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Introduction

Context and motivation

Monitoring and control systems, as scientific disciplines, are nowadays essen-
tial means for a lot of important applications. It is indeed inconceivable to build
an aircraft system without incorporating several key robust controllers (autopi-
lot, fuel balance, temperature and pressure control, airflow detectors, etc). In
the biomedical field, surgicals, health-care systems, different laboratories like
sleep laboratories, are more or less completely monitored or about to be. In the
environmental context, low-energy house rhymes now with heating pump for
temperature control. Computational, environmental and social progresses are
then practically merged into many multidisciplinary techniques.

In the last decades, biology, agriculture, food science and medicine technolo-
gies have been gathered in a new science field recognized as "Biotechnology".
Of course, human beings have always been dependent on chemical and bio-
chemical processes to meet their needs. But health care has taken such an im-
portant place in everyone’s life that the economic potentialities of the biotech-
nology market have pushed the industry, as for instance, food and biophar-
maceuticals, to engage in a race at peak performance requiring more than the
heuristics. Optimization of bioprocesses through monitoring and control is
now the spearhead of many big industries for the next decades.

One of the fastest growing applications of biotechnology is the recombinant
protein technology using microorganisms host strains like Saccharomyces cere-
visiae (baker’s yeast), Escherichia coli (bacteria) or animal cells. This technology
allows the production of vaccines and different disease treatments (cancers,
hormonal diseases, HIV, Malaria, etc). The social and economic factors are
reaching a so important level that the scientific community of engineers (not
only chemical and biochemical, but also automation and control engineers) is
regularly consulted in order to optimize bioprocesses.

Bioprocess optimization is a delicate task as a strong knowledge of the cell
physiological behavior is generally required. The interest is here focused on
cell strains comparable to yeasts, bacteria and animal cells. Their main physi-
ological feature resides in their primary metabolism or, more precisely, in their
catabolism. This one is characterized by a limited energy production princi-
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pally used for cell growth and division. The limitation comes itself from a lim-
ited capacity to oxidize the main nutrient, also called substrate and essential to
growth: glucose. The excess part of this nutrient can follow another metabolic
pathway more commonly known as fermentation, producing a side byprod-
uct. For obvious reasons, literature tends to name this phenomenon "Overflow
Metabolism" (Crabtree (1929), Deken (1966), Rocha (2003), Vemuri et al. (2006),
Vemuri et al. (2007), Cappuyns et al. (2009)).

An optimization strategy relies on a control policy, which requires a dynamic
model of the bioprocess. There exist different ways of modelling. The consid-
eration of microscopic physical aspects (as, for instance, metabolic fluxes, see
Stephanopoulos (1999)) leads to commonly called "white-box" models in oppo-
sition to "black-box" models where a mathematical map summarizes the pro-
cess without real physical interpretation. Nevertheless, there remains a third
way of modelling, generally describing macroscopic aspects of bioprocesses
on the basis of components mass-balances equations, giving itself the name of
"Mechanistic Modelling" (Bogaerts (1999), Bogaerts and Hanus (2002), Hul-
hoven et al. (2005), Bogaerts et al. (1999), Grosfils et al. (2007)).

Mechanistic models are widely used in bioprocess modelling mainly because
of their lower degree of complexity (in comparison with microscopic mod-
els) allowing an easier control design. Moreover, when some key-components
must be controlled but remain unmeasurable (generally for technical reasons
as, for instance, the absence of specific probes), estimators can be build on the
basis of mathematical mechanistic models and are therefore called "Observers"
(Bogaerts and Vande Wouwer (2003)). The corresponding mathematical sensor
is then called "Software sensor" in opposition to physical hardware sensors.

From this on, a control design must be chosen, taking the plant particularities
into account:

• What is the plant optimum?

• Which state variables should be controlled?

• Are the controlled variables measurable?

• If not, is there a way to correctly estimate or observe them?

• Is a suboptimal solution more practical?

• Should the controller have a certain complexity degree? Is the complexity
degree a source of limitation?

Unfortunately, accurate estimations of model parameters may be difficult to
obtain. Measurement noise and parameter variations are classical sources of
uncertainty which can severely degrade the predictive capability of a model
with respect to the real process. Alternative solutions may be proposed in
terms of state estimation as, for instance, the use of black-box models using
more basic and "easy-to-get" signals while, from a control point of view, robust
controller designs can be employed to overcome the problem of uncertainties.

In order to have a good practical knowledge about bioprocesses, it is some-
times preferable to extend its own experience until the actual construction of
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a real culture plant. This work (and, therefore, its author) is intended to be
as pragmatic and practical as possible, pointing out that theory which deals
with bioprocess control becomes a must and an unavoidable source of knowl-
edge when a full experimental feedback is taken into account. What a better
feedback than its own practical experience?

The major contributions of this work are therefore:

• In state estimation:

– An unusual and cheap way to estimate process key-variables using
black-box models and especially Artificial Neural Networks, on the
basis of industrial experimental data sets.

• In bioprocess control:

– An original design of extremum-seeking control for fed-batch cul-
tures.

– Robust control designs using suboptimal but very efficient and prac-
tical strategies.

– Experimental applications of a robust controller at laboratory and
industrial scales.

• In bioprocess operation (experimental work):

– Design, monitoring and control of an Escherichia coli (bacteria) labo-
ratory pilot plant.

Outline

This work is divided in four parts.
Part one is composed of an introductive chapter describing microorganisms
culture conditions and the phenomenon called Overflow Metabolism.
Part two is dedicated to general fed-batch culture monitoring and divided in
2 chapters. Chapter 2 presents a review of bioprocess modelling and obser-
vation, while chapter 3 contrasts two different techniques of state estimation
illustrated by simulated and experimental results.
Part three reviews different existing control techniques and proposes original
applications to fed-batch cultures of microorganisms. Chapter 4 is dedicated to
an original design of extremum-seeking control, chapter 5 discusses the appli-
cability of two linearizing control techniques and presents experimental appli-
cations of an improved RST controller to laboratory and industrial scale biore-
actors.
Part four is composed of a chapter describing the experimental design and
monitoring of a real bacteria pilot plant, and ends with a last chapter drawing
general conclusions and perspectives of this work.



7

List of Publications

Book Chapters

L. Dewasme, Ph. Bogaerts, A. Vande Wouwer. Monitoring of Bioprocesses:
Mechanistic and Data-Driven Approaches from the collective book, "Com-
putational Intelligent Techniques for Bioprocess Modelling, Supervision and
Control" in the Series Studies in Computational Intelligence, SCI 218, pp. 57-97,
Springer-Verlag, Berlin Heidelberg, Germany, 2009.

Journal Papers

L. Dewasme, A. Richelle, P. Dehottay, P. Georges, M. Remy, Ph. Bogaerts,
A. Vande Wouwer. Linear Robust Control of S. cerevisiae Fed-batch Cul-
tures at Different Scales. Biochemical Engineering Journal, available on-line at
doi:10.1016/j.bej.2009. 10.001 since 5 October 2009.

Proceedings

L. Dewasme, A. Vande Wouwer, S. Dessoy, P. Dehottay, X. Hulhoven, Ph. Bo-
gaerts. Experimental Study of Neural Network Software Sensors in Yeast
and Bacteria Fed-batch Processes. 10th IFAC Symposium on Computer Applica-
tions in Biotechnology (CAB), Cancun, Mexico, 2007.

L. Dewasme, F. Renard, A. Vande Wouwer. Experimental Investigations of a
Robust Control Strategy Applied to Cultures of S. cerevisiae. European Control
Conference (ECC), Kos, Greece, 2007.

L. Dewasme, A. Vande Wouwer. Adaptive Extremum-Seeking Control Ap-
plied to Productivity Optimization in Yeast Fed-batch Cultures. 17th World
IFAC Congress, Seoul, South Korea, 2008.

L. Dewasme, A. Vande Wouwer, M. Perrier. Adaptive Extremum-seeking
Control of Yeast Fed-batch Cultures. 10th International Chemical and Biologi-
cal Engineering Conference (CHEMPOR), Braga, Portugal, 2008.

L. Dewasme, X. Hulhoven, A. Vande Wouwer. Scaling-up Control of Yeast
Fed-batch Cultures. 10th International Chemical and Biological Engineering Con-
ference (CHEMPOR), Braga, Portugal, 2008.

L. Dewasme, A. Vande Wouwer, B. Srinivasan, M. Perrier. Adaptive Extremum-
seeking Control of Fed-batch Cultures of Microorganisms Exhibiting Over-
flow Metabolism. International Symposium on Advanced Control of Chemical Pro-
cesses (ADCHEM), Istanbul, Turkey, 2009.

D. Coutinho, L. Dewasme, A. Vande Wouwer. Robust Control of Yeast Fed-
Batch Cultures to Productivity Enhancement. International Symposium on Ad-
vanced Control of Chemical Processes (ADCHEM), Istanbul, Turkey, 2009.

L. Dewasme, D. Coutinho, A. Vande Wouwer. Linearizing Control of Yeast
and Bacteria Fed-batch Cultures: A Comparison of Adaptive and Robust
Strategies. Accepted for the 7th International Conference on Informatics in Con-



8

trol, Automation and Robotics (ICINCO), Madeira, Portugal, 2010.

L. O. Santos, L. Dewasme, A. Vande Wouwer. Nonlinear Model predictive
Control of Fed-batch Cultures of E. coli: Performance and Robustness Anal-
ysis. Accepted for the 8th IFAC Symposium on Nonlinear Control Systems (NOL-
COS), Bologna, Italy, 2010.

Conferences with Abstracts

L. Dewasme, A. Vande Wouwer, X. Hulhoven, Ph. Bogaerts. NN-based Soft-
ware Sensors in Yeast and Bacteria Fed-Batch Processes. 26th Benelux Meeting
on Systems and Control, Lommel, Belgium, 2007.

L. Dewasme, F. Renard, A. Vande Wouwer. Productivity Optimization of Cul-
tures of S. cerevisiae through a Robust Control Strategy. 26th Benelux Meeting
on Systems and Control, Lommel, Belgium, 2007.

L. Dewasme, F. Renard, A. Vande Wouwer. Productivity Optimization of
Yeast Fed-batch Cultures Using an Extremum-seeking Strategy. 27th Benelux
Meeting on Systems and Control, Heeze, The Nederlands, 2008.

L. Dewasme, A. Vande Wouwer, B. Srinivasan, M. Perrier. Adaptive Extremum-
seeking Control of Fed-batch Cultures of Micro-organisms Exhibiting Over-
flow Metabolism. 28th Benelux Meeting on Systems and Control, Spa, Belgium,
2009.

L. Dewasme, D. Coutinho, A. Vande Wouwer. Robust Linearizing Control of
Yeast and Bacteria Fed-batch Cultures. 29th Benelux Meeting on Systems and
Control, Heeze, The Nederlands, 2010.



Contents

I Overflow Metabolism 22

1 Cultivating Microorganisms: Metabolism and Operating Modes 23

1.1 Primary metabolism . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Glycolysis and Krebs cycle: the oxidation pathway . . . . . . . . 25

1.3 Overflow metabolism: the fermentative pathway . . . . . . . . . 26

1.4 Microorganisms culture modes of operation . . . . . . . . . . . . 27

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II Monitoring of Fed-batch Cultures 33

2 Mechanistic versus Black-box Approaches 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 A brief overview of bioprocess modelling . . . . . . . . . . . . . 35

2.2.1 Mechanistic model of S. cerevisiae fed-batch cultures . . . 41

2.2.2 Mechanistic model of E. coli fed-batch cultures . . . . . . 43

2.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Bioprocess state estimation . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 State observers . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Classical state estimation method . . . . . . . . . . . . . 47

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Data-driven Approach 65

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Input/output selection and measurements data analysis . . . . 65

3.3 Linear versus nonlinear black-box model . . . . . . . . . . . . . 68

9



CONTENTS 10

3.3.1 Linear strategy - Partial Least Squares regression (PLS) . 69

3.3.2 A nonlinear alternative: PCA and Artificial Neural Net-
work (ANN) . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Comparison of the two approaches: Linear versus non-
linear modelling . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Monitoring of E. coli fed-batch cultures . . . . . . . . . . . . . . . 76

3.5 Monitoring of S. cerevisiae fed-batch cultures . . . . . . . . . . . 79

3.5.1 RBF-ANN software sensor potentiality in simultaneous
estimations of different key-components . . . . . . . . . 80

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

III Optimizing Productivity of Fed-batch Cultures 83

4 Real-Time Optimization of Fed-batch Cultures 84

4.1 Control objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 A brief review of real-time optimization . . . . . . . . . . . . . . 86

4.2.1 Optimization criterion . . . . . . . . . . . . . . . . . . . . 87

4.3 Model-free extremum-seeking . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Main principle . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.2 Extremum-seeking through a bank of filters . . . . . . . 90

4.3.3 Extremum-seeking through a RLS scheme . . . . . . . . 95

4.3.4 Controller design . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.1 Application of the bank of filters technique . . . . . . . . 99

4.4.2 Application of the RLS technique . . . . . . . . . . . . . . 102

4.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5.1 Sensitivity of the bank of filters strategy . . . . . . . . . . 105

4.5.2 Sensitivity of the RLS strategy . . . . . . . . . . . . . . . 106

4.6 Model based vs model-free strategies . . . . . . . . . . . . . . . . 108

4.6.1 An adaptive model-based extremum-seeking strategy . 108

4.6.2 A particular model-based extremum-seeking design for
yeast fed-batch cultures . . . . . . . . . . . . . . . . . . . 111

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 A Practical Suboptimal Strategy 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Linearizing control: a comparison of adaptive and robust strate-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



CONTENTS 11

5.2.1 A classical adaptive strategy . . . . . . . . . . . . . . . . 122

5.2.2 A robust strategy . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Linear robust control . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.1 Model linearization . . . . . . . . . . . . . . . . . . . . . . 131

5.3.2 Controller design . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Simulation results: application of the RST controller . . . . . . . 136

5.4.1 Controller performance . . . . . . . . . . . . . . . . . . . 136

5.4.2 Controller improvements considering a delayed output
and probe dynamics . . . . . . . . . . . . . . . . . . . . . 137

5.4.3 Robustness against measurement noise and model un-
certainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Experimental validations of the RST controller at different scales 142

5.5.1 Control interface . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.2 Laboratory-scale results . . . . . . . . . . . . . . . . . . . 143

5.5.3 Industrial-scale results . . . . . . . . . . . . . . . . . . . . 147

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

IV Development of an Experimental Fed-batch Pilot Plant 150

6 Monitoring and Control of a Bacteria Fed-batch Pilot Plant 151

6.1 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.1 Bioreactor setup . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1.2 Media preparation and composition . . . . . . . . . . . . 152

6.1.3 Biomass measurement . . . . . . . . . . . . . . . . . . . . 152

6.1.4 Glucose measurement . . . . . . . . . . . . . . . . . . . . 153

6.1.5 Off-line acetate measurement . . . . . . . . . . . . . . . . 153

6.1.6 On-line acetate measurement . . . . . . . . . . . . . . . . 153

6.1.7 On-line gas measurement . . . . . . . . . . . . . . . . . . 158

6.2 Identification of a partial respiro-fermentative model . . . . . . 159

6.2.1 Model simplifications . . . . . . . . . . . . . . . . . . . . 159

6.2.2 Experimental scheme . . . . . . . . . . . . . . . . . . . . . 160

6.3 Culture optimization . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . 169

6.3.2 Experimental results . . . . . . . . . . . . . . . . . . . . . 171



CONTENTS 12

7 Perspectives and General Conclusions 174

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



List of Figures

1.1 Schematic view of the cells primary metabolism. . . . . . . . . . 24

1.2 First part of the catabolism: Glycolysis and Krebs cycle . . . . . 25

1.3 Sartorius Biostat B+ bioreactor. . . . . . . . . . . . . . . . . . . . 29

1.4 Example of chemostat (courtesy of INRIA laboratories, Ville-
franche, France). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 General schematic representation of the considered fed-batch biore-
actor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Evolution of 5 Monod laws where the saturation constant KS is
varying from 0, 1 g/l (in blue) to 0, 5 g/l (in green) . . . . . . . . 38

2.2 Evolution of an inhibited Monod law where the byproduct P is
linearly increasing from 0 to 10 g/l . . . . . . . . . . . . . . . . . 38

2.3 Schematic representation of the simplified kinetic model using
kos as a global yield coefficient between the substrate and the
oxygen consumptions . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Illustration of Sonnleitner’s bottleneck assumption for cells lim-
ited respiratory capacity . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 First simulated experiment . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Reaction rates of the first simulated experiment . . . . . . . . . . 52

