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Abstract: Visual attention selects data considered as “interesting” by humans, and it is modeled in the
field of engineering by feature-engineered methods finding contrasted /surprising/unusual image
data. Deep learning drastically improved the models efficiency on the main benchmark datasets.
However, Deep Neural Networks-based (DNN-based) models are counterintuitive: surprising or
unusual data are by definition difficult to learn because of their low occurrence probability. In
reality, DNN-based models mainly learn top-down features such as faces, text, people, or animals
which usually attract human attention, but they have low efficiency in extracting surprising or
unusual data in the images. In this article, we propose a new family of visual attention models called
DeepRare and especially DeepRare2021 (DR21), which uses the power of DNNSs’ feature extraction
and the genericity of feature-engineered algorithms. This algorithm is an evolution of a previous
version called DeepRare2019 (DR19) based on this common framework. DR21 (1) does not need any
additional training other than the default ImageNet training, (2) is fast even on CPU, (3) is tested on
four very different eye-tracking datasets showing that DR21 is generic and is always within the top
models on all datasets and metrics while no other model exhibits such a regularity and genericity.
Finally, DR21 (4) is tested with several network architectures such as VGG16 (V16), VGG19 (V19),
and MobileNetV2 (MN2), and (5) it provides explanation and transparency on which parts of the
image are the most surprising at different levels despite the use of a DNN-based feature extractor.

Keywords: eye tracking; deep features; odd one out; rarity; saliency; visual attention prediction;
visibility

1. Visual Attention: Deep Learning Trouble

The human visual system (HVS) [1] handles a huge quantity of incoming visual
information, and it cannot carry out multiple complex tasks at the same time in the whole
visual field. This bottleneck [2] implies that it has an exceptional ability of sampling
the surrounding world and paying attention to objects of interest. In computer vision,
visual attention is mainly modeled through the so-called saliency maps. The modeling of
visual attention has numerous applications such as object detection, image segmentation,
image/video compression, robotics, image re-targeting, visual marketing, and so on [3].
Visual attention is considered to be a mix of bottom-up and top-down information. Bottom-
up information is based on low-level features such as luminance, chrominance, or texture.
Top-down information is more related to knowledge people already have about their tasks
or objects they see such as faces, text, persons, or animals. In this paper, we do not focus
on the use of the saliency maps, which might help in deep neural network architectures to
enhance their task results but on saliency maps which intend to mimic human attention
with no specific task. It is about human general attention and a visual efficiency for humans:
is the information shown in an optimal way to humans?
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Since the early 2000s [4], numerous models of visual attention based on image features
were provided. In this paper, they will be referred to as classical models. While they can be
very different in their implementation, most of them have the same main philosophy: search
for contrasted, rare, abnormal or surprising features within a given context. Among those
models, one may find the seminal work of [5] or [6], but also more recent work based
on information processing such as AIM [7]. Finally, some models became a reference for
classical models such as GBVS [8], RARE [9], BMS [10], or AWS [11].

With the arrival of the deep learning wave, most researchers have focused on Deep
Neural Networks saliency, which will be referred to as DNN-based in this paper. DNN-
based models triggered a revolution in terms of results on the main benchmark datasets
such as the MIT benchmark [12], where DNN-based saliency models definitely outper-
formed classical models. The DNN-based models have already been used in several
applications such as image and video processing, medical signal processing, or big data
analysis [13-17]. Some of the DNN-based models became new references such as SALI-
CON [18], MLNet [19], or SAM-ResNet [20]. Since than, other novel models made addi-
tional progress such as TranSalNet [21], MSI-NET [22], SalFBNet [23], or DeepGazellE [24].
New models also begin to use a common framework for images or video like UNISAL [25].

However, recently DNN-based models have been criticized for some drawbacks.
First, they underestimate the importance of bottom-up attention [26], which indicates
that they were mostly trained to detect the attractive top-down objects rather than detect
saliency itself. In [27], the authors found that, if saliency models very precisely detect
top-down features, they neglect a lot of bottom-up information, which is surprising and
rare and thus, by definition, difficult to learn. This shows that saliency cannot be learnt
but instead objects [28] which are often attended by human gaze (such as faces, text,
bodies, etc.) are learned, and, furthermore, they are enough to provide good results on the
main benchmarks.

A second drawback of the DNN-based models is that, in addition to not taking into
account low-level features’ surprise levels, DNN-based models are not generic enough
to adapt to new images, which are different enough from the training dataset. Indeed,
recently, Ref. [29] introduced two novel datasets, one based on psycho-physical patterns
(P3) and one based on natural odd-one-out (O%) stimuli. They showed that, while DNN-
based models are good in the MIT dataset on natural images, their results drastically drop
on P? and O3.

A third drawback of the DNN-based models is linked to DNNs themselves, which are
black boxes. When a model fails to predict saliency, there is no way to understand why this
prediction failed.

Parallel to DNN-based models, DeepFeat [30] or SCAFI [31] deal with models where
pre-trained deep features are used. Those models will be called deep-features models in
this article. However, they are not yet comparable to DNN-based models for general images
datasets such as the MIT benchmark. Based on the new datasets in [29], DeepRare2019 [32]
provides a new deep-feature saliency model by mixing deep features and the philosophy
of an existing classical model [9]. This model is efficient on all the datasets, with no need
for any additional training and efficient in terms of computation even on CPU.

In this article, we build on DeepRare2019 to improve it in several ways: (1) different
DNN architectures are used and compared (VGG16, VGG19, and MobileNetV2) on more
datasets, (2) a threshold on the feature rarity is introduced, which lets us understand which
parts of the image are the most surprising at different levels providing transparency to
the model, and (3) the best combination of thresholds and an improved post-processing,
which lead to results that are much better than for DeepRare2019. This new model is
called DeepRare2021 (DR21) and shows that the DeepRare framework is modular and can
easily evolve.

In Section 2, DR21 is described and the threshold on feature rarity is used to show
how the DNN features’ rarity can become explainable. In Section 3, this model is tested
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on the datasets proposed in [29] but also on an additional dataset. We finally discuss and
conclude on the pertinence of the resurgence of the feature engineering models.

