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Abstract: A multimode optical fiber supports excitation and propagation of a pure single optical
mode, i.e., the field pattern that satisfies the boundary conditions and does not change along the
fiber. When two counterpropagating pure optical modes are excited, they could interact through
the stimulated Brillouin scattering (SBS) process. Here, we present a simple theoretical formalism
describing SBS interaction between two individual optical modes selectively excited in an acoustically
isotropic multimode optical fiber. Employing a weakly guiding step-index fiber approach, we have
built an analytical expression for the spatial distribution of the sound field amplitude in the fiber core
and explored the features of SBS gain spectra, describing the interaction between modes of different
orders. In this way, we give a clear insight into the sound propagation effects accompanying SBS in
multimode optical fibers, and demonstrate their specific contributions to the SBS gain spectrum.

Keywords: multimode optical fiber; stimulated Brillouin scattering; optical fiber amplifiers;
mode-division multiplexing; Brillouin imaging; distributed Brillouin sensing

1. Introduction

Stimulated Brillouin scattering (SBS) is a nonlinear effect that causes light reflection
due to interaction with the acoustic phonons. In this process, a narrow-band forward
propagating pump wave interferes with a backward Stokes wave (i.e., the wave frequency
shifted to the Stokes-side relative to the pump wave), resulting in the moving interference
pattern that generates the resonant acoustic waves through the electrostriction. These
acoustic waves further cause material density (and refractive index) modulations that, in
turn, increase the reflection. In this way, a positive feedback process is created, leading
to a drastic increase in the energy conversion from the pump to the Stokes wave. SBS is
embedded today in various optical systems, such as advanced low-noise lasers, distributed
fiber sensors, microwave signal processors, scientific instrumentation, and optomechanical
systems [1].

Some of these applications are tied to particular attributes of SBS in single-mode optical
fibers: narrow-band optical amplification, linewidth narrowing, random and narrow-band
lasing, controllable light coherency, optical signal processing, etc. The use of multimode
fibers as SBS media extends these functionalities, engaging the effects of nonlinear optical
mode conversion and optical phase conjugation [2,3] and leading to a new generation
of high-performance fiber devices. Brillouin-distributed sensing based on multimode
fibers enables the optical Vernier effect [4] that relies on the use of several similar sensors
with slightly detuned properties, providing a significant magnification of the sensing
capabilities, e.g., by magnifying the measured Brillouin frequency shift compared to a
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classical BOTDA system [5]. Recently, Brillouin imaging (BI) has become a valuable tool
for micromechanical material characterization, thanks to extensive progress in optical fiber
instrumentation [6,7]. This powerful technique is contactless and label-free, making it
especially suitable for biomedical applications [8]. Randomized light fields [9,10] also open
up new forms of optical imaging based on Brillouin scattering. A standard multimode
optical fiber provides randomized light propagation, whereas random lasing is available
through the Rayleigh–Brillouin cooperative process [11].

There has also been significant progress in modern sensing and imaging techniques
that point to miniaturization technologies based on multimode optical fibers. A standard
multimode optical fiber can be used as a general-purpose spectrometer after calibrating
the wavelength-dependent speckle patterns produced by interference between the guided
modes of the fiber [12,13]. Multimode fiber endoscopes with minimal invasiveness are
developed for in vivo applications such as 3D imaging, mechanical mapping, ablation of
cancerous cells, intraoperative monitoring and optogenetic cell stimulation. They do not
require any optical or electro-mechanical elements on the distal fiber end, and can deliver
three-dimensional information without pixelation by exploiting wavefront shaping. High-
frequency real-time ultrasound imaging [14] can provide exquisite visualizations of tissue
to guide minimally invasive procedures. With this device, broad-bandwidth ultrasound
generation is achieved through the photoacoustic excitation of a special composite coating
on the distal end of the multimode optical fiber by a pulsed laser [15]. Although most com-
mercial sensing systems rely on measurements of the transmitted or reflected fundamental
mode of single-mode optical fibers, more recent developments have focused on multimodal
architectures that considerably widen the sensing modalities, especially in the chemical and
biological fields [16–20]. Mode–division multiplexing is mooted to address the possibility
of multiparameter sensing with a single device, the reduction of cross-sensitivities, and the
improved accuracy of a single measured parameter by combining the responses of many
fiber modes to its evolution. Current progress in mode–division multiplexing relies on the
elaboration of new tools for encoding and de-encoding the information stored in the spatial
modes of fibers [21,22]. Stimulated Brillouin scattering (SBS) is able to assist all these new
paradigms, enabling selective mode amplification, mode conversion and inter-mode signal
processing to be implemented immediately inside the multimode optical fibers.