2.7 Second simulated experiment . . . . . . . . . . . . . . . . . . . . 52

2.8 Reaction rates of the second simulated experiment . . . . . . . . 53

2.9 Third simulated experiment . . . . . . . . . . . . . . . . . . . . . 53

2.10 Reaction rates of the third simulated experiment . . . . . . . . . 54

2.11 Fourth simulated experiment . . . . . . . . . . . . . . . . . . . . 55

2.12 Reaction rates of the fourth simulated experiment . . . . . . . . 55

2.13 Application of the EKF to the E. Coli model (2.6) using the pa-
rameter identification results . . . . . . . . . . . . . . . . . . . . 57

13



LIST OF FIGURES 14

2.14 Application of the EKF to the E. Coli model (2.6) with bad initial
estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.15 Application of the EKF to the E. Coli model (2.6) with bad initial
estimations - evolution of the "observability measure" . . . . . . 59

2.16 Application of the asymptotic observer to the E. Coli model (2.6)
with bad initial estimations . . . . . . . . . . . . . . . . . . . . . 60

2.17 Application of the asymptotic observer to the E. Coli model (2.6)
with bad initial estimations - Evolution of the observation error
on X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.18 Application of the asymptotic observer to the E. Coli model (2.6)
in order to estimate the substrate and the acetate concentrations 61

3.1 Typically available measurements . . . . . . . . . . . . . . . . . 66

3.2 Example of a PCA performed on two normalized measured sig-
nals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Linear software sensor structure: PLS . . . . . . . . . . . . . . . 69

3.4 Nonlinear software sensor structure: PCA and RBF − ANN . . 72

3.5 Parameter identification scheme of the RBF − ANN structure . 73

3.6 Biomass estimation in a culture of S. cerevisiae . . . . . . . . . . . 74

3.7 Biomass estimation in 20− l scale fed-batch culture of E. coli (ex-
pression of RP1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Biomass estimation in 150 − l scale fed-batch culture of E. coli
(expression of RP1) . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Biomass estimation in 20− l scale fed-batch culture of E. coli (ex-
pression of RP2 when trained with RP1) . . . . . . . . . . . . . . 78

3.10 Biomass estimation in 150 − l scale fed-batch culture of E. coli
(expression of RP2 when trained with RP1) . . . . . . . . . . . . 78

3.11 Ethanol estimation in 15 − l scale fed-batch culture of S. cerevisiae 80

3.12 Glucose estimation in 15 − l scale fed-batch culture of S. cerevisiae 81

3.13 Simultaneous estimations of biomass, glucose and ethanol con-
centrations in 15 − l scale fed-batch culture of S. cerevisiae . . . . 81

3.14 Simultaneous estimations of key-components in 15− l scale fed-
batch culture of S. cerevisiae with PLS . . . . . . . . . . . . . . . . 82

4.1 Simulation of a fed-batch process controlled at a constant Ssp value 86

4.2 Critical substrate level (Scrit), separating the two regimes, as a
function of the respiratory capacity (rO) . . . . . . . . . . . . . . 88

4.3 Extremum-seeking scheme integrated to the bioreactor plant . . 89

4.4 Reaction rates and optimization criteria as a function of S . . . . 90

4.5 Extremum-seeking scheme with a bank of filters . . . . . . . . . 91



LIST OF FIGURES 15

4.6 DFT of the input signal y in a simulated case of yeast fed-batch
culture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 DFT of the high-pass filter output signal y − η in a simulated
case of yeast fed-batch culture . . . . . . . . . . . . . . . . . . . . 93

4.8 DFT of the low-pass filter output signal ξ in a simulated case of
yeast fed-batch culture . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 DFT of the integrator output signal θ̂ = Ssp in a simulated case
of yeast fed-batch culture . . . . . . . . . . . . . . . . . . . . . . . 94

4.10 Zoom on the optimum of Fig. 4.4 . . . . . . . . . . . . . . . . . . 95

4.11 Extremum-seeking scheme with RLS . . . . . . . . . . . . . . . . 96

4.12 Biomass (X), substrate (S in blue and Ssp in red), and ethanol (E)
concentrations evolutions when no respiratory capacity inhibi-
tion is considered . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.13 Convergence of the optimization criterion y to the optimum when
no respiratory capacity inhibition is considered . . . . . . . . . . 100

4.14 Biomass (X), substrate (S in blue and Ssp in red), and ethanol (E)
concentrations evolutions when inhibition is considered . . . . 101

4.15 Convergence of the optimization criterion y to the optimum when
inhibition is considered . . . . . . . . . . . . . . . . . . . . . . . . 101

4.16 Biomass (X), substrate (S in blue and Ssp in red), and ethanol (E)
concentrations evolutions with RLS when no inhibition is con-
sidered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.17 Convergence of the optimization criterion y to the optimum with
RLS when inhibition is not considered . . . . . . . . . . . . . . . 103

4.18 Biomass (X), substrate (S in blue and Ssp in red), and ethanol (E)
concentrations evolutions with RLS when inhibition is considered103

4.19 Convergence of the optimization criterion y with RLS when in-
hibition is considered . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.20 Histogram of the productivity levels provided by 100 runs us-
ing the bank of filters extremum-seeking strategy with a random
parameter uncertainty normally distributed with zero mean and
5% standard deviation . . . . . . . . . . . . . . . . . . . . . . . . 105

4.21 Biomass (X), substrate (S in blue and Ssp in red), ethanol (E) and
oxygen (O) concentrations evolutions when applying noise on
the input variables of the bank of filters strategy . . . . . . . . . 106

4.22 Convergence of the optimization criterion y to the optimum when
applying noise on the input variables of the bank of filters strat-
egy. The arrows and ellispes indicate the extremum move due
to the ethanol-inhibited respiratory capacity . . . . . . . . . . . 107

4.23 Histogram of the productivity levels provided by 100 runs using
the RLS extremum-seeking strategy with a random parameter
uncertainty normally distributed with zero mean and 5% stan-
dard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



LIST OF FIGURES 16

4.24 Biomass (X), substrate (S in blue and Ssp in red), ethanol (E) and
oxygen (O) concentrations evolutions when applying noise on
the input variables of the RLS strategy . . . . . . . . . . . . . . . 108

4.25 Convergence of the optimization criterion y to the optimum when
applying noise on the input variables of the RLS strategy. The ar-
rows and ellipses indicate the extremum-zone move due to the
ethanol-inhibited respiratory capacity . . . . . . . . . . . . . . . 109

4.26 Haldane kinetic law . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.27 Simulation results of the model-based extremum-seeking strat-
egy applied to microbial growth: biomass concentration, sub-
strate concentration, feed flow rate and specific growth rate evo-
lutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.28 Simulation results of the model-based extremum-seeking strat-
egy applied to microbial growth: evolutions of the adapted pa-
rameters θµ, θS and θI . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.29 Linear approximation of Scrit = f (rO) . . . . . . . . . . . . . . . 113

4.30 Substrate (S, Ssp and Scrit), biomass (X) and ethanol (E) concen-
trations evolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.31 Feed rate (Fin, α and ν parameters, and respiratory capacity (ro)
evolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.32 Representation of the algorithm convergence through the evolu-
tion of Scrit as a function of rO . . . . . . . . . . . . . . . . . . . . 117

4.33 Scrit as a function of rO (in green) and reduced approximation
(in blue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.34 Biomass (X), Substrate (S, S̄crit = Ssp and Scrit), and ethanol (E)
concentrations evolutions . . . . . . . . . . . . . . . . . . . . . . 118

5.1 Linearizing control scheme. . . . . . . . . . . . . . . . . . . . . . 121

5.2 Yeast cultures – ethanol concentration and feed rate when the
controller is designed using a plain linearizing control approach
(no adaptation and no robustification) in the presence of model-
ing errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Yeast cultures – biomass and ethanol concentrations, and feed
rate – robust control strategy – results of 5 runs with random
parameter variations and a noise standard deviation of ±0.1 [g/l].127

5.4 Yeast cultures – ν adaptation and biomass concentration – adap-
tive control strategy – no measurement noise. . . . . . . . . . . . 128

5.5 Yeast cultures – ethanol concentration and feed flow rate – adap-
tive control strategy – no measurement noise. . . . . . . . . . . . 128

5.6 Yeast cultures – ν adaptation and biomass concentration – adap-
tive control strategy – noise standard deviation of ±0.05 [g/l]. . 129

5.7 Yeast cultures – ethanol concentration and feed flow rate – adap-
tive control strategy – noise standard deviation of ±0.05 [g/l]. . 129



LIST OF FIGURES 17

5.8 Bacteria cultures – biomass and acetate concentrations, and feed
rate – robust control strategy – results of 5 runs with random
parameter variations and a noise standard deviation of ±0.1 [g/l].130

5.9 Bacteria cultures – ν adaptation and biomass concentration –
adaptive control strategy – noise standard deviation of ±0.05 [g/l].130

5.10 Bacteria cultures – acetate concentration and feed flow rate –
adaptive control strategy – noise standard deviation of ±0.05 [g/l].131

5.11 Closed-loop control of the bioreactor model. B, A, R, S and T
are polynomials in backward-shift operator q−1 . . . . . . . . . 135

5.12 Robust behavior analysis of the proposed controller in the Black-
Nichols diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.13 Simulation results with the RST controller defined in (5.39), (5.40),
(5.42), (5.44) and (5.45) . . . . . . . . . . . . . . . . . . . . . . . . 138

5.14 Simulation results with the RST controller defined in (5.39), (5.40),
(5.42), (5.44) and (5.45), when presented with a process incorpo-
rating a non-modeled delay of 12min . . . . . . . . . . . . . . . . 138

5.15 Robust behavior analysis of the improved controller in the Black-
Nichols diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.16 Simulation results with the RST controller defined in (5.39), (5.40),
(5.42), (5.44) and (5.45), when presented with a process incorpo-
rating a modeled delay of 12min . . . . . . . . . . . . . . . . . . 140

5.17 Influence of the noise on the measured ethanol concentration
with a non-robust RST controller AO = 1 . . . . . . . . . . . . . 141

5.18 Influence of the noise on the measured ethanol concentration
with a robust RST controller AO = 1 − 0.7q−1 . . . . . . . . . . . 142

5.19 Experimental results of the ethanol regulation applied to laboratory-
scale fed-batch cultures of S. cerevisiae. Evolution of the ethanol
probe measurement E around Ere f = 1 g/l, the feed flow rate
Fin expressed in % of the maximal pump speed and the param-
eter γ, image of the cells growth rate. . . . . . . . . . . . . . . . . 143

5.20 Experimental results of the ethanol regulation applied to laboratory-
scale fed-batch cultures of S. cerevisiae. Evolution of the biomass,
glucose and ethanol concentrations . . . . . . . . . . . . . . . . . 144

5.21 Experimental results of the ethanol regulation applied to laboratory-
scale fed-batch cultures of S. cerevisiae. Evolution of the growth
rate µ and the parameter γ . . . . . . . . . . . . . . . . . . . . . . 145

5.22 Experimental results of the ethanol regulation applied to laboratory-
scale fed-batch cultures of S. cerevisiae. Evolution of the dis-
solved oxygen (circles) and the stirrer speed (squares) respec-
tively in percents of the phase saturation concentration and the
maximum speed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



LIST OF FIGURES 18

5.23 Experimental results of the ethanol regulation applied to laboratory-
scale fed-batch cultures of S. cerevisiae. Evolution of the ethanol
probe measurement E around Ere f = 1 g/l (when E0 > Ere f ),
the feed flow rate Fin expressed in % of the maximal pump speed
and the parameter γ, image of the cells growth rate . . . . . . . 148

5.24 Experimental runs of industrial-scale fed-batch cultures of S. cere-
visiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.25 Experimental results of the ethanol regulation applied to industrial-
scale fed-batch cultures of S. cerevisiae . . . . . . . . . . . . . . . 149

6.1 Calibration of the biomass concentration based on cell dry weight 152

6.2 Biomass measurements . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Acetate measurement assembly based on conductivity . . . . . 154

6.4 A-sep gas diffusion cell . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 Calibration of the acetate measurements using conductimetry . 156

6.6 Determination of the measurement system time constant . . . . 157

6.7 Validation of the acetate concentration estimation by conduc-
timetry in real operating conditions . . . . . . . . . . . . . . . . . 158

6.8 First semi fed-batch experiment . . . . . . . . . . . . . . . . . . . 162

6.9 Second semi fed-batch experiment . . . . . . . . . . . . . . . . . 163

6.10 Third semi fed-batch experiment . . . . . . . . . . . . . . . . . . 164

6.11 First direct validation of model (6.11) . . . . . . . . . . . . . . . . 166

6.12 Second direct validation of model (6.11) . . . . . . . . . . . . . . 167

6.13 Cross-validation of model (6.11) . . . . . . . . . . . . . . . . . . . 167

6.14 Validation of model (6.16) . . . . . . . . . . . . . . . . . . . . . . 169

6.15 Simulation of the RST controller applied to E.coli model (6.11)
with a large measurement delay (4 Ts). Evolution of the acetate
concentration, the feed rate and γ . . . . . . . . . . . . . . . . . . 170

6.16 Simulation of the RST controller applied to E.coli model identi-
fied in (6.11) with a large measurement delay (4 Ts). Evolution
of the biomass, glucose and acetate concentrations . . . . . . . . 170

6.17 Simulation of the RST controller applied to E.coli model (6.11)
with a large measurement delay (4 Ts). Evolution of the cor-
rected open-loop function in the Black-Nichols diagram . . . . . 171

6.18 Experimental results of the RST controller applied to the E.coli
pilot plant. First experiment . . . . . . . . . . . . . . . . . . . . . 172

6.19 Experimental results of the RST controller applied to the E.coli
pilot plant. Second experiment . . . . . . . . . . . . . . . . . . . 173

6.20 Experimental results of the RST controller applied to the E.coli
pilot plant. Third experiment . . . . . . . . . . . . . . . . . . . . 173



LIST OF FIGURES 19

7.1 Off-line experimental results of the ANN applied to the E.coli
pilot plant data. First direct validation . . . . . . . . . . . . . . . 176

7.2 Off-line experimental results of the ANN applied to the E.coli
pilot plant data. Second direct validation . . . . . . . . . . . . . 177

7.3 Off-line experimental results of the ANN applied to the E.coli
pilot plant data. Third direct validation . . . . . . . . . . . . . . 177

7.4 Off-line experimental results of the ANN applied to the E.coli
pilot plant data. First cross-validation . . . . . . . . . . . . . . . 178

7.5 Off-line experimental results of the ANN applied to the E.coli
pilot plant data. Second cross-validation . . . . . . . . . . . . . . 178



List of Tables

2.1 Yield coefficients values of Sonnleitner and Käppeli S. cerevisiae
model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Kinetic coefficients values of Sonnleitner and Käppeli S. cere-
visiae model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Yield coefficients values of Rocha’s E.coli model . . . . . . . . . 44

2.4 Kinetic coefficients values of Rocha’s E.coli model . . . . . . . . 44

2.5 Yield coefficients values of mechanistic model of E. coli . . . . . 54

2.6 Kinetic coefficients values of mechanistic model of E. coli . . . . 56

3.1 Score variances and explanations for the specific example illus-
trated in Fig. 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Loadings of the measurement signals (illustrated in Fig. 3.1) in
each principal direction . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Score explanations of 4 yeast fed-batch cultures data sets . . . . 75

3.4 Average error values for the different possible numbers of scores
(inputs to the ANN) . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Classification of the data sets in function of the recombinant pro-
tein, the scale and the type of validation . . . . . . . . . . . . . . 76

4.1 Variation of the estimation mean error with respect to the dither
signal frequency ω (inhibition effect included in the model) . . 101

4.2 Variation of the estimation mean error with respect to the dither
signal amplitude A (inhibition effect included in the model) . . 102

4.3 Variation of the estimation mean error with respect to the dither
signal frequency ω (inhibition effect included in the model) . . 104

4.4 Variation of the estimation mean error with respect to the dither
signal amplitude A (inhibition effect included in the model) . . 105

4.5 Tuning parameter values. . . . . . . . . . . . . . . . . . . . . . . 115

20



LIST OF TABLES 21

5.1 Order evaluation of each term of (5.30) . . . . . . . . . . . . . . . 133

5.2 Parameters of the linear discrete-time model (5.38) . . . . . . . . 134

6.1 Cross-validation results of the second order regression law for
the estimation of acetate concentration by conductivity . . . . . 156

6.2 Off-line measurements of the first experiment. . . . . . . . . . . 162

6.3 Off-line measurements of the second experiment. . . . . . . . . 163

6.4 Off-line measurements of the third experiment. . . . . . . . . . . 164

6.5 Identified parameter values of model 6.11 . . . . . . . . . . . . . 168

6.6 Initial and operating conditions of the three experiments. . . . . 171



Part I

Overflow Metabolism

22



Chapter 1
Cultivating Microorganisms:
Metabolism and Operating
Modes

1.1 Primary metabolism

The finality of cells primary metabolism is to ensure their growth through
the achievement of the cellular division. This primary metabolism is divided
in 3 main parts (see Fig. 1.1): the catabolism (i.e., the energy production),
the anabolism (i.e., energy consumption to produce amino-acids) and macro-
molecules synthesis (i.e., amino-acids and proteins production leading to cel-
lular division).

