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Abstract

Even if the performances of bioprocesses can be significantly improved by model-
based control, there often remains a tradeoff between model complexity and con-
trol robustness. This paper proposes an original data-driven strategy for fast de-
sign of dynamic bioprocess models with minimal complexity (i.e., minimal num-
ber of bioreactions). Maximum likelihood principal component analysis (MLPCA)
is applied to infer the minimal reaction scheme from a 25-state mammalian cell
culture database. Then, a systematic algorithm is used to provide a continuous
kinetic model formulation assuming all rates to occur simultaneously, which may
be far from true cell metabolic conditions sometimes presenting discontinuous
metabolic switches. A robust model predictive formulation is therefore adopted
to reduce the impact of model structural uncertainty on the process performances.
Additional numerical results show that the proposed strategy presents excellent
performances in presence of unexpected metabolic switches.

Keywords: Data-driven modeling; Animal cell culture; Fed-batch process;
Model predictive control

1. Introduction

The potential of Process Analytical Technologies (PAT) in therapeutic prod-
uct manufacturing becomes more and more important following the high demand
for monoclonal antibodies (MAbs), viral vectors, recombinant proteins, etc. The
potential benefits of data science and predictive modeling and control strategies
in the fields of therapeutics are twofold: (i) by reducing the required experimental
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sessions in time and money thanks to the predictive capacity of the mathematical
models constituting the process digital twins, and (ii) by providing model structure
properties well-adapted to the control framework.

Mechanistic modeling is by far the most plebiscited technique for animal cell
cultures, from the seminal work of [1], where a one-reaction model is proposed,
to more complex formulations such as in [2] or [3] where overflow metabolism
(or short-term Crabtree effect [4]) as enunciated by [5], is used to describe a dou-
ble bottleneck in the assimilation of glucose and glutamine, considered as main
substrates. Other microscopic and accurate models have been proposed, consid-
ering metabolic network analysis and elementary flux modes as in [6, 7, 8, 9, 10,
11, 12, 13]. However, even if these strategies rely on the a priori knowledge ex-
tracted from cell reduced and, sometimes, coarse metabolic networks, conferring
good predictive capabilities, they require a sufficient amount of available infor-
mative data from the cells, clearly exhibiting each of the considered metabolic
phenomena (i.e., substrate overflows, cell decay, alternative substrate consump-
tions when starving, amino acid metabolism, etc). Data-driven modeling, limiting
the model structure to the observable phenomena from the data, therefore appears
as a promising alternative solution in view of accelerating the parameter identi-
fication procedure for a specific process with reproducible properties (which is
often the case for bioprocesses operated in GMP conditions).

While data-driven structures may often be assimilated to machine learning or
more general black-box representations ([14],[15],[16]), [17] have recently pro-
posed a systematic method based on a maximum likelihood principal component
analysis (MLPCA), inspired from the works of [18] and [19], resulting in a macro-
scopic mechanistic-like model formulation of hybridoma cell cultures with a min-
imal number of pseudo-reactions, in some sense lumping the numerous occurring
network reactions and, in turn, a minimal number of stoichiometric parameters.
Moreover, the mechanistic formulation based on first principles also allows to
confer more predictive capabilities to the model in opposition to black-box mod-
els which often require an important amount of data to provide equivalent result
performances ([20]). Moreover, conversely to hybrid modeling where certain un-
known dynamics of the model are replaced by black-box structures such as arti-
ficial neural networks [21, 22], MLPCA generates a data subspace basis which
can be converted into a mechanistic model formulation. The main motivation is
therefore to combine the mentioned advantages of a data-driven method with first-
principle knowledge through a two-step procedure aiming at (i) setting the model
complexity (the minimal number of macro-reactions) based on the data informa-
tive content and (ii) transforming the resulting sub-space basis into a consistent
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stoichiometric basis. However, the kinetic structure definition is not provided by
the MLPCA. In a recent work, [23] have proposed a systematic method based on
the multilinear gaussian process (MGP) framework, to identify key kinetic factors
describing activation/saturation (i.e., the Monod law) and inhibition effects ([24]),
based on the a priori knowledge of the reaction network and its stoichiometry. The
first part of the current work is dedicated to the combination of an original kinetic
design method inspired from [23] and MLPCA, in order to first set a data-driven
reaction network of the animal cell culture fed-batch process under study and then,
to identify the kinetic factors and related parameters.

The estimation of the model dimension (i.e., number of reactions) provided
by the MLPCA does not take into account possible metabolic switches inducing
some discontinuous reaction activation/deactivation (as it may be the case for in-
stance in the bottleneck assumption of [5]). This modeling uncertainty issue can
however be tackled when designing fed-batch process feedback control using a
robust framework definition avoiding or, at least, limiting inaccurate tracking of
optimal operating conditions as proposed by [25], [26], [27], [28], [29] and [30].
While only plant/model parameter mismatch is solved in the latter, an extension
to structural mismatch has recently been proposed by [31] in a nonlinear model
predictive control (NMPC) policy based on a set of structurally different reduced-
network models. A multi-stage NMPC is then applied, optimizing the fed-batch
process input trajectory with respect to several possible scenarios implying the
available models. In this spirit, the second part of this paper is dedicated to the
application of a multi-stage NMPC policy considering, conversely to [31] using
reduced networks presenting multiple reactions and, therefore, a higher complex-
ity level, a sole and data-driven model with minimal complexity and possible rate
activation/deactivation scenarios.

The main motivations of this work are then (i) to systematically and quickly
generate data-driven models of bioprocesses with large number of state variables,
successively providing the minimal reaction scheme and the related kinetics and
(ii) to limit the impact of model structural uncertainty in the presence of metabolic
switches by formulating a robust NMPC strategy. This paper is organized as fol-
lows. Section 2 presents the data-driven MLPCA and kinetic generation strate-
gies as well as an original parameter set reduction algorithm. Section 3 briefly
describes the experimental materials and methods as well as the available data
set content, and presents the direct and cross-validations of the proposed strat-
egy, discriminating among two potential models. Section 4 is dedicated to the
NMPC policy formulation while section 5 shows and comments the validation of
the model as well as the comparative results between the applications of the pro-
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posed multi-stage NMPC versus the classical economic NMPC. Conclusions are
drawn in section 6.