Stimulated Brillouin scattering in multimode fibers has been previously investigated in a
number of works, mainly in the context of the optical phase conjugation effect [2,3,23,24], laser
beam combining and cleanup [25]. In particular, the earliest experiments have demonstrated
significant difference in the SBS gain factors measured with the optical modes of different
orders excited in the same optical fiber sample [26]. The efficiency of the stimulated Brillouin
scattering (SBS) process in multimode optical fibers is largely governed by the spatial overlap
between the supported optical and acoustic modes leading to a complicated amalgamation of
photon–phonon interactions in multimode fibers [27]. Here, we present theoretical formalism
to describe SBS dynamics in multimode optical fibers using the weakly guiding step-index
optical fiber approach. In contrast to previous studies [28–34], we consider a simplified
situation in which the optical fiber is acoustically uniform and only two counter-propagating
pure optical modes are excited and interact inside the fiber, as shown in Figure 1. Interaction
between these modes is characterized by an SBS gain spectrum inherent to the interacting
mode pair. We have managed to build an analytical expression for the spatial distribution
of the sound wave amplitude over the fiber core, and highlight the features of the SBS gain
spectrum specifically for interaction between modes of different orders. In this way, we give
a clear insight into the sound propagation effects accompanying SBS in multimode optical
fibers and demonstrate their specific contributions to the SBS gain spectrum, particularly to
the spectrum broadening and splitting in the case of high-order mode interaction. For better
understanding of the explored mechanisms, the effects obtained for SBS in optical fiber are
compared with similar effects obtained for SBS in a volume medium and planar waveguide.
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Figure 1. Illustration of Brillouin amplification process in multimode optical fiber. The optical fields

with specific profiles
→
E L0
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r ⊥
)

and
→
E S0

(→
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)

at frequencies ωL and ωS are introduced into the

multimode optical fiber, providing selective excitation of pure pump
→
e L

(→
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)

exp{i[ωLt− βLz]}

and Stokes
→
e S

(→
r ⊥
)

exp{i[ωSt + βSz]} optical modes. Their interaction inside the optical fiber with
the sound wave leads to amplification of the Stokes mode amplitude.

2. Steady-State SBS Model

Let us consider an arbitrary optical fiber (or waveguide) with the input monochromatic
pump and Stokes fields shown in Figure 1. We assume that these complex fields are
shaped by spatial light modulators and injected into the multimode fiber to excite a pair
of pure single eigenmodes. The pump frequency ωL is fixed, whereas the frequency
of the Stokes wave ωS is tunable. The input pump signal at ωL excites the eigenmode
→
e L

(→
r ⊥
)

exp{i[ωLt− βLz]} with propagation constant βL, and the input Stokes signal at

ωS excites the eigenmode
→
e S

(→
r ⊥
)

exp{i[ωSt + βSz]} with propagation constant βS in a
backward direction. It is convenient to characterize the Stokes wave frequency using its
dimensionless detuning frequency δ = (ωS −ωS0)T2, where ωS0 = ωL −Ω0, Ω0 = 2υn/c,
n is the waveguide core refractive index, c is the velocity of light, υ is the sound wave
velocity, and T2 is the sound relaxation time [35]. So, the value δ = 0 is the resonant SBS
frequency shift corresponding to the interaction between two strictly counterpropagating
optical plane waves in the volume medium with the same parameters.

To describe steady-state Brillouin amplification of the Stokes mode in the field of the
given pump mode, we express the pump, Stokes, and sound wave fields as:

→
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(→
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)
= AL ·

→
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(
δ,
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)
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{
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(1)

Here, AL, AS(δ, z) and A · B ∗ (δ, z) · p
(

δ,
→
r ⊥
)

are the complex amplitudes of the

interacting fields; p
(

δ,
→
r ⊥
)

describes the distribution of the sound wave amplitude in the

fiber cross-section,
→
r ⊥ = (x, y) = (r, ϕ) is the transvers fiber cross-section vector (to be

described in Cartesian or cylindrical coordinates), and z is the coordinate along the fiber.
Near the resonance, the complex amplitude of the Stokes wave exhibits amplification

in backward direction along z:

AS(δ, z) = AS(δ, L) exp
{

G(δ)
g0

2
PL
S
(L− z)

}
(2)
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where PL = AL AL
∗ is the pump power, L is the fiber length, S is the fiber core cross-section

area S =
s

core
dS =

s

core
rdrdϕ =

s

core
dxdy, and g0 is the SBS power gain factor.

The normalized gain factor G(δ) reads as:

G(δ) =
1

N̂LN̂S

x

core
p
(

δ,
→
r ⊥
)(→

e L

(→
r ⊥
)
·→e
∗
S

(→
r ⊥
))

dS (3)

where N̂i =
s

core

(→
e i

(→
r ⊥
)
·→e
∗
i

(→
r ⊥
))

dS are mode power normalization constants. It is

worth noting that Re[G(δ)] describes the SBS gain spectrum.
Using Equations (1)–(3), the steady-state SBS problem [36] is reduced to the equation

describing the cross-section profile of the acoustic wave amplitude p
(

δ,
→
r ⊥
)

:

(1 + i(δ− δLS))p
(

δ,
→
r ⊥
)
− iµ ∇⊥p

(
δ,
→
r ⊥
)
=
(→

e
∗
L

(→
r ⊥
)
·→e S

(→
r ⊥
))

(4)

where µ = v2T2/2Ω0 and δLS = T2(Ω0 − v(βL + βS)).
In the next sections, we will solve Equation (4) to compare the SBS interaction between

two eigenmodes excited in a volume medium, a planar waveguide and weakly guided
step-index fiber. These results expose the sound propagation effects accompanying SBS and
highlight their contributions to the SBS gain spectrum and sound wave profile. Without loss
of generality, for illustration of the results obtained, we will perform calculations assuming
that the optical material is pure silica; the optical waveguide/fiber has a waveguide
parameter V ∼ 55, the parameter is µ ∼ 0.0009, the waveguide/fiber core size/diameter
is ~ 50 µm and the laser operation wavelength is ∼ 1064 nm. It is worth noting that the last
two parameters are used just to estimate the interaction angles αL and αS.