In this work, our interest is focused on cells catabolism, presenting the follow-
ing main pathways:

• The glycolysis which is a series of degradation reactions of the glucose
(the main substrate) taking place in the cytoplasm and leading to a final
product called pyruvate.

• The Krebs cycle, also called the tricarboxylic acids (TCA) cycle or citric
acids cycle, which takes place inside the mitochondrions and uses pyru-
vate to product the cells energy units (Adenosine triphosphate or ATP)
and reduced cofactors (typically NADH and FADH).

• The electron transport, still taking place in mitochondrions and produc-
ing ATP from the reduced cofactors.

• The fermentative pathway which, in oxygen limitation, produces typical
products like lactate or ethanol from pyruvate in the cytoplasm.
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Figure 1.1: Schematic view of the cells primary metabolism.
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Figure 1.2: First part of the catabolism: Glycolysis and Krebs cycle. In blue
and green: oxidation pathways respectively due to glucose and
byproducts oxidation. In red: fermentative pathways.

1.2 Glycolysis and Krebs cycle: the oxidation path-

way

The catabolism starts through the glycolysis reactions which allow the produc-
tion of ATP and NADH which will be used further on in the anabolism. The
following pseudo-reaction summarizes the series of reactions represented in
Fig. 1.2:

1 Glucose + 2 NAD+ → 2 ATP + 2 NADH + 2 Pyruvate (1.1)

Fig. 1.2 shows that pyruvate is the source of the next metabolic pathway. In-
deed, Acetyl-Coenzyme A (Acetyl − CoA) molecules previously synthesized
from pyruvate molecules enter the Krebs cycle or TCA cycle and produce new
ATP and NADH molecules following the second pseudo-reaction:
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1 Acetyl −CoA+ 3 NAD+ → 3 NADH+ 1 ATP+ 1 HS−CoA+ 2 CO2 (1.2)

where HS − CoA is the symbolic representation of the coenzyme A (HS− is
the "thiol" function which is the reactive part of the coenzyme A).

A general balance pseudo-reaction taking the previous reactions into account
can be formulated as:

Glucose +O2 → 6 CO2 + 6 H2O + Energy (1.3)

Acetyl-CoA appears as the key-product in the realization of the Krebs cycle.
When the cell oxidative capacity is not fully used by the glycolysis, if any
other available byproduct is likely to be degraded to Acetyl-CoA, these new
molecules will enter the Krebs cycle (1.2) until its capacity to accept new
molecules is totally saturated (i.e., the oxidative capacity is completely ex-
ploited). A new pseudo-reaction comparable to (1.3) can be written for this
particular case as:

Byproduct + O2 → CO2 + H2O (1.4)

However, note that glycolysis is still the priority oxidation channel. Byprod-
ucts like ethanol, methanol, acetate, lactate, etc. only play a role of substitute
substrate source.

1.3 Overflow metabolism: the fermentative pathway

Glucose is thus the main substrate source, necessary to the cells growth. From
this on, it would be legitimate to imagine that more glucose, i.e. a higher glu-
cose consumption rate, would increase the cells growth and that the more there
is glucose, the better the growth is going to be. On the other hand, one can
hardly imagine an infinitely high growth rate. Actually, another substrate is
limiting the cells growth: the oxygen. The fermentation pathway classically
happens when oxygen is limiting the substrate oxidation (however, note that
we define this phenomenon as a simple limitation of oxygen and not real anaer-
obic conditions). In this case, Acetyl-CoA (synthesized from pyruvate) does
not enter the Krebs cycle but follows an alternative pathway leading to byprod-
ucts synthesis like ethanol, acetate, lactate, formate, etc (see Fig. 1.2). Note that
several micro-organisms have their own fermentative pathways. Several ex-
planations of this switching mechanism have been proposed in the literature
(like in Vemuri et al. (2007)) but this remains not well understood. The fermen-
tative pathway can be summarized by the following pseudo-reaction:

Glucose +O2 → 2 byproduct + 2 CO2 + 2 ATP + 2 H2O (1.5)

This phenomenon testifies of the strong link existing between what is called
glucose "overflow" or Overflow Metabolism or "short Crabtree effect" (Crabtree
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(1929)), inducing a critical substrate concentration level or a critical substrate
consumption rate, and the oxygen limitation.

However, this byproduct formation is generally inhibitive for the oxidative ca-
pacity of the cells, slowing down the growth (at low byproduct concentrations)
or sometimes totally inhibiting it at high byproduct concentrations. As this
byproduct formation is itself depending on the oxidative capacity of the cells,
it is not difficult to understand that the cell environment is playing a key-role
in the well-behave of a culture. The principal environment, where the cells
are growing, is generally a tank filled with medium rich in vitamines, glucose,
glycerol, different minerals or any other components necessary to a proper cul-
ture development. This special tank, in which cells culture are performed, is
called a bioreactor. Starting from this initial equipment, different designs and
modes of operation are possible and presented in the next section.

1.4 Microorganisms culture modes of operation

The design of a bioreactor and the choice of a culture mode of operation are
difficult tasks as they are generally functions of the microorganism strain, the
product of interest, or simply the available means. The culture conditions may
radically change with the bioreactor size, shape (i.e., geometry), the presence
of stirring impellers (existing in different types and generally used in order to
homogeneously distribute the cells inside the bioreactor and provide a mini-
mum of oxygenation) and their rotation speed, the injected air flow rate (also
used for cell oxygenation) and its composition (O2, CO2, N2), the temperature,
the pH (acidity), the culture medium composition, the feed medium composi-
tion. On the basis of the previous remark, 3 main stirred-tank bioreactor culture
modes are distinguished taking account of the culture broth inflows and out-
flows: batch, fed-batch and continuous.

The batch mode corresponds to a culture operated without feed broth addi-
tion or subtraction (note that sampling is not considered as a real subtrac-
tion): ∀t, Fin(t) = Fout(t) = 0 where t represents the culture time, Fin the
inlet feed rate and Fout the outlet flow rate. In this case, cells are inoculated in
the bioreactor vessel containing an initial quantity of medium which will not
be altered by external feeding additions. Nevertheless, base or antifoam addi-
tions are sometimes necessary to preserve a good cellular (i.e., pH) or operating
(i.e., foam can cause bioreactor overflows) environment. However, these addi-
tions are generally negligible in comparison with the medium volume so that
the main feature of the batch mode is an assumed constant medium volume
(∀t ≥ t0, V(t) = V(t0) where t0 is the initial time).

The fed-batch culture is operated when there is feed addition (∀t, Fin ≥ 0
where Fin can be seen as the resulting inlet feed rate if several flows are distin-
guished) generally all along the cells growth until the end of the process (i.e.,
when quality and quantity conditions are respected or when mechanical limi-
tations as, for instance, the maximum volume, are reached). As no subtraction
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is performed (∀t, Fout(t) = 0), the main feature of this mode is a never decreas-
ing medium volume (∀t ≥ t0, V(t) ≥ V(t0)). An example of batch or fed-batch
bioreactor is provided in Fig. 1.3.

Continuous reactor conditions imply cultures operated with continuous addi-
tion and subtraction flowing streams (∀t, Fin(t) ≥ 0, Fout(t) ≥ 0, where, once
again, Fout(t) can be seen as the resulting outlet rate if several outputs are con-
sidered). So, adjusting the different inflow and outflow rates, no conclusion
can be made on the instantaneous volume as if Fin(t) > Fout(t), V(t+) > V(t),
where t+ represents a small moment after t, while if Fin(t) < Fout(t), V(t+) <
V(t) and if Fin(t) = Fout(t), V(t+) = V(t). A well-known example of contin-
uous bioreactor is the chemostat (from "chemical static environment", see Fig.
1.4) in which the volume is generally kept constant by adapting the inflow and
outflow rates. The main encountered problem is to find the optimal operating
conditions (generally represented by a static continuous mode of operation,
i.e., constant inflow and outflow rates values) maximizing the cells growth.
Note that there exists a variation of the continuous mode: the perfused mode.
In this particular case, the outflow rate is filtered (using an acoustic filter) in or-
der to send the biomass back in the reactor so that only the medium is renewed.

Summarizing these last comments, the 3 bioreactor operating modes are, ne-
glecting the time variable, mathematically expressed as:

• Batch mode: Fin = Fout = 0 and V = Constant.

• Fed-batch mode: Fin ≥ 0, Fout = 0 and V ≥ V0 (V0 = V(t0)).

• Continuous mode: Fin ≥ 0 and Fout ≥ 0.

Continuous and fed-batch cultures are often performed for food and phar-
maceutical applications. For instance, several experimental applications pre-
sented in this work will consider fed-batch bioprocesses aiming at maximizing
the cell productivity for vaccines production.

A general fed-batch bioreactor scheme is represented in Fig. 1.5. From several
measurements (not represented in the picture for the sake of clarity as they can
be numerous) taken by different probes, a general monitoring control unit typ-
ically regulates important basic factors as, for instance, the dissolved oxygen in
the liquid medium phase (also called "pO2", a relative measurement of the oxy-
gen concentration with respect to the concentration at saturation in the liquid
phase and, for this reason, generally expressed in %) by controlling the motor
imposing the rotational stirrer speed and, if necessary, by supplying air flow
(which can be of different quality going from ambiant air to dry air or enriched
in O2) sent through the sparger situated at the bottom of the bioreactor vessel.

In most cases, pH is also regulated as cells strains can often grow in more or
less neutral acidity conditions (i.e., between pH going from 5 to 8). To this end,
base and acid tanks are prepared and connected to the bioreactor vessel. The
monitoring unit receives the pH measurement (the availability of a pH probe is
basic and included in any commercialized fermenter) and calculates, by means
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Figure 1.3: Sartorius Biostat B+ bioreactor.

Figure 1.4: Example of chemostat (courtesy of INRIA laboratories, Ville-
franche, France).
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Figure 1.5: General schematic representation of the considered fed-batch
bioreactor.
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of a classical controller so as P, PI or PID, an input sent to the peristaltic pump in
order to impose a certain base or acid flow rate. Only one pump is represented
in Fig. 1.5, once again, for the sake of clarity but it is evident that each drawn
tank requires its own pump. These pumps are also sometimes integrated to the
monitoring control unit as in Fig. 1.3.

The temperature also needs to be controlled at a sufficient (and not too high)
level. To this end, a heating jacket filled with heated water is controlled by the
monitoring unit to regulate the bioreactor temperature (for instance bacteria
and yeasts are growing between 30 and 37oC).
In fed-batch bioprocesses, the inlet feed flow rate is controlled all along the cul-
ture time, requiring a new peristaltic pump in order to add the feed medium
to the culture broth. Different control techniques can be used for this purpose.
Open-loop techniques consist in imposing pre-registered pump inputs varying
with time whatever the evolution of the operating conditions can be. Closed-
loop techniques, on the other hand, use different measurements (or informa-
tion about the operating conditions) to adapt the pump inputs, for instance,
in order to maximize a specific feature so as biomass concentration or another
metabolite concentration.

Finally, outlet gas coming from the vessel goes through a cooling column after
which a gas analyzer (note that this equipment is more optional and expensive)
can be placed to measure molar fraction of O2 and CO2 in the outlet gas. Com-
bined to the molar fraction of O2 and CO2 in the inlet gas (air flow) sent into the
culture medium through the sparger, a gas analyzer provides a convenient way
to calculate the cells oxygen uptake rate (OUR) and carbon dioxide-exchange
rate (CER). These latter signals are very informative about the culture operat-
ing conditions. Indeed, the respiratory quotient (RQ), which is the ratio of the
produced carbon dioxide moles over the consumed oxygen moles, can indicate
through which pathway the cells are evolving. For instance, if RQ ≤ 1, the
cells are evolving in the oxidative pathway (the oxidation is more important
than the carbon dioxide production) while, if RQ >> 1, the cells are evolving
through the fermentative pathway (the carbon dioxide production is far more
important than the oxygen consumption).

1.5 Conclusion

Starting from cell primary metabolism, this section aims at reviewing how mi-
croorganisms host strains can be cultivated on the basis of a priori metabolic
and heuristic knowledge. The attention is first focused on the cell catabolism
and, more accurately, on the glycolysis, the Krebs cycle and the fermentation.
On the basis of those principal metabolic pathways, consequent basic culture
structure, equipment and classical operating conditions are presented, high-
lighting a special type of bioprocess widely used in different food or phar-
maceutical industrial applications, which is called fed-batch culture. In the
following chapters, the attention will be focused on all the means that are nec-
essary to optimize fed-batch cultures of microorganisms exhibiting overflow
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metabolism. Nevertheless, a mathematical optimization requires a mathemat-
ical expression of the purposes. A prior unavoidable step is then to mathe-
matically describe the system. The next part of this work aims then at first
macroscopically modelling the process.



Part II

Monitoring of Fed-batch
Cultures

33



Chapter 2
Mechanistic versus Black-box
Approaches

2.1 Introduction

Modelling of bioprocesses requires a complete monitoring of the fed-batch
bioreactor plant described in chapter 1 but also off-line measurements of the
model key macroscopic components (biomass, substrates, byproducts). More-
over, in order to optimize this bioprocess, several on-line measurements can be
of a great interest. Monitoring of bioprocesses becomes then a particularly del-
icate task because on-line hardware sensors measuring the concentrations of
the key culture components are expensive (in terms of acquisition and mainte-
nance costs), are not always available (for instance, it is difficult to measure the
low concentration levels of substrate in yeast or bacteria cultures, or to measure
some product concentration such as acetate), and have stringent operational
constraints (sterilization, sampling, etc). Hence, it is of significant interest to
develop software sensors, which make use of available information sources,
e.g., a mathematical process model and available on-line measurements. In
this chapter, attention is focused on these soft sensor techniques, distinguish-
ing mechanistic and data-driven modelling approaches. On the one hand, the
mechanistic approach - which will appear as an "expensive" but "comprehen-
sive" approach - is based on the existence of a physical (biological) process
model and some measurements of the main macroscopic biological variables.
Mechanistic models have a biological interpretation, which can be quite use-
ful in understanding the process behaviour, and have a predictive capability
which can compensate for the lack of frequent measurements of the biological
variables. However this approach suffers from the difficulty and costs asso-
ciated with the model derivation (which requires process knowledge, collec-
tion of experimental data, parameter estimation and model validation), and
the costs associated with the sensors measuring the biological variables. On
the other hand, the main advantage of data-driven techniques - which will
appear as "cheap" but "limited" techniques - is their simplicity of implementa-
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tion based on inexpensive, basic on-line measurement signals. However, data-
driven representations usually lack biological interpretability and may have
limited predictive capability (extrapolation in the absence of measurement in-
formation). This chapter is organized as follows. The next section is devoted to
bioprocess modelling following a mechanistic approach. In the third section,
bioprocess models and sensors are exploited to design software sensors. The
classical extended Kalman filter and asymptotic observer are then dealt with.

2.2 A brief overview of bioprocess modelling

Any mathematical operation used to extract information from physical mea-
surements can be viewed as a software sensor. State or parameter estimation is
then conceivable once one can mathematically model the interactions within a
system. The modelling objective is to establish (possibly simple) mathematical
relations between explicative variables and explained ones. These relations are
not exclusive. Different modelling approaches can be considered, depending
on the process characteristics ((non)linearity, structural or parametric time vari-
ation, different time scales, stochastic nature of the measured signals), and the
operating conditions (batch, fed-batch or continuous, repetitive, open-loop or
closed-loop, small or large scale). In the following, two approaches are distin-
guished, i.e., the mechanistic approach which makes use of the available a pri-
ori knowledge about the process and experimental data to derive a physically
(biologically) inspired model, and the data-driven approach which establishes
a black-box representation of the process using the observation of input-output
data. The mechanistic approach is the most popular bioprocess modelling tech-
nique. For optimization, monitoring and control purposes, this approach is
usually macroscopic in essence (as opposed to microscopic approaches, which
are based on a detailed analysis of the cell metabolic network), i.e., it makes
use of the concept of a macroscopic reaction scheme involving a few reactants,
products and catalysts considered as macroscopic entities. These reactions are
represented as follows (Bastin and Dochain (1990)):

∑
i∈Rr

ki,r ξi
ϕr→ ∑

j∈Pr

kj,r ξ j r ∈ [1, . . . , nϕ] (2.1)

where

• ki,r and kj,r are the pseudo-stoichiometric coefficients or yield coefficients.
They are negative when they relate to a reactant and positive when they
relate to a product.