2. An original data-driven modeling strategy

2.1. STEP 1: reaction scheme and stoichiometry generations by MLPCA
Classical bioprocess macroscopic mechanistic modeling is based on first prin-

ciples ([32]), using a priori knowledge of a (often drastically reduced) metabolic
network. The resulting reduced reaction scheme can be formulated as follows:∑

i∈Rj

ki,jξi
φj(ξ,θk,j)→

∑
l∈Pj

kl,jξl (1)

where Rj and Pj are respectively the sets of reactants and products of the jth reac-
tion with j = 1, ...,m, respectively denoted ξi (i = 1, ..., nr) and ξl (l = 1, ..., np).
φj is the rate of the jth reaction, function of ξ ∈ Rn, the vector of metabolite
concentrations. θk,j , where the index k stands for "kinetic", is the kinetic param-
eter vector of the jth reaction, function of the selected kinetic structure. ki,j (kl,j)
represents the stoichiometric coefficient of the ith (lth) reactant (product) in reac-
tion j. Applying mass balances to (1) leads to the following ordinary differential
equation system representing each reaction/product concentration variation with
time:

dξ(t)

dt
= Kφ(ξ, θk) + ν(ξ, t) (2)

where K is the matrix containing the stoichiometric coefficients from (1) and ν
is the transport vector, function of the process input/output flows. For the sake of
clarity, stoichiometric and kinetic parameters will respectively be denoted by θs
and θk in the following. It should be noticed that unlike chemical reaction schemes
which present a unique set of stoichiometric coefficients, biochemical reaction
schemes, involving biomass species, may induce some stoichiometric uncertainty
where the species consumption and production yields are likely to vary.

MLPCA considers the differential transport-free state vector which, between
two consecutive measurements in ti and ti+1, reads:

ξ∆fi = K

∫ ti+1

ti

φ(τ)dτ (3)
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where the left-hand side of (3) is composed of the metabolite concentration vari-
ations and transport terms, while the right-hand side comprises the stoichiomet-
ric basis K and the reaction rates. [19] provides a geometrical interpretation of
MLPCA which achieves an approximation of (3) by linear subspaces of increasing
dimensions m and returns a n × m affine subspace basis ρ̂ which, by linear com-
bination, is associated to the stoichiometric matrix approximation K̂ = ρ̂G with
G being a regular m × m matrix to be defined to impose a maximum of p con-
straints per column of K̂ (for instance, to force K̂ to present some normalization
with respect to a specific component in the suggested reaction). This association
also induces the non-uniqueness of the stoichiometric matrix approximation K̂ of
rank m. The smallest dimension m providing a sufficiently accurate interpretation
of the data can therefore be selected, minimizing a maximum likelihood (ML) cost
as follows:

Jm =

nS∑
i=1

(
ξ∆f,measi

− ξ∆,m
f

)T

Q−1
i

(
ξ∆f,measi

− ξ∆,m
f

)
(4)

where nS is the number of measured samples, ξ∆f,measi
the measured transport-free

state vector, Qi the error covariance matrix accounting for the noise and ξ∆,m
f , the

Maximum Likelihood estimate vector of the m-dimensional model. We select m
as the minimal value such that Jm is smaller or equal to the range of a χ2

nS × n-
distributed random variable (see [19] and [17] for further details).

2.2. STEP 2: identification of the kinetics by lumped flux reconstruction
We assume that the reaction rate structure corresponds to the product of sev-

eral factors describing occurring activation/saturation and/or inhibition phenom-
ena ([23]). The jth component of φ (j = 1, ...,m) is therefore expressed as fol-
lows:

φj(t) = φj
maxX(t)

n∏
i=1

hj
M,i (ξi(t))h

j
J,i (ξi(t)) (5)

where the index j stands for the reaction number and ξi(t) is the concentration of
the ith metabolite. φmax is the maximum rate constant. The biomass is assumed
to be the auto-catalyst of the rates, driving the overall reaction scheme dynam-
ics. The corresponding concentration X is therefore a factor of each reaction rate.
Among the possibly existing kinetic structures, Monod ([33]) and Jerusalimski
([34]) factors are respectively chosen to describe the rate activation and/or inhibi-
tion by the ith metabolite, and are denoted:
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hM,i(t) =
ξi(t)

ξi(t) +Kξi,s

(6)

hJ,i(t) =
1

1 +Kξi,inhξi(t)
(7)

M and J indicating either Monod or Jerusalimski factors (or, more generally,
their combined effects in (5)). Metabolites with no kinetic contribution are as-
similated to a unitary factor. Kξi,s and Kξi,inh are respectively the half-saturation
and inhibition parameters, assumed to be positive. The kinetic parameter vec-
tor can therefore be decomposed as θk =

[
φT
max K

T
s K

T
inh

]
where φmax Ks and

Kinh are respectively the maximum rate, the half-saturation and the inhibition
constant vectors. In order to identify the kinetic coefficients, several methods may
be proposed such as multilinear Gaussian process assumption ([23]), suggesting
a Gaussian kernel inspired by the proposed kinetic structure from [35]. However,
the latter require the knowledge of the reaction rate measurements which are not
assumed to be known a priori. The first step will therefore consist in reconstruct-
ing the reaction rates, which are assumed to lump the metabolic fluxes according
to the proposed stoichiometric sub-space provided by the MLPCA.

The left-hand side of equation (3) is assumed to be measurable, while the
right-hand side comprises the stoichiometric basis obtained by MLPCA and the
unknown reaction rate vector. A linear programming problem of the following
form may therefore be formulated:

argminxJlin = b− A x

s.t. x > 0
(8)

where b = dξ
dt
−ν, A = K and x = φ. It is assumed that the number of metabolites

n is greater than the number of rates m generated by MLPCA, making problem (8)
over-determined. A good numerical solution may however be obtained, namely
considering a positivity constraint on the solution since the factors (6) and (7)
are monotonic positive functions. This statement will be illustrated further in
the result section. The resulting measured rate estimates are used in a nonlinear
programming problem aiming at identifying the kinetic parameters as follows:

argminθkJ =
m∑
j=1

nS∑
i=1

(
φj
i − φ̂j

i

)T
Q−1

φ

(
φj
i − φ̂j

i

)
− λ

pk∑
r=1

θk(r) (9)
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where φj
i are the estimates of the measured rates, solutions of problem (8), Qφ ∈

Rm×m is the covariance matrix of rate estimation errors and φ̂j
i are the kinetic

model estimates, conform to (6) and (7). pk is the dimension of the kinetic pa-
rameter vector θk. It should be noticed that the reactant/product labeling of a
metabolite may change from one rate to the other, depending on the sign of the
corresponding stoichiometric coefficient delivered by the MLPCA. The penaliza-
tion term weighted by λ aims at providing the smallest order of magnitudes of the
kinetic parameter values, forcing the parameters which have no influence on the
kinetics to converge to zero and, in turn, reducing their contribution to 1 in (6) and
(7).