2. DeepRare2021 Model: Digging into Rare Deep Features

In this article, we extend the approach in [32] where a framework called DeepRare
is proposed which mixes the simplicity of the idea of rarity computation to find the most
salient features with the advantages of deep features extraction. Indeed, rare features
attract human attention as they are surprising compared to the other features within the
image. This combination has the advantage of being fast (less than 1 s per image on CPU
with a VGG16 feature extractor) and easily able to adapt to any default DNN architectures
(VGG19, ResNet, etc.). Here, we extend DR19 adding the possibility to have thresholds on
the rarity maps and also the possibility to use several DNN architectures. This additional
work leads to the DeepRare2021 (DR21) representation of the image where the features
are selected based on their rarity before combining them. In the following sections, we
describe DR21 and its feature visualization.

2.1. DeepRare Framework

Figure 1 summarizes the DeepRare architecture. From an input image, features are
extracted based on a CNN encoder (such as a VGG16). This network will extract features
needed to solve its training task. Here, we use the image classification task on the ImageNet
dataset [33], which is a dataset made of very diverse images and more than 1000 classes of
objects, thus a general purpose dataset. These weights are available by default in Keras [34]
or other development frameworks. Once features from selected layers are extracted, their
rarity is computed. The next step lets us select the most rare features and to represent them
easily. In the end, the selected features are fused and post-processed in a final saliency map.
All of these steps are described in the following sections.
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Figure 1. Processing for Layer 1. This processing is iterated for all interesting layers from a CNN
encoder network. In this example, 13 layers are in total chosen for a VGG16 encoder.

2.2. CNN Architectures and Layers Taken into Account

While in DR19, the algorithm is applied only to a VGG16 architecture, DR21 can be ap-
plied to various convolutional architectures. In this paper, we apply it to a VGG16, VGG19,
and MobileNetV2 architectures. While VGG19 is a variant of the VGG16 architecture,
MobileNetV2 is very different and it has the advantage of being light in terms of weight
and computation, which makes it usable on embedded devices such as smartphones, etc.
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The rarity is not computed on all the layers to avoid adding unnecessary information.
For VGG16, we do not use (1) the pooling layers (as they are redundant with the previous
convolutional layer) and (2) the final fully connected classification layers. In a VGG16,
the convolutional layers are gathered within five groups separated by the pooling layers:
(1) the first low-level features in layers 1 and 2, then (2) second set of low-level features
from layers 4 and 5—after that, (3) the first middle-level layers 7, 8, and 9 and (4) the second
middle-level layers 11, 12, and 13 and finally (5) the high-level features from layers 15, 16,
and 17. For VGG19, the same approach was taken into account. We take layers 1 and 2 for
the first low-level features; layers 4 and 5 for the second low-level features; layers 7, 8, 9,
and 10 for the first middle-level features; layers 12, 13, 14, and 15 for the second middle-
level features; and layers 17, 18, 19, and 20 for the high-level features. For MobileNetV2,
we use the same approach as VGG16 and VGG19. However, the architecture is much more
complex. We take layers 16 and 18 for the first low-level features; layers 24 and 32 for the
second low-level features; layers 41, 50, 59, and 67 for the first middle-level features; layers
76, 85,94, and 102 for the second middle-level features; and layers 111, 120, 137, and 146
for the high-level features.

In general, it is important to minimize the number of layers that are taken into account.
All the fully-connected layers and embeddings are excluded as the purpose is to reconstruct
an image. In addition, layers with redundant information (as pooling or others) are
excluded. The idea is to group together in five different groups (from low level 1 to high
level) the convolutional layers and only those will be used to extract the rare features.
The code provided on GitHub provides the possibility to switch between a VGG16, VGG19,
and MobileNetV2 architectures.

2.3. Rarity of Deep Features and Top-Down Information

Once the layers taken into account in the algorithm are selected for the given CNN
architecture, it is necessary to compute the feature maps rarity within those layers. Figure 1
shows that, on each feature map/activation map within a selected layer, we compute the
data rarity. For that, as in DR19, we use the main idea from [9] without the multi-resolution
part, which is naturally achieved by the convolutional network architecture. A very simple
rarity function R based on the histogram of each feature map sampled on a few bins (11 in
the current implementation) is used as in Equation (1):

R(i) = —log(p(i)) 1)

where p(i) is the occurrence probability for the pixels of bin i. The process is explained in
Figure 2. A histogram p(i) is computed (see Figure 2, blue graph in the middle) from a fea-
ture map (see Figure 2, left image). The rarity R is then computed from the histogram using
Equation (1) (see Figure 2, green graph in the middle) and a rarity image is reconstructed
by backprojection (see Figure 2, right image). This operation projects on each pixel of the
output image the rarity value corresponding to the input pixel. This image will highlight
pixels in the feature map/activation map, which are rare compared to the other pixels in
the feature map. Based on [9], rare pixels are the ones which might attract human attention.

The advantage of this approach is that it is very fast to compute, and this is important
as it needs to be applied to numerous feature maps.

2.4. Digging into Rare Deep Features

Once we decide the layers which will be taken into account into the model and we
compute their rarity, we can go further and select the most rare features in the feature maps.
With that aim, we decided to apply a threshold on the computed rarity maps. This threshold
is applied directly on the rarity of each feature map and varies from 0 (no threshold) to
0.9 (only keeping the 10% most rare features) by steps of 0.1. A binary threshold is first
obtained and used as a mask on the feature map to keep only the values within this mask
while the rest are set to 0.
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Figure 2. Rarity image reconstruction adapted from [9]. Rarity function (green curve in the left graph)
is computed from a histogram (blue curve) of a feature/activation map (middle image). The output
is a reconstruction of the map where high values are given for the most “rare” areas (right image).

In this section, we inspect the rare deep features at different scales to understand
what this rarity thresholds physically mean. One advantage of DR21 is that it is possible
to investigate at which scale and where the feature rarity is important and thus let us
understand how the attention mechanism works and how the image structures are taken
into account. In this section, Figures 3-5 are computed with a VGG16 architecture and the
five groups discussed in Section 2.2.

In Figure 3, we inspect a simple image with an obvious low-level focus of attention.
The initial image (on the left) represents several horizontal blue bars while only one is in
red. This red bar is an obvious point of attention based on a low-level feature: the color.

T=01 T=0 Final Saliency

Low
Level 1

Low
Level 2

Mid
Level 1

Mid
Level 2

High
Level

Figure 3. Detailed maps of different levels (from Low Level 1 to High Level) and different thresholds
on feature rarity (from 0.9 to no threshold) within the VGG16 architecture.

