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We show that, in any space-time dimension, the on-shell (electric) conformal Carrollian scalar can be 
interpreted as the flat-space limit of the singleton representation of the conformal algebra. In fact, a 
recently proposed higher-spin algebra for Minkowski spacetime amounts to the Poincaré enveloping 
algebra on the corresponding module. This higher-spin algebra is a contraction of that entering Vasiliev’s 
equations, which can be constructed analogously from the singleton representation of the conformal 
algebra. We also show that the higher-spin extension of the Poincaré algebra we consider is a subalgebra 
of all symmetries of the conformal Carrollian scalar, given by a higher-spin version of the (extended) BMS 
algebra.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Even if the holographic principle does not seem to require a 
negative cosmological constant, most of its concrete realisations 
— in which one has an independent definition of both sides of 
the duality — involve a gravitational theory with asymptotically 
Anti de Sitter (AdS) solutions. Recent years have seen enormous 
progress towards a flat-space holographic correspondence (see, 
e.g., [1–3] for an overview of various approaches), but only a hand-
ful of proposals involving specific boundary theories are available 
[4–8]. It may thus be useful to build additional holographic dual-
ities in flat spacetime, even involving other gravitational theories 
than general relativity.

One of the simplest holographic dualities in AdS relates higher-
spin gravity in the bulk with a free scalar field on the bound-
ary, in any space-time dimensions (see, e.g., [9,10] for a review). 
From the point of view of the algebra so(2, d + 1), a free con-
formal scalar on the boundary of AdSd+2 corresponds to Dirac’s 
singleton representation [11]. The tensor product of two singletons 
[12,13] then reproduces the spectrum of Vasiliev’s bosonic equa-
tions [14], thus guaranteeing that the infinite tower of conserved 
currents of the boundary theory can couple to the bulk higher-spin 
fields. This result somehow anticipated higher-spin holography and 
lies at its foundations: the Lie algebra ruling Vasiliev’s equations, 
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that we denote by hsd+2, coincides with the universal envelop-
ing algebra (UEA) of so(2, d + 1) realised on the singleton mod-
ule [15–17]. Equivalently, one can obtain the algebra hsd+2, often 
called Eastwood-Vasiliev algebra, by quotienting the so(2, d + 1)

UEA by an ideal that identically vanishes on the singleton module.
In sections 2 and 3, we exhibit a similar algebraic setup for (d +

2)-dimensional Minkowski spacetime: we identify a (non-unitary) 
representation of the Poincaré algebra iso(1, d + 1), that we dub 
simpleton,1 and we show that

1. the flat-space higher-spin algebra of [18], which is a con-
traction of the Eastwood-Vasiliev algebra, corresponds to the 
Poincaré UEA realised on the simpleton module;

2. the simpleton admits a realisation as an on-shell conformal 
Carrollian scalar field on null infinity, in its “electric” or “time-
like” version.

The latter is a scalar field living on I ∼= R × Sd , with scaling di-
mension � = d−1

2 and with action

S[ϕ] = 1

2

∫
du ddx

√
γ ∂u ϕ∗ ∂u ϕ , (1)

where γi j is the metric on the d-dimensional unit sphere, while u
is the (retarded) time. This action results from the massless Klein-

1 This nickname originates from two facts: the simpleton is the flat-space ana-
logue of the singleton, as shown here, and it corresponds to one of the simplest
possible Carrollian field theories, cf. the action (1).
 under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 
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Gordon one in the limit in which the speed of light tends to zero 
[19–21] and it can be generalised to curved Carrollian manifolds 
[22–24]. In the c → 0 limit, the conformal symmetry of a free 
scalar in d + 1 dimensions contracts to the conformal Carroll sym-
metry, which is isomorphic to the Poincaré one in d +2 dimensions 
[25]. Roughly speaking, in the following we show that similar con-
siderations apply to the additional, higher-spin symmetries of the 
free relativistic scalar [26,16].