To assess the local identifiability of the kinetic parameters, depending on the
data set informative content, the Fisher Information Matrix (FIM) is computed,
over one experiment, as follows:

FIMk =

nS∑
i=1

φT
θk
(i)Q−1

φ φθk(i) (10)

where φθk(i) =
∂φ(i)
∂θk

is the kinetic parameter sensitivity matrix of dimensions m×
pk. An optimistic estimate of the kinetic parameter estimation error covariance
matrix can be inferred from the inverse of the FIM:

P̂k = σ̂2
kFIM−1

k (11)

with σ̂2
k being the a posteriori estimate of the rate measurement error variance

obtained from the residual cost function at the optimum:

σ̂2
k =

J

Nmeas − pk
(12)

where Nmeas is the total number of measurements Nmeas = n nS .
The parameter rejection means of this identification step are therefore twofold,

considering an upstream parameter set reduction based on a minimum order of
magnitude below which the parameter is considered as non influential and a down-
stream set reduction following the comparison of the parameter estimation error
variances σ2

Pk
, read on the diagonal of the covariance matrix Pk, with a maximum

level above which local identifiability is insufficient to consider the parameters as
significantly influencing the rates. Figure 1 shows the schematized kinetic param-
eter identification algorithm with two threshold coefficients, ϵ and η, parametriz-
ing the two reduction strategies.

7



Figure 1: kinetic parameter identification scheme.

2.3. STEP 3: parameter bias cancellation
Identifying the stoichiometric and kinetic parameters separately may unfor-

tunately generate some estimation bias and it is therefore proposed to alleviate
this issue by proceeding to a new identification of the full parameter set θmodel =[
θ θIC

]
=

[
θs θk θIC

]
where θIC are the metabolite ordinary differential

equation initial conditions, assumed to be uncertain due to the presence of mea-
surement noise. To this end, the following nonlinear ML criterion is minimized:

JML =

nS∑
i=1

(ξmi
− ξi)

T Q−1
i (ξmi

− ξi) (13)

where ξ and ξm are respectively the state predictions by the model and the
corresponding measurements.

According to step 2, local identifiability is anew assessed in order to detect
possible over-parametrization.

The FIM of the full parameter set reads:

FIM =

nS∑
i=1

ξTθ (i)Q
−1
i ξθ(i) (14)

where ξθ =
∂ξ
∂θ

is the parametric sensitivity of the full parameter set.
The corresponding covariance matrix estimate of the estimation errors be-

comes:
P̂ = σ̂2FIM−1 (15)
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with σ2 being the a posteriori estimate of the measurement error variance obtained
from the residual of JML:

σ̂2 =
JML

Nmeas − nθ

(16)

where nθ is the number of estimated parameters.
Even if the above method allows to avoid over-parametrization, parameter

non-identifiability may sometimes lead to an ill-conditioned (i.e., not invertible)
FIM and, in turn, a non-existing P matrix. In this particular situation, a QR de-
composition can be applied in order to rank the parameters in increasing order of
dependency ([36]). The most linearly dependent parameter is then detected and
rejected before step 3 restarts. The reader may refer to [36] for further information
on the use of QR decomposition.

2.4. Data-driven parameter identification algorithm
The proposed global identification scheme imbricating steps 1 to 3 is shown

in figure 2 and can be summarized as follows:

• STEP 1: generate the minimal lumped reaction scheme of the provided data
set and the corresponding stoichiometric basis;

• STEP 2: based on the calculation of the state fluxes from the data set, cal-
culate the estimates of the rates and identify the kinetic parameters;

• STEP 3: cancel the possible bias by reidentifying the whole parameter set
with the parameters from STEP 1 and 2 as initial guesses. Redo STEP 3 as
long as the reduction test provides a negative answer or if the user decides
to reduce the accuracy tolerance η.

3. Application to animal cell culture process

3.1. Database description
5 experimental data sets are available, describing fed-batch animal cell cul-

tures operated with multi-input feeding of glucose, glutamine and amino acid me-
dia. 3 experiments were run with low-concentration amino acid medium and the
remaining 2 with high-concentration amino acid medium. Initial concentrations
of the metabolites may vary from one experiment to the other, mainly depend-
ing on the pre-culture result. For the sake of confidentiality, the metabolite inlet
concentrations are not divulged, as well as other information about the operating
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Figure 2: Data-driven model parameter identification scheme.

conditions. The data sets contain the off-line measurements of 25 state variables
which are, using a conventional specific numbering:

• The classical metabolites: 1) biomass X , 2) glucose G, 3) lactate L, 4)
glutamine Gn and 5) ammonium N ;

• The amino acids: 6) aspartic acid Asp, 7) glutaminic acid Glu, 8) serine
Ser, 9) asparagine Asn, 10) glycine Gly, 11) histidine His, 12) threonine
Thr, 13) arginine Arg, 14) alanine Ala, 15) proline Pro, 16) tyrosine Tyr,
17) cysteine Cys, 18) valine V al, 19) methionine Met, 20) isoleucine Ile,
21) leucine Leu, 22) lysine Lys, 23) phenylalanine Phe, and 24) tryptophan
Trp;

• The product of interest: 25) monoclonal antibodies MAb.
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The data sets are partitioned in 1 low-concentration and 1 high-concentration
amino acid medium data sets dedicated to parameter identification and model
direct validation, and 2 low-concentration and 1 high-concentration amino acid
medium data sets dedicated to cross-validation. The corresponding data are shown
in figure 3.
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Figure 3: Animal cell fed-batch culture experimental data sets. Experiments 1, 2 and 3 were
achieved with low amino acid concentration medium. Experiments 4 and 5 were achieved with
high amino acid concentration medium.

3.2. Model validation
3.2.1. STEP 1: MLPCA

Figure 4 shows the log-likelihood function following the application of the
methodology defined in STEP 1 to the data sets related to experiments 1 and 4. A
3-dimensional subspace appears to be sufficient to describe the selected data with
a probability of 99.5 % following the χ2 test.
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Figure 4: Log-likelihood costs of the p-dimensional subspaces considering a relative noise vari-
ance of 10 %. The dashed line represents the χ2 quantile at 5 %.

The corresponding basis ρ delivered by the MLPCA is used to build a bio-
logically consistent stoichiometric matrix following a linear transformation of the
form K̂ = ρG where G allows to impose a maximum of 3 (rank of ρ) specific
constraints per column of K̂. The following constraints are formulated in a trial
to reveal the main metabolic states/pathways which can be observed in the data
and which are the overflow metabolism (including glycolysis), biomass death and
amino acid metabolism which not explained by the first two reactions :

• The first column (i.e., reaction) of K̂ should be normalized with respect to
the biomass concentration;

• The second column should be normalized with respect to the biomass con-
centration and biomass, glucose and glutamine should all present negative
or zero stoichiometric coefficients kX,2, kG,2, kGn,2 ≤ 0;

• The third column should be normalized with respect to the biomass concen-
tration and the ammonium coefficient is zero kN,3 = 0.

