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Introduction and notations

In this talk, we will focus on the dilation of regular n-gons.
However, most of what will follow (including the algorithms) can be
generalized easily, at least to strictly convex polygons.
We will denote by S the set of points of a regular n-gon in R2, say

S =

{(
cos

(
2kπ

n

)
, sin

(
2kπ

n

))∣∣∣∣0 ≤ k < n

}
A triangulation on S is a maximal set of segments whose endpoints are in
S and which only intersect at points of S .
We will denote by T the (finite) set of triangulations of S .
Given T ∈ T , we will denote by dil(T ) ≥ 1 the dilation of T .
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Example of a triangulation

A triangulation T of a 10-gon. Corresponding dilation: dil(T ) = 1.42705098
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Example of a triangulation

The path between a critical pair for this triangulation is shown in red.

dil(T ) =
total length of the red path

euclidean distance between the endpoints
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What are we looking for?

Given n, we are interested in computing the dilation of regular n-gons, i.e.

min
T∈T

dil(T )

Given T , computing dil(T ) can be done in O(n3) using Floyd-Warshall’s
algorithm to compute “all pairs shortest paths”. We can then iterate
over all pairs of points in O(n2) and compute the dilation of T .
The overall complexity is therefore O(n3).
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Combinatorial explosion

A straightforward way to compute the dilation of regular n-gons is to
iterate over all possible triangulations T (up to some symmetries to
speed-up the computations).
This was done for instance in Mulzer (2004).
We cannot hope to compute dilations of n-gons even for n ≥ 25 using
this method since the number of triangulations of a n-gon is given by the
(n − 2)th Catalan number Cn−2, where

Ck =
1

k + 1
·
(

2k

k

)
(C23 = 343.059.613.650)
This implies a combinatorial explosion of the number of triangulations as
n grows, therefore ruling out purely “bruteforce” approaches to compute
the dilation of regular n-gons.
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Proposed solution

In this talk, we will present a “branch-and-bound-like” approach to
compute the dilation of regular n-gons.
The lower bound method was inspired by a technique used in Dumitrescu
and Ghosh (2016) to compute the dilation of regular 23-gons.
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Lower bound: what are we looking for?

We are going to present an algorithm which, given n, returns a proven
lower bound for the dilation of regular n-gons.
If the found lower bound can be realized by a suitable configuration, then
this value will be equal to the dilation of regular n-gons and we are done.
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Partial triangulations

By a partial triangulation, we mean a set of segments whose endpoints
are in S and which only intersect at points of S (we remove the
maximality condition from the definition of triangulations). However, we
assume that the edges of the polygons are always present in our
configurations.
Let’s denote the set of (possibly) partial triangulations by P.
Inclusion of partial triangulations is defined in the natural way.
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Examples of (partial) triangulations

P1 P2 P3

P1 ⊂ P2 ⊂ P3

P3 ∈ T
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Graphs with cliques

Given a partial triangulation P ∈ P, we are interested in all
triangulations containing P.

The graph GCP is obtained by taking all segments between points of
S which do not intersect segments of P.

There is a kind of “duality”: for T ∈ T , P ⊆ T ⇔ T ⊆ GCP
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A graph with cliques GCP

10-gon, three segments in P (shown in green), GCP : green and red segments
nlb(P) = 1.42705098
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Lower bound from a partial configuration

Given a partial triangulation P, a “naive” lower bound on the dilation of
all triangulations containing P is given by

nlb(P) := max
p,q∈S
p 6=q

dGCP
(p, q)

dEuclidean(p, q)

There is a monotonicity property:

P ⊆ P ′ ⇒ nlb(P) ≤ nlb(P ′)

Futhermore, nlb(T ) = dil(T ) if T ∈ T (i.e. the bound is exact for
maximal elements of P)
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Summary of the “naive” lower bound technique

P → partial triangulation
⇓

GCP → add all segments which don’t intersect P
⇓

dGCP
→ distance using only segments in GCP

⇓
nlb(P) → “naive” lower bound from P
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The lower bound technique