Given the crucial role played by symmetries in higher-spin 
holography, it is tempting to consider these results as an indication 
that the conformal Carrollian field theory (1) may enter a holo-
graphic duality involving higher-spin fields in Minkowski space-
time, thus providing a simple realisation of “Carrollian holography” 
along the lines of, e.g., [27–29,2,3]. The boundary theory would be 
among the simplest examples of conformal Carrollian field theo-
ries and, in spite of all no-go theorems, evidence is accumulating 
that higher-spin theories in flat spacetime can be defined at the 
price of introducing some unconventional features. For instance, 
concrete steps towards a flat-space avatar of higher-spin hologra-
phy were performed in [8,30] for chiral higher-spin gravity [31]. 
Still, this model involves a different higher-spin algebra compared 
to [18] and, therefore, it leads to an alternative flat-space analogue 
of the singleton.

Other (bosonic) higher-spin algebras for Minkowski space were 
also presented in [32,18,33], together with infinite-dimensional ex-
tensions [33] in the spirit of the Bondi-Metzner-Sachs (BMS) ex-
tension of the Poincaré algebra. BMS-like higher-spin symmetries 
in any dimensions already appeared as asymptotic symmetries for 
fields of arbitrary spin in Minkowski space [34,35] and we recover 
them too in section 4. There, we classify all symmetries of the sim-
pleton and obtain that the algebra of [18] does not capture all of 
them, in sharp contrast from what happens for a relativistic scalar 
[26,16].

2. Carrollian scalar and higher-spin algebra

We begin by reviewing the construction of the flat-space 
higher-spin algebra ihsd+2 of [18]. Consider the Poincaré algebra 
iso(1, d + 1) of isometries of (d + 2)-dimensional Minkowski space, 
spanned by translation generators Pa and Lorentz generators Jbc , 
with a, b, c ∈ {0, 1, . . . , d + 1}:

[Jab,Jcd] = ηac Jbd − ηad Jbc − ηbc Jad + ηbd Jac , (2a)

[Jab,Pc] = ηac Pb − ηbc Pa , (2b)

[Pa,Pb] = 0 . (2c)

For d ≥ 2, the Lie algebra ihsd+2 is the UEA of iso(1, d + 1) quo-
tiented by the (two-sided) ideal spanned by2

{Pa, Pb} ∼ 0 , (3a)

Ia ≡ {Pb, Jba} ∼ 0 , (3b)

Iabc ≡ {P[a, Jbc]} ∼ 0 , (3c)

Iabcd ≡ {J[ab, Jcd]} ∼ 0 , (3d)

J 2 + d2 − 1

4
∼ 0 . (3e)

Here and below, the weak equality symbol ∼ stands for “equal 
modulo terms in the ideal”. The associative product on the UEA 
will be implied in the following and {a, b} = a b + b a. The relation 

2 A similar construction can be employed also when d = 1, although (3d) is trivial, 
and it corresponds to the λ = 1 case of the ihs3[λ] one-parameter family of non-
isomorphic higher-spin algebras [36,18].
2

(3e) fixes the eigenvalue of the quadratic Casimir operator of the 
Lorentz subalgebra so(1,d + 1):

J 2 ≡ 1

2
Jab J ba . (4)

This identification is possible even if J 2 is not a Casimir opera-
tor for the full Poincaré algebra thanks to the other relations in 
(3). The above ideal results from the flat-space limit [18] of the 
ideal one has to quotient out from the so(2, d + 1) UEA to obtain 
the Eastwood-Vasiliev algebra hsd+2. In its turn, the latter ideal is 
the annihilator of the singleton module, i.e., it vanishes when the 
so(2, d + 1) UEA is evaluated on this module [15–17].