3. Comparing SBS Interaction in a Volume Medium and Planar Waveguide
3.1. SBS Interaction between Two Plane Waves in a Volume Medium

In a volume medium, the eigen optical modes
→
e L

(→
r ⊥
)

,
→
e S

(→
r ⊥
)

are degenerated to
the plane waves expressed as:

→
e L

(→
r ⊥
)
= exp

[
−i
(→

k L ·
→
r ⊥

)]
→
e S

(→
r ⊥
)
= exp

[
−i
(→

k S ·
→
r ⊥

)] (5)

where
→
k L and

→
k S are wavevectors of the pump and Stokes plane waves with∣∣∣∣→k L,S

∣∣∣∣ = n
c ωL,S.

Such plane waves can be defined by setting the angles αL and αS between the corre-

sponding wave vector (
→
k L or

→
k S) and the axis z. Figure 2 illustrates the process of the

pump–Stokes wave interaction in terms of the wavevectors. The interference between

pump
→
k L and Stokes waves

→
k S generates a plane sound wave

→
q =

→
k L −

→
k S, providing

energy conversion from the pump wave to the Stokes wave. Under assumption of small
angles αL, αL << 1, Equation (2) gives the following expressions for the acoustic wave
amplitude and the normalized gain factor:

p
(

δ,
→
r ⊥
)
=

→
e
∗
L

(→
r ⊥
)
·→e S

(→
r ⊥
)

1+i

(
δ−T2Ω0

(αL+αS)
2

8

)
(6)
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Re[G(δ, ϕ)] =
1

1 +
(

δ−Ω0T2
(αL+αS)

2

8

)2 (7)
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Equations (6) and (7) highlight several features of the SBS interaction in the plane
wave pair that are important for further discussion. First, the SBS gain spectrum has a
FWHM linewidth ∆νS ∼ 1/πT2 ( ∆δ ∼ 1), determined by the sound relaxation time T2.

Second, the peak Brillouin gain factor does not depend on the plane wave interaction
angles, but its position in the gain spectrum does. At αL = −αS, the interacting waves are
strongly counterpropagating and the SBS gain spectrum is most shifted to the Stokes side
(δ0 = 0). With an increase in the interaction angle αL + αS, the SBS gain line simply shifts to

the anti-Stokes side, obtaining δ0 = Ω0T2
(αL+αS)

2

8 . This feature is illustrated in Figure 3.
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Finally, one can see from Equation (6) that p
(

δ,
→
r ⊥
)
∼ →e

∗
L

(→
r ⊥
)
·→e S

(→
r ⊥
)

at any
δ. This means that the acoustic grating recorded by the interference of two optical modes
propagates through the medium, maintaining permanent resonance with its parent inter-
ference pattern, thus enabling the maximal possible efficiency of the SBS interaction at the
given δ.

3.2. SBS Interaction between Two Modes in a Planar Waveguide

The SBS amplification process in an optical waveguide differs from the SBS in a
volume medium. Even in the simplest case of a planar waveguide considered in this
section, the introduced optical waves experience reflections from the waveguide boundaries,
resulting in a complex interference pattern that could be expressed as a superposition of
the waveguide eigenmodes. Such an eigenmode is superposed from two plane waves with
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wavevectors
→
k

1
and

→
k

2
, possessing the reflection symmetry relative to plane y = 0. The

eigen optical modes
→
e L

(→
r ⊥
)

,
→
e S

(→
r ⊥
)

are reduced to:

→
e L(x) = {cos(k⊥Lx); sin(k⊥Lx)}
→
e S(x) = {cos(k⊥Sx); sin(k⊥Sx)}

(8)

where k⊥L,S = kL,S sin αL,S, −xd < x < xd is the transverse coordinate in the waveguide
with the thickness 2xd, and α±L and α±S are the plane wave incidence angles. To excite
an individual mode, their incidence angles α±i and −α±i should be taken from the set
of discrete values

{
α±i
}

to match the boundary conditions at the waveguide walls (at

x = ±xd), which for multimode waveguide are
→
e L,S(±xd) ≈ 0. The Brillouin interaction

between the pump and Stokes optical modes could be thought of as an interaction between

four plane waves driven by pump
→
k

1

L,
→
k

2

L and Stokes
→
k

1

S,
→
k

2

S wavevectors, as is illustrated
in Figure 4 (both pairs of wavevectors are symmetric with respect to the plane x = 0).
These plane waves interact with each other and could produce four sound plane waves:
→
q 1 =

→
k

1

L −
→
k

1

S,
→
q 2 =

→
k

1

L −
→
k

2

S, and symmetric ones,
→
q 1̃ =

→
k

2

L −
→
k

2

S,
→
q 2̃ =

→
k

2

L −
→
k

1

S.