From this image, there are 10 columns with different thresholds from T = 0.9 which
only keep the 10% rarest features to T = 0 where no threshold was applied to the rarity
feature maps. Lines 2 to 6 represent the features for different levels (five levels when using
a VGGL16 architecture) which are already a fusion of the selected layers rarity maps (for
the fusion, see the next section). The final fusion of the five levels can be found on the first
line. Each map of the first line is the sum of the five DGCM maps obtained for the different
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levels which are shown on each column (see Section 2.5 for more details on the fusion).
The post-processed final saliency map (see Section 2.6) can be found in the top-right of
the image.

For the higher threshold (T = 0.9), the abnormal region is detected on all levels except
the higher level where the edge effects are too important (and can be seen in the corners
even when the edges of the image are set to 0). For the low levels (such as the three first
levels from Low level 1 to Mid level 1), only the red pattern appears, and the model is
very precise and selective on the rare object. When going towards the right with lower
thresholds, little by little, the other blue patterns also appear while the red one is still the
most highlighted, but the distractors around are visible.

In Figure 4, one can see the result for a situation where mid-level (big letters) and
high-level features (such as text and people) are the rare features (see initial image on the
left). This image has a less obvious attention focus like the one in Figure 3.

For the higher threshold (T = 0.9), the abnormal regions are split between mid levels
and the higher level. While at the low-levels very few information passes the threshold,
for the higher levels, text and the person are well highlighted. For the last level, the bigger
text and the person are more highlighted than small text. At smaller thresholds, the low
levels highlight mostly the posters on the wall based on their colors but not the person and
the large letters in the top-right enough.

Final Saliency

Low
Level 1

Low
Level 2
Mid
Level 1
Mid
Level 2

High
Level

Figure 4. Detailed maps of different levels (from Low Level 1 to High Level) and different thresholds
on feature rarity (from 0.9 to no threshold) within the VGG16 architecture.

In Figure 5, one can see the result for a situation where high-level features (big cake
shape and color) are the rare features. For the higher threshold (T = 0.9), the abnormal
regions are only detected in the higher level (mid level 2 and especially high level). On all
the other levels, no interesting feature is highlighted. For small thresholds, for low levels
1 and 2 and mid level 1, only edges and object areas are highlighted, but the model fails
in detecting the different cake. We see that, here, the low level feature never detects the
abnormal cake, whatever the threshold is.

Overall, in Figures 3-5, mid level 2 and high level always provide better results with
a high threshold such as T = 0.9, while the lower level feature works better on this high
threshold only in specific kinds of images with obvious abnormal patterns due to low-level
features. We already understand from here that several thresholds need to be combined to
provide better final results.
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Initial Image

T=09

In [27], the authors showed that top-down information for high-level features such as
text, people, animals, or transportation had a huge impact on visual attention through the
mix of those features with a simple rarity bottom-up approach. However, those rarity-based
features were only low-level features. In the current paper, we use both mid-level and
high-level features; however, we do not add top-down information (except for a weak face
detector only added when the VGG16 architecture is used). In the following section, we
show how the thresholded rarity feature maps from the chosen layers are fused together.

Final Saliency

Low
Level 1

Low
Level 2

Mid
Level 1

Mid
Level 2

High
Level

Figure 5. Detailed maps of different levels (from Low Level 1 to High Level) and different thresholds
on feature rarity (from 0.9 to no threshold) within the VGG16 architecture.

2.5. Data Fusion

Once the rarity of all feature maps is computed, the results need to be fused together.
We use a classical map fusion from [35] where the fusion weights depend on the squared
difference between the max and the mean of each map. This is applied to all feature
maps within each layer leading to the deep layer conspicuity maps (DLCM), one for each
convolutional layer (see Figure 1 for first layer). This fusion approach is efficient and simple,
which is important, as it is applied a lot of times on all the feature maps within each layer.

In a second stage, the same fusion method is applied for each of the layer groups
arriving to five deep groups’ conspicuity maps (DGCM). This fusion is made in a way to
give more importance to higher level layers.

Finally, the five DGCM are summed up. In the case that a VGG16 architecture is used,
a top-down face map can be added based on feature map #105 from layer 15, which is
known to detect faces that are large enough [31].

The entire process is summarized in Figure 6. The final step concerning the #105 map
is optional and only works on the VGG16 architecture. The #105 feature map of the 5th
convolutional layer of a VGG16 often highlights human faces, especially if they are big
enough [31]. However, this layer is very specific to VGG16 and is thus not generic, and the
face detection accuracy is much smaller than the one of a real face detector, especially for
small faces. It can thus help in improving results on some datasets, but it also introduces
false positives. It is much better to use a classical face detector in addition to the model
than adding this map in practice.
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Figure 6. Details on the fusion techniques. The last step using map #105 is optional and only makes
sense for a VGG16 architecture.

We show here different configurations of thresholds on the layers and check the results
for the VGG16 architecture (Tables 1 and 2). The accuracy is computed here by using the
correlation metric (CC) between the final saliency map (image 1) and the real people gaze
obtained by using eye-tracking (image 2). This metric is the Pearson correlation between
two images described in Equation (2), where x; is the intensity of the ith pixel in image 1, y;
is the intensity of the ith pixel in image 2, x;, is the mean intensity of image 1, and v, is the
mean intensity of image 2:

cC = Zi(xi - xm) Y (]/i —]/m) )
\/Zi(xi - er)z\/Zi(yi — Ym)?

Table 1. The OSIE dataset. Tests with different rarity thresholds, both face and without face features
on VGG16.

VGGI16 With Face Without Face
Thresholds CcC CcC
0 0.55 0.53
0.9 0.56 0.55
0+0.9)/2 0.57 0.56
0.4+0.9)/2 0.57 0.56

Table 2. The MIT1003 dataset. Tests with different rarity thresholds, both face and without face
features on VGG16.

VGGI16 With Face Without Face
Thresholds CcC CC
0 0.47 0.46
0.9 0.45 0.43
(0+0.9)/2 0.48 0.47
(0.4 +0.9)/2 0.47 0.45

We observe that, on two different validation datasets with natural images (OSIE and
MIT1003 which are better described in Section 3), the use of the face in case of the use of
VGG16 improves the results. On the OSIE dataset, the use of the higher threshold (0.9) or no
threshold (0) has different effects producing better results on the thresholded rarity layers
on OSIE (Table 1) and less better results on MIT1003 (Table 2). However, the combination
of the thresholds 0 and 0.9 is better in both cases, while the combination between 0 and
0.4 is a little worse on images from MIT1003. These tests show that it always works better
to mix the 0 threshold, which shows all the data classified by order of rarity and the 0.9,
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which is the higher threshold and only lets the most rare regions pass. At the end, we have
the best mix, which is to take into account all the rare data (threshold 0) and reinforce the
areas with very rare data (threshold 0.9).