• ϕr is the reaction rate of reaction r.

• ξi is the ith macroscopic component (N macroscopic components are con-
sidered).

• Rr(Pr) is the set of reactants (products) in reaction r.

• nϕ is the number of reactions.
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It is important to note that these macro-reactions do not satisfy elementary
mass balances, hence the name pseudo-stoichiometric coefficients for ki,r and
kj,r. Using macroscopic mass balances, a general differential state-space model
can be obtained as follows:

dξ(t)
dt

= Kϕ(ξ, t)− D(t)ξ(t) + F(t)− Q(t) (2.2)

where

• ξ is the vector of concentrations of the macroscopic components.

• K is the pseudo-stoichiometric matrix.

• ϕ is the vector of reaction rates.

• D is the dilution rate (D(t) = Fin(t)
V(t) where Fin is the inlet flow rate and V

the medium volume).

• F is the vector of feed rate of selected components (Fj = D(t)ξin,j(t) if the
component is diluted in the feed stream, or Fj = Fj(t) if the component is
introduced in the culture in gaseous form) and Q is the vector of outflow
rates of the considered components in gaseous form.

Establishing this kind of dynamic model requires the determination of a gen-
eral reaction scheme, the selection of an appropriate kinetic model structure
and a parameter identification procedure. The quality of the resulting model
will of course depend on the information content of the experimental data at
hand, as well as on an appropriate choice of the model structure. For these
reasons, bioprocess models are usually uncertain (structural and parametric
uncertainties), and while they offer an interesting insight into the system un-
der consideration, they do not always predict the behaviour of the real system
in a wide range of operating conditions. An appealing alternative to bypass the
tedious identification steps required by the mechanistic approach is the data-
driven black-box approach which considers the system only through the evo-
lution of its inputs and outputs. A significant advantage of black-box models
are their ability to exploit information contained in every available measure-
ment. While the mechanistic approach requires off-line measurements of the
component concentrations for model identification and on-line measurements
of some of these components for state estimation, data-driven techniques allow
information to be retrieved from signals as diverse as pH, dissolved oxygen,
pressure, stirrer speed (signals which would be quite difficult to include in
a reasonably complex mechanistic representation of the process). A classical
example of black-box model is the function generated by an Artificial Neural
Network (ANN), which defines a static map, model or function of the inputs.
Different ANN architectures can be selected, differing in the number of layers
and the type of nonlinear activation functions (sigmoids, Gaussian, etc). More
details on these alternative structures will be given in the following.

In this chapter, we first consider a generic mechanistic model that would, in
principle, allow the representation of the culture of different strains presenting
an overflow metabolism (yeasts, bacteria, animal cells, etc).
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This model describes therefore the cell catabolism through the following three
main reactions, reminding the previously presented pseudo-reactions (1.3), (1.5)
and (1.4):

Substrate oxidation : kS1S + kO1 O
r1X→ kX1 X + kC1 C (2.3a)

Substrate fermentation : kS2S + kO2 O
r2X→ kX2 X + kP2 P + kC2 C (2.3b)

Byproduct oxidation : kP3P + kO3 O
r3X→ kX3 X + kC3 C (2.3c)

where X, S, P, O and C are, respectively, the concentration in the culture medium
of biomass, substrate (typically glucose), byproduct (i.e. ethanol or methanol
in yeast cultures, acetate in bacteria cultures or lactate in animal cells cultures),
dissolved oxygen and carbon dioxide. kξi (i = 1, 2, 3, ξ = X, S, P, O, C) are the
yield coefficients and r1, r2 and r3 are the nonlinear specific consumption rates
given by:

r1 =
min

(

rS, rScrit

)

kS1
(2.4a)

r2 =
max

(

0, rS − rScrit

)

kS2
(2.4b)

r3 =

max

(

0,
kos(rScrit

−rS)

kop
P

P+KP

)

kP3
(2.4c)

Note that these specific consumption rates are divided, for each reaction, by
the corresponding substrate yield coefficient (kS1 and kS2 for the main sub-
strate, as generally glucose, in the first two reactions and kP3 for the substitute
carbon source, the byproduct, in the third reaction) in order to normalize the
consumption mechanism with respect to the substrate source. For instance, the
substrate consumption rate of the first reaction is kS1r1 which is equal to rS or
rScrit

if the oxidative capacity is completely exploited, while the corresponding

biomass growth rate is kX1r1 which is respectively equal to kX1
kS1

rS or kX1
kS1

rScrit
.

The yield coefficient ratio kX1
kS1

illustrates this normalization of the growth rate

with respect to the substrate consumption. The kinetic terms associated with
the substrate consumption rS and the critical substrate consumption rScrit

(func-
tion of the cells oxidative or respiratory capacity rO) are given by:

rS = µS
S

S + KS
(2.5a)

rScrit
=

rO

kos
=

µO

kos

O

O + KO

KiP

KiP + P
(2.5b)

These expressions take the classical form of Monod laws where µS and
µO
kos

are the maximal values of, respectively, rS and rScrit
, KS and KO are the sat-

uration constants of the corresponding expressions, and KiP is the inhibition
constant. As a numerical exercise, Fig. 2.1 shows the evolution of such laws

for instance, for a possible substrate consumption law where µ = µS
S

S+KS
with

µS = 1 g/g/h and KS = 0, 1 − 0, 2 − 0, 3 − 0, 4 − 0, 5 g/l. Note that half the
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Figure 2.1: Evolution of 5 Monod laws where the saturation constant KS is
varying from 0, 1 g/l (in blue) to 0, 5 g/l (in green).
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Figure 2.2: Evolution of an inhibited Monod law where the byproduct P is
linearly increasing from 0 to 10 g/l. Dashed lines: evolutions of
the same law for fixed concentrations of P = 2 − 4 − 6 g/l.

maximum value of µ is reached when S = KS. Of course, all these curves
are converging to the same value: µS. Fig. 2.2 shows the evolution of an-
other Monod expression like (2.5b) where inhibition of the oxidation capacity

by another byproduct P is considered as in µ = µO
O

O+KO

KiP
KiP+P (as O is increas-

ing from 0 to 0, 007 g/l, P is linearly increasing from 0 to 10 g/l). This time,
µO = 0.256 g/g/h, KO = 0.0001 g/l and KiP = 10 g/l. The dashed lines show
the laws where P = 2 − 4 − 6 g/l.

kos and kop represent the coefficients characterizing respectively the yield be-
tween the oxygen and substrate consumptions, and the yield between the by-
product and oxygen consumptions. In order to illustrate the role of kos and
kop, consider for instance the oxygen consumed in the first two reactions (2.3a)
and (2.3b). As shown by Fig. 2.3, a certain substrate quantity equal to kS1r1 is
oxidized using an equivalent oxygen quantity kO1rO1 = kS1r1 where rO1 can
be seen as the oxygen consumption rate in the first reaction. In a similar way,
the equivalent substrate and oxygen quantities required by the second reaction
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Figure 2.3: Schematic representation of the simplified kinetic model using kos
as a global yield coefficient between the substrate and the oxygen
consumptions

are equal and respectively defined as kS2r2 and kO2rO2 where rO2 is the oxygen
consumption rate in the second reaction. In order to globally compare rS to rO,
a general yield coefficient kos summarizing the general ratio between substrate
and oxygen consumptions in the two reactions is chosen so that rO = kosrS. The
introduction of kop in the model follows therefore the same reasoning for the
byproduct. Nevertheless, note that for particular cells which don’t need oxy-
gen in (2.3b), kos is sometimes summarized to kO1 and, for analogous reasons,
kop to kO3. As the aim is to provide an as general as possible representation of
overflow metabolism, this general writing is conserved in the following chap-
ters.

Kinetic model (2.4) is based on Sonnleitner’s bottleneck assumption (Sonnleit-
ner and Käppeli (1986)) which was applied to a yeast strain Saccharomyces
cerevisiae (Figure 2.4). Following sections 1.2 and 1.3, the cells are likely to
change their metabolism because of their limited oxidative capacity (i.e., the
limited capacity of the TCA cycle to accept Acetyl-CoA molecules as depicted
in 1.3). When the substrate is in excess (concentration S > Scrit and the glu-
cose consumption rate rS > rScrit

), the cells produce a byproduct P through the
fermentative pathway, and the culture is said in (respiro-) fermentative (RF)
regime. On the other hand, when the substrate becomes limiting (concentra-
tion S < Scrit and the glucose consumption rate rS < rScrit

), the available sub-
strate (typically glucose), and possibly the byproduct P (as a substitute carbon
source), if present in the culture medium, are oxidized. The culture is then said
in respirative (R) regime.
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Figure 2.4: Illustration of Sonnleitner’s bottleneck assumption (Sonnleitner
and Käppeli (1986)) for cells limited respiratory capacity.

Following (2.2), component-wise mass balances give the following differential
equations:

dX
dt

= (kX1r1 + kX2r2 + kX3r3)X − DX (2.6a)

dS
dt

= −(kS1r1 + kS2r2)X + DSin − DS (2.6b)

dP
dt

= (kP2r2 − kP3r3)X − DP (2.6c)

dO
dt

= −(kO1r1 + kO2r2 + kO3r3)X − DO + OTR (2.6d)

dC
dt

= (kC1r1 + kC2r2 + kC3r3)X − DC − CTR (2.6e)

dV
dt

= Fin (2.6f)

where Sin is the substrate concentration in the feed, Fin is the inlet feed rate,
V is the culture medium volume and D is the dilution rate (D = Fin/V). OTR
and CTR represent respectively the oxygen transfer rate from the gas phase to
the liquid phase and the carbon transfer rate from the liquid phase to the gas
phase. Classical models of OTR and CTR are given by:

OTR = kLaO(Osat − O) (2.7a)

CTR = kLaC(C − Csat) (2.7b)

where kLaO and kLaC are respectively the volumetric transfer coefficients of
O and C and, Osat and Csat are respectively the dissolved oxygen and carbon
dioxide concentrations at saturation.

For illustration purposes, yeasts and bacteria model taken from the literature
are compared to the general mechanistic model proposed in (2.4), (2.5) and
(2.6) in the following sections 2.2.1 and 2.2.2.
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2.2.1 Mechanistic model of S. cerevisiae fed-batch cultures

The yeast catabolism can be described using reaction scheme (2.3) where kO2 =
0, kos = kO1 and kop = kO3 (Renard (2006), Sonnleitner and Käppeli (1986)). In-
deed, the fermentative pathway (1.5) often occurs, for yeast, independently of
the oxygen conditions (i.e., in aerobic and anaerobic conditions) and produces
ethanol as byproduct.

Summarizing these last remarks, reaction scheme (2.3) becomes:

Substrate oxidation : S + kO1 O
r1X→ kX1 X + kC1 C (2.8a)

Substrate fermentation : S
r2X→ kX2 X + kP2 E + kC2 C (2.8b)

Ethanol oxidation : E + kO3 O
r3X→ kX3 X + kC3 C (2.8c)

where E is the ethanol concentration. The configuration of the yield coeffi-
cients is of course conventional. In the first two reactions (2.8a) and (2.8b),
the yield coefficients are normalized with respect to the substrate concentra-
tion and in the third one (2.8c), they are normalized with respect to the ethanol
concentration. Other formulations could be proposed as, for instance, a gen-
eral normalization with respect to the biomass concentration, but this would
require proportional modifications of the whole kinetic model.

The growth rates r1, r2 and r3 are given by:

r1 = min

(

rS,
rO

kO1

)

(2.9)

r2 = max

(

0, rS −
rO

kO1

)

(2.10)

r3 = max

(

0,
(rO − kO1rS)

kO3

E
E + KE

)

(2.11)

where the respiratory or oxidative capacity rO = kO1 rScrit
is given by:

rO = µO
O

O + KO

KiE

KiE + E
(2.12)

All the yield and kinetic coefficients values are provided in Tables 2.1 and 2.2.
Note that the original Sonnleitner and Käppeli’s model does not take a possi-
ble inhibition of the respiratory capacity by ethanol into account. This assump-
tion can indeed be acceptable when the ethanol concentration is relatively low
(the order of KiE being O(101)), which is the case in many applications where
the main objective is to limit the fermentation and to maximize the biomass
growth. However, ethanol concentrations around 1 or 2 g/l can already sig-
nificantly inhibit the cells growth (Pham (1999)) so that the consideration of an
inhibitive term in (2.12) should not be neglected.

The differential system based on the main components mass balances is now:
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Table 2.1: Yield coefficients values of Sonnleitner and Käppeli for S. cerevisiae
model (Sonnleitner and Käppeli (1986))

Yield coefficients Values Units

kX1 0,49 g o f X/g o f S
kX2 0,05 g o f X/g o f S
kX3 0,72 g o f X/g o f E
kS1 1
kS2 1
kP2 0,48 g o f E/g o f S
kP3 1
kO1 0,3968 g o f O2/g o f S
kO2 0
kO3 1,104 g o f O2/g o f E
kC1 0,5897 g o f CO2/g o f S
kC2 0,4621 g o f CO2/g o f S
kC3 0,6249 g o f CO2/g o f E

Table 2.2: Kinetic coefficients values of Sonnleitner and Käppeli for the S.
cerevisiae model (Sonnleitner and Käppeli (1986))

Kinetic coefficients Values Units

µO 0,256 g o f O2/g o f X /h
µS 3,5 g o f S/g o f X /h
KO 0,0001 g o f O2/l
KS 0,1 g o f S/l
KE 0,1 g o f E/l
KiE 10 g o f E/l

dX
dt

= (kX1r1 + kX2r2 + kX3r3)X − DX (2.13a)

dS
dt

= −(r1 + r2)X + DSin − DS (2.13b)

dE
dt

= (kP2r2 − r3)X − DE (2.13c)

dO
dt

= −(kO1r1 + kO3r3)X − DO + OTR (2.13d)

dC
dt

= (kC1r1 + kC2r2 + kC3r3)X − DC − CTR (2.13e)

dV
dt

= Fin (2.13f)

All along this work, this S. cerevisiae model will be considered to represent yeast
cultures.
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2.2.2 Mechanistic model of E. coli fed-batch cultures

E.coli is a very important bacteria host strain abundantly used in biophar-
maceutical industries for different purposes like vaccine production through
biomass growth (Rocha (2003), Hulhoven et al. (2006)). The bacteria catabolism
is just differing from the yeast’s in the sense where acetate, the main byproduct
of the fermentative pathway, can only be produced in the presence of oxygen
(Rocha (2003)). If oxygen is missing, the fermentative pathway may occur but
leads to formate or lactate productions.

In this case, kO2 is then different from 0 and the reaction scheme is as follows:

Substrate oxidation : kS1 S + kO1 O
r1X→ X + kC1 C (2.14a)

Substrate fermentation : kS2 S + kO2 O
r2X→ X + kP2 A + kC2 C (2.14b)

Ethanol oxidation : kP3 A + kO3 O
r3X→ X + kC3 C (2.14c)

where A is the acetate concentration. Following the same remark as in sec-
tion 2.2.1 for reaction scheme (2.8), it should be noticed that this new reac-
tion scheme is entirely normalized with respect to biomass (following Rocha
(2003)). Once again, a new kinetic coefficient normalization could be per-
formed with a new yield coefficients formulation for comparison purposes but
this is the matter of subsequent chapters.