Note that the last two relations in the ideal (3) imply the first 
three ones. In fact, eqs. (3b) and (3a) follow successively from (3e)
by considering the adjoint action of translations twice, while (3c)
follows from (3d) by considering the adjoint action of a translation. 
Therefore, the full ideal is actually generated by the conditions

Iabcd ∼ 0 , J 2 + d2 − 1

4
∼ 0 (5)

involving only the Lorentz subalgebra, which thus suffice to give 
an implicit definition of the “simpleton” representation. Conversely, 
the eigenvalue of the Lorentz quadratic Casimir in (3e) is fixed by

Iabc J bc + 2

3
Jab Ib + d − 1

3
Ia = −4

3

[
J 2 + d2 − 1

4

]
Pa , (6)

implying that factorising Iabc and Ia while keeping Pa non-zero 
in the enveloping algebra requires (3e). The relations (5) identify a 
subalgebra made only of products of Jab of the type considered in 
[37], and the rest of the algebra ihsd+2 is obtained by the succes-
sive adjoint action of Pa on it. Clearly, one can instead add on top 
of (3) the condition that translations act trivially, that is Pa ∼ 0, as 
in the flat-limit of the singleton proposed in [12]. Still, represen-
tations satisfying (3) with a non-trivial, although nilpotent, action 
of translations exist. More precisely, a representation with these 
properties is unique for d > 1 and coincides with the space of so-
lutions of (1).3

We now show that, indeed, the relations (3) are identically sat-
isfied on the module defined by the on-shell (electric) conformal 
Carrollian scalar field (1) defined on I ∼= R × Sd . To parame-
terise this space, we introduce the retarded time u and the co-
ordinate angles xi on the celestial sphere, where i, j ∈ {1, 2, . . . , d}. 
As shown in section 3, a representation of the Poincaré algebra 
is given by the following differential operators, acting on a scalar 
field ϕ(u, x) of arbitrary scaling dimension � as

Pa = fa(x) ∂u , (7a)

Jab = ξ i
[ab](x) ∂i + 1

d
∇i ξ

i
[ab](x) (� + u ∂u) , (7b)

where ∇ is the Levi-Civita connection for the metric γi j on the 
unit sphere Sd . Moreover, the fa ’s are the d + 2 solutions to the 
“good-cut” equation (see, e.g., [39] for a review)

∇(i∇j) fa = 1

d
γi j ∇2 fa , (8)

and the ξ [ab] ’s are the (d+1)(d+2)
2 conformal Killing vector fields of 

the celestial sphere Sd , that solve the equation4

3 In three and four space-time dimensions, such representations with non-trivial 
translations and satisfying (3) were already exhibited in [18,38], although the iden-
tification with the space of solutions of (1) was missing. When d = 1, one can also 
relax the condition (3e) and obtain a one-parameter family of representations with 
non-trivial translations satisfying (3a) [18].

4 Relaxing the condition (8), the generators (7) define a representation of the BMS 
algebra. The extended BMS algebra of [40] is obtained ignoring also (9).
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∇(i ξ j)
[ab] = 1

d
γi j ∇ · ξ [ab] . (9)

The previous realisation of the Poincaré algebra satisfies the con-
ditions (3c) and (3d) for any value � of the scaling dimension, as 
we prove with ambient-space techniques in section 3.

It is important to note that the operators Jab in (7) correspond 
to the standard realisation of the generators of the conformal al-
gebra so(1, d + 1) acting on a primary scalar field on the sphere 
Sd with dimension �, up to the replacement of the number � by 
the first-order operator � + u ∂u (thereby taking into account the 
scaling property of u). Therefore, when acting on a “Carrollian pri-
mary” scalar ϕ on I with scaling dimension �, we have

J 2 ϕ = (� + u ∂u) (� + u ∂u − d)ϕ , (10)

which originates from the usual result J 2 ϕ = �(� − d) ϕ for a 
conformal primary scalar of dimension �, taking into account the 
shift � → � + u ∂u . Eq. (10) can also be checked directly using the 
ambient-space techniques of section 3.

We now assume that the condition (3e) on the eigenvalue of 
J 2 is satisfied as well. This hypothesis implies

[
u2∂u

2 + (2� − d + 1) u ∂u + �(� − d) + d2 − 1

4

]
ϕ ∼ 0 . (11)

Let us stress that eq. (3e) is part of an ideal: in particular, this 
means that its commutator with any element of the Poincaré al-
gebra must vanish as well. The adjoint action of P0 = ∂u on the 
differential operator entering (11) gives successively

[
2 u ∂u

2 + (2� − d + 1) ∂u

]
ϕ ∼ 0 , ∂u

2 ϕ ∼ 0 . (12)

All previous conditions are satisfied if and only if

∂u
2 ϕ ∼ 0 , � = d − 1

2
, (13)

which correspond to the equation of motion and to the scaling 
dimension of the conformal Carrollian scalar with action (1).