2.6. Saliency Map Post Processing

Once maps were fused, it is well known [36] that a post-processing of the saliency
maps can improve the final results depending on the validation metrics. Indeed, the eye-
tracking data, which were provided by the datasets that will be used for validation, lead to
rather fuzzy eye-tracking saliency maps. The post-processing intends to provide, for each
algorithm, the optimal results in terms of correlation with the fuzzy predicted saliency
maps to avoid bias due to different post-processing for the tested models. Here, we used a
Gaussian low-pass smoothing filtering approach to optimize the final saliency map with
the same parameters as in [27].

In addition to smoothing the data, we tested the fact of squaring the data after the
smoothing. Tables 3 and 4 show the results for the chosen configuration in Section 2.5,
which is the mix of thresholds 0 and 0.9 (1) not filtered, (2) using the filtering technique
from [32], and (3) squared after the filtering technique. We can see that, in all cases, the
filter followed by the square provides the best results. When trying to cube the image or
even more, results are worse, so we decided to keep as the final post processing scheme the
filtering from [32] followed by the squared map.

Table 3. The OSIE dataset. Tests on threshold 0 and 0.9 by considering the saliency map without
filtering, with filtering, and with filtering and squared.

VGG16 With Face Without Face
0+0.9)/2 CcC CC
Not filtered 0.54 0.53
Filtered 0.57 0.56
Filtered + squared 0.59 0.58

Table 4. The MIT1003 dataset. Tests on threshold 0 and 0.9 by considering the saliency map without
filtering, with filtering, and with filtering and squared.

VGG1e6 With Face Without Face
0+0.9)/2 CcC CC
Not filtered 0.43 0.42
Filtered 0.48 0.47
Filtered + squared 0.51 0.50

To summarize the difference between the DR19 and DR21 methods, Table 5 shows
the main differences. While the basic principle of rarity of the deep features and post
processing are the same, several new features are available in DR21.

Table 5. DR19 versus DR21.

Features DR19 DR21
Deep features rarity yes yes
Several architectures no yes
Rarity thresholds no yes
Use of several rarity no os
thresholds Y

Post processing yes yes
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3. Experiments and Results

We use four datasets, namely OSIE [37], MIT1003 [38], P3, and O3 datasets [29] to
validate our results. The OSIE dataset contains information at three levels: pixel-level
image attributes, object-level attributes, and semantic-level attributes. The MIT1003 dataset
contains general-purpose real-life images but has no specific categories or attributes. The P>
dataset evaluates the ability of saliency algorithms to find singleton targets that focus
on color, orientation, and size (without center bias). The O dataset depicts a scene with
multiple objects similar to each other in appearance (distractors) and a singleton (tar-
get) which focuses on color, shape, and size (with center bias). We decided to use these
four very different datasets to check how saliency models behave when facing images in
different contexts.

Concerning metrics, we use measures from [29]. The number of fixations (# fix.) is
defined as the path formed by the saliency maximum followed by the other maxima of
the saliency map before reaching the target. The global saliency index (GSI) measures how
well the target mean saliency is distinguished from the distractors. The maximum saliency
ratio (MSR) focuses on maximum saliency of the target versus the distractors [39] and
the same for the background versus target (MSR}, and MSR;). We also use standard eye-
tracking evaluation metrics from the MIT benchmark [12] such as Correlation Coefficient
(CQ), Kullback—Leibler divergence (KL), Area Under the ROC Curve from Judd (AUC]), Area
Under the ROC Curve from Borji (AUCB), Normalized Scan-path Saliency (NSS), and Similarity
(SIM).

3.1. Qualitative Validation on the Different Datasets

We compare our model to other models on P? and O® datasets. According to [29],
they observe that most classical models perform better on P> than DNN-based models.
In contrast, DNN-based models perform better on 03,

Figure 7 shows six samples from the P3 dataset, which exhibits color, orientation,
and size differences of the target. While distractors are still visible on the DR19 saliency
map, the targets are always correctly highlighted compared to RARE2012, which works
well mainly for colors and two DNN-based models (MLNet and SALICON), which only
work on one sample. DR21 also spots all the targets, but, in addition, it highly decreases
the distractors influence, making the results very close to the ones in line 2 (ground truth).

Figure 8 shows images from the O® dataset for different target categories (easy or
difficult). Again, DR19 highlights the target better than the DNN-based models. DR19
seems equivalent on average with RARE. DR21 shows again a much more precise detection,
eliminating distractors and background information. From a qualitative point of view,
on the image in Figure 8, DR21 is the closest to the second line images (ground truth).

Figure 9 shows images from the MIT1003 dataset. DR19 always finds the ground truth
(GT) focus regions (except for the right image, where one GT focus is just in the middle,
probably due to the centered bias), but it also has details around those focus areas that
might decrease its scores on MIT1003. DR21 is more precise but still keeps the same focus
areas. Compared to ground truth (line 2), the focus areas are the same but probably less
focused as other DNN-based models might affect its scores, even if those scores should be
higher than DR19.

Figure 10 shows the images from the OSIE dataset. DR19 again spots the main correct
salient regions but exhibits a lot of noise or distractors around them with a saliency map
less focused as, for example, the one of the ground truth (line two). This issue is partially
solved by DR21, which is much more selective but still less than some DNN-based models.

Overall, the qualitative study reveals that DR21 spots the most important regions in all
datasets most of the time. On MIT1003 and OSIE datasets, the results of DR21 are in most
cases correct. If some DNN-based models are probably better on MIT1003 or OSIE datasets,
one reason is that they are more focused on the top-down areas only as the ground-truth
is. Indeed, DNN-based models are trained on images with content close to the ones of
MIT1003 and OSIE (general natural images) and different from the other datasets. On O3
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and P? datasets, DR21 clearly shows their superiority on DNN-based models, which are
sometimes completely lost with very bad results. DR19 and especially DR21 exhibit the
most stable behavior, performing well on all datasets while other models might be good on
some images but much less good on others.