The growth rates r1, r2 and r3 are given by:

r1 =
min

(

rS, rO
kos

)

kS1
(2.15)

r2 =
max

(

0, rS − rO
kos

)

kS2
(2.16)

r3 =
max

(

0,
(rO−rSkos)

kop
A

A+KA

)

kP3
(2.17)

where the respiratory or oxidative capacity rO = kos rScrit
is given by:

rO = µO
O

O + KO

KiA

KiA + A
(2.18)

The differential system based on the main components mass balances is now:
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Table 2.3: Yield coefficients values of Rocha’s E.coli model (Rocha (2003))

Yield coefficients Values Units

kX1 1
kX2 1
kX3 1
kS1 0,316 g o f S/g o f X
kS2 0,04 g o f S/g o f X
kP2 0,157 g o f A/g o f X
kP3 0,432 g o f A/g o f X
kO1 0,339 g o f O2/g o f X
kO2 0,471 g o f O2/g o f X
kO3 0,955 g o f O2/g o f X
kC1 0,405 g o f CO2/g o f X
kC2 0,754 g o f CO2/g o f X
kC3 1,03 g o f CO2/g o f X
kos 2,02 g o f O2/g o f X
kop 1,996 g o f O2/g o f X

Table 2.4: Kinetic coefficients values of Rocha’s E.coli model (Rocha (2003))

Kinetic coefficients Values Units

µO 0,7218 g o f O2/g o f X /h
µS 1,832 g o f S/g o f X /h
KO 0,0001 g o f O2/l
KS 0,1428 g o f S/l
KA 0,5236 g o f A/l
KiA 6,952 g o f A/l

dX
dt

= (r1 + r2 + r3)X − DX (2.19a)

dS
dt

= −(kS1r1 + kS2r2)X + DSin − DS (2.19b)

dA
dt

= (kP2r2 − kP3r3)X − DA (2.19c)

dO
dt

= −(kO1r1 + kO2r2 + kO3r3)X − DO + OTR (2.19d)

dC
dt

= (kC1r1 + kC2r2 + kC3r3)X − DC − CTR (2.19e)

dV
dt

= Fin (2.19f)
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2.3 Observability

Observability is a structural system property that relates to the possibility of
estimating the system state on the basis of the available measurement informa-
tion. If the system under consideration is nonlinear (which is almost always
the case in bioprocess applications), observability depends on the system in-
puts and can be defined as:

Definition. A system is observable if

∀t0, ∃t1 < ∞|y (t; t0, ξ(0), u(t)) = y (t; t0, ξ ′(0), u(t)) ,
∀u(t), t0 < t < t1 ⇒ ξ(0) = ξ ′(0). (2.20)

In other words, a system is observable if two identical output trajectories y
(function of time t, the initial states ξ(0) and of the input command u(t)) over
a given finite time horizon implies the equality of the initial states ξ(0) and
ξ ′(0).

A closer look at observability is provided by canonical observability forms as
introduced in Gauthier and Kupka (1994) and Zeitz (1984), which allow the de-
termination of observability for nonlinear systems (such as biological systems)
if they can be put in the following form:

∀i ∈ {1, . . . , q} , xi ∈ ℜni , n1 ≥ n2 ≥ . . . ≥ nq,

∑1≤i≤q ni = n

ẋ =



























ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2, x3)

...
˙xq−1 = fq−1(x1, . . . , xq)
ẋq = fq(x1, . . . , xq)

(2.21)

y = x1

where x is the state vector, y the vector of measured states, fi a partition of
the nonlinear state equations, q the number of partitions. (2.22) is also called

a Lower Hessenberg System, i.e., a system where
∂ f i
∂x j

= 0 with j > i + 1. This

definition simply says that the Jacobian of ẋ is a Lower Hessenberg Matrix. To
assess if the system is observable, the bioprocess model (2.2) - or (2.6) in the
particular case of bacteria culture - must be put in the form of (2.22) by defining
an appropriate partition, and the following condition must be checked:

rank
∂ fi

∂xi+1
= ni+1 ∀i ∈ {1, . . . , q − 1} (2.22)

(2.22) and (2.22) simply translate the fact that a partition of states xi+1 is only
observable if any perturbation of these states propagates to partition xi.
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2.4 Bioprocess state estimation

2.4.1 State observers

Starting from (2.2), one defines a general state observer as follows:

dξ̂(t)
dt

= Kϕ(ξ̂, t)− D(t)ξ̂(t) + F(t)− Q(t) + Ω(ξ̂) (y − ŷ) (2.23a)

y = Lξ = ξ1 (2.23b)

where ξ̂ is the on-line estimate of ξ, Ω(ξ̂) is the gain matrix depending on ξ̂, L is
an elementary matrix that selects the measured components of ξ (ξ1 represents
the vector of measured components). The only difference between (2.2) and
(2.23a) lies in the additional term proportional to the observation error of the
measured part of the state (ξ1 − ξ̂1). (2.23a) becomes identical to (2.2) when
the estimation is perfect. It is now up to the user to find acceptable designs of
Ω(ξ̂) such that a fast decay of the observation error is achieved. Omitting the
dependence on time t for the sake of clarity, the observation error dynamics
corresponds to:

d
(

ξ − ξ̂
)

dt
= K

(

ϕ(ξ)− ϕ(ξ̂))
)

− D
(

ξ − ξ̂
)

+ Ω(ξ̂)L
(

ξ − ξ̂
)

(2.24)

where
(

ξ − ξ̂
)

= 0 appears as an equilibrium point. A practical way to design

Ω(ξ̂) is to consider the linearized approximation of model (2.24) as follows:

d
(

ξ − ξ̂
)

dt
=
(

A(ξ̂)− Ω(ξ̂)L
) (

ξ − ξ̂
)

(2.25)

with

A(ξ̂) = K
[

∂ϕ(ξ)

∂ξ

]

ξ=ξ̂

− DIN (2.26)

where IN is the square identity matrix of dimension NxN. The problem is then
reduced to an arbitrary choice of the eigenvalues of the matrix

(

A(ξ̂)− Ω(ξ̂)L
)

fixing the rate of convergence of the observation error to zero. The convergence
is ensured if (Vidyasagar (1978)):

•
(

A(ξ̂)− Ω(ξ̂)L
)

is continuously differentiable,

•
(

A(ξ̂)− Ω(ξ̂)L
)

is bounded,

• The real parts of all the eigenvalues of
(

A(ξ̂)− Ω(ξ̂)L
)

are negative.

The solution of (2.25) takes then an exponential form so that the convergence is
said to be exponential. From this, it follows that the system is exponentially ob-
servable and (2.23a) is an exponential observer. Sometimes, the design of (2.25)
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does not allow a free assignment of the eigenvalues (i.e., a free design of the
dynamics) but leads to a system converging asymptotically to the equilibrium
point

(

ξ − ξ̂
)

= 0. Actually, this means that the system (2.25) is still converging
but not over a finite time. Such observers are called asymptotic observers.

In the next sections, a few popular state estimation techniques are presented
(for more details and techniques see Bastin and Dochain (1990), Bogaerts and
Vande Wouwer (2003) and Goffaux and Vande Wouwer (2005)). Their appli-
cation to a mechanistic model of culture of micro-organisms with an overflow
metabolism (e.g. yeasts or bacteria cultures) is investigated in order to discuss
the advantages and also the possible limitations of general mechanistic model-
based observers.

2.4.2 Classical state estimation method

An Example of Exponential Observer: the Kalman Filter

The Kalman filter (Gelb (1974)), which is by far the most popular state esti-
mation technique used for bioprocess monitoring, is an exponential observer
that minimizes the variance of the estimation error. It was first developed in
a linear framework before being extended to the nonlinear case. Consider the
following nonlinear system derived from (2.2):

dξ1

dt
= K1 ϕ(ξ)− Dξ + Dξ in

1 + η1(t); ξ1(0) = ξ1,0 (2.27a)

dξ2

dt
= K2 ϕ(ξ)− Dξ + Dξ in

2 + η2(t); ξ2(0) = ξ2,0 (2.27b)

y = Lξ + ǫ(t) = ξ1 + ǫ(t) (2.27c)

where ξ1 represents the vector of measured states while ξ2 represents the un-
measured states that complete the partition of ξ. ξ in is the vector of states
contained in the inlet flows. ǫ(t) is the measurement noise, whereas η(t) =

[η1(t) η2(t)]
T is the model noise (both assumed white and normally distributed

with zero mean). Assuming that this system is exponentially observable, the
Extended Kalman Filter (EKF) is based on a first-order linearization of the pro-
cess model along the estimated trajectory

dξ̂

dt
= Kϕ(ξ̂)− Dξ̂ + Dξ in + Ω(ξ̂)(y − Lξ̂); ξ̂(0) = ξ̂0 (2.28a)

dP
dt

= A(ξ̂)P + PA(ξ̂)T − PLTR−1
ǫ LP + Rη; P(0) = P0 (2.28b)

Ω(ξ̂) = PLT R−1
ǫ (2.28c)

where Ω is the observer error gain, P is the solution of the Riccati equation
(2.28b), Rη is the covariance matrix of the state (or model) noise, Rǫ is the co-
variance matrix of the measurement noise and A is the linear transition matrix
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computed along the estimated trajectory. The previous formulation (2.28) pro-
vides time-continuous estimations from time-continuous measurements. In
practice however, concentrations of the main species are generally measured
at discrete times only and with relatively low sampling frequencies (the mea-
surements are sometimes collected at different rates, i.e., resulting in an asyn-
chronous measurement configuration). The corresponding formulation is the
continuous-discrete EKF where continuous estimations are provided from dis-
crete measurements

y = Lξ(tk) + ǫ(tk) (2.29)

where ǫ(tk), the measurement noise at time tk is a normally distributed white
noise with zero mean and covariance matrix Rǫ(tk).

The algorithm now proceeds in two steps: a prediction step (corresponding
to the time period between two measurement times) and a correction step oc-
curring each time a new measurement is available. The first step (prediction
between tk and tk+1) corresponds to:

dξ(t)
dt

= Kϕ(ξ(t), t)− Dξ(t) + Dξ in; ξ(tk) = ξ(t+k ), t+k ≤ t < t−k+1 (2.30a)

dP(t)
dt

= A(ξ(t))P(t) + P(t)A(ξ(t))T + Rη ; P(tk) = P(t+k ), t+k ≤ t < t−k+1

(2.30b)

The correction step occurring at time tk+1 corresponds to:

Ω(ξ(tk+1)) = P(t−k+1)LT
[

LP(t−k+1)LT + Rǫ(tk+1)
]−1

(2.31a)

ξ(t+k+1) = ξ(t−k+1) + Ω(ξ(tk+1))
(

y(tk+1)− Lξ(t−k+1)
)

(2.31b)

P(t+k+1) = P(t−k+1)− Ω(ξ(tk+1))LP(t−k+1) (2.31c)

with t−k+1 and t+k+1 characterizing respectively the values before and after cor-
rection. The Kalman filter is an optimal exponential observer in the sense that
it minimizes asymptotically the mean square estimation error. Unfortunately,
the extension to nonlinear systems is realized through a linearization along the
estimated trajectory. The EKF is no longer optimal and can sometimes lead to
biased estimates or, in the worst case of bad initial conditions, to convergence
problems. The Kalman filter, as well as most of the exponential observers, relies
on the availability of an accurate process model. This prerequisite is far from
being satisfied in many bioprocess applications, where the models are usually
uncertain. It is therefore of interest to look for more robust alternatives, which
justifies the following approach.
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Asymptotic Observer

Even if uncertainties are always hanging over all the parameters of a biopro-
cess model, their impact is more concentrated on the kinetic terms which are
generally badly known. In the context of bioprocess applications, the observers
that allow to asymptotically reconstruct unknown states when the kinetics are
unknown are called asymptotic observers. The asymptotic convergence requires
that the yield coefficients are known and the number of measured state vari-
ables is equal to or larger than the rank p of the yield matrix K (Bastin and
Dochain (1990)).

A partition of the yield matrix (Ka, Kb) is first selected so that the (pxM) sub-
matrix Ka is a full row rank submatrix (i.e., so that the rank of Ka is equal to p).
Then, there exists a state transformation

z = Cξa + ξb (2.32)

where the (N − p)xp matrix C is the unique solution of

CKa + Kb = 0 (2.33)

so that

dz
dt

= −Dz + C(Fa − Qa) + (Fb − Qb) (2.34)

Under these conditions, the dynamics of z is independant of the kinetics. If
a partition induced by the measured and unmeasured states is now consid-
ered, i.e., K1, K2 corresponding to (ξ1,ξ2), the auxiliary vector z can be defined
accordingly

z = A1ξ1 + A2ξ2 (2.35)

with appropriate definitions of the (N − p)xq matrix A1 and (N − p)x(N − q)
matrix A2. In this latter case, the asymptotic observer structure is as follows:

dẑ
dt

= −Dẑ + A1(F1 − Q1) + A2(F2 − Q2) (2.36a)

ξ̂2 = A+
2 (ẑ − A1ξ1) (2.36b)

where A+
2 is a left pseudo inverse of A2. The convergence of such an observer

is unfortunately ensured only if the dilution rate is persistently exciting. This
is confirmed by the dynamics of the estimation error:

d(ξ2 − ξ̂2)

dt
= −D(ξ2 − ξ̂2) (2.37)

Hence, in a bioprocess monitoring application, the convergence is ensured only
if the culture is operated in fed-batch or continuous conditions while, for batch
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processes, any initial error will last over the batch duration. The main draw-
back of this class of observer is therefore that the convergence is completely
determined by the operating conditions.

Application of Observers to an Identified Mechanistic Model of E. coli

A simplified version of the E. coli model of section 2.2.2 (i.e., considering kos =
kO1, kO2 = 0 and kop = kP3) is now used in an illustrative example based on
simulated data. The following simulations are therefore only aiming at show-
ing the efficiency of the identification procedures from a mathematical point
of view. However, from a biological point of view, it should be reminded that
kO2 = 0 is not realistic for E. coli as acetate cannot be produced without oxygen
(in anaerobic conditions, E. coli produces lactate instead of acetate).

First an experimental field (a set of experiments) is defined in order to esti-
mate the model parameters, and assess model accuracy. Rigorously, the choice
of this experimental field should rely on optimal experiment design as devel-
oped in Bernaerts et al. (2005) and Versyck et al. (1999). This theory is however
not always applicable in practical situations, as it requires input signals that
are difficult to achieve in practice (very high or very low concentrations, for
instance), or even sometimes not feasible due to the complexity of the model.
Here, operating conditions are chosen based on process knowledge, so as to
highlight the influence of the several parameters.

The identification procedure is subdivided into two steps, the first one being
devoted to the pseudo-stoichiometry (or yield coefficients), and the second one
to the kinetics, through a decoupling technique based on a state transformation
(analog to (2.32) used in the asymptotic observer; see Bastin and Dochain (1990)
for more details). The system described by expressions (2.32) and (2.34) is non-
linearly parametrized by the yield coefficients ki but linearly parametrized by
the elements of matrix C. Combinations of the yield coefficients become lin-
early identifiable independently of the kinetics by a linear regression technique
and each ki value can be recovered following (2.33) as long as Ka is full rank
and invertible. This identification procedure is called C − identi f iability (from
matrix C in (2.32)).

A necessary and sufficient condition of C-identifiability is (Chen and Bastin
(1996)):

kj being the vector of unknown yield coefficients of the jth column of K, kj is
C-identifiable if and only if there exists at least one non singular partition of

K = [
Ka
Kb

] where Ka is full rank and does not contain any element of kj.

For being applicable, this procedure requires that the reaction scheme is C-
identifiable, which is not the case of the reaction scheme (2.14), even with
kO2 = 0. To alleviate this problem, it is required to introduce three additional
constraints between the stoichiometric coefficients (one by reaction, which are
indeed easy to determine as the ratio of consumed and produced moles of
certain components like oxygen-carbon (2.3a), acetate-carbon (2.3b) and again
oxygen-carbon (2.3c), are known). In the first step, the experimental field con-
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Figure 2.5: First simulated experiment - A batch phase is achieved until S,
the substrate concentration (initially chosen around 0.1g/l), de-
creases to 0.01g/l. Then, a fed-batch phase starts and the feed
flow rate is calculated so that S is maintained at 0.01g/l. The cul-
ture ends when the feed medium (its capacity is estimated to 15kg)
is exhausted. The cells evolve most of the time in the respirative
regime

sists of three simulations. The first one forces the cells to evolve, most of the
time, through the respirative pathway (see Figs. 2.5, 2.6). The second one does
as well through the respiro-fermentative pathway (see Figs. 2.7, 2.8). How-
ever, it should be noticed that such acetate levels (see 2.7) are generally not
biologically acceptable and lead to biomass death. In realistic conditions, the
maximum feed rate should be chosen lower. The third experiment reproduces
operating conditions in the neighbourhood of the optimum (see Figs. 2.9 and
2.10). It is important to notice that white noise is added to the samples in or-
der to provide realistic measurement conditions (with zero mean and a relative
standard deviation of 5 %). The sampling period is chosen equal to 1 hour.

Table 2.5 gives values of the yield coefficients found in the literature and al-
ready exposed in section 2.2.2 (considered here as "theoretical" values) and the
result of the first identification step based on the previously-defined experi-
mental field. This procedure consists in an identification of the stoichiometric
coefficients independently of the kinetics (Bastin and Dochain (1990)).