All in all, we discovered that the electric scalar field (1) satisfies 
on shell the conditions (5) and, therefore, the full set of conditions 
(3). As a result, the ideal of the Poincaré UEA that one has to factor 
out to obtain the algebra ihsd+2 should coincide with the annihila-
tor of the conformal Carrollian scalar.5 Consequently, as we discuss 
in section 4, symmetrised products of the generators (7) should 
give the whole ihsd+2 algebra.

To conclude this section we mention that, as anticipated in 
[38,8] and differently from [12,13], the tensor product of two sim-
pletons does not seem to decompose in representations of the 
Poincaré algebra corresponding to bulk higher-spin fields, because 
bilinears in the simpleton are at most quadratic in u while the 
boundary data of radiative solutions are arbitrary functions of u. 
This feature may look disturbing in view of possible applications of 
our findings in an holographic setup, but we stress that in “Carrol-
lian holography” radiation reaching null infinity might be included 
as an external source to which the boundary theory should couple 
[2,3]. This suggests some options to recover the d.o.f. of bulk fields 
via other mechanisms.

5 Strictly speaking, one should also check that, in analogy with the case of a rel-
ativistic scalar, the whole annihilator of the conformal Carrollian scalar is generated 
by the relations (5), i.e., that there are no other independent combinations of the 
generators that vanish identically on the simpleton module.
3

3. Ambient space construction of the simpleton

In this section, we prove that the representation (7) of the 
Poincaré algebra satisfies eqs. (5) by realising I as an embedded 
manifold in an ambient space and the simpleton as an on-shell 
ambient field. To this end, it is useful to first recall the ambient-
space realisation of Dirac’s singleton (see, e.g., [41] for more de-
tails). Consider the ambient space Rd+1,2 with Cartesian coordi-
nates X A and metric η̃AB = diag(−, +, . . . , +, −): the singleton is 
a field 	(X A) satisfying

η̃AB∂A∂B	 = 0 ,
(

X A∂A + �
)

	 = 0 , 	 
 	 + X2 
 (14)

for any 
(X A), with X2 = η̃AB X A X B . The three scalar operators in 
(14) form the sp(2) algebra provided that � = d−1

2 . In this frame-
work, the free scalar field ϕ living on the boundary of AdSd+2 is 
recovered as the restriction of 	 to the light-cone X2 = 0. The 
ambient-space isometries which preserve the light-cone are gen-
erated by

J AB ≡ 2 X[A∂B] . (15)

In this realisation, the ideal that one has to factor out in order to 
recover the higher-spin algebra hsd+2 is automatically factorised 
for � = d−1

2 since

J [AB JC D] 	 = 4 X[A XC ∂B ∂D] 	 + 4η[BC X A ∂D] 	 = 0 , (16a)

J C
(A J B)C 	 
 −η̃AB �	, (16b)

J 2 	 = �(� − 1 − d)	 . (16c)

The conditions (3) we are interested in can then be recovered from 
(16) by sending the cosmological constant to zero [18].

On the other hand, they can also be obtained by embedding 
null infinity in an ambient space with a degenerate metric and 
following similar steps as before. The starting point is now the 
Carrollian ambient space R ×Rd+1,1 with coordinates (u, ya) [42]. 
We choose the degenerate ambient metric to coincide with the 
Minkowski metric ηab in d + 2 dimensions (so that the null coor-
dinate u parameterises its degenerate direction). The simpleton is 
then defined as a field 	(u, ya) satisfying

∂u
2 	 = 0 ,

(
ya∂a + u ∂u + �

)
	 = 0 , 	 
 	 + y2 
 (17)

for any 
(u, ya), together with the additional condition � = d−1
2 . 