Orientation differences Size differences
LI

DR2021
(vgg16)

Figure 7. Selected samples P? dataset. From left to right: target difference in color, orientation,
and size. From top to down: initial, ground truth, RARE2012, MLNET, SALICON, DR2019, DR2021.
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DR2021
(vgg16)

Figure 8. Selected samples O dataset. From top to down: initial, ground truth, RARE2012, MLNET,
SALICON, DR2019, DR2021.
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DR2019
(vag16)

DR2021
(vgg16)

Figure 9. Selected samples MIT1003 dataset. From top to down: initial, ground truth, RARE2012,
SALICON, DR2019, DR2021.

Init
GT
GBVS

SAM-
ResNet

DR2019
(vgg16)

DR2021
(vgg16)

Figure 10. Selected samples OSIE dataset. From top to down: initial, ground truth, GBVS, SAM-
ResNet, FAPTTX [27], DR2019, DR2021.
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3.2. Quantitative Validation on the Different Datasets

We make a quantitative validation of different models based on the DeepRare frame-
work on the four datasets shown in the previous section—first, on MIT1003 and OSIE
datasets, which show general-purpose images where learning objects is very important.
Those datasets should definitely provide an advantage to DNN-based models, which focus
on top-down information such as objects (faces, text, etc.) instead of bottom-up salient
information. We previously showed in [27] that the DNN-based models mainly learn which
objects are attended most of the time, which leads to good results on images implying a high
amount of top-down information, while they are very bad in purely bottom-up information.

On the other side, we use the P? dataset from [29], which shows that synthetic psycho-
physical images with pop-out bottom-up objects should work better for classical saliency
models and even more with DR19 and DR21 models.

Finally, we use the O® dataset from [29], which also provides real life images but with
odd-out-one regions. The dataset is somewhere in the middle between P? on one side
and MIT1003 and OSIE datasets on the other side. The O dataset should provide similar
difficulty to classical and DNN-based saliency models.

3.2.1. MIT1003 Dataset Evaluation

We summarize in Table 6 the results of DR19 and DR21 and also results coming
from [29] for MLNet and SALICON models where MLNet was trained with SALICON, P3
and O3 datasets, and SALICON was trained with OSIE, P2, and O3 datasets. The idea is to
avoid training of MLNet or SALICON models on the MIT1003 dataset where it is evaluated
to be fair towards unsupervised models, and, of course, this gives lower results than the
same models trained with the MIT1003 dataset. For other models (DeepFeat, eDN, GBVS,
RARE2012, BMS, AWS), the figures come from [30].

For DeepRare, the following variants are used: DR19-V16-WF (DR19 with a VGG16
backbone and without using the faces layer), DR19-V16 (DR19 with a VGG16 backbone and
by using the faces layer), DR21-MN2 (DR21 with a MobileNetV2 backbone and without
using faces information), DR21-V16-WF (DR21 with a VGG16 backbone and without using
the faces layer), DR21-V16 (DR21 with a VGG16 backbone and by using the faces layer),
and DR21-V19 (DR21 with a VGG19 backbone and without using faces information).

The best model is definitely DR21-V19 on all the metrics, which is better than classical
models but also than deep-features models (DeepFeat) and also all the DNN-based models
in Table 6. However, SALICON and MLNet were trained on datasets that are different from
the MIT1003 training set, which makes their performances lower than if they were trained
on images from MIT1003.

Table 6. MIT1003 dataset. DeepRare2021 (VGG19: DR21-V19, VGG16 without faces: DR21-V16-
WE, VGG16 with faces: DR21-V16, MobileNetV2: DR21-MN2), DeepRare2019 (VGG16: DR19-V16),
DeepRare2019 (VGG16 without faces: DR19-V16-WE, VGG16 with faces: DR19-V16), DFeat, eDN,
GBVS, RARE2012, BMS, AWS results come from [30] and SALICON and MLNet come from [29].

Models AUC] 1 AUCB 1 CC? KL | NSS * SIM 1
DR21-V19 0.86 0.85 0.56 0.88 1.93 0.50
DR21-V16 0.84 0.83 0.50 1.19 1.81 0.43

DR21-V16-WF 0.84 0.83 0.49 1.16 1.75 0.42
DR21-MN2 0.84 0.83 0.50 1.14 1.71 0.42
DR19-V16 0.86 0.85 0.48 1.25 1.58 0.36
DR19-V16-WF 0.84 0.83 0.46 1.32 1.54 0.34
SALICON 0.83 - 0.51 1.12 1.84 0.41
MLNet 0.82 - 0.46 1.36 1.64 0.35
DFeat 0.86 0.83 0.44 1.41 - -
eDN 0.86 0.84 041 1.54 - -
GBVS 0.83 0.81 0.42 1.3 - -
RARE2012 0.75 0.77 0.38 1.41 - -
BMS 0.75 0.77 0.36 1.45 - -
AWS 0.71 0.74 0.32 1.54 - -
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3.2.2. OSIE Dataset Evaluation

We summarize in Table 7 the results on the OSIE dataset. Here, we added SAM-ResNet
and FAPTTX models with the results reported in [27]. SALICON and MLNet models are
trained as in Section 3.2.1. SAM-Resnet is used with its default training parameters showing
that, when trained on general images without introducing datasets such as P3, which can
disturb the learning in general images cases, modern DNN-based models are better than
DeepRare models in any version. FAPTTX also exhibits slightly better results showing the
importance of top-down features in general images datasets. Our hypothesis here is that
DeepRare models achieve better bottom-up scores than RARE2012 (verified on all datasets)
but that the top-down information added to RARE2012 in FAPTTX makes it better. To verify
this, we also added to DeepRare2021 using VGG16, the same top-down information (TD)
as the one that was added to RARE2012 in [27] and called this model DR21-V16+TD. This
model is indeed better than FAPTTX, proving that the top-down information is still missing
from the DeepRare models.

The same idea is once again illustrated by the fact that DR19-V16 is better (on both
MIT1003 and OSIE) than DR19-V16-WF even if the faces layer in VGG16 is much less
efficient than a face detector as those used for FAPTTX. This again shows that DeepRare
models do not capture top-down information, which allows room for future improvements.