It should be noticed that the normalization with respect to the biomass con-
centration allows to constrain K̂ to be read as the result of a mass balance. The
solution to the constrained linear problem provides a G matrix inducing the fol-
lowing stoichiometric matrix:
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K̂ = ρG =



1 −1 1
−0.493 −0.151 −2.017
0.266 −0.443 −0.153
−0.139 0 −0.466
0.074 −0.106 0
0.008 −0.041 −0.069
0.0085 −0.013 −0.001
0.014 −0.084 −0.151
0.003 −0.099 −0.222
0.023 −0.126 −0.221
−0.010 0.014 −0.003
0.012 −0.105 −0.207
0.005 −0.013 −0.012
0.064 −0.105 −0.033
−0.006 0.004 −0.011
−0.002 −0.015 −0.042
−0.002 0.003 −0.001
−0.011 0.011 −0.009
0.001 −0.021 −0.047
−0.001 −0.038 −0.093
−0.002 −0.059 −0.147
−0.001 −0.021 −0.054
−0.005 0.001 −0.015
−0.001 −0.010 −0.025
0.156 −0.191 0.073



(17)

where the state numbering, from row 1 (X) to 25 (MAb) is conform to the data
description from section 3.1.

3.2.2. STEP 2: Kinetic parameter identification
The threshold coefficient setting the absolute value below which a kinetic pa-

rameter is rejected is 10−3, while the threshold coefficient setting the relative value
of the confidence interval above which a kinetic parameter is rejected is 105. These
intervals correspond to a confidence degree of 95 % and are therefore calculated,
for the ith parameter θk as follows:

CI = ±2σP × 100

θk,i
(18)
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The resulting expressions of the rates are:

φ(1) = φ(1)
maxX

Cys

Cys+KCys,s

V al

V al +KV al,s

Ile

Ile+KIle,s

Leu

Leu+KLeu,s

Lys

Lys+KLys,s

KAla,inh

Ala+KAla,inh

KMet,inh

Met+KMet,inh

(19a)

φ(2) = φ(2)
maxX

N

N +KN,s

Asn

Asn+KAsn,s

Arg

Arg +KArg,s

KPro,inh

Pro+KPro,inh

KV al,inh

V al +KV al,inh

(19b)

φ(3) = φ(3)
maxX (19c)

From these latter reaction rate expressions, it is shown that some essential
amino acids (except Cys which can however be assimilated as a conditionally
non-essential amino acid) are detected as responsible of the activation of the first
reaction, assumed to represent the main substrate consumption pathway (includ-
ing glycolysis), which makes sense. This first reaction is also a priori inhibited
by Met and Ala, respectively essential and non-essential. The second reaction,
modeling the cell death rate, is logically activated by the presence of N , which
is recognized to be a cell growth inhibitor at significant concentration levels.
Asn and Arg, which are non-essential, also activate cell death when accumu-
lated while Pro and V al conversely inhibit it. It should be noticed that no activa-
tion/inhibition mechanism is detected regarding the third rate.

Parameter values are shown in Table 1.

3.2.3. STEP 3: Bias cancellation
This last step considers the estimations from the previous steps as initial guess

as well as the identification of the ordinary differential equation initial conditions.
For the sake of illustration, two runs of the procedure are achieved with confidence
interval thresholds (η) of 104 and 103 and ϵ = 10−3 while observing the effect on
K̂, rates (19) and the cost function residual JML. Tables 2 to 5 show the parameter
values and the corresponding relative confidence intervals at 95 % for each step.
The cost function residuals for η = 104 and 103 are respectively 0.941 and 0.834.

Parameter values and their relative confidence intervals are shown in Tables
2 to 5. In overall, the values from Tables 2 and 3 are very close and the main
difference lies in the less amount of parameters (especially kinetic parameters)
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Table 1: Kinetic parameter values following STEP 2
Parameter Value Unit
φ
(1)
max 17.166 d−1

φ
(2)
max 199.847 d−1

φ
(3)
max 0.0243 d−1

KCys,s 0.099 mM
KV al,s 0.288 mM
KIle,s 0.294 mM
KLeu,s 0.298 mM
KLys,s 2.805 mM
KN,s 48.147 mM
KAsn,s 0.135 mM
KArg,s 67.467 mM
KAla,inh 0.113 mM−1

KMet,inh 6.179 mM−1

KPro,inh 19.991 mM−1

KV al,inh 0.221 mM−1

considered by the second model (with η = 103), to the cost of higher kinetic un-
certainties as highlighted by Table 5. Moreover, a majority of parameters from re-
action 3, in both cases, are poorly identifiable, which, at first sight, would suggest
to reduce the model to 2 reactions, in opposition to the results generated by the
MLPCA. Choosing η = 102 rejects the last statement (for the sake of conciseness
and clarity, the corresponding results are not provided but the direct validation is
shown in Figures 5 and 6). Indeed, in the latter case, parameters from reaction 3
are all rejected but the cost function dramatically increases (JML = 8.694), lead-
ing to a bad fitting. Three reactions are therefore necessary even if the third one is
poorly identifiable.

Table 2: Final model stoichiometric parameter values.