We want to find a better bound, i.e. a value lb(P) such that

nlb(P) ≤ lb(P) ≤ min
T∈T
P⊆T

dil(T )

Since all edges that do not intersect an edge from P will occur in at least
one configuration T ∈ T such that P ⊆ T , we will use the “graph with
cliques” GCP just as for nlb.
The problem can also be seen like this: from the “graph with cliques”
GCP associated to P, find a bound

lb(P) ≤ min
T∈T

T⊆GCP

dil(T )

(this is a kind of “dual problem”).
Indeed, for T ∈ T we have P ⊆ T ⇔ T ⊆ GCP by “duality”.
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Pairs of pairs of points

The dilation of a triangulation T ∈ T is given by

max
p,q∈S
p 6=q

dGraph of T (p, q)

dEuclidean(p, q)

The naive lower bound considers a single pair of points p, q ∈ S , p 6= q
and uses the inequality (where P ∈ P, P ⊆ T )

dGCP
(p, q)

dEuclidean(p, q)
≤ dGraph of T (p, q)

dEuclidean(p, q)

This is not optimal since pairs of points are considered independently.
Instead, the new method considers two pairs of points at once (this idea
was inspired by Dumitrescu and Ghosh (2016)).
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Pairs of pairs of points

We begin with a simple observation: if s1, s2, e1, e2 ∈ S are distinct points
in clockwise order, then the paths from s1 to e1 and from s2 to e2 must
intersect at some point p ∈ S .
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Dilation of regular polygons



Introduction and notations Straightforward approaches The lower bound algorithm The upper bound algorithm Results and discussion References

Pairs of pairs of points

Since we have no idea of which p is optimal, we take the one which gives
the lowest bound for the pair of pairs.
In the end, the bound lb(s1, s2, e1, e2) associated to s1, s2, e1, e2 ∈ S is

min
p∈S

max

{
dGCP

(s1, p) + dGCP
(p, e1)

dEuclidean(s1, e1)
,
dGCP

(s2, p) + dGCP
(p, e2)

dEuclidean(s2, e2)

}
We finally obtain

lb(P) = max
s1,s2,e1,e2∈S
distinct and

in clockwise order

lb(s1, s2, e1, e2)
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Global lower bound

The lower bound technique provides a lower bound lb(P) on the dilation
of triangulations which contain P.
Our goal is to find a good (unique) global lower bound glb with

glb ≤ min
T∈T

dil(T )

with an inequality as sharp as possible (with equality if possible, since
this would mean that glb is the exact value of the dilation).
Our algorithm will take

glb = min
P∈C

lb(P)

where C ⊆ P is a set of partial configurations such that

∀T ∈ T ,∃P ∈ C,P ⊆ T

Note that the exhaustive method corresponds exactly to the case C = T !

D. Galant UMONS - Erasmus Université Paris-Sud
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Global lower bound: proof of correctness

glb satisfies
glb ≤ min

T∈T
dil(T )

Indeed if T ∈ T then, by hypothesis on C, there exists PT ∈ C such that
PT ⊆ T . We then have

glb = min
P∈C

lb(P) ≤ lb(PT ) ≤ lb(T ) = dil(T )
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Global lower bound: which configurations should we
consider?

What remains to be done is to explain how the algorithm chooses C, the
set of partial configurations to be considered.
The key point is to find a good tradeoff between having C small, with a
fast algorithm but a possibly poor bound, and C large, with a slower
method but a better bound (maybe optimal, if C is large enough)
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The search tree

In the end, we have an abstract “search tree” of partial configurations
(the lattice of sets 1 of P, ordered by inclusion) and for each P ∈ P, we
have a bound lb(P).
Recall that, if P0 ⊆ P1 ⊆ · · · ⊆ Pn = T ∈ T , then

lb(P0) ≤ lb(P1) ≤ · · · ≤ lb(Pk) = dil(T )

1Which will be abusively called the “search tree”, even though one might argue
that it is not really a tree.
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Pruning the search tree