The maximum deviation from a reference value is 6.9% and the mean value of
the error is 3.2%. The results of the identification of the yield coefficients can
therefore be considered as quite good. Based on these results, the second iden-
tification step is carried out for the kinetic parameters (see Figs. 2.11 and 2.12).
Instead of using the data coming from the previous experiments, a fourth one is
achieved in order to put in evidence the influence of some kinetic parameters.
For instance, an acetate concentration evolving between 0 and 3g/l provides a
better identification of KiA and KA.

The kinetic values are listed in Table 2.6. In contrast with the previous step, the
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Figure 2.6: First simulated experiment - Reaction rates
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Figure 2.7: Second simulated experiment - A batch phase is achieved until
S, initialized around 10g/l, decreases to 1g/l. Then, a fed-batch
phase starts and the feed flow rate is calculated so that S is main-
tained at 1g/l. The culture ends when the feed medium (its ca-
pacity is estimated to 15kg) is exhausted. Note that the feed flow
rate saturates at 10l/h. This value is considered as the maximum
pump speed. After 2 hours, the feed flow rate saturates and the
injected quantity of substrate becomes insufficient to maintain S
at 1g/l
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Figure 2.8: Second simulated experiment - Reaction rates

0 10 20 30
0

20

40

60

80

Time  [h]

X
  [

g/
l]

0 10 20 30
0

0.5

1

1.5

2

Time  [h]

S
  [

g/
l]

0 10 20 30
0

0.5

1

Time  [h]

A
  [

g/
l]

0 10 20 30
2

4

6

8

10
x 10

−3

Time  [h]

O
  [

g/
l]

0 10 20 30
1

1.5

2

Time  [h]

C
  [

g/
l]

0 20 40
0

1

2

3

4

Time  [h]

F
in

  [
l/h

]

Figure 2.9: Third simulated experiment - A batch phase is achieved until
S, the substrate concentration (initially chosen around 1g/l), de-
creases to 0.02g/l. Then, a fed-batch phase starts and the feed flow
rate is calculated so that S is maintained at 0.02g/l. The culture
ends when the feed medium (its capacity is estimated to 15kg) is
exhausted. The cells evolve in the neighbourhood of the optimal
operating conditions. Note how fast the cells grow as compared
to the previous experiments (the same concentration is reached
within 25 hours instead of more than 50)
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Figure 2.10: Third simulated experiment - Reaction rates

Table 2.5: Yield coefficients values of mechanistic model of E. coli
Yield coefficient Exact value Identified value

kS1 3.164 3.211

kS2 25.22 23.911
kP2 10.9 10.247
kP3 6.382 6.35
kO1 1.074 1.088
kO3 6.098 6.207
kC1 1.283 1.3
kC2 19.1 17.872
kC3 6.576 6.694
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Figure 2.11: Fourth simulated experiment - A fed-batch phase is directly

started and the feed flow rate is calculated so that S is maintained
at 0.01g/l (i.e., as low as possible). The culture ends when the
feed medium (its capacity is estimated to 15kg) is exhausted or
if the sum of the reaction rates is close to zero. The cells evolve
most of the time in the respirative regime
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Figure 2.12: Fourth simulated experiment - Reaction rates
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Table 2.6: Kinetic coefficients values of mechanistic model of E. coli
Kinetic coefficient Exact value Initial value Identified value

KS 0.14 0.1 0.11

µS 1.832 1 1.54
µO 0.72 1 0.68
KiA 7 10 7.66
KA 0.5 1 0.48

minimization of a cost function measuring the deviation between the model
prediction and the measured outputs is a nonconvex problem, which usually
requires some form of multistart strategy and the selection of an appropriate
local (or global) optimizer. Here, for the sake of simplicity, only one starting
point is considered, which is chosen far enough from the exact values but al-
lows a satisfactory parameter estimation.

These latter results show that the identification of the kinetic coefficients is
more delicate and that experimental data used for identification must be cho-
sen with care, whenever possible. The identified parameters present significant
errors from 5 to more than 20%. Based on the identified model and a few on-
line measurements, an EKF can, in principle, be designed. Fig. 2.13 shows a
simulation of the continuous-discrete EKF applied to the full model (2.6) (the
confidence in the model is represented by

Rη =













10−2 0 0 0 0
0 10−2 0 0 0
0 0 10−2 0 0
0 0 0 10−2 0
0 0 0 0 10−2













). The case where S, O and C are

measured (using a white noise with respective standard deviations of σS =

10−2, σO = 10−4 and σC = 10−3 so that Rǫ =





σ2
S 0 0

0 σ2
O 0

0 0 σ2
C



) while X and A

are estimated is considered. These results correspond to the ideal case where
the initial conditions are perfectly known (diagonal terms of P0 can be small as

in P0 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













). However, after 10 hours, the Kalman observer

trajectory diverges from the exact simulated model demonstrating a lack of
robustness to modelling errors.

In a more realistic situation, errors on the initial states have to be taken into
account. Fig. 2.14 shows the results of the application of the EKF to model
(2.6) using an exact predictive model (the confidence in the model is now
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Figure 2.13: Application of the EKF to the E. Coli model (2.6) using the pa-
rameter identification results - black line: exact simulated model;
red-line: EKF estimations; circles: simulated measurements (the
sampling period is 1 hour)

Rη =













10−8 0 0 0 0
0 10−8 0 0 0
0 0 10−8 0 0
0 0 0 10−8 0
0 0 0 0 10−8













while Rǫ remains unchanged) but

starting from erroneous initial states (this is taken into account in

P0 =













103 0 0 0 0
0 103 0 0 0
0 0 103 0 0
0 0 0 103 0
0 0 0 0 103













). The EKF provides very bad estimates

and is obviously unable to provide enough correction from the on-line mea-
surements. This latter observation is to be related with observability problems.

A study of the practical observability is now proposed, on the basis of the
canonical form (2.22) of model (2.6), considering partitions x1 = [S, O, C] and
x2 = [X, A]. Following (2.22), we obtain:

∂ f1

∂x2
=











−kS1r1 − kS2r2 −X
(

kS1
∂r1
∂A + kS2

∂r2
∂A

)

−kO1r1 − kO3r3 −X
(

kO1
∂r1
∂A + kO3

∂r3
∂A

)

kC1r1 + kC2r2 + kC3r3 X
(

kC1
∂r1
∂A + kC2

∂r2
∂A + kC3

∂r3
∂A

)











(2.38)

rank
∂ f1

∂x2
= n2 = 2 (2.39)

Obviously, condition (2.22) only holds if S, A and X are different from 0. Even
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Figure 2.14: Application of the EKF to the E. Coli model (2.6) using the pa-
rameter identification results - black line: exact simulated model;
red-line: EKF estimations; circles: simulated measurements (the
sampling period is 1 hour)

if the acetate concentration is vanishing after 15 hours (see Fig. 2.13 and Fig.
2.14), global observability is thus verified between 0 and 15 hours. It can be
shown that even if this test is successful, it only implies theoretical observabil-
ity. To assess practical observability, Bogaerts and Vande Wouwer (2004) have
proposed a measure of observability based on square matrices Mi:

Mi(ξ, D) =

(

∂ fi

∂ξi + 1

)T ( ∂ fi

∂ξi + 1

)

(2.40)

with i = 1, . . . , q − 1

Fobs =
N

∑
k=1

q−1

∑
i=1

√

cond (Mi(ξ(tk), D(tk))) (2.41)

where "cond" represents the condition number of the matrix, i.e., the ratio of
its largest to its smallest eigenvalue and tk are the discrete measurement times.

Fig. 2.15 shows the evolution of this criterion in the same situation as Fig.
2.14. The initial value is very high (O(108)) and increases gradually with time
inducing that the Mi matrices are ill-conditioned and the EKF is unable to pro-
vide enough correction to the non measured states using information from the
measured ones (which is related to the lack of sensitivity quantified by the Mi
matrices in (2.41)).

An asymptotic observer is now designed in order to eliminate the uncertain
kinetic model and to estimate in a more robust way the biomass and acetate
concentrations. The states and yield matrix partitions are:
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Figure 2.15: Application of the EKF to the E. Coli model (2.6) with bad initial
estimations - evolution of the "observability measure" (the sam-
pling period is 1 hour)

ξ1 =





S
O
C



 and K1 =





−kS1 −kS2 0
−kO1 0 −kO3

kC1 kC2 kC3



 (2.42)

ξ2 =

[

X
A

]

and K2 =

[

1 1 1
0 kP2 −kP3

]

(2.43)

and the observer equations are given by:

[

ż1

ż2

]

= −D
[

z1

z2

]

+ C





DSin
OTR
CTR



 (2.44)

[

X̂
Â

]

=

[

z1

z2

]

− C





S
O
C



 (2.45)

Fig. 2.16 shows the results of the application of the asymptotic observer, as
defined in (2.44) and (2.45), using the same initial errors on X and A as in Fig.
2.15. The estimates seem to slowly converge to the right trajectories. Neverthe-
less, Fig. 2.17 also shows that the evolution of the estimation error on X is not
vanishing.

To stress the fact that the latter results are not an isolated case, we now con-
sider the observation of the substrate and acetate concentrations on the basis
of biomass, oxygen and carbon dioxyde measurements, which will lead to even
more severe state estimation problems, as will be clear in the following. The
states and yield matrix partitions are now:
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Figure 2.16: Application of the asymptotic observer to the E. Coli model (2.6)
with bad initial estimations - black line: exact simulated model;
red stars: asymptotic observer estimations; circles: simulated
measurements (the sampling period is 1 hour)
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Figure 2.17: Application of the asymptotic observer to the E. Coli model (2.6)
with bad initial estimations - Evolution of the observation error
on X
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Figure 2.18: Application of the asymptotic observer to the E. Coli model (2.6)
in order to estimate the substrate and the acetate concentrations -
black line: exact simulated model; red stars: asymptotic observer
estimations; circles: simulated measurements (the sampling pe-
riod is 1 hour)

ξ1 =





X
O
C



 and K1 =





1 1 1
−kO1 0 −kO3

kC1 kC2 kC3



 (2.46)

ξ2 =

[

S
A

]

and K2 =

[

−kS1 −kS2 0
0 kP2 −kP3

]

(2.47)

and the observer equations are given by:

[

ż1

ż2

]

= −D
[

z1

z2

]

+ C





DSin
OTR
CTR



 (2.48)

[

Ŝ
Â

]

=

[

z1

z2

]

− C





X
O
C



 (2.49)

Fig. 2.18 shows the estimation results where the substrate estimate is not boun-
ded to zero in order to illustrate the dramatically-increasing divergence of the
observer (note that the real trajectory is very close but not equal to zero and is,
of course, positive).

The explanation of this phenomenon is that even though the asymptotic ob-
server is insensitive to the kinetic parameters, it can be quite sensitive to small
errors in the pseudo-stoichiometric coefficients as shown by the following de-
velopments. From (2.49), the expressions of the estimated states are obtained:
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Ŝ = z1 +
(kS1kC2kO3 + kS2(kC2 − kC3))X

kO1(kC3 − kC2) + kO3(kC2 − kC1)

+
(kS1(kO1kC3 − kO3kC1) + kS2(kC3 − kC1))O

kO1(kC3 − kC2) + kO3(kC2 − kC1)

+
(kS2(kC1 − kC2)− kS1kO1kC2)C

kO1(kC3 − kC2) + kO3(kC2 − kC1)
(2.50a)

Â = z2 +
(kP2(kC2 − kC3) + kP3kO3)X

kO1(kC3 − kC2) + kO3(kC2 − kC1)

+
(kP2(kC3 − kC1)− kP3(kO3 − kO1))O

kO1(kC3 − kC2) + kO3(kC2 − kC1)

+
(kP2(kC1 − kC2)− kP3kO1)C

kO1(kC3 − kC2) + kO3(kC2 − kC1)
(2.50b)

Some combinations of the yield coefficients can have a significant impact on
the accuracy of the estimated states. Consider the sensitivity matrix:

(

∂Ŝ
∂ki

)

=









∂Ŝ
∂kS1

∂Ŝ
∂kS2

∂Ŝ
∂kP2

∂Ŝ
∂kP3

∂Ŝ
∂kO1

∂Ŝ
∂kO3

∂Ŝ
∂kC1

∂Ŝ
∂kC2

∂Ŝ
∂kC3









=





1.22X − 0.008O − 0.22C −0.13X + 0.06O − 0.19C
0 0.95X − 0.4O − 1.35C

0.46X − 0.38O − 0.08C −0.08X − 0.07O − 0.02C

0
−0.71X − 0.3O + 1.1C
−0.35X + 0.29O + 0.06C



 (2.51)

and in particular, the expression of the sensitivity with respect to kS1. When
the culture starts, the biomass concentration X is very low so that its impact on
the estimated state is negligible. On the other hand, when the culture has been
running for hours, the biomass concentration is of the order of 10 to 100g/l.
This means that a small error on kS1 will lead to a variation of the estimate pro-
portional to 1, 22x10 or approximately 12 times the initial error. If the error on
kS1 is around 1% of its theoretical value, the observer is likely to produce an es-
timation error of 12% from the correct value, which cannot always be tolerated
(for instance, substrate concentrations are generally low in E. coli applications,
in order to avoid an accumulation of acetate which is an inhibitory product
for the cells growth). Consider now that the culture reaches biomass concen-
trations around 100g/l, the consequence of a small error on a yield coefficient
has a larger effect on the estimated states as the estimation error reaches 100%.
This observation does not hold for the oxygen concentration as its values can-
not exceed 0.007g/l, the concentration at saturation, but it holds for the carbon
dioxide in the sensitivities with respect to kO1 and kO3, as the concentration
at saturation is 1.293g/l. An intuitive way to alleviate this high sensitivity is
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to separate the model in two submodels depending on the metabolic pathway
(Bastin and Dochain (1990)). Indeed, this allows the estimation of 3 states on
the basis of only 2 measured ones and the biomass terms in (2.50) disappear so
that we can expect less sensitivity problems. In this case, the partitions of the
yield matrix of the two submodels are:

For the respirative pathway:

KR
1 =

[

−kO1 −kO3

kC1 kC3

]

and KR
2 =





1 1
−kS1 0

0 −kP3



 (2.52)

For the respiro-fermentative pathway:

KRF
1 =

[

−kO1 0
kC1 kC2

]

and KRF
2 =





1 1
−kS1 −kS2

0 kP2



 (2.53)

For instance, the sensitivities of the estimated substrate concentration with re-
spect to kO1 become for each pathway:

(

∂Ŝ
∂kO1

)

R

= 237O + 46.1C (2.54a)

(

∂Ŝ
∂kO1

)

RF

= 2.74O − 0.19C (2.54b)

Unfortunately, the terms involving the oxygen and carbon dioxide concentra-
tions in (2.54a) and (2.54b) are relatively large so that no real improvement is
provided. Even if the respiro-fermentative pathway does not seem to be sen-
sitive to small errors on kO1, the other pathway does. In fact, the bypass of
the biomass concentration measurement transfers the sensitivity to the oxygen
and carbon dioxide terms. As a conclusion, bioprocess modelling and identi-
fication are delicate tasks, and uncertainties on the pseudo-stoichiometric and
kinetic parameters are almost unavoidable. Standard observers such as the ex-
tended Kalman filter and the asymptotic observer are affected to some extent
by these uncertainties and of course also by practical observability. More ro-
bust state estimation techniques have been proposed, which can alleviate these
problems. However, these techniques are beyond the scope of this chapter, and
in the continuation of this text, attention is focused on data-driven techniques.

2.5 Conclusion

In this chapter, a generic macroscopic model of fed-batch cultures of microor-
ganisms exhibiting overflow metabolism is first described and illustrated with
in-the-literature-already existing models of S. cerevisiae (yeast strain) and E. coli
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(bacteria strain). Unfortunately, several states are generally not available on-
line, limiting their exploitation in a possible control scheme aiming at optimiz-
ing the process. In order to alleviate this problem, bioprocess state estimation
is then introduced by the definition of observability, a model feature which is
necessary to reconstruct on-line unmeasurable states. Classical state estima-
tors, and more particularly the Extended Kalman Filter (EKF) and the asymp-
totic observer (AO), are presented and applied to a simplified model of E. coli.
Their practical limitations in realistic simulated conditions are also discussed,
concluding that the main drawbacks of observers based on mechanistic mod-
els are their high sensitivity to model uncertainties (focusing on the kinetics
for the EKF and the stoichiometry for the AO) but also the time-varying de-
gree of observability which can sometimes be unsufficient to ensure a correct
convergence of the estimates.