Parameter η = 104 η = 103 Unit
kG,1 -0.264 -0.239 mmol/109cells
kG,3 -0.090 -0.145 mmol/109cells
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kL,1 0.374 0.300 mmol/109cells
kL,2 -0.220 -0.247 mmol/109cells
kGn,1 -0.071 -0.061 mmol/109cells
kGn,3 -0.014 -0.031 mmol/109cells
kN,1 0.045 0.043 mmol/109cells
kN,2 -0.002 -0.008 mmol/109cells
kAsp,1 0.003 0.003 mmol/109cells
kAsp,2 -0.003 -0.004 mmol/109cells
kGlu,1 0.005 0.004 mmol/109cells
kSer,2 -0.006 -0.007 mmol/109cells
kAsn,3 -0.057 -0.113 mmol/109cells
kGly,3 -0.001 -0.002 mmol/109cells
kHis,1 -0.019 -0.018 mmol/109cells
kHis,2 0.008 0.011 mmol/109cells
kThr,3 -0.009 -0.018 mmol/109cells
kArg,1 0.005 0.004 mmol/109cells
kArg,3 -0.008 -0.017 mmol/109cells
kAla,1 0.042 0.038 mmol/109cells
kPro,1 -0.007 -0.006 mmol/109cells
kTyr,1 -0.006 -0.005 mmol/109cells
kCys,1 -0.001 -0.001 mmol/109cells
kCys,2 0.001 0.001 mmol/109cells
kCys,3 -0.003 -0.004 mmol/109cells
kV al,1 -0.008 -0.008 mmol/109cells
kV al,2 0.003 0.003 mmol/109cells
kV al,3 -0.006 -0.009 mmol/109cells
kMet,3 -0.005 -0.011 mmol/109cells
kIle,1 -0.008 -0.008 mmol/109cells
kLeu,1 -0.014 -0.015 mmol/109cells
kLys,2 -0.005 -0.006 mmol/109cells
kPhe,1 -0.006 -0.005 mmol/109cells
kTrp,1 -0.003 -0.003 mmol/109cells
kMAb,1 0.051 0.046 mmol/109cells
kMAb,3 0.115 0.219 mmol/109cells
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Table 3: Final model kinetic parameter values.

Parameter η = 104 η = 103 Unit
φ
(1)
max 3.160 2.248 d−1

φ
(2)
max 2.087 3.121 d−1

φ
(3)
max 0.233 0.117 d−1

KCys,s 0.083 0.489 mM
KIle,s 0.750 0.276 mM
KLeu,s 0.032 - mM
KN,s 23.786 55.755 mM

KAla,inh 0.536 0.032 mM−1

KV al,inh 0.168 - mM−1

Table 4: Final model stoichiometric parameter relative con-
fidence intervals in %.

Parameter η = 104 η = 103 Unit
kG,1 37.517 27.374 %
kG,3 166.863 188.586 %
kL,1 28.229 20.896 %
kL,2 49.048 35.254 %
kGn,1 35.987 24.304 %
kGn,3 223.707 191.442 %
kN,1 34.446 21.996 %
kN,2 460.776 148.788 %
kAsp,1 111.359 96.359 %
kAsp,2 108.748 92.770 %
kGlu,1 31.998 19.973 %
kSer,2 70.721 58.520 %
kAsn,3 105.565 115.967 %
kGly,3 409.795 453.266 %
kHis,1 31.066 22.159 %
kHis,2 62.114 45.153 %
kThr,3 118.061 126.863 %
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kArg,1 335.723 337.927 %
kArg,3 305.202 302.173 %
kAla,1 30.996 18.669 %
kPro,1 33.516 22.065 %
kTyr,1 34.311 23.090 %
kCys,1 49.178 37.697 %
kCys,2 65.383 55.129 %
kCys,3 91.336 118.755 %
kV al,1 47.773 38.926 %
kV al,2 186.624 164.861 %
kV al,3 195.465 211.564 %
kMet,3 107.418 118.034 %
kIle,1 36.778 25.868 %
kLeu,1 34.500 23.283 %
kLys,2 59.242 46.947 %
kPhe,1 31.796 19.708 %
kTrp,1 35.200 23.866 %
kMAb,1 68.812 63.661 %
kMAb,3 114.903 127.403 %

Table 5: Final model kinetic parameter relative confidence intervals in %.
Parameter η = 104 η = 103 Unit
φ
(1)
max 45.131 163.864 %

φ
(2)
max 216.767 489.383 %

φ
(3)
max 104.189 116.388 %

KCys,s 324.653 576.445 %
KIle,s 49.039 389.985 %
KLeu,s 112.007 - %
KN,s 293.787 319.743 %

KAla,inh 116.253 104.292 %
KV al,inh 770.766 - %

18



Figures 5 and 6 respectively show the direct validations of the models gener-
ated with the different η values, on experiments 1 (with the first medium) and 5
(with the second medium). Obviously, the fitting is almost the same for η = 104

and 103.
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Figure 5: Direct validation of the proposed models for different η values on experiment 1 (first
medium). Dotted, continuous and dashed lines respectively correspond to η = 102, η = 103 and
η = 104 while the experimental data are represented by the errorbars.

Choosing one of the two presented models therefore appears to be the best
compromise. In order to distinguish the best candidate, based on their predictive
capabilities, we proceed to the cross-validations on the 3 remaining data sets.

3.2.4. Model cross-validation
During the cross-validations, only initial conditions are identified while model

parameters are set to the results of the direct validations. The 3 remaining fed-
batch experiments (2 with low and 1 with high amino acid concentration media)
are used in this purpose and the fitting results are shown in Figures 7 to 9 for the
two selected data-driven models.

In order to ease the comparison, Table 6 summarizes the model fitting cost
residuals for each cross-validation experiment.
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Figure 6: Direct validation of the proposed models for different η values on experiment 2 (second
medium). Dotted, continuous and dashed lines respectively correspond to η = 102, η = 103 and
η = 104 while the experimental data are represented by the errorbars.

Table 6: Data-driven model fitting cost function JML residuals during cross-validations.
Experiment JML (η = 104) JML (η = 103)

3 0.553 0.444
4 1.076 0.879
5 0.974 0.840

From a qualitative point of view, the predictive capability of the data-driven
model with η = 103 is better than the second model, which is confirmed by the
residuals from Table 6. Experiments 3 and 4 show some bad fittings regarding glu-
tamine and serine concentrations, which is the result of an amplified phenomenon
already observed in experiment 1 (direct validation). However, experiment 5 pro-
poses the best results, namely for η = 103. The difference of fitting quality be-
tween the selected experiments seems to be connected to the used medium. A first
element of explanation could be the higher concentration of glutamine in the sec-
ond medium, combined to the impossibility to switch from one rate to another but
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Figure 7: Cross-validation of the proposed models for different η values on experiment 3 (first
medium). Continuous and dashed lines respectively correspond to η = 103 and η = 104 while the
experimental data are represented by the errorbars.

to continuously consider all rates, leading to an undesired accumulation of glu-
tamine in the model prediction. The final reaction scheme is written as follows:
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Figure 8: Cross-validation of the proposed models for different η values on experiment 4 (first
medium). Continuous and dashed lines respectively correspond to η = 103 and η = 104 while the
experimental data are represented by the errorbars.