Both the degenerate ambient-space metric and the constraints 
(17) can be obtained as a Carrollian, c → 0 limit of the previ-
ous AdS ambient-space construction, thus justifying the additional 
constraint on the scaling dimension �.6 Note, however, that for 
any value of � the differential operators in (17) satisfy the algebra 
iso(1, 1), which is a contraction of sp(2) ∼= so(2, 1).

In this framework, I corresponds to the locus y2 = 0 for any 
value of u and the ambient-space isometries that preserve y2 = 0, 
are analytic in the coordinates and have zero homogeneity degree, 
i.e. that are invariant under (u, ya) → (λ u, λ ya), read

Jab ≡ 2 y[a ∂b] , Pa ≡ ya ∂u . (18)

They can also be obtained as the c → 0 limit of the so(2, d + 1)

isometries in (15). In the particular differential realisation of (18), 
the relations (3c) and (3d) are automatically satisfied,

6 Since we are considering a c → 0 limit of the relativistic ambient-space con-
struction, geometrically we are actually realising I as the boundary of an AdS-
Carroll manifold (see, e.g., [43]). It will be interesting to use directly an ambient-
space construction suited to Minkowski space [42], but the current framework any-
way suffices to prove the relations (3) for the representation (7).
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Iabcd 	 = 0 , Iabc 	 = 0 , (19)

while eqs. (3a), (3b) and (3e) are verified provided that the con-
straints (17) are satisfied and � = d−1

2 :

Pa Pb 	 = 0 , Ia 	 
 0 ,

(
J 2 + d2 − 1

4

)
	 
 0 . (20)

We now show that an ambient function 	(u, ya) obeying to 
the last two conditions in (17) defines a Carrollian conformal pri-
mary field ϕ(u, xi) with scaling dimension �, upon restriction 
to the submanifold y2 = 0; and that, as differential operators on 
I ∼= R × Sd , the operators in (18) correspond to those in (7). 
Explicitly, one can write the non-degenerate part of the ambient 
metric in a null form using the coordinates ya = (y0, yi, y∞) so as 
to obtain

ηab ya yb = 2 y0 y∞ + γi j yi y j . (21)

Then, the locus y2 = 0 in the vicinity of y0 > 0 can be parame-
terised by

y0 = x0 , yi = x0 xi , y∞ = −1

2
x0x2 . (22)

Since 	 is homogeneous of degree �, i.e. 	(λ u, λ ya) =
λ−�	(u, ya) for λ > 0, we can identify (u, ya) with 1

x0 (u, ya) for 
all x0 > 0. In practice, we can set x0 = 1 in this region. Then, in 
this choice of coordinates, it is manifest that ya = (1, xi, − 1

2 x2) is 
the unique Rd+1,1-vector of functions of xi verifying the “good-
cut” equation (8) (with f a ≡ ya). This proves that the Pa in (18)
correspond to those in (7). Similarly, following the same argument 
as in [16], ξ [ab]

i is the unique rank-two antisymmetric tensor of 
functions of xi verifying eq. (9).

Note that the ya(xi) and ξ
[ab]
i (xi) satisfying eqs. (8) and (9)

can also be interpreted as generalised conformal Killing scalars and 
vectors with depths 1 and 0 respectively. Following the discussion 
of generalised conformal Killing tensors of e.g. [44], one can then 
realise the good-cut and conformal Killing equations (8) and (9) in 
ambient space as the following pairs of equations:

∂a ∂b f (y) = 0 ,
(

ya∂a − 1
)

f (y) = 0 , (23a)

∂(a ξb)(y) = 0 ,
(

ya∂a − 1
)
ξb(y) = 0 . (23b)

These equations are clearly satisfied by the components of the 
isometry vectors (18), thus confirming once again their identifi-
cation with the vectors (7).

4. All symmetries of the simpleton

Following the philosophy of [16] (see also [26,45]), we now 
show that a real form of the higher-spin algebra ihsd+2 is a subal-
gebra of the higher symmetries of the conformal Carrollian scalar. 
It was already noticed that the higher symmetries of (1) contain 
all generators of the form f (x) ∂u without any constraints on the 
functions f (x) [19] (see also [46–48]), so that they include, at least, 
super-translations. Similarly, in classifying the higher symmetries 
of (1), we shall obtain infinite-dimensional extensions of the alge-
bra ihsd+2 incorporating (extended) BMS symmetries and BMS-like 
higher-spin symmetries similar to those in [34,35,33].