Under assumption of small angles αL, αS << 1 the acoustic wave amplitude p
(

δ,
→
r
)

is
expressed from Equation (4) as a superposition of two pairs of sound plane waves:

p
(

δ,
→
r
)
∼

exp
[
±i
∣∣∣→q 1⊥

∣∣∣x]
1± i

(
δ− T2Ω0

(αL−αS)
2

8

) ; ∼
exp

[
±i
∣∣∣→q 2⊥

∣∣∣x]
1± i

(
δ− T2Ω0

(αL+αS)
2

8
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In the waveguide cross-section plane, the first and second sound plane waves ex-
hibit different spatial modulation frequencies, i.e., high

∣∣∣→q 1⊥

∣∣∣ = (|k⊥L|+ |k⊥S|) and low∣∣∣→q 2⊥

∣∣∣ = (|k⊥L| − |k⊥S|) spatial frequencies, respectively, where k⊥L,S = |kL,S| sin αL,S.
Note that the first of them possesses Brillouin resonance at low (more Stokes side shifted)

temporal frequency of δ1 = T2Ω0
(αL−αS)

2

8 , whereas the second possesses Brillouin reso-
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nance at a higher temporal frequency of δ2 = T2Ω0
(αL+αS)

2

8 . Until the incident angles

αL, αS are small (i.e., Ω0T2(|αL |+|αS |)2

8 << 1), all optical wavevectors are almost collinear
with z, and the corresponding sound waves degenerate to a single plane wave, with the
wavevector

→
q parallel to z. An increase in the incident angles αL, αS causes inhomoge-

neous broadening and splitting of the SBS gain spectrum due to the different resonances in
different plane wave pairs.

The exact expression for the SBS gain spectrum reads as:

Re[G(δ, ϕ)] =
1
2

1

1 +
(

δ−Ω0T2
(αL−αS)

2

8

)2 +
1
2

1

1 +
(

δ−Ω0T2
(αL+αS)

2

8

)2 (10)

Figure 5 shows the broadening and splitting of the SBS gain spectrum with an increase
in incidence angles. At large incidence angles, the SBS spectrum exhibits two identical
peaks corresponding to the pump scattering by two sound waves. The right peak at δ = δ2
is the same as in the case of the plane wave interaction in a volume medium. It is associated
with pump scattering by a sound wave possessing a lower spatial frequency

∣∣∣→q 2⊥

∣∣∣ in the
waveguide cross-section (Figure 4c). The left peak at a much smaller δ = δ1 is associated
with pump scattering by a sound wave with a higher spatial frequency

∣∣∣→q 1⊥

∣∣∣(Figure 4b).
We can therefore conclude that the appearance of the left peak at δ = δ1 is caused by the
guiding manner of the light propagation in the optical waveguide. Note that at αL ≈ αS,
the additional peak is located near the central Stokes frequency δ1 ≈ 0 (ωS ≈ ωS0).
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4. SBS Interaction between Individual Modes in an Optical Fiber
4.1. Weakly Guiding Modes

To describe SBS interaction between individual optical modes in an optical fiber, based
on Equations (1)–(4), the explicit expressions for fiber modes

→
e L(r, ϕ),

→
e S(r, ϕ) should be

specified. Hereafter, we use the approximation of weakly guiding step-index cylindrical
fibers (∆ = 1− ncore/nclad << 1, where ncore, nclad are the refractive index of the core and
cladding) [37]. There are ∼ V2/2 guided modes that are characterized by their own orbital
l and radial p parameters for the optical fiber with a numerical aperture NA, a core radius
a and parameter V = 2π a

λ NA. At l = 0, for each i = {0, p}, there are two modes:

1. Even modes HE1,p:
→
e 1, 0,p

(→
r
)
=
→
x Jl

(
u1,p

l r
)

2. Odd modes HE1,p:
→
e 3, 0,p

(→
r
)
=
→
y Jl

(
u3,p

l r
)

At l ≥ 1, for each i = {l, p}, there are four modes:
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1. Even modes HEl+1,p:
→
e 1, l,p

(→
r ⊥
)
=
{→

x cos(lϕ)−→y sin(lϕ)
}

Jl

(
u1,p

l r
)

2. Even modes EHl−1,p:
→
e 2, l,p

(→
r ⊥
)
=
{→

x cos(lϕ) +
→
y sin(lϕ)

}
Jl

(
u2,p

l r
)

3. Odd modes HEl+1,p:
→
e 3, l,p

(→
r ⊥
)
=
{→

x sin(lϕ) +
→
y cos(lϕ)

}
Jl

(
u3,p

l r
)

4. Odd modes EHl−1,p:
→
e 4, l,p

(→
r ⊥
)
=
{→

x sin(lϕ)−→y cos(lϕ)
}

Jl

(
u4,p

l r
)

Here, Jl

(
us,p

l r
)

denotes Bessel functions to be a solution of the characteristic equations

uJl+1(u)/Jl(u) = ±wKl+1(w)/Kl(w), where w =
√

V2 − u2 gives sets of radial phase
parameters u1,p

l ≡ u3,p
l (sign +) and u2,p

l ≡ u4,p
l (sign -), where p is the ordinal number of

the solution in ascending order.
All even modes have different propagation constants, β

1,p
l and β

2,p
l . All odd modes

have the same propagation constants as the corresponding even modes. At l = 1, the
propagation constants for all modes are different. The propagation constants β

1,p
l and β

2,p
l

differ by ∼ ∆
3
2 β

p
l . We can specify the modes as m = {l, p, s}, where s = 1...4 is the type of

the mode in the given classification.