A very common and efficient technique to deal with optimisation
problems on search trees is pruning, i.e. stop exploring branches of the
tree which do not lead to optimal solutions.
We therefore provide a “target value” to our lower bound algorithm:

Lower bound, with a “target value” c

Given a constant
c ≥ min

T∈T
dil(T )

return a proven lower bound

glb ≤ min
T∈T

dil(T )

Typically, we will use c = dil(Tcandidate) ∈ T , the dilation of a possibly
optimal triangulation (or at least a very good triangulation).
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What is c useful for?

c is only used for pruning purposes: if a partial triangulation P ∈ P is
considered and

lb(P) ≥ c

then we know that

∀T ∈ T :

(
(P ⊆ T )⇒ c ≤ lb(P) ≤ lb(T ) = dil(T )

)
and we can “cut” that branch of the search tree.
A peculiar feature of the lower bound method is that c , given as input to
the lower bound algorithm, does not change the result returned by the
algorithm (!)
The speed of the proposed method depends crucially on the “quality” of
c . It is therefore important to find good configurations beforehand.
The hope is that the lower bound algorithm will prove that c is in fact
equal to the dilation, i.e.

glb = c = dil(Tcandidate)
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Important edges first

The last (important!) fact we did not mention is the order in which
partial configurations are considered.

Indeed, it is important to first put some edges that will likely cause
lb(P) to be big and hopefully to cut this branch of the search tree.

In practice, our program puts the edges of the triangle which
contains the center first.

It then puts (or tries to put) three smaller triangles on the 3 zones
delimitated by the central triangle.
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Central triangle

A possible central triangle in a 10-gon.
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Putting it all together

To summarize, our algorithm works as follows:

Lower bound algorithm

1 Take a positive integer n and a “target value” c as input.

2 Go through the search tree of partial triangulations, considering
important edges first (adding triangles gradually).

3 Prune while going through the search tree.

4 Stop at a specified depth (or try to do some processing at the leaves
of the search tree, which correspond to configurations which were
not pruned).

5 Return the global lower bound glb.

If glb = c , we managed to compute the dilation!
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Upper bound: what are we looking for?

As we saw before, we need a good target constant c = dil(Tgood) if we
want our lower bound algorithm to run fast enough, and we can only
conclude if

c = min
T∈T

dil(T )
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Classical techniques

Most articles in the field only focus on the upper bound part, i.e. finding
configurations Tgood ∈ T so that

min
T∈T

dil(T ) ≤ dil(Tgood)

with a “rather sharp” inequality, possibly an equality (see for instance
Sattari and Izadi (2019), which was a starting point of our work with
C. Pilatte)
Typically, such articles proceed as follows:

1 Consider a class of “seemingly good” triangulations with a few
parameters (classes with 4 and 6 parameters were considered in
Sattari and Izadi (2019)).

2 Find (somehow) the optimal triangulation among the members of
the class. This best triangulation is the candidate Tgood .
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Discussion of such techniques

These techniques have two main advantages:

The number of considered configurations is polynomial in n, allowing
to find bounds even for large values of n.

Finding the best configuration among the class of considered
configurations is doable either with a computer (since the state
space has a polynomial size) or even “by hand” due to the specific
structure of the considered triangulations.

However, we argue that these approaches also have intrinsic issues:

Often, there is no formal justification regarding why these classes are
considered, but rather heuristic motivations: the class contains the
optimal examples for small n, has enough parameters, . . .

(!) There is no control on the sharpness of the inequality

min
T∈T

dil(T ) ≤ dil(Tgood)
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Discussion of such techniques

The second issue is really due to the nature of the methods, which
consist in living in a (small and better understood) subset

S ⊆ T

and forgetting about the rest of T .

The whole point of the lower bound algorithm is to respond to the
second issue.

As we want to investigate what happens for n ≥ 25 and do not have
convincing candidates of polynomial-size subclasses of T which
should contain optimal triangulations, we will use metaheuristics
instead to find good configurations, among which we hope to find
optimal ones.
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Dilation of regular polygons



Introduction and notations Straightforward approaches The lower bound algorithm The upper bound algorithm Results and discussion References

Metaheuristics

We want to explore the search space T and find good configurations.