Chapter 3
Data-driven Approach

3.1 Introduction

The previous chapter presents the potential of classical mechanistic model-
based observers. Even though a wide range of state estimation algorithms
are readily available, their practical use remains relatively limited. The main
reasons previously exposed are: (a) many state estimation algorithms require
a dynamic model of the bioprocess, involving a macroscopic reaction scheme
and kinetics, which are difficult to accurately establish from prior process know-
ledge and available measurement data; (b) state estimation algorithms usually
rely on some hardware sensors, which are expensive and not always fully re-
liable; (c) manual operation has a long history in the bioprocess industry and
advanced monitoring and control are currently emerging techniques. It ap-
pears legitimate to propose to investigate, in the following sections, the use of
simple estimation algorithms based on black-box models and standard indus-
trial measurement signals, such as those related to pH, temperature, pressure
and dissolved oxygen concentration, as suggested in previous studies (see, e.g.,
Karim et al. (1997), Hulhoven et al. (2006) and Dewasme et al. (2007b)). In the
next sections, designs of software sensors based on partial least squares and
neural network techniques are presented. Simulation and real-life experimen-
tal data are then used to assess the applicability and performance of the several
methods.

3.2 Input/output selection and measurements data

analysis

It is difficult to establish a mechanistic model linking the abovementioned basic
measurements to the main macroscopic species concentrations (biomass, sub-
strate and metabolic products). This, of course, motivates a black-box strategy
but also raises the question of which of the available signals could be infor-
mative for establishing a black-box model. Indeed, some signals could carry

65



3.2. INPUT/OUTPUT SELECTION AND MEASUREMENTS DATA ANALYSIS 66

0 10 20 30 40 50
0

0.5

1

Time  [h]

A
dd

ed
 b

as
e

0 10 20 30 40 50
0

1

2

Time  [h]

pH

0 10 20 30 40 50
0

0.5

1

Time  [h]

P
O

2

0 10 20 30 40 50
0

0.5

1

Time  [h]

F
ee

d

0 10 20 30 40 50
0

1

2

Time  [h]

P
re

ss
ur

e

0 10 20 30 40 50
0

0.5

1

Time  [h]

R
P

M

0 10 20 30 40 50

0.7
0.8
0.9

Time  [h]

T
em

pe
ra

tu
re

Figure 3.1: Typically available measurements: added base weight, pH, dis-
solved oxygen (PO2), added feed weight, pressure, stirring speed
(RPM) and temperature

very little or redundant information and play a detrimental role in a learning
procedure. That is why the information content of the available measurement
signals is first assessed before being used as inputs to a black-box structure re-
producing some selected outputs (i.e., some of the macroscopic species concen-
trations). A way of assessing the information content of the inputs is through
Principal Component Analysis (Geladi and Kowalski (1986)). For illustration pur-
pose, we consider the cultures of genetically manipulated strains of S. cerevisiae
and E. coli growing in different-scale bioreactors. In standard operations, sev-
eral regulation loops are active, including temperature, dissolved oxygen, pH
(usually by base addition), air flow, pressure and stirring (in order to avoid
oxygen limitation). Typical available measurements are represented in Fig. 3.1.
All of them are normalized for the sake of confidentiality.

Whereas the aim of the regulation loops is to maintain the process variables
constant, useful dynamic information can be extracted from the actuator sig-
nals. For instance, pH is maintained constant via the addition of a certain
quantity of base, whose evolution is informative of the culture evolution. In
order to assess the correlation and the redundancy existing between the differ-
ent signals, principal component analysis (PCA) is used in order to construct
new signals, which are linear combinations of the normalized original ones.
This analysis aims at describing a maximum of the data dispersion with a min-
imum of components. A new representation of the data matrix is obtained
through a so-called "score matrix" T:

Tnxa = XnxmPmxa (3.1)
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Figure 3.2: Example of a PCA performed on two normalized measured sig-
nals. The principal directions are represented by the red lines

where X is the initial data matrix of dimension nxm with n and m being re-
spectively the number of measurements and the number of signals. P is the
orthogonal loading matrix (PP′ = I) of dimension mxa where a is the num-
ber of considered scores or components. Geometrically, it consists in finding
a space representation spreading as much as possible the cloud of data points
in each new axis direction. Fig. 3.2 gives an idea of what can be these new di-
rections for a specific example where two normalized measurements are con-
sidered. The score matrix provided by the principal component analysis is

P =

(

0.7071 −0.7071
0.7071 0.7071

)

. The cloud of points can then be represented in a

new space defined by the red lines (which, as a matter of fact, correspond to
the bisectors of the previous axes).

A nonlinear iterative partial least squares algorithm (NIPALS) is used in order
to build the scores in the sense that it calculates the first score t1 (the first col-
umn of T) and the corresponding loadings vector p1 from X before subtracting
their product to obtain the residual as follows:

• X is projected onto t1 (set as a column of X) to find the corresponding

loading p1: p1 = Xt1

tT
1 t1

;

• The loading vector is then normalized: p1 = p1(pT
1 p1)

−0.5;

• X is projected onto p1 to find the corresponding score vector t1: t1 = Xp1

pT
1 p1

;

• The first principal component is removed from X: e = X − t1 pT
1
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Table 3.1: Score variances and explanations for the specific example illus-
trated in Fig. 3.1

Variances Explanation(%)

t1 3.544 50.627
t2 1.37 19.564
t3 0.989 14.132
t4 0.887 12.675
t5 0.160 2.298
t6 0.048 0.679
t7 0.002 0.026

Table 3.2: Loadings of the measurement signals (illustrated in Fig. 3.1) in
each principal direction

t1 t2 t3 t4 t5 t6 t7

Base 0.495 0.263 -0.152 0.055 -0.256 -0.169 0.752
pH -0.196 0.742 -0.206 -0.1265 0.562 -0.19 -0.015
PO2 -0.429 0.429 -0.12 -0.098 -0.625 0.466 0.007
Feed 0.487 0.279 -0.153 0.06 -0.367 -0.319 -0.65

Pressure -0.009 -0.32 -0.787 -0.526 0.007 -0.016 -0.003
RPM 0.514 0.09 -0.081 0.039 0.302 0.785 -0.109

Temperature 0.177 0.081 0.52 -0.83 -0.046 -0.013 0.002

The next scores and loadings are obtained iteratively following the same op-
eration on each residual e. As an illustration, Tab. 3.1 gives the variances of
the scores ti (i.e., the eigenvalues of the covariance matrix of the measurement
data) and also the percentage of the total variance explained by each score (for
the specific example illustrated in Fig. 3.1). The loadings of the same normal-
ized measurements signals are listed in Tab. 3.2 for each score. The stirrer
speed (RPM for rotation per minute), the added base weight (Base), the added
feed weight (Feed), and the dissolved oxygen (PO2) have the largest weights in
the first principal component. Hence, as this component seems to be the most
informative (see Tab. 3.1), these signals apparently convey more information
than the others.

In this example, the notion of data compression is well illustrated as the first 4
scores contain more than 95 percents of the measurement information. There-
fore, these 4 signals could be used as inputs to a software sensor if this analysis
carries over all data sets.

3.3 Linear versus nonlinear black-box model

Even though a mechanistic bioprocess model is usually nonlinear (the non-
linearity stems from the kinetics), the relation between selected measurement
inputs (elementary signals such as RPM, base weight, feed rate and PO2) and
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Figure 3.3: Linear software sensor structure: PLS.

outputs (some component concentrations), could incidentally be linear. Before
embarking in the construction of a nonlinear black-box model (which is more
complex to identify than a linear one), it is therefore of interest to evaluate the
linear/nonlinear character of this relationship and to select the best model. In
this section, two classical black-box modelling strategies are applied to biopro-
cesses and compared. Both of them are built using input and/or output vari-
ables represented by their scores matrix as mentioned in the previous section.
The first one leads to a linear representation whereas the second is a nonlinear
approach.

3.3.1 Linear strategy - Partial Least Squares regression (PLS)

This first strategy (Geladi and Kowalski (1986)) is an extension of the multiple
linear regression (MLR) using the properties of the NIPALS algorithm through
2 PCA on the input and output data. This strategy is decomposed in 3 relations
(2 outer (PCA) and 1 inner linear regression (LR) relations, see Fig. 3.3): One
can build the score matrix of the input (X) and output (Y) data matrix:

Tnxa = Xnxnx Pnxxa + Enxa (3.2a)

Unxc = Ynxny Qnyxc + Fnxc (3.2b)

where T and U are respectively the nxnx input and nxny output score matrix
(considering n different measurements for nx input and ny output signals), P
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and Q the loadings matrix (considering again limited numbers a ≤ nx and
c ≤ ny of components) and E and F the residuals matrices depending on the
number of selected components or scores columns (remind that if the number
of components is equal to the number of input signals, E = F = 0). The
third relation is a simple linear regression between the input and output scores
following:

Unxc = TnxaBaxc + Gnxc (3.3)

where B is the regression coefficient matrix and G a new residual matrix.

Note that an intermediate algorithm exists and is called Principal Components
Regression (PCR). The main difference between PCR and PLS lies in the way
the factor scores are extracted. Indeed, the PCR only uses the covariance struc-
ture of the input variables while PLS uses the covariance structure of the in-
put and output variables. As it is known that bioprocesses present different
element concentrations correlated as it appears in (2.6), using the covariance
structure of the input and output variables should be preferable.

3.3.2 A nonlinear alternative: PCA and Artificial Neural Net-
work (ANN)

The previous input-output representation is by essence linear. To describe the
behaviour of a bioprocess, it might be necessary to include some nonlinear-
ity in the model representation. Attention is now focused on feed-forward
multilayer perceptrons or radial basis function networks, which are univer-
sal approximators. Standard feedforward NNs define a static map between a
selected number of inputs (denoted y(t), as they represent the measurement
information coming from the bioprocess) and outputs (denoted ξ̂(t), as they
correspond to estimates of component concentrations)

ξ̂(t) = f (y(t)) (3.4)

One of the most common NN architectures in system modelling is the per-
ceptron (Rosenblatt (1958)). A perceptron consists in an on/off static function
(called activation function or decision function) delivering a binary output.
The sum of a linear combination of the inputs weighted by synaptic weights is
compared to a threshold separating the activation and inactivation zones:

ξ̂i = f (xi) =

{

0 : xi < 0
1 : xi > 0

(3.5)

where

• xi = ∑j wijyj is the input of the ith neuron.

• wij corresponds to the weight linking the jth input to the ith neuron.

• yj and ξ̂i are respectively the input and output vectors.
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This is the simplest neural network structure recalling the first mathematical
model of neuron proposed by McCulloch and Pitts (1943). There exists a learn-
ing rule developed by Rosenblatt and ensured to converge (i.e., to provide
weight values that enable the recognition of each class corresponding to the
binary values 0 and 1) if the related data are linearly separable (Minsky and
Papert (1969)). Networks of perceptrons may then be built using multiple lay-
ers structures where all the neurons outputs depend only on the inputs from
the previous layer and do not interact with the same-layer neurons. These
structures are called Multilayer Perceptrons (MLP). This time, the nonlinearity
used in the activation function is continuous (for instance, a sigmoid function)
and we distinguish the first and the last layers, respectively called input and
output layers, from the intermediate layers also called the hidden layers. Ac-
tually, only the first and the last layers input and output are available from an
external point of view. The multilayer perceptron learning phase is performed
by calculating a least square error criterion first applied to the output layer:

E =
1

2

K

∑
i=1

(

ξ̂i(X)− ξi
)2

(3.6)

where

• K is the number of neurons of the output layer.

• ξ̂i are the outputs.

• ξi are the desired outputs.

• X is the input vector of the output layer neurons.

and by propagating this error back to the previous layers in order to update
the weights as follows:

wl,ij(k + 1) = wl,ij(k)− α

(

∂E
∂wl,ij

)

l−1

(3.7)

where

• wl,ij corresponds to the weight linking the jth input to the ith neuron of

the lth layer.

• α is a strictly positive tuning parameter called the learning rate.

•
(

∂E
∂wl,ij

)

l−1
is the first derivative of the error calculated for the l − 1 layer

with respect to wl,ij.

For obvious reasons linked to its principle, this learning algorithm is called
the Backpropagation Algorithm (Werbos (1974)). This kind of network is abun-
dantly used in biomedical applications and particularly in speech processing
and handwritten pattern recognition (Gosselin (1996a), Gosselin (1996b), Mor-
gan and Bourlard (1995) and Bourlard (1992)).
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Figure 3.4: Nonlinear software sensor structure: PCA and RBF − ANN

Another classical neural network structure is the Radial Basis Function network,
which has proved quite useful in modelling bioprocesses (Vande Wouwer et al.
(2004)). This structure differs from the last one by the activation principle and
the learning rules. This network (Fig. 3.4) delivers outputs calculated by a
continuous mathematical expression of the form:

ξ̂i(t) =
k

∑
j=1

wije

−‖y(t)−cj‖2

r2
j + bi i = 1 . . . ny (3.8)

where

• y is the input of length ny;

• ξ̂i is the ith component of the output vector;

• k is the number of neurons in the hidden layer;

• wij are the weights linking the neurons to the outputs;

• cj are the centers;

• rj are the radii (i.e., the average spherical distance from the center);

• bi are the biases.

The learning procedure of this network is divided in several learning steps
(see Fig. 3.5). The number of neurons k is taken large enough so as to be able to
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Figure 3.5: Parameter identification scheme of the RBF − ANN structure

reproduce the desired input-output behaviour, but small enough so as to avoid
overparametrization and lack of generalization (to data sets not considered in
the identification phase).

A 3-steps learning procedure is used (as in Vande Wouwer et al. (2004), see
Fig. 3.5): The first step is an unsupervised learning phase in which the first
estimates of the centers and the radii are obtained by a k − means clustering al-
gorithm. These first estimates allow the NN outputs to cover the experimental
field. The second step is a supervised learning phase consisting in an initial
linear identification of the weights and biases by minimization of a quadratic
cost function. Finally, a last nonlinear identification of all the parameters is
achieved starting from the values obtained in the previous steps and minimiz-
ing a Gauss-Markov criterion taking the measurement errors into account:

θT =
[

wTbTrTcT
]

= minθ
1

2

N

∑
i=1

(

ξi − ξ̂i(θ)
)T

Q−1
i

(

ξi − ξ̂i(θ)
)

(3.9)

where

• ξi are the measured output values;

• Qi is the error covariance matrix on the measured outputs;

• ξ̂i are the estimated outputs based on θ.
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Figure 3.6: Biomass estimation in a culture of S. cerevisiae. Red line: output
of the RBF − ANN nonlinear model; blue line: output of the PCR
linear model; circles: real off-line measurements

3.3.3 Comparison of the two approaches: Linear versus non-
linear modelling

To compare the performance of the two proposed methods, a large panel of
experimental data collected from different bioreactors operated with different
strains at different scales is available. This large data set will ensure the perti-
nence and the generality of the results. As a start, four data sets corresponding
to fed-batch cultures of S. cerevisiae (yeast strain) operated in a laboratory-scale
bioreactor are considered. Among the 4 data sets, two are used to identify
the black-box model while the two others are used to perform cross-validation
tests. Our goal is to estimate the biomass concentration all along the cultures
based on four available measurements (chosen as the most informative signals:
base addition, feed flow rate, stirrer speed and dissolved oxygen concentra-
tion). As only one variable need to be estimated, a PCR is used instead of
a PLS for the linear approach while a RBF − ANN is used for the nonlinear
approach. Fig. 3.6 shows the evolution of the estimated biomass concentra-
tion during one of the two latter experiments (cross-validation). Recall that the
standard input signals, on which a PCA is achieved, are provided at a high
sampling rate and thus provide a frequent biomass estimation which can be
very useful for process monitoring.

For the sake of confidentiality, all the experimental results are normalized. Un-
fortunately, only the nonlinear model seems to reproduce satisfactorily the
biomass concentration evolution. This can be explained by the probable ex-
istence of nonlinearities in the relation between the chosen input variables and
the biomass concentration. 3 neurons are sufficient to deal with these nonlin-
earities. Note that 3 neurons already represent 12 parameters (4 radii, 4 centers,
3 weights and 1 bias) to identify if 4 inputs and only 1 output are considered.
One must be conscious that the number of parameters increases to 16 for 2 out-
puts instead of 1, to 20 for 3 outputs and so on. Only three of the four available
scores have been used for producing the previous results as it has been ob-
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Table 3.3: Score explanations of 4 yeast fed-batch cultures data sets

Explanation(%) Set1 Set2 Set3 Set4

S1 84.0197 83.2870 83.8876 84.4641
S2 14.4769 14.9386 14.3560 13.7753
S3 1.4563 1.7236 1.6982 1.7162
S4 0.0471 0.0508 0.0582 0.0443

Table 3.4: Average error values for the different possible numbers of scores
(inputs to the ANN)

Number of scores Em(%)

1 6.65
2 4.52
3 2
4 3.5

served that the addition of the fourth one is useless (reducing the number of
parameters to 10). The best way to understand this observation and justify our
choice is to analyse the table of explanation for each score (Tab. 3.3).