4.2. Derivation of Expressions for Acoustic Wave Amplitude and Brillouin Gain Spectrum

Now we have to substitute the expressions for pump and Stokes optical modes into
Equation (4) to solve it analytically. The pump and Stokes modes are determined by the
sets of indexes L = {lL, pL, sL} and S = {lS, pS, sS}, respectively, where lL, lS and pL,
pS are orbital and radial optical mode parameters, and sL,sS set the type of the mode.
Considering the interaction between two arbitrary pump and Stokes modes, we denote
uL = usL ,pL

lL
,uS = usS ,pS

lS
and express the scalar product

(→
e
∗
L ·
→
e S

)
= JlL(uLr)JlS(uSr) f (ϕ),

where f (ϕ) is the function defined in Table 1 for modes of odd and even types. The sign
(+ or -) between lL and lS in the expression for f (ϕ) is important, so we distinguish f−(ϕ)
and f+(ϕ). Then, using p(r, ϕ) = ρ(r) f (ϕ), we separate the variables in Equation (4), thus
obtaining the equation describing the radial distribution of sound wave amplitude ρ(r):

(1 + i(δ− δLS))ρ(δ, r)−

−iµ
[

d2

dr2 +
1
r

d
dr −

(lL±lS)
2

r2

]
ρ(δ, r) = JlL(uLr)JlS(uSr)

(11)

where the sign in lL ± lS is taken as in f±(ϕ).

Table 1. The function f (ϕ) for different types of pump/Stokes modes used for SBS interaction.

Pump\Stokes 1. Even Mode HEl+1,p 2. Even Mode EHl−1,p 3. Odd Mode HEl+1,p 4. Odd Mode EHl−1,p

1. Even mode HEl+1,p cos(lL − lS)ϕ cos(lL + lS)ϕ − sin(lL − lS)ϕ sin(lL + lS)ϕ

2. Even mode EHl−1,p cos(lL + lS)ϕ cos(lL − lS)ϕ sin(lL + lS)ϕ − sin(lL − lS)ϕ

3. Odd mode HEl+1,p sin(lL − lS)ϕ sin(lL + lS)ϕ cos(lL − lS)ϕ − cos(lL + lS)ϕ

4. Odd mode EHl−1,p sin(lL + lS)ϕ sin(lL − lS)ϕ − cos(lL + lS)ϕ cos(lL − lS)ϕ

Now, we are looking for the solution of Equation (11) as a superposition of solutions
for the corresponding homogeneous equation:

ρ(δ, r) =
∫

D(λ)JlL±lS

(√
λr
)

dλ (12)

where JlS±lS denotes the Bessel function and D(λ) is an unknown function to be defined.

The function JlL±lS

(√
λr
)

could be expanded in series using the Graf’s Addition
Theorem [38]:
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Js

(√
λr
)

= 1
cos(sχ(λ))

+∞
∑

k=−∞
Js+k(ur)Jk(vr) cos(kα(λ)) =

= 1
sin(sχ(λ))

+∞
∑

k=−∞
Js+k(ur)Jk(vr) sin(kα(λ))

(13)

where u, v,
√

λ are thought of as sides of a triangle with angles χ and α:

λ =
(

u2 + v2
)
− 2uv cos α (14)

In this way ρ(δ, r) is reduced to:

ρ(δ, r) =
+∞

∑
k=−∞

Js+k(uLr)Jk(uSr)
π∫

0

[a(α) cos(kα) + b(α) sin(kα)] dα (15)

Then, substituting Equation (15) into Equation (11) and extracting the functions
a(α), b(α), we can set the coefficients of the products JS+k(uLr)Jk(uSr) on the left side
of Equation (8) to zero, except for JlL(uLr)JlS(uSr).

Finally, we come to the solution of Equation (11) in the form of an infinite series: ρ(δ, r) =
+∞
∑

m=−∞
Cm(δ)JlL+m(uLr)JlS+m(uSr) f or f (−)(ϕ)

ρ(δ, r) =
+∞
∑

m=−∞
(−1)mCm(δ)JlL−m(uLr)JlS+m(uSr) f or f (+)(ϕ)

(16)

where the coefficients Cm(δ) are the functions of the frequency δ:

Cm(δ) =
1
π

π∫
0

cos mα dα

[1 + i(δ− β(u2 + v2)− 2uvβ cos α)]
(17)

The integral in Equation (17) can be replaced by a closed-loop integral and evaluated
using the residue theorem [39]. With the notation

d(δ) = δ− β
(
u2 + v2)

c = uvβ
(18)

the integral (17) is reduced to

Cm =
1

2π

∮
|z|=1

zm

cz2 + (i− d) + c
dz =

1
2πc

∮
|z|=1

zm

(z− z1)(z− z2)
dz (19)

where the complex roots z1 = aeiφ, z2 = a−1e−iφ satisfy the following expressions:

cos φ = d
c

a
a2+1

sin φ = 1
c

a
1−a2 f or a < 1;

a8 − d2+1
c2 a6 − 2 c2−d2+1

c2 a4 − d2+1
c2 a2 + 1 = 0

(20)

The single root of Equation (20), z1 = aeiφ, lying in the complex plane inside the circle
|z| = 1, is expressed as:

a =

√
1−
√

x
1+
√

x

φ = arccos
(

d
c

a
a2+1

)
sign

(
1
c

a
1−a2

) (21)
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where
x = d2+1+

√
D−4c2

d2+1+
√

D+4c2

D = d4 + 16c4 − 8c2d2 + 2d2 + 8c2 + 1
(22)

In these terms, the coefficient Cm(δ) reads as

Cm(δ) = am
√

x{[cos mφ + xd sin mφ] + i[sin mφ− xd cos mφ]}
x2d2 + 1

(23)