4.1. Higher symmetries of the conformal Carrollian scalar

We define a higher symmetry of the quadratic action (1) to be 
a differential operator D on I such that the infinitesimal trans-
formation δϕ = iεDϕ leaves (1) invariant, or in other words, such 
4

that D weakly commutes with the kinetic operator ∂u
2 in the 

sense that

∂u
2 ◦ D = D† ◦ ∂u

2 , (24)

where † is the Hermitian conjugation with respect to the inner 
product 〈 ψ | ϕ 〉 = ∫

du ddx
√

γ ψ∗ϕ . Since 
[
∂u

2, D
] = 2 Ḋ ◦ ∂u + D̈ , 

the condition (24) is equivalent to

2 Ḋ ◦ ∂u + D̈ =
(

D† − D
)

◦ ∂u
2 . (25)

By implementing the on-shell identification D ∼ D + B ◦ ∂u
2 for 

any differential operator B , one can write down without loss of 
generality an ansatz for D of the form

D = D0 + D1 ◦ ∂u , (26)

where D0 and D1 are independent of ∂u . Then, eq. (25) translates 
into

2
(

Ḋ0 + Ḋ1 ◦ ∂u
) ◦ ∂u + (

D̈0 + D̈1 ◦ ∂u
)

=
[(

D0
† − D0

)
−

(
D1

† + D1

)
◦ ∂u − Ḋ1

†
]
◦ ∂u

2 ,
(27)

which decomposes into powers of ∂u as

D1
† + D1 = 0 , 2 Ḋ1 = D0

† − D0 − Ḋ1
† , (28a)

2 Ḋ0 + D̈1 = 0 , D̈0 = 0 . (28b)

The general solution is

D0 = K0 − iK+1 u , D1 = iK−1 +
(

K0
† − K0

)
u + iK+1 u2 , (29)

where the Km (m = −1, 0, +1) are independent of u and the K±1

are Hermitian. Decomposing K0 into Hermitian and anti-Hermitian 
parts, K0 = L−1 − iL+1, we have

D = K−1 ◦ H−1 + L−1 ◦ id + 2 L+1 ◦ H0 + K+1 ◦ H+1 , (30)

where the symmetry generators

H−1 = i ∂u , H0 = i u ∂u − i

2
, H+1 = i u (u ∂u − 1) (31)

satisfy the sl(2, R) algebra (or gl(2, R) if one includes the iden-
tity), representing the conformal isometries of the real line.

The non-trivial higher symmetries of the action (1) thus span a 
real Lie algebra isomorphic to

H(Sd) ⊗ gl(2,R) , (32)

with H(Sd) the Lie algebra of Hermitian differential operators on 
the celestial sphere Sd , while the set {id, H−1, H0, H+1} forms a 
basis of gl(2, R). The commutator (times the imaginary unit i) of 
differential operators defines a Lie bracket on this vector space. As 
anticipated, this algebra is much bigger than ihsd+2 and we now 
discuss some relevant subalgebras.

4.2. Extended BMS symmetry and large u(1) transformations

We begin by considering symmetries which are differential op-
erators of order zero. They are real functions on the sphere Sd , 
D = α(x), corresponding to local phase transformations

δαϕ = i α(x)ϕ . (33)

In a putative holographic correspondence, this symmetry should 
signal the presence of large u(1) transformations as in [49] within 
the asymptotic symmetries of the bulk theory.
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We now move to first-order symmetries and write K−1 =
−T (x) and L−1 = −i Y i(x) ∂i − i

2 ∇i Y i(x) with T and Y i real, while 
choosing L+1 = − 1

2d ∇i Y i(x). In this way, we obtain

i Debms = T (x) ∂u + Y i(x) ∂i + 1

d
∇i Y

i(x) (� + u ∂u) , (34)

which is the form of a differential operator of order one generat-
ing super-translations via T (x) and super-rotations via Y i(x) when 
acting on a scalar density of scaling dimension � = d−1

2 . Note that 
we did not impose any constraint on the vectors Y i(x): therefore 
the super-rotations in (34) generate the whole diff(Sd) algebra as 
in the extended BMS algebra of [40].