Reaction 1 :

kG,1G+ kGn,1Gn +
∑
AAr,1

kAAr,1AAr,1

φ(1)

→ X+ kL,1L + kN,1N+ kMAb,1MAb +
∑
AAp,1

kAAp,1AAp,1

(20a)

Reaction 2 :

X+ kL,2L + kN,2N+
∑
AAr,2

kAAr,2AAr,2
φ(2)

→
∑
AAp,2

kAAp,2AAp,2
(20b)

Reaction 3 :

kG,3G+ kGn,3Gn +
∑
AAr,3

kAAr,3AAr,3
φ(3)

→ X+ kMAb,3MAb (20c)
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Figure 9: Cross-validation of the proposed models for different η values on experiment 5 (second
medium). Continuous and dashed lines respectively correspond to η = 103 and η = 104 while the
experimental data are represented by the errorbars.

where indices AA, r and p respectively stand for amino acids, reactants and
products. In order to provide a clearer view of the roles of the amino acids in these
reactions, Table 7 gathers the several amino acids per group of reactants/products
per reaction, while the kinetics read:

φ(1) = φ(1)
maxX

Cys

Cys+KCys,s

Ile

Ile+KIle,s

KAla,inh

Ala+KAla,inh

(21a)

φ(2) = φ(2)
maxX

N

N +KN,s

(21b)

φ(3) = φ(3)
maxX (21c)

The first reaction can be assimilated to the overflow metabolism since the
main substrate metabolites are consumed, leading to the production of lactate,
ammonium and other non-essential amino acids such as aspartic acid, glutaminic
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Table 7: Assumed amino acid roles in the reaction scheme (20)
Reaction Reactants Products

1 His, Pro, Tyr, Cys, Val, Ile, Leu, Phe, Trp Asp, Glu, Arg, Ala
2 Asp, Ser, Lys His, Cys, Val
3 Asn, Gly, Thr, Arg, Cys, Val, Met /

acid, arginine and alanine. This reaction is activated by the presence of cysteine
and isoleucine (essential amino acids) while inhibited by the presence of alanine
(non-essential). The second reaction lumps biomass decay as well as lactate re-
consumption metabolism, and is activated by the presence of ammonium. Aspar-
tic acid (non-essential), serine (conditionally non-essential) and lysine (essential)
are consumed and histidine (essential), cysteine (non-essential) and valine (essen-
tial) are produced. Eventually, the third reaction contributes to the consumption
of metabolites such as glucose, glutamine and other essential or conditionally
non-essential amino acids, except cysteine, which is non-essential. This could be
interpreted as the lumping of glycolysis and part of the amino acid metabolism,
which seems to be correlated.

Of course, the latter interpretations are subject to discussion since they rise
from a data-driven macroscopic model therefore considering only the information
from the datasets and a limited number of reactions lumping all the cell metabolic
fluxes. However, the usefulness of the presented results so far is illustrated in the
next section, proposing the robustness assessment of control performances based
on the selected data-driven model when facing possible structural mismatch with
the true plant, possibly explaining the current glutamine model/data mismatch.

4. Multi-stage nonlinear model predictive control

Following the biologically inherent uncertain metabolic behavior of the cells,
a robust control framework must be considered, not only taking parameter varia-
tions into account but also possible model/plant structure mismatch. Multi-stage
nonlinear model predictive control (MS-NMPC) has been proposed by [37] as a
non-conservative scheme considering multiple scenarios related to parameter un-
certainty, provided that the latter is well estimated. [13] have recently shown that
the method is also able to deal with structural mismatch issues, proposing scenar-
ios switching between several reduced metabolic candidate models. We propose
an extension of this principle, not exactly to a multiple model case, but to possi-
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ble data-driven modeled rate activation/deactivation in conformity with the bottle-
neck assumption of [5]. Model (20) indeed lumps numerous metabolic pathways
in three corresponding macroscopic reactions labeled as substrate oxidation and
overflow metabolism (reaction 1), cell starving inducing lactate reconsumption
obviously correlated to cell decay (reaction 2) and a remaining third reaction in
which unconsidered consumptions and productions of metabolites from reactions
1 and 2 are gathered in a coarse amino acid metabolism (reaction 3). However,
the proposed methodology is not able to state on the possible discontinuous activa-
tion/deactivation since all rates are continuously formulated. A scenario tree based
on the separate existences of reactions 1 and 2 is proposed. Figure 10 illustrates
this proposition where a robust horizon Hr of 2 sampling times is considered, ei-
ther choosing to follow the overflow (reactions 1 and 3) or starving (reactions 2
and 3) macroscopic pathways.

Figure 10: Scenario tree of the proposed MS-NMPC strategy. Two scenarios are considered at
each sampling time, based on model 20: overflow (reactions 1 and 3) or (reactions 2 and 3). Hp,
Hc and Hr respectively stand for the prediction, control and robust horizons.

We consider an optimal control problem where the monoclonal antibody (MAb)
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productivity is maximized (i.e., the production over a specific fixed time) while
regulating the glucose (G) and glutamine (Gn) concentration levels. To this end,
three input actuators are considered under the form of peristaltic pumps deliver-
ing glucose, glutamine and the amino acid medium, separately. The following
objective function is therefore considered for all scenarios:

Φ =

Hp∑
i=1

−MAb(ti) + α (G(ti)−Gref (ti))
2 + β (Gn(ti)−Gnref (ti))

2 (22)

where α and β are weighting parameters allowing to adapt the tracking behavior
of the controller. Gref and Gnref are respectively the glucose and glutamine ref-
erence concentrations. Expression (22) represents the distances of G and Gn from
their respective reference levels, which should be minimized over a specific hori-
zon Hp while the MAb concentration should be maximized (i.e., −MAb should
be minimized).

Eventually, the optimal control problem can be formulated as follows:

minuj
i

∑
j

ωjΦj

(
ξj, uj

)
(23a)

s.t. ξ̇j = K̂φ(ξj) + ν(ξj, uj) (23b)

u(t) = u(ti+Hc−1), t ∈
[
ti+Hc , ti+Hp−1

]
(23c)

uL ≤ u ≤ uU (23d)
uL ≤ uc ≤ uU , c = 1, ..., Hc (23e)
ξpL ≤ ξpL ≤ ξpU , p = 1, ..., Hp (23f)

where Hc and Hp are, respectively, the control and prediction horizons and (23b)
is the model obtained from the application of mass balance to (20) for a specific
scenario j. The constrained problem (23) consists in minimizing a sum of ob-
jective functions Φj which are calculated as in (22) for each possible scenario
occurring with a probability reflected by ωj . This constrained nonlinear program-
ming problem is solved in the following by multiple shooting using the ’fmincon’
solver from Matlab®. The MS-NMPC calculates an open-loop optimal trajectory,
updated by the closed-loop activated at each sampling time, when new measure-
ments are available.
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5. Numerical results

A multi-input multi-output (MIMO) case is considered with 3 pumps control-
ling inlet flows of amino acids Faa, glucose FG and glutamine FGn, separately
(for confidentiality purpose, the concentrations are not revealed). All state vari-
ables are supposed to be measured. This last statement is indeed practically dif-
ficult to achieve but additional software tools such as observers could be used
to estimate possibly unmeasurable state variables as well as data-driven model
reductions (with less state variables). The main purpose of the following numer-
ical simulations is to assess the feasibility of the proposed control policy. The
imposed constraints are shown in Table 8 where u = [Faa, FG, FGn]. These
ones represent physical limitations of the pumps supposed to work in the range
[0 0.1]L d−1. Moreover, a corridor is imposed on glucose and glutamine con-
centrations to ensure that criterion (22), where α and β are respectively set to 5
and 10 (by trial and error), regulates G and Gn sufficiently close to the imposed
references Gref = 1.5 g L−1 and Gnref = 1 g L−1. For the sake of realism, a rel-
ative white noise level with 3 % standard deviation is added on the state variable
measurements.