Finding maxima 2 of real functions defined on large discrete search
spaces is an intensively studied subject, and generic methods to solve
these kinds of optimization problems are often called metaheuristics.

We used one of the most classical approaches: hill climbing.

2Here we want to find a global minimum but we will stick with the common
terminology used for maximization problems to explain briefly what are metaheuristics.
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Hill climbing

Given “neighbourhood operations” on the search space, the following
algorithm can be used:

Hill climbing

1 Start from some initial state s0 in the configuration space.

2 Consider all neighbours of s0.

3 Go to the neighbour which corresponds to the highest value.

4 When all neighbours produce a lower value, stop the algorithm and
return the current state and the current value.
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From local maxima to candidates of global maxima

It is clear that the mentioned algorithm only gives rise to local
maxima.

Generally, the problem of finding the global maximum of a function
on a search space is hard without further hypotheses.

In practice, we used a “randomized multistart” strategy: we run the
hill climbing algorithm from a lot of triangulations chosen uniformly
at random from T .

By doing so, we explore different regions of the search space and are
less likely to miss the global maxima.
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From local maxima to candidates of global maxima

Source: https://www.geeksforgeeks.org/introduction-hill-climbing-artificial-intelligence/
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An example of neighbourhood operation

Take a quadrilateral from T and replace its diagonal by the other
diagonal.

−→

To avoid being stuck in local minima, we can use this neighbourhood
operation with depth 2.
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Example of 42-gons

In less then 10s, the upper bound program gives a value of
1.4222217969.

The lower bound program then proves that this bound is correct in
less than 3s.
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Known values for the dilation before our work

n dil(Sn) n dil(Sn) n dil(Sn)
4 1.4142 12 1.3836 20 1.4142
5 1.2360 13 1.3912 21 1.4161
6 1.3660 14 1.4053 22 1.4047
7 1.3351 15 1.4089 23 1.4308
8 1.4142 16 1.4092 24 1.4013
9 1.3472 17 1.4084 25 < 1.4296

10 1.3968 18 1.3816 26 < 1.4202
11 1.3770 19 1.4098

The values of dil(Sn) for n = 4, . . . , 26, from Dumitrescu and Ghosh (2016)
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New exact values computed by our algorithm

n dil(Sn) time n dil(Sn) time n dil(Sn) time
20 1.4142 < 5s 28 1.4147 20s 36 ? −
21 1.4161 < 5s 29 1.4198 < 10s 37 ? −
22 1.4047 < 5s 30 1.4236 2min 38 1.4130 1min
23 1.4308 < 5s 31 1.4119 1min 39 ? −
24 1.4013 < 5s 32 1.4160 20s 40 ? −
25 1.4049 15s 33 1.4184 2min 41 ? −
26 1.4169 15s 34 1.4167 1min 42 1.4222 15s
27 1.4185 15s 35 1.4212 3min 43 1.4307 3min

The values of dil(Sn) computed by our programs, with the associated total
runtime (upper bound + lower bound).
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Maxmial dilation of a convex polygon

Our lower program shows (after approximately 30min) that the
dilation of 53-gons is at least 1.4336430827. We do not know the
exact value of the dilation of 53-gons however.

We thereby improve the bound of dil(23-gons) ≈ 1.4308 obtained in
Dumitrescu and Ghosh (2016) for the “worst-case dilation of plane
spanners”, i.e. the maximal dilation of a set of points:

sup
S⊆R2

S finite

dil(S)
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Further goals

One of the main goals is to use the hindsight given by small cases to
study the asymptotic case, i.e. the dilation of the circle.

An interesting observation would be to find “small” classes
containing optimal configurations, therefore going back (but with
more support) to classical upper bound methods.

Our program allows to have finer information about small
configurations: find all good configurations, their symmetries, . . .

We might move towards a “real branch-and-bound” instead of our
“two-steps” method.
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