4.3. Enhanced BMS symmetry algebra bms
+
d+2

Still looking at first-order differential operators, there are two 
more available functions generating super-dilations and super-
conformal boosts in the u direction:

Dbms+ = Debms + W (x) H0 + Z(x) H+1 , (35)

with real W (x) and Z(x). From the bulk viewpoint, in which one 
seeks to interpret these transformations as being associated to 
asymptotic symmetries, the action of W (x) H0 should correspond 
to “BMS-Weyl” transformations as those considered in [50], while, 
to our knowledge, the action of Z(x) H+1 has not been considered 
in the literature. We denote the full first-order subalgebra of (32)
as bms

+
d+2 and we remark that it does not seem to be isomorphic 

to any of the proposed conformal extensions of the BMS algebra 
[51,52].

4.4. Algebra of higher-order operators

The symmetrised product of differential operators satisfying 
(24) is a differential operator satisfying the same condition (simi-
larly to the commutator times the imaginary unit, that defines the 
Lie bracket on (32)). Higher-order symmetries can thus be realised 
as symmetrised products of first-order ones. This simple observa-
tion guarantees that ihsd+2 is a Lie subalgebra of (32). Indeed, as 
it is also manifest in (34), the generators (7) belong to the symme-
tries of the simpleton and their symmetrised products acting on 
the simpleton give, by construction, the algebra ihsd+2.

As discussed in section 4.2, the constraints (8) and (9) that se-
lect the algebra ihsd+2 are not necessary to identify a symmetry 
of the simpleton. Therefore, one can also consider products of the 
operators in (34) with unconstrained T (x) and Y i(x), which form a 
subalgebra. In this way one obtains an infinite-dimensional exten-
sion of the algebra ihsd+2, that we dub hsbmsd+2. It corresponds 
to realising the ebmsd+2 UEA on the simpleton module, while the 
infinite-dimensional extension of [33] realises it on the Sachs mod-
ule. As a result, in that case as well as in [34,35] polynomials 
of any order in u appear in the differential operators, while here 
the u dependence only comes from the operators (31), compatibly 
with the observation that ihsd+2 is not a subalgebra of the higher-
spin algebras of [33].

Concretely, higher-order symmetries are obtained composing 
the operators (31) with higher-order differential operators on the 
sphere, see (32). The latter can then be expanded, e.g., as

L−1 =
∑
s≥3

is−1 Y j1··· js−1 ∇( j1 · · · ∇js−1) + lower derivative (36)

with real Y j1··· js−1 , and where lower-derivative terms are required 
to obtain Hermitian operators. The operators K−1, L+1 and K+1
in (30) admit similar expansions. The tensors Y j1··· js−1 are often 
called the symbol of their associated differential operator. We only 
5

need symmetric symbols because any antisymmetrisation can be 
reabsorbed into operators of lower order. A higher-spin general-
isation of (super-)translations, i.e. an Abelian ideal, is given by 
K−1 ◦ H−1, while, in analogy with (34), the remaining genera-
tors of hsbmsd+2 are given by linear combinations of L−1 ◦ id and 
L+1 ◦ H0, each one depending only on Y i1···is−1 . This symbol, in its 
turn, can be recovered as a symmetrised product of vectors Y i . In 
spite of the differences discussed above, decomposing the traceful 
tensors Y i1···is−1 and the corresponding symbols T i1···is−2 of K−1
into traceless parts, one recovers the same set of generators as 
in the asymptotic symmetries of Fronsdal fields for the weakest 
boundary conditions considered in [35]. We conclude by stressing 
that one can also consider products of the operators (35), so that 
the higher symmetries of the simpleton actually provide a higher-
spin extension of the algebra bms

+
d+2 of section 4.3.
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