Now, substituting Equation (23) into Equation (16) for ρ(r) and using an appropriate
function f (ϕ) from Table 1, one can obtain an analytical expression describing the distribu-
tion of the sound wave amplitude over the fiber cross-section p(r, ϕ) = ρ(r) f (ϕ) for the
case of a Brillouin interaction between an arbitrary pair of pump and Stokes optical fiber
modes. The azimuthal distribution of sound amplitude is trivial, and is determined by the
orbital indices of the interacting modes only. The radial distribution ρ(δ, r) is represented
as an infinite sum of Bessel function products with weight coefficients Cm(δ) (17). Since
Cm(δ) ∼ am and |a| < 1, the sum converges. Commonly 10–20 terms are enough to
calculate ρ(δ, r) in (16). Figure 6 first demonstrates several coefficients Cm(δ) in the case of
an interaction between the pump and Stokes modes of low (a, d), moderate (b, e) and high
(c, f) orders. One can see that in the last case, the series Cm(δ) converges more slowly.
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Now, substituting the expression for ρ(δ, r) and f (ϕ) into Equation (3), we come to
the solution for the SBS gain spectrum in the form:

G(δ) =
1

NLNS
Kφ(sL, sS, lL, lS)

1∫
0

[
JlL(uLr)JlS(uSr)ρ(δ, r)

]
rdr (24)
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where NL =
1∫

0

[
JlL(uLr)

]2rdr and NS =
1∫

0

[
JlS(uLr)

]2rdr are normalization coefficients, and

Kφ(sL, sS, lL, lS) =
1

4π

2π∫
0

f 2
lL ,lS(φ) dφ (25)

The values of Kφ(sL, sS, lL, lS) for interacting modes of different types and orbital
moments are presented in Table 2.

Table 2. The coefficient 4Kφ(sL, sS, lL, lS) for different types of interacting modes.

Pump\Stokes 1. Even Mode HEl+1,p 2. Even Mode EHl−1,p 3. Odd Mode HEl+1,p 4. Odd Mode EHl−1,p

1. Even mode HEl+1,p 1 + δlL ,lS 1 1− δlL ,lS 1
2. Even mode EHl−1,p 1 1 + δlL ,lS 1 1− δlL ,lS

3. Odd mode HEl+1,p 1− δlL ,lS 1 1 + δlL ,lS 1
4. Odd mode EHl−1,p 1 1− δlL ,lS 1 1 + δlL ,lS

Using Equation (23), the Brillouin gain factor (24) can be converted to the following format:

G(δ) = Kφ(sL, sS, lL, lS)
∞

∑
m=−∞

Cm(δ)K±r(lL, lS, pL, pS, m) (26)

where the sign (+) or (-) is chosen as in f±(ϕ), and

K−r(lL, lS, pL, pS, m) = 1
NL NS

1∫
0

[
JlL(uLr)JlS(uSr)JlL+m(uLr)JlS+m(uSr)

]
rdr

K+r(lL, lS, pL, pS, m) = (−1)m

NL NS

1∫
0

[
JlL(uLr)JlS(uSr)JlL−m(uLr)JlS+m(uSr)

]
rdr

(27)

Note that all coefficients, Equations (25) and (27), are real. They are completely defined
by the fiber parameters, and for the given fiber should be tabulated just once.

It worth noting that the coefficients Cm(δ) accumulate all dependence on the frequency
δ. Their linear combinations form both the gain spectrum profile G(δ) and the radial
distribution ρ(δ, r) as a function of δ. The sum in Equation (26) for the gain profile G(δ)
converges as fast as the sum in Equation (10), describing the sound amplitude.

5. Sound Propagation Effects

One can see from Figure 6 that the number of terms required for precise characterization
of the Brillouin process through Equations (16) and (26) depends on the parameter µ that
evaluates the strength of the sound propagation effects accompanying the Brillouin amplifica-
tion process in optical fiber. Indeed, at µ

(
uL

2 + uS
2)→ 0 , all coefficients Cm(δ)→ 0 , except

C0(δ), and the spatial distribution of the sound amplitude

p
(

δ,
→
r ⊥
)
=

→
e
∗
L

(→
r ⊥
)
·→e S

(→
r ⊥
)

(1+iδ) , with some weight determined by δ, coincides with the par-

ent interference pattern
→
e
∗
L

(→
r ⊥
)
· →e S

(→
r ⊥
)

. As µ
(
uL

2 + uS
2) increases, more and more

neighboring components ∼ Jl1±m(uLr)Jl2+m(uSr) become significant in the expansion (16),
causing a mismatch between the spatial distribution of sound amplitude ρ(δ, r) and the parent
interference pattern

→
e
∗
L

(→
r ⊥
)
·→e S

(→
r ⊥
)

. This mismatch reduces the efficiency of Brillouin
interaction in optical fiber. This is in contrast with the SBS in a planar waveguide that produces
the sound amplitude which is always coinciding with the parent interference pattern.