Another interesting point is that the VGG16 backbone is slightly better for the OSIE
dataset, while VGG19 was better for MIT1003, showing that, in MIT1003, maybe higher-
level features are more important than in OSIE. A second point is about the fact that FAPPTX
shows good results on these kinds of images. FAPPTX is built upon RARE2012 with addi-
tional top-down features, showing that adding top-down features to DR21 would probably
lead to results close to SAM-ResNet, as DR21 is better than RARE2012 in all configurations.

Table 7. OSIE dataset. DeepRare2021 (VGG19: DR21-V19, VGG16 without faces: DR21-V16-WEF,
VGG16 with faces: DR21-V16, MobileNetV2: DR21-MN2), DeepRare2019 (VGG16: DR19-V16),
DeepRare2019 (VGG16 without faces: DR19-V16-WF, VGG16 with faces: DR19-V16), and SAM-
ResNet, FAPTTX, RARE2012, AWS, GBVS, and AIM come from [27]. We added DeepRare2021 with
VGG16 and top-down from [27] called DR21-V16+TD.

Models AUC] 1 AUCB 1 cCt KL | NSS SIM 1
SAM-ResNet 0.90 - 0.77 137 3.1 0.65
DR21-V16+TD 0.88 0.83 0.66 0.83 2.32 0.56
FAPTTX 0.87 - 0.62 0.81 2.08 0.51
DR21-V16 0.87 0.86 0.59 0.91 2.06 0.52
DR21-V16-WF 0.87 0.86 0.58 0.84 2.01 0.51
DR19-V16 0.87 0.86 0.55 0.98 1.75 0.44
DR19-V16-WF 0.86 0.86 0.53 1.01 1.66 0.43
DR21-MN2 0.85 0.84 0.51 1.06 155 0.42
DR21-V19 0.83 0.82 0.45 1.32 1.54 0.34
RARE2012 0.83 - 0.46 1.05 153 0.43
AWS 0.82 - 0.45 111 2.02 0.42
GBVS 0.81 - 0.43 1.08 134 0.42
AIM 0.77 - 0.32 152 1.07 0.34

3.2.3. 0% Dataset Evaluation

The O? dataset uses the MSR metric defined in [29]. When the MSR; is higher, it is
better as the target is well highlighted compared to the distractors. When MSRy, is lower, it
is better; this means that the maximum of the saliency of the target is higher than the one of
the background. The first measure will ensure that the target is visible compared to the
distractors and the second that it is visible compared to the background.

Table 8 shows the MSR measures from [29], where we added the results from the Deep-
Rare models (DR19 and DR21 in the versions using VGG16, VGG19, and MobileNetV2
architectures) splitting the dataset between the images where color is a good discriminator
(Color) and the others (Non-color). All models work better for targets where color is an
important feature and less well for non-color.
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Table 8. Comparing results between several models (SAM-Resnet, CVS, DeepGaze II, FES, ICF, and
BMS) and DR family (DR19 and DR21 in the version VGG16, VGG19, and MobileNetV2). For MSR;,
higher is better, For MSRy,, lower is better.

Models Color Non-Color All Targets
MSR; 1 MSR;, | MSR; 1 MSR;, | MSR; 1 MSR;, |
DR21-V16 1.66 0.74 1.31 1.31 1.45 1.01
DR21-V19 1.63 0.78 1.29 1.39 1.43 1.13
DR21-MN2 1.19 1.02 1.06 1.54 1.12 1.32
DR19 1.14 0.75 1.00 1.00 1.06 0.89
SAM-ResNet 1.47 1.46 1.04 1.84 1.40 1.52
CVS 1.43 2.43 091 426 1.34 2.72
DGII 1.32 1.55 0.94 1.95 1.26 1.62
FES 1.34 2.53 0.81 5.93 1.26 3.08
ICF 1.30 2.00 0.84 2.03 1.23 2.01
BMS 1.29 0.97 0.87 1.59 122 1.07

For MSR¢ (higher is better) for Color, DR19 is worse, especially compared to DNN-
based models. However, we can see that, for non-color images where the models fail much
more, DR19 has a remarkable stability being second and very close to the best one (SAM-
ResNet). DR21, especially using the VGG19 and VGG16 architectures, are definitely the
best models, being much better even than efficient DNN-based models such as SAM-ResNet
on all the various kinds of images.

If we take into account the MSR}, (lower is better), the DeepRare models clearly
outperform all the others providing the best discrimination between the target and the
background. DeepRare models are the only ones with an MSRy, smaller than 1, which
means that on average the maximum of the target saliency is higher than the maximum of
the background saliency. DR21 with VGG16 architecture is still better than all classical and
DNN-based models and even better than DR19 for color images.

In conclusion, for MSR; and MSRy, metrics, the models from the DeepRare family
and especially DR21 with VGG16 architecture outperform all the other models including
efficient DNN-based models on both color or non-color images on the O3 dataset.

Table 9 shows the results of the DeepRare family compared to two other DNN-based
models tested on the whole O? dataset (both Color and Non-color images). Our models
outperform both SALICON and MLNet models on both MSR; (all the DeepRare models
are better) and MSRy, (DR19 is better) metrics. According to [29], the results we show here
for SALICON are the ones where it was trained on the OSIE by adding with P? and O?
datasets. The MLNet was trained on SALICON by adding with P> and O® datasets.

Table 9. SALICON, MLNet, and DeepRare family (DR19 and DR21 with MobileNetV2, VGG19, and
VGG16 architectures) results on the O3 dataset.

Models MSR; 1 MSRy, |
DR21-V1e 1.45 1.01
DR21-V19 1.43 1.13
DR21-MN2 1.12 1.32

DR19 1.06 0.89

MLNet 0.96 0.91

SALICON 0.90 1.26

3.2.4. P3 Dataset Evaluation

The P3 dataset is the one that exhibits the less top-down information, and it even does
not have any centered bias. Naturally, for this dataset, the DNN-based models perform the
worst. We will check here how the DeepRare models deal with the data.

First, we use the average # of fixations and found percentage metrics. The average
# of fixations is better if it is lower, as it means that the target is found more rapidly and
the percentage metric found is better if it is higher, as it means that a higher percentage of
the target is found after 100 fixations. Table 10 shows first the results on P? for DeepRare
models compared with SALICON and MLNet models. For the SALICON and MLNet
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models, they were trained the same way than in Section 3.2.3. Our models all definitely
outperform the two DNN-based models and need much less fixations to discover more of
the targets, showing here very good results.

