is countable, the subring of K generated by Q and {tg : g ∈ G>0} is dense in
the valuation ring of K. As a countable basis of neighbourhoods we may take the balls
Bn,g := {x ∈ K : |x| < 1

n t
g}, with n ∈ N∗, g ∈ G>0 and where tg is a strictly positive

element of K with archimedean valuation equal to g.
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14 (2), 1990, 109-120.
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