Figure 7 shows the SBS gain spectra calculated for different interacting mode pairs (a-c)
using Equation (26) and radial distributions of the sound amplitude ρ(δ, r) (d-f) at peak δ
values, using Equation (12). At µ

(
uL

2 + uS
2) << 1, in the case of interaction between two
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low-order modes, the gain spectrum shown in Figure 7a has only one peak at δ = 0, with
a width of ∆νS ∼ 1

πT2
( ∆δ ∼ 1). A single peak SBS gain spectrum shown in Figure 7a is

similar to that shown in Figure 4a for the SBS in a planar waveguide (for small incident
angles), but the maximal SBS gain exceeds the SBS factor for a volume medium more than
twice. This is due to nonuniform (bell-like) distribution of the pump power in the fiber
core which reduces the effective fiber core area available for nonlinear interaction. The
radial distribution of the peak sound amplitude at δ = 0 is shown in Figure 7d. One can
see that it exhibits a low spatial nonuniformity, but it is not a purely uniform distribution
as in the case of the planar waveguide (for small incident angles, when the sound plane
wave wavevector is parallel to z).
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In the case of interaction between two high-order modes (b, c) the SBS gain spectrum
exhibits two peaks. The peak observed at higher frequency δ2 = µ(uL + uS)

2 is associated
with pump scattering from the sound wave component ρ(δ2, r), possessing lower trans-
verse inhomogeneity (e, f, black curves). The peak of the SBS gain spectrum at the lower
frequency δ1 = µ(uL − uS)

2 is associated with scattering from the sound wave component
ρ(δ1, r), possessing higher transverse inhomogeneity (e, f, red curves). These features are
similar to that reported for the sound waves with high

→
q 1⊥ and low

→
q 2⊥ spatial frequencies

in the case of a planar waveguide shown in Figure 4. However, in contrast to the case
of planar waveguide, two peaks of the SBS gain spectrum in an optical fiber possesses
different amplitudes. The SBS gain peak at δ2 = µ(uL + uS)

2 is always higher than that at
δ1 = µ(uL − uS)

2. This specific feature is attributed to the sound propagation effect illus-
trated in Figure 6. At lower frequency δ = δ1, the SBS interaction is governed by the sound
wave component with higher transverse inhomogeneity that acquires a stronger mismatch
with the copropagating parent interference pattern

→
e
∗
L

(→
r
)
·→e S

(→
r
)

, thus reducing the
efficiency of Brillouin process. This is in contrast to the SBS in a planar waveguide wherein
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the sound amplitude always coincides with the parent interference pattern, and both peaks
of the SBS gain spectrum are of equal amplitudes.

Figure 8 shows more examples of the Brillouin gain spectra demonstrating these
features. One can see that the efficiency of Brillouin interactions decreases with an increase
in the orbital numbers of the interacting modes (e), especially in the case in which the
orbital numbers of the interacting modes are different (g).

Sensors 2023, 23, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 8. Brillouin gain spectra in the cases of interaction between eigen modes of different orders 
(a–d) in an optical fiber. Calculations are performed using Equations (26) and (27). 

6. Discussion 
Due to sound propagation effects described in the previous sections, the SBS 

amplification process in an optical waveguide differs from the SBS in a volume medium. 
The difference is most pronounced when the SBS process is between two high-order 
optical modes. In this case, the resonant Brillouin interaction could be achieved with two 
different sound wave components induced at two different resonance frequencies, and as 
a result, the SBS gain spectrum splits, exhibiting two peaks. First, the resonant sound wave 
with high-frequency spatial modulation in the fiber core is responsible for the formation 
of the low-frequency spectrum peak. Second, the resonant sound wave with low-
frequency spatial modulation in the fiber core is responsible for the formation of the high-
frequency spectrum peak. In the planar waveguide, both peaks of the SBS gain spectrum 
have the same amplitude. In the cylindrical optical fiber, the peaks possess different 
amplitudes. The amplitude of the low-frequency peak is always lower than the amplitude 
of the high-frequency peak. This feature is attributed to the specific property of the SBS 
amplification process considered in the previous section, which could be referred to as the 
sound diffraction effect. 

This term recalls the sound diffraction effect widely discussed in the past in the 
context of SBS in single-mode optical fibers [40–43]. Indeed, in a single-mode fiber, the 
sound wave is generated in the fiber core, where the light is localized. So, the sound wave 
is generated within a small transverse fiber area with the size of ~ La λ  (comparable with 
the sound wave wavelength ~ 2L nλ ), and suffers diffraction divergence as it propagates 
in the fiber. As a result, it runs away from the fiber core, impairing the efficiency of its 
interaction with the optical fields. This process is important, and affects the SBS process 
when the time associated with the sound divergence 2

D La vτ λ≈  becomes smaller than 
the sound relaxation time 2T : 2D Tτ < . In other words, the diffraction time constant Dτ  
becomes significant and replaces 2T  in the 1-D SBS dynamical equations and expressions 
for the Brillouin gain spectrum [11,35,44], causing its broadening and thereby suppressing 
the Brillouin interaction in a single-mode fiber. 
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6. Discussion

Due to sound propagation effects described in the previous sections, the SBS ampli-
fication process in an optical waveguide differs from the SBS in a volume medium. The
difference is most pronounced when the SBS process is between two high-order optical
modes. In this case, the resonant Brillouin interaction could be achieved with two different
sound wave components induced at two different resonance frequencies, and as a result,
the SBS gain spectrum splits, exhibiting two peaks. First, the resonant sound wave with
high-frequency spatial modulation in the fiber core is responsible for the formation of
the low-frequency spectrum peak. Second, the resonant sound wave with low-frequency
spatial modulation in the fiber core is responsible for the formation of the high-frequency
spectrum peak. In the planar waveguide, both peaks of the SBS gain spectrum have
the same amplitude. In the cylindrical optical fiber, the peaks possess different ampli-
tudes. The amplitude of the low-frequency peak is always lower than the amplitude of
the high-frequency peak. This feature is attributed to the specific property of the SBS
amplification process considered in the previous section, which could be referred to as the
sound diffraction effect.