Table 10. Comparing results on P? dataset.

Models Avg. #Fix. | % Found 1
DR21-V16 13.53 89
DR21-V19 13.86 89
DR21-MN2 33.82 72

DR19 16.34 87

MLNet 42.00 44

SALICON 49.37 65

Table 11 provides more details about the found percentage metric after different
numbers of fixations (15, 25, 50, and 100) and for specific images where the target is due to
color, orientation, or size features with 100 fixations. The results here are compared with
classical models which are better in this dataset than DNN-based models. In this table,
DeepRare models are the best again and especially DR21 with the VGG16 architecture.
While BMS can exhibit 100% for color or orientation target percentage found, it is more
efficient in terms of detection to find the target (even if not its entire surface) very quickly
(15 fixations) than to find all of the target surface but after 100 fixations. Thus, if we look at
the results after 15 fixations, only the DeepRare methods are all much better than the others.

Table 11. Comparing results on the P? dataset. Details on the percentage found after the number
of fixation of 15 (%fd15), 25 (%fd25), 50 (%fd50), and 100 (%fd100). Percentage found of the color
((%£d-C), orientation (%fd-O), and size (%fd-S) features taken separately.

Models %£d15 %£d25 %£d50 %£d100 %£d-C %£d-O %fd-S
DR21-V16 84.82 86.71 88.60 89.76 92.20 92.93 83.92
DR21-V19 84.27 86.32 88.10 89.14 92.65 9236 82.14
DR21-MN2 6137 64.81 69.37 72.46 7717 71.75 68.21

DR19 80.61 83.27 86.63 87.87 91.29 89.58 82.50
RARE2012 59.87 63.52 79.75 93.48 99.54 90.26 88.53
BMS 58.94 66.37 83.56 95.14 100 100 82.76
ICF 32.63 4138 68.47 70.18 69.41 100 4245
0SALICON 30.25 39.75 55.45 78.53 7635 81.58 70.42

Figure 11 shows the DeepRare family models compared to the best classical model
(IMSIG) and the best DNN-based model (0SALICON). If we look at the percentage of targets
found after only 15 fixations, then DR21 with the VGG16 and VGG19 architectures are the
best followed by DR19, IMSIG, and 0oSALICON. which are definitely worse. cSSALICON
(OpenSALICON) refers to [29], and the saliency maps are obtained using the pre-trained
OpenSALICON weights on the SALICON dataset. In that way, oSALICON is not trained
on the P3 dataset again to remain fair.

Finally, the GSI metric (Global Saliency Index) is computed on this dataset. This score
is better when it is higher as it measures how target average saliency is distinguished from
the distractors. For GSI, Table 12 shows the average figures for the whole dataset (GSI-Avg)
and for each of the dataset classes: images where the feature of the target is based on color
(GSI-Color), on the orientation (GSI-Orientation) and on size (GSI-Size). The average scores
for the GSI metric are much higher for the DeepRare models and especially for DR21 with
the VGG16 architecture. While the results of classical models such as BMS or RARE2012
can be comparable on GSI-Color, for GSI-Orientation or GSI-Size, they are much worse than
those of the DeepRare models. If we take into account the DNN-based models, then the
GSI scores begin to be even negative, showing that distractors are on average more visible
than the salient areas, indicating that DNN-based models do not work at all here.
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Figure 11. Number of fixations (horizontal axis) vs. % of targets detected (vertical axis). It is chosen
on 15, 25, 50, and 100 fixations.

Table 12. Comparing results on the P3 dataset. Global Saliency Index score on color, orientation,
and size features, and average score from these three features.

Models GSI-Color GSI-Orien. GSI-Size GSI-Avg.
DR21-V16 0.77 0.50 0.49 0.59
DR21-V19 0.75 0.49 0.51 0.58
DR21-MN2 0.66 0.42 0.51 0.53

DR19 0.42 0.17 0.15 0.25

RARE2012 0.74 0.01 0.18 0.31

BMS 0.72 0.01 —0.02 0.24
ICF 0.18 —0.02 —0.51 -0.12
oSALICON -0.01 0.04 -0.11 —0.03

Figures 12-14 let us compare the dynamics of the GSI scores on the three classes of
models (GSI-Color, GSI-Orientation, and GSI-Size). For each figure, we show the DeepRare
models results with the best classical and the best DNN-based models (in dotted lines).

For color targets (Figure 12), we see a maximum of the GSI score for DR21 with a
VGG16 architecture where GSI is at more than 0.9. If the RARE2012 model (best classcial
model in dotted red line) is better on small target/distractor color difference, DR21 is better
for larger differences. The ICF model (dotted green line) is worse than all the other models
from the DeepRare family on any target/distractor color difference. We also see that DR21
model is better than DR19 for all used architectures.

In addition, the shape of the GSI curve exhibited by the DeepRare family of models is
coherent from a biological point of view: if the difference between the target color and the
distractor color is small, then the model detects less well the target (left-side of the curve)
than when the color of the target and background is very different (right-side of the curve).
The models from the DeepRare family are the only ones to provide a biologically plausible
GSI curve. This is not the case for all tested classical or deep-based models [29] which have
a more constant behavior and do not take into account the color difference.
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Figure 12. The GSI score for color target/distractor difference. Best classical (dotted red line) and
best deep-based (dotted green line) along with the DeepRare family models.

For orientation targets (Figure 13), we see that the maximum of GSI score for DR21
with a VGG16 architecture is at more than 0.6 (right graph). This score is drastically higher
than the best DNN-based model (red dotted line) and the best classical model (green dotted
line) on all target/distractor orientation differences values. We also remark again that the
DR21 model is better than DR19 for all used architectures.
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Figure 13. The GSI score for the orientation target/distractor difference. Best classical (green dotted
line) and deep learning (red dotted line) along with the DeepRare family models.

In addition, the shape of the GSI curve exhibited by DeepRare family models is again
coherent from a biological point of view: if the difference between the target orientation
and the distractor orientation is small (left-side of the curve), then the model detects the
target less well than when target orientation is very different from the distractors (right-side
of the curve). Here, in addition, only the DeepRare family models have a dynamic that is
close to the one expected from a human. Indeed, the dotted lines are again more constant
and this is the case for all the tested models [29].