Table 8: NMPC constraints
Variable Lower bound Upper bound Unit
Faa 0 0.1 L d−1

FG 0 0.1 L d−1

FGn 0 0.1 L d−1

G 1 3 g L−1

Gn 0.1 2 g L−1

Coefficients ωj should be set based on an estimation of their occurrence likeli-
hood. We propose the following weight distribution : ω1 = 2, ω2 = 0.1, ω3 = 0.1
and ω4 = 1, where, based on the representation from Figure 10, the overflow
scenario 1 is the most likely to occur, the starving scenario 4 is less probable and
switching scenarios 2-3 should be almost punctual. It should be noticed that the
latter representation is inspired from the classical progress of a fed-batch culture.

Applications of multivariable economic NMPC, considering criterion (22) with
a sole scenario (i.e., where all rates are likely to occur at the same time) and the
multi-stage formulation as previously described, are carried out in simulation. The
assumed true plant is simulated by the data-driven model with switching modes.
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Only reactions 1 and 3 occur until t = 4 d. Then, a switch to reactions 2 and
3 (starving mode) takes place and the first reaction rate is zero until the final
culture time (t = 10 d). The resulting plant/model mismatch is assumed to be
structural, justifying the use of the multi-stage formulation. The operating param-
eters are sequentially selected by trial and error, based on the economic NMPC
problem, assessing the best sampling period Ts while increasing prediction and
control horizons from 2 to 4 times Ts. The considered qualitative and quantita-
tive criteria to select the best NMPC configuration are (i) the possible violation
of the imposed constraints, (ii) the glucose and glutamine regulation root mean-
square errors (RMSE) and (iii) the level of monoclonal antibody production. The
results are summarized in Tables 9 and 10, highlighting, for all proposed horizon
configurations, the sampling time, the constraint violation confirmation, the maxi-
mum computing time to solve one NMPC problem iteration (which should remain
lower than Ts for the sake of practical feasibility), the glucose and glutamine reg-
ulation RMSEs and the final mAb level. These numerical results were generated
on Matlab®with an Intel(R) Xeon(R) CPU with two processors E5620 2.4 GHz
and 24 Go random-access memory (RAM).

Table 9: Economic NMPC configuration results

Hc = Hp = 2
TS[d]− [s] Cons. Viol. Max time (s) RMSEG (mM) RMSEGn (mM) mAbtf (mM)
0.02 1728 Yes 98 0.173 0.117 41.712
0.04 3456 No 94 0.198 0.132 14.268
0.06 5184 No 98 0.320 0.118 10.554
0.08 6912 No 98 0.276 0.094 17.13
0.1 8640 No 103 0.662 0.200 11.271
/ / / 100.271 0.278 0.142 16.497

Hc = Hp = 3
TS[d]− [s] Cons. Viol. Max time (s) RMSEG (mM) RMSEGn (mM) mAbtf (mM)
0.02 1728 No 174 0.130 0.273 11.283
0.04 3456 No 178 0.263 0.080 7.902
0.06 5184 Yes 215 0.365 0.176 8.807
0.08 6912 Yes 195 0.333 0.591 13.126
0.1 8640 No 207 0.660 0.194 15.167
/ / / 193.8 0.350 0.263 11.257
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Hc = Hp = 4
TS[d]− [s] Cons. Viol. Max time (s) RMSEG (mM) RMSEGn (mM) mAbtf (mM)
0.02 1728 No 361 0.197 0.376 15.861
0.04 3456 Yes 345 0.231 0.115 19.207
0.06 5184 No 291 0.486 0.1501 29.259
0.08 6912 Yes 344 0.399 0.998 15.338
0.1 8640 No 288 0.455 0.147 12.497
/ / / 325.8 0.353 0.357 18.432

Table 10: Multi-stage NMPC configuration results

Hc = Hp = 2
TS[d]− [s] Cons. Viol. Max time (s) RMSEG (mM) RMSEGn (mM) mAbtf (mM)
0.02 1728 Yes 320 0.479 0.151 13.517
0.04 3456 No 250 0.1983 0.122 18.639
0.06 5184 No 300 0.185 0.115 13.273
0.08 6912 Yes 305 0.455 0.899 21.721
0.1 8640 No 315 0.326 0.139 11.469
/ / / 313 0.317 0.289 15.226

Hc = Hp = 3
TS[d]− [s] Cons. Viol. Max time (s) RMSEG (mM) RMSEGn (mM) mAbtf (mM)
0.02 1728 Yes 772 0.277 0.343 21.435
0.04 3456 No 707 0.284 0.138 16.682
0.06 5184 Yes 734 1.452 0.166 12.102
0.08 6912 Yes 711 1.036 0.324 10.338
0.1 8640 No 3793 0.257 0.147 17.638
/ / / 1315 0.647 0.190 15.440

Hc = Hp = 4
TS[d]− [s] Cons. Viol. Max time (s) RMSEG (mM) RMSEGn (mM) mAbtf (mM)
0.02 1728 No 3800 0.194 0.182 21.718
0.04 3456 No 3993 0.243 0.128 14.491
0.06 5184 Yes 3620 0.399 0.999 9.369
0.08 6912 Yes 2500 1.097 0.871 16.174
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0.1 8640 Yes 1230 0.519 0.999 17.099
/ / / 3028.6 0.490 0.636 15.770

In overall, increasing the sampling time deteriorates the performances of both
MPC strategies in correlation with the increasing computing times. The latter
remark therefore also applies to the prediction horizon. This observation could
be generalized as the more reactive the NMPC can be, i.e. the smaller Ts, the
better the tracking results become. However, for very small sampling times and
horizons (i.e., Ts = 0.02 d and Hp = Hc = 0.04 d), the tracking becomes more
chaotic as well as the actuator solicitations which may lead to constraint viola-
tions. The best results are obtained for Ts = 0.04 d for both strategies with better
performances of the MS-NMPC. The latter indeed proposes smoother input tra-
jectories and highlights better tracking performances (RMSEs), even if providing
an acceptable but lower final mAb concentration as a tradeoff. The MSNMPC
therefore requires a small sampling time to be sufficiently reactive but also a suf-
ficient horizon (Hp = 0.08 for Ts = 0.04 d) to keep some robustness with respect
to structural model changes. The results from [27] supports the previous state-
ments, namely regarding the choice of relatively short horizons (ranging from 3
to 6 sampling times) for a bacteria model with only 6 state variables. Since the
current mammalian cell data-driven model counts 25 state variables and requires
an important number of optimization runs following the multi-stage scenarios, the
reduction of the corresponding horizons seems legitimate.