This term recalls the sound diffraction effect widely discussed in the past in the context
of SBS in single-mode optical fibers [40–43]. Indeed, in a single-mode fiber, the sound
wave is generated in the fiber core, where the light is localized. So, the sound wave is
generated within a small transverse fiber area with the size of a ∼ λL (comparable with
the sound wave wavelength ∼ λL/2n), and suffers diffraction divergence as it propagates
in the fiber. As a result, it runs away from the fiber core, impairing the efficiency of its
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interaction with the optical fields. This process is important, and affects the SBS process
when the time associated with the sound divergence τD ≈ a2/vλL becomes smaller than
the sound relaxation time T2: τD < T2. In other words, the diffraction time constant τD
becomes significant and replaces T2 in the 1-D SBS dynamical equations and expressions
for the Brillouin gain spectrum [11,35,44], causing its broadening and thereby suppressing
the Brillouin interaction in a single-mode fiber.

In this paper, we have demonstrated that a similar effect could be obtained with
the SBS in multimode fibers. When the SBS involves interaction of high-order optical
modes, the sound diffraction effect occurs due to the different manner of propagation in
the optical fiber of optical and sound waves. The optical fiber supports the waveguide
manner of propagation for optical waves only, whereas it remains a volume medium for
sound waves (until we ignore its guiding and anti-guiding properties at sound frequencies).
The optical eigenmodes in an optical fiber are expressed through special functions, while
the sound eigenmodes remain to be plane waves. As a result, a sound wave generated
in some fiber points by the interference pattern produced by a pair of pump and Stokes
eigenmodes

→
e L

(→
r ⊥
)

,
→
e S

(→
r ⊥
)

has a transverse structure ∼
{→

e L
∗
(→

r ⊥
)→

e S

(→
r ⊥
)}

that
is not maintained during its further free propagation through the fiber. The mismatch
between the sound wave and traveling interference pattern occurs with the typical time
τD = n

c
4πa2

λL(uL2+uS
2)

. When this mismatch occurs faster than the sound wave decays τD � T2,
the sound diffraction effect takes charge for the SBS gain spectrum broadening, resulting in
suppression of the SBS interaction near the low-frequency spectral peak. In contrast, the
sound diffraction effect is not observed with the planar (and rectangle) waveguides, since
both optical and sound eigenmodes are plane waves. In this case, a sound wave generated
by the interference between pump and Stokes eigenmodes always keeps its resonance with
the parent interference pattern, as they both propagate through the fiber.

7. Conclusions

In conclusion, we have studied the SBS interaction in optical fiber implemented with a
pair of counter-propagating optical modes. In contrast to the previously reported theoretical
considerations [28–30], we use a weakly guided optical fiber model and have managed
to build analytical expressions for the SBS gain spectrum (Equations (26) and (27)) and
sound wave core profile (Equations (16) and (23)) eligible for the SBS interaction between
two arbitrary modes. To obtain analytical expressions, we have applied Graf’s addition
theorem [38] to the integral describing the sound cross-section profile (Equation (12)) and
then used the residue theorem [39], resulting in the further conversion of the integral into a
simple, rapidly converging series. In this series, only a limited number of terms determine
the properties of the defined functions, making their relations with the specific mutual
dynamics of light and sound waves in multimode optical fibers obvious.

To the best of our knowledge, we have described for the first time the sound diffraction
effect for SBS in multimode optical fibers, which is similar to that known earlier for SBS in
single-mode fibers only. To expose the nature of the effect, the SBS in fibers with cylindrical
symmetry has been compared with the SBS in a volume medium and planar waveguides
wherein the sound diffraction effect is not supported. In this way, we have explored
the splitting of the SBS gain spectrum determined by the waveguide character of the
optical light propagation in the optical fiber, and analyzed the features of the SBS gain
spectrum broadening.

It is worth noting that the developed approach could be extended to describe the SBS
interaction between groups of modes selectively excited in multimode optical fibers, thus
enabling a simplified analysis of the mode conversion processes (including the OPC effect)
performed immediately in multimode optical fibers. Additionally, a similar mathematical
treatment could be applied to other SBS models employing the descriptions of optical fiber
modes expressed through Bessel functions.

Looking to future experiments that have to be performed to verify the theoretical
predictions reported in this work, the amplified narrow-band fiber lasers [45–50] combined
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with the all-digital hologram and phase plate devices [51,52] could be considered as valu-
able candidates to serve as critical elements of the experimental setup, enabling the selective
excitation of pure single optical modes in multimode fibers, and their de-multiplexing at
the fiber output. Direct control of the optical field amplitudes and phases through a flexible
SLM used as a holographic filter enables a fast switch of the excited fiber mode composition.
Combining this procedure with a mode-analyzing technique allows the evaluation of the
excited mode purity. A feedback control system between the mode analysis and the mode
excitation would be essential to minimize the mode excitation errors and compensate for
distortions caused by the fiber environment.

We believe our findings will stimulate progress in the significant drive to develop
modern imaging and mode-division multiplexing sensor techniques, as discussed in the
introduction. In particular, using the properties of the SBS gain spectrum similar to that
shown in Figures 7 and 8, the SBS could supply these techniques by selective mode
amplification and suppression, resulting in direct optical mode processing performed
immediately in multi-mode optical fibers. In addition, this could enable new sensing
applications of the optical Vernier effect through employing slightly detuned Brillouin
frequency shifts that are naturally implemented to optical modes of different orders, since
this is an inherent property of the SBS in optical fiber (Equations (26) and (27)).
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