For size targets (Figure 14), we see that the maximum of GSI score for the best model
(DR21 with a MobileNetV2 architecture) is about 0.7. The best classical model (SSR, red
dotted line) is worse when the target/distractor size ratio is smaller or bigger (left-side
or right-side of the curve) but better when this ratio is close to 1, where there is a small
difference between the target and the distractors (center of the graph). The best DNN-based
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(here eDN, green dotted line) is much worse than the DeepRare family models on any
target/distractor ratio. DR21 with any architecture is again much better here than DR19.

The shape of the GSI curve exhibited by our model is finally again coherent from a
biological point of view: if the difference between the target size and the distractor size is
small (center of the curve), then the model detects the target less well than when its size is
very different (left and right sides of the curve). We can also see an asymmetry in the curve,
showing that it is easier for DR19 to detect targets twice as big as distractors than targets
two times smaller than the distractors, which is again biologically coherent. This is also
true for DR21, even if, for a very big target size (two times bigger than the distractors), we
can see a decrease in the performance. Classical and DNN-based models are again more
constant on all target/distractor size ratios which does not make sense from a biological
point of view.
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Figure 14. The GSI score for size target/distractor size ratio. Best classical (red dotted line) and deep
learning models (green dotted line) along with the DeepRare family models.

4. Discussion and Conclusions

We propose a novel saliency framework called DeepRare using the simplified rarity
idea of [9] applied on the deep features extracted by a deep neural network pre-trained on
the ImageNet dataset. After a first instantiation of this framework called DeepRare2019,
we propose here DeepRare2021, which exhibits several interesting features:

* Itneedsno additional training, and the default ImageNet training is enough. ImageNet
is a generic image dataset that lets DNN encoders extract most of the useful image-
related features needed to understand images;

¢ DeepRare2021 introduces several novelties compared to DeepRare2019, among which
is the use of thresholded rarity maps, which drastically improves the results in terms
of performance compared to DeepRare2019. The use of the thresholded maps makes
DeepRare2021 much less sensitive to distractors, allowing it to focus more on the main
surprising areas;

e The model is computationally efficient and is easy to run even on CPU only where the
model takes about 1 s per image (Google Colab);

¢ In comparison with DeepRare2019, where only a VGG16 architecture could fit to
the model, the DeepRare2021 approach is very modular, and it is easy to adapt to
any neural network architecture such as VGG16, VGG19, or even more complex
architectures such as MobileNetV2 for adaptation on mobile devices as smartphones
or for edge computing;

* Itis possible to check each layer contribution against the final saliency map and thus
better understand the result. It is also possible to check several thresholds to see
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which areas of the images are considered as the most rare compared to the others
and at which levels. This opportunity is a key feature of DeepRare2021 contrary to
DeepRare2019 and even more contrary to black-box DNN-based models. Indeed,
if DeepRare2021 does not work well, it is easy to segment the different layer maps
and understand from which layer the issue comes from, or if the issue comes from the
fusion step. In a specific case, for example, the model was not able to find a surprising
object which was very big. While looking to the decomposition of the different layers
such the ones that can be seen in Figure 5, only one level (the higher) detected the
surprising object, but the final saliency map was not highlighting it because all the
other levels were not detecting this object, so the fusion step was the issue in this
specific case;

¢ DeepRare models are very generic and stable through all kinds of different datasets
where other models are sometimes better but only for one dataset and/or a specific
metric but much worse for the others. The DeepRare2021 version is specifically
better than DeepRare2019 on all datasets when compared with the same VGG16
architecture. DeepRare2021 is thus the most generic model and, when applying it
to a new and unknown dataset, it will surely provide results that make sense, while,
with DNN-based models, there is no certitude that on a new image dataset it will
provide meaningful results (especially if the dataset is not close to the ones used for
training). If this is not a crucial issue on natural images which are more or less close
to the training datasets, specific datasets such as images with defects for industrial
quality control DNN-based models will perform very poorly. In addition, if the defects
do not have a specific shape, even by re-training the DNN-based models, they will not
be able to learn defects with various shapes as rare features are very hard to learn by
definition. If defects attract human gaze, it is specifically because they are unknown
and surprising and humans are not able to learn them.

We show that this framework, especially DeepRare2021, is the most stable and generic
when testing it on four very different datasets. It was first tested on MIT1003 and OSIE,
where it outperforms all the classical models and most of the DNN-based models. However
some DNN-based models, especially the latest ones, still provide better results.

We then tested DeepRare models on the O3 dataset, where DeepRare2021 outperforms
all the models on target/background discrimination and on target/distractor discrimina-
tion. Finally, on the P? dataset, our model is first for the target discrimination based on the
number of fixations. When computing the average GSI metric, our model is also the best
for all the features (color, orientation, size) and the only one to exhibit a GSI plot that is
biologically plausible.

While one cannot expect an unsupervised model such as DeepRare models to be better
on the MIT1003 or OSIE dataset than DNN-based models which are trained and tuned
on similar data, those DNN-based models are bad or even completely lost on 0% and P3
datasets and on any dataset containing surprising areas which have various shapes and
thus cannot be learnt by DNN architectures.

Our tests show that DeepRare models and especially DeepRare2021 models are opti-
mized models overcoming any classical model and being only beaten by recent DNN-based
models on MIT1003 or OSIE datasets. They are generic, unsupervised, and stable in results
on all kinds of datasets. Even if they take into account low- and high-level features, they still
remain bottom-up approaches, as FAPTTX results show [27]. Indeed by adding top-down
information to RARE2012, the results of FAPTTX are still comparable or a little better than
for the DeepRare models. However, if we add the same top-down information as in [27]
to DeepRare2?1 instead of Rare2012, DeepRare with top-down outperforms Rare2012 with
top-down information. The fact that top-down information is important can also be seen
with the fact that DR21-V16 is most of the time better than DR21-V16-WF because it uses
information about faces.

This remark leads to future works for future implementations of the DeepRare models.
Adding top-down information on top of DeepRare2021 would probably drastically improve
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its performance on MIT1003 and OSIE datasets while keeping similar results on O% and on
P? datasets.

The DeepRare family framework shows that deep-features-engineered models might
become a good choice in the visual attention field, especially when the (1) images they
are applied on are special and specific and (2) eye-tracking datasets are not available
on these kinds of images or when (3) explaining the result is of high importance, for
example in the case of industrial standardization. The code of DeepRare2021 can be found
at https://github.com /numediart/ Visual Attention-RareFamily, accessed on 30 November
2019.
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