A qualitative estimation of these best results is shown in Figures 11 and 12.
Almost the same behaviors are adopted by the classical and multi-stage predictive
controllers, except in the first days, where the classical NMPC is suddenly close to
the lower bound on glutamine, while the MSNMPC is able to keep the same signal
in a safer range. Figure 12 also shows that the MSNMPC performance requires
faster but small variations of the actuators while the classical NMPC presents
smoother input trajectories with, however, more important peak variations during
the transient phase of the first two days.

In summary, the results from Tables 9 and 10 show that the performances of
both MPC algorithms depend on the sampling time Ts and the prediction horizon
Hp, which should be carefully selected. When observing the controller behaviors
in a specific and favorable configuration presenting good RMSEs and MAb pro-
ductions, the MSNMPC highlights more robustness with respect to the structural
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Figure 11: State evolutions of the NMPC simulation. The tracking references are represented by
the continuous blue lines.
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Figure 12: Feed rate evolutions of the NMPC simulations.
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uncertainties. Indeed, the regulated state variables as well as input trajectories of
the MSNMPC present a smaller number of important peak variations.

The availability of the suggested on-line monitoring of all state variables is not
straightforward but some recent research advancements on chemometric models
using NIR or fluorescence spectra coupled to software sensors are promising in
view of experimental implementations, as suggested in [38], [39], [28] and [40].
Moreover, the data-driven model kinetics suggest that only a few amino acids
drive the process in the selected operating conditions. Advanced monitoring de-
vices should therefore first focus on this limited amount of metabolites, increasing
the chances of practical feasibility.

6. Conclusions

This paper presents a data-driven modeling procedure applied, in a predic-
tive control framework, to mammalian cell fed-batch culture process. Based on
selected datasets, a macroscopic reaction scheme with minimal complexity (i.e.,
with a minimal number of macroreactions) is determined applying maximum like-
lihood principal component analysis (MLPCA), also providing the stoichiometry.
The latter results are then exploited by a kinetic generation method which allows
to identify the metabolites driving the macroreactions. In order to remove the pos-
sible estimation bias following the separated parameter identifications, a global
nonlinear identification procedure, using as initial guess the parameter values ob-
tained so far, is achieved, also aiming at sequentially removing any parameter
which would present poor identifiability, based on the Fisher Information Matrix.
The obtained mechanistic model presents continuous reaction rates and is not able
to detect possible metabolic switches successively canceling and activating some
of the rates. A robust nonlinear model predictive control (NMPC) formulation,
based on multi-stage predictions, is therefore proposed. The latter is challenged
and compared to the classical economic NMPC, in an application to a simulated
plant with discontinuous kinetics modeling the metabolic switches. The results
show that the classical NMPC already performs well but the MSNMPC globally
exhibits a more accurate tracking for acceptable productivity levels. Future work
includes the combination of the proposed data-driven method with chemometric
models and software sensors, in order to improve the monitoring aspects. Experi-
mental validations are also considered as short-term important perspectives.
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Nomenclature

MLPCA Maximum Likelihood Principal Component Analysis
(N)MPC (Nonlinear) Model predictive Control
Rj Set of reactants of reaction j
Pj Set of products of reaction j
AA Amino acid
ξ Vector of metabolite concentrations
n Total number of metabolites (or species)
φj Rate of the jth reaction
m Total number of reactions
k.,j Stoichiometric coefficient of element (.) in the jth reaction
K Stoichiometric matrix
θ Model parameter vector
θs Stoichiometric parameter vector
θk Kinetic parameter vector
ν Transport vector
ξ∆fi Differential transport-free state vector
ρ̂ Affine subspace basis
K̂ Stoichiometric matrix estimate
G Transformation matrix
nS Number of measured samples
ξ∆f,measi

Measured transport-free state vector
Qi Covariance matrix of the measurement errors (noise)
ξ∆,m
f Maximum Likelihood estimate vector
Jm Maximum likelihood cost function
φj
max Maximum rate parameter of the jth reaction

hM Monod factor
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Kξi,s Half-saturation parameter of the Monod factor activated by ξi
hJ Jerusalimski factor
Kξi,inh Inhibition parameter of the Jerusalimski factor activated by ξi
Jlin Linear cost function
J Nonlinear cost function
Qφ Covariance matrix of the errors on the estimated rates
λ Penalization parameter
pk Kinetic parameter vector dimension
φθk Kinetic parameter sensitivity matrix
σ̂2
k A posteriori estimate of the rate measurement error variance

FIMk Fisher information matrix of the kinetic parameter estimation
P̂k Estimate of the kinetic parameter estimation error covariance matrix
Nmeas Total number of measurements over one experiment
σ̂2
Pk

Estimate of the kinetic parameter estimation error variance
ϵ Lower threshold of the parameter order of magnitude
η Upper threshold of the parameter accuracy (identifiability)
θmodel Model full parameter set (vector)
θIC Model state variable initial conditions
JML Full parameter set identification ML cost function
FIM Fisher information matrix of the full parameter set estimation
σ̂2 Estimate of the full parameter set estimation error variance
P̂ Estimate of the full parameter set estimation error covariance matrix
nθ Full parameter set vector dimension
CI Confidence intervals
Hp Prediction horizon
Hc Control horizon
Hr Robust horizon
ϕ Objective function
α Weighting parameter
β Weighting parameter
Gref Glucose tracking reference concentration
Gnref Glutamine tracking reference concentration
ωi ith Scenario weighting factor
Faa Amino acid medium feed rate
FG Glucose medium feed rate
FGn Glutamine medium feed rate
g Gram
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L Liter
d Day
u Input variable vector
t Time
Ts Sampling time
RMSE Root Mean Square Error
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