It appears that more than 95% of the variance information is contained in the
first two scores. Anyway, before drawing too early conclusions from this table,
we also assess the quality of the NN prediction using different numbers of
scores through a criterion calculating an average error:

Em =

(

1

N

N

∑
i=1

(ξi − ξ̂i)
2

) 1
2

(3.10)

where

• N is the number of experimental biomass concentration measurements;

• ξ is the biomass measurement vector;

• ξ̂ is the biomass estimate vector.

Tab. 3.4 shows the value of this criterion for different numbers of scores. As
expected from Tab. 3.3, the projection in only one principal direction of the
data space is sufficient to ensure good results. Nevertheless, the minimum is
observed for three scores. As this number of inputs corresponds to a reason-
able number of parameters (3 radii, 3 centers, 3 weights and 1 bias if only one
output is considered), this input structure is selected for the next experimental
evaluations.
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Table 3.5: Classification of the data sets in function of the recombinant pro-
tein, the scale and the type of validation

Scale/ RP1

Recombinant protein
Direct validation Cross-validation

20l 4 2
150l 0 1

Scale/ RP2

Recombinant protein
Direct validation Cross-validation

20l 0 8
150l 0 1

3.4 Monitoring of E. coli fed-batch cultures

Genetically modified strains of E. coli, which are commonly used in biophar-
maceutical industries to express recombinant proteins and to produce vaccines,
are now considered. For these bacteria strains, 16 data sets are available, which
correspond to the expression of two different recombinant proteins RP1 (for 7
of them) and RP2 (for 9 of them), as well as two different bioreactor scales (20l
and 150l). See Tab. 3.5 for a description of the experimental field. Fig. 3.7
shows the time-evolution of the three input signals (scores) and the estimation
of the biomass concentration by a RBF − ANN trained with 4 data sets cor-
responding to fed-batch cultures of bacteria in 20 − l bioreactor where RP1 is
expressed. Actually, 3 data sets are used in cross-validation tests and Fig. 3.7
shows one of them. For the represented test, the average error is 1.32%. Fig.
3.8 shows the results of the cross-validation test on the 7th data set correspond-
ing to a 150 − l scale bioreactor. Again, note that the ANN parameters are not
modified in between these tests, which constitutes challenging cross-validation
tests. The overall average error amounts to only 1.95%, testifying of the good
quality of the results.

The ANN software sensor is then tested with the 9 remaining experiments,
where RP2 is expressed. Fig. 3.9 shows that the ANN software sensor repro-
duces again very satisfactorily the evolution of the biomass concentration, the
type of protein expressed having little influence on the performance. More-
over, as depicted in Fig. 3.10, the performance of the ANN is also independent
of the bioreactor scale for the strain expressing RP2. Note that genetic modifi-
cations have significant influence on the cell metabolism. Therefore, the use of
a mechanistic model requires a new identification of the parameters whereas
the ANN software sensor is still performing well without any parameter rei-
dentification. The ANN software sensor appears then as a powerful tool in
terms of flexibility and robustness.

For the data sets of the strain expressing RP2 when the ANN sensor is trained
with the four data sets corresponding to RP1, the overall average error only
amounts to 4.4%. This method has also been applied to other strains of E. coli
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Figure 3.7: Biomass estimation in 20 − l scale fed-batch culture of E. coli (ex-
pression of RP1)
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Figure 3.8: Biomass estimation in 150 − l scale fed-batch culture of E. coli
(expression of RP1)
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Figure 3.9: Biomass estimation in 20 − l scale fed-batch culture of E. coli (ex-
pression of RP2 when trained with RP1)
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Figure 3.10: Biomass estimation in 150 − l scale fed-batch culture of E. coli
(expression of RP2 when trained with RP1)
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evolving in different fed-batch processes after reidentification of the parame-
ters. In all the cases, the ANN software sensor performs well, and provides a
useful tool for on-line biomass monitoring. The proposed approach is there-
fore quite versatile and applicable to a broad range of bioprocesses (in some
situations, other measurements signals - or additional measurement signals -
have to be selected, this selection being achieved efficiently using PCA).

3.5 Monitoring of S. cerevisiae fed-batch cultures

The ANN software sensor is also able to estimate other key-component concen-
trations. First, the ethanol concentration, which is another key-component of
yeast cultures, is considered. An overfeeding in glucose leads yeasts to switch
from the respirative metabolism to the respiro-fermentative one, implying a
production of ethanol by fermentation of the excess of glucose. It is common
in industrial applications to avoid this accumulation of ethanol because it has
an inhibiting influence on cell growth. As the industrial objective is generally
to optimize the productivity, i.e. to maximize the production and to minimize
the culture time, the ethanol concentration is always under supervision, requir-
ing multiple off-line measurements and the time that it costs. Some hardware
sensors are readily available but, unfortunately, they are still very expensive
and all the laboratories cannot always afford such equipments. Moreover, on-
line ethanol measurements are useful for optimizing control such as the robust
RST controller presented in Valentinotti et al. (2003), Renard et al. (2006) and
Dewasme et al. (2007a). This motivates the following assessment of the poten-
tialities of the ANN software sensor in estimating other key-components like
the overflow product. Again, the results presented in Fig. 3.11 are normalized
for confidentiality reasons. The 5 data sets that will be used here come from
a 15 − l scale bioreactor. Two data sets were used for the learning phases and
three in cross-validation. Note that the complexity of the structure is increased
as the number of neurons amounts now to 4.

The impact of the noise corrupting the inputs appears clearly on the output
between 40 and 50 hours of culture. Indeed, ethanol stays at a low level from
the beginning to the end of the culture while some inputs are increasing and
the noise that they imply grows as well. On the whole, the output mean value
follows the off-line measurements. The average error confirms these observa-
tions as it amounts to 15% (recall that we deal with very low values), which is
very satisfactory.
In many applications, product inhibition is not the main concern as long as the
substrate concentration is limited (i.e. for instance in yeast cultures: no over-
flow, no fermentation). To ensure this last condition, glucose measurements
are needed. As for the ethanol, off-line measurements of glucose means a con-
sequent waste of time and monitoring of on-line glucose measurements can be
an alternative when no ethanol measurement is available. The following re-
sults (using a structure of the same complexity, with 4 neurons, as for ethanol
estimation) demonstrate the efficiency of the nonlinear software sensor applied
to glucose estimation. The experiment is performed at glucose concentrations
of an order of magnitude lower than ethanol concentrations. This explains the
more significant impact of noise from 20 hours on to the end of the culture.



3.5. MONITORING OF S. CEREVISIAE FED-BATCH CULTURES 80

0 20 40 60
−5

0

5

sc
or

e 
1

Time [h]
0 20 40 60

−10

−5

0

5

sc
or

e 
2

Time [h]

0 20 40 60
−10

−5

0

5

sc
or

e 
3

Time [h]
0 20 40 60

0

50

100

150

200

E
T

O
H

 [%
]

Time [h]

Figure 3.11: Ethanol estimation in 15− l scale fed-batch culture of S. cerevisiae

The average error on the 5 data sets is around 28%. Remember however that
these cultures are operated at a very low glucose concentration level, necessar-
ily leading to a poor estimation accuracy as it is typically the case with avail-
able hardware sensors. Therefore, the ANN software sensor needs a learning
phase targeting the scale covered by the experimental field. See, for instance,
the 7th off-line measurement in Fig. 3.12, e.g., this point is actually beyond the
experimental field so that the ANN calculates a trajectory which is more in ac-
cordance with the training data. Note that this deviation remains limited when
working at low concentrations.

3.5.1 RBF-ANN software sensor potentiality in simultaneous
estimations of different key-components

Now that the efficiency of the ANN in estimating key-components of inter-
est is demonstrated, the possibility to estimate multiple outputs with only one
RBF − ANN structure is investigated as depicted in Fig. 3.13. To this end, the
5 same data sets are used and the new structure is trained with 3 scores using
only 3 neurons to limit the number of parameters (which amounts now to 18)
and the computational expense. As illustrated in Fig. 3.13: the level of the av-
erage error goes from "excellent" for the biomass concentration to "satisfactory"
for the glucose and ethanol concentrations. A PLS algorithm is also considered
but, again, a linear model seems inadequate for representing the link between
the basic signals and the key-components, as observed in Fig. 3.14.
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Figure 3.12: Glucose estimation in 15− l scale fed-batch culture of S. cerevisiae
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Figure 3.13: Simultaneous estimations of biomass, glucose and ethanol con-
centrations in 15 − l scale fed-batch culture of S. cerevisiae
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Figure 3.14: Simultaneous estimations of key-components in 15− l scale fed-
batch culture of S. cerevisiae with PLS

3.6 Conclusion

Soft sensor techniques are particularly significant for monitoring bioprocesses,
for which hardware sensors are expensive and delicate to use. Two main de-
sign approaches can be distinguished, based on the underlying model that is
exploited. On the one hand, mechanistic models provide an interesting in-
sight in the biological system, but require significant efforts for their derivation
(measurements of component concentrations, careful design of experiments,
parameter identification, model validation). On the basis of the dynamic model
and a few on-line measurements, a wide range of observers can be designed,
which provides time-continuous estimation of the component concentrations.
Parameter uncertainties have to be dealt with adequately. On the other hand,
data-driven techniques offer the possibility to exploit basic signals such as base
addition, stirrer speed, etc, and to establish a map to some of the component
concentrations of interest. In particular, principal component analysis can be
used to select informative signals and artificial neural networks can be used to
build the desired maps. These data-driven techniques have proved quite use-
ful and effective in many real life applications, and some of them are discussed
in this chapter.



Part III

Optimizing Productivity of
Fed-batch Cultures
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Chapter 4
Real-Time Optimization of
Fed-batch Cultures

4.1 Control objectives

Industrial vaccine production is usually achieved using fed-batch cultures of
genetically modified yeast or bacteria strains, which can express different kinds
of recombinant proteins. From an operational point of view, it is necessary
to determine an optimal feeding strategy (i.e. the time evolution of the in-
put flow rate to the fed-batch culture) in order to maximize productivity. The
main problem encountered comes from the metabolic changes of such strains
in presence of feeding overflow. Indeed, during a culture, the cells strains are
likely to change their metabolism because of their limited respiratory capac-
ity. When the substrate is in excess (concentration S > Scrit), the cells pro-
duce a by-product through fermentation, and the culture is said in respiro-
fermentative (RF) regime. The byproduct generally has a detrimental effect on
the cells growth because it directly inhibits the cells respiratory capacity (Pham
(1999)). On the other hand, when the substrate becomes limiting (concentra-
tion S < Scrit), the available substrate (typically glucose), and possibly the by-
product (as a substitute carbon source), if present in the culture medium, are
oxidized. The culture is then said in respirative (R) regime. Thus, the optimal
operating conditions that maximize the biomass productivity are at the bound-
ary of the two regimes. In these conditions, the fermentation and by-product
oxidation rates are equal to zero and, from (2.4):

r1 = min(rS, rScrit) (4.1a)

r2 = max(0, rS − rScrit
) (4.1b)

where

84
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rScrit =
rO

kos
(4.2a)

rS =
S

S + KS
(4.2b)

rO = µO
O

O + KO

KiP

KiP + P
(4.2c)

the following relations hold:

r1 = rS = rScrit
=

rO

kos
(4.3a)

r2 = 0 (4.3b)

Expression (4.2a) shows that the respiratory capacity has an influence on the
critical substrate concentration level. For illustration purposes, Fig.4.1 shows
a simulation of a fed-batch yeast culture where the substrate concentration in
the culture medium is regulated around a constant theoretical set-point value
Ssp = 0.0226g/l. This constant value is based on the assumption that the res-

piratory capacity would not be influenced by the ethanol level (rO = µO
O

O+KO
so that, following (4.3a), r1 = rScrit

= rS, r2 = 0 and Ssp = Scrit). As this as-
sumption is not correct in practice, ethanol is produced during the batch, thus
inhibiting the respiratory capacity and affecting the optimal glucose level, and

the biomass growth rate is lower than expected (rO = µO
O

O+KO

KiE
KiE+E so that,

following (4.1), r1 = rScrit
< rS, r2 6= 0 and Ssp 6= Scrit). A simple regulation

strategy, i.e., a regulation that does not adapt the glucose setpoint according
to the respiratory capacity variations, does not allow to avoid the production
of ethanol, leading to a poor level of productivity (while, as demonstrated in
the following, more than 80 g/l of biomass can be obtained within 30 h with
glucose setpoint adaptation, only 30 g/l are obtained in Fig. 4.1).

Consequently, after a trivial mathematical manipulation of (4.3a) using the

Monod law rS = µS
S

S+KS
, a relation between the critical substrate concentra-

tion level and the cell respiratory capacity is obtained as:

Scrit =
KSrO

kosµS − rO
(4.4)

Fig. 4.2 shows a plot of this relation where the point [0, 0] corresponds to a
totally inhibited respiratory capacity, preventing any growth, and the point
[rOmax , Scritmax] corresponds to maximum productivity (i.e. absence of metabo-
lite product in the culture medium and a sufficient level of oxygenation). Ob-
viously, the presence of the byproduct in the culture medium can decrease the
respiratory capacity and in turn the value of the critical substrate concentra-
tion. Moreover, the estimation of the critical substrate level Scrit requires addi-
tional measurements (P, O) and a perfect knowledge of KS, kos, µS, KO, µO and
KiP, which are generally uncertain.

In order to maintain the system at the edge between the respirative and respiro-
fermentative regimes, it would be necessary to determine on-line an estimation
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Figure 4.1: Simulation of a fed-batch process controlled at a constant Ssp
value

of the biological threshold Scrit and to control the substrate concentration in the
culture medium around a setpoint Ssp ideally equal to Scrit in order to reach
the optimal operating conditions (Dewasme and Vande Wouwer (2008)). To
this aim, a first intuitive strategy achieving a real-time optimization and called
extremum-seeking is proposed and tested in simulated realistic conditions. Dif-
ferent forms of extremum-seeking facing the particular case of fed-batch bio-
processes of overflow metabolized cells are studied next.

4.2 A brief review of real-time optimization

Real-time optimization (RTO) is a general term used to characterize approaches
that all aim at iteratively improving or optimizing process performances using
plant data through different available state variable measurements. In this re-
gard, Chachuat et al. (2009) proposes a review of the various existing RTO
techniques using approaches based on adaptation strategy, feasibility and op-
timality. Three categories are defined:

• Model parameter adaptation, which is a standard approach using two-
step-adaptation first, identifying model parameters and, then, optimiz-
ing the process (see Srinivasan and Bonvin (2002)).

• Modifier adaptation, which consists in adapting the cost function and
the possible constraints in such a way that the cost function gradient and
the values of the constraint gradients of the model match with those of
the plant (in the literature, see Marchetti et al. (2009)).

• Direct input adaptation, which transforms the optimization problem into
a feedback control problem through the constancy or invariance of mea-
sured variables at a certain level, itself enforcing optimal performances
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(see Skogestad (2000), Ariyur and Krstic (2003), Titica et al. (2003a),
Akesson (1999), Henes and Sonnleitner (2007)).

The latter category contains methods such as self-optimizing control (Skoges-
tad (2000)), NCO tracking and extremum-seeking (Ariyur and Krstic (2003))
which will attract our attention in the following.

The first two extremum-seeking techniques that are studied in this work are
non-model based or "model-free". The first one is related to the work of Black-
man in the 60’s, revisited and improved in Ariyur and Krstic (2003) while the
second one is based on a simple recursive least squares technique (RLS). Note
that a classical model-free extremum-seeking, using gradient descent, compa-
rable to Ariyur and Krstic (2003), has already been applied succesfully to dy-
namic optimization of continuous bioprocesses in Wang et al. (1999). In Titica
et al. (2003a) and Titica et al. (2003b), real-time optimization of fed-batch biore-
actors via an original model-based extremum-seeking technique is considered.
In these latter works, a kinetic model using classical Monod or Haldane laws is
used, inducing the existence of a smooth cost function along which the search
for the extremum is performed. Several other theoretical and applicative pub-
lications on real-time optimization using a gradient descent along a smooth
cost function can also be cited as Tan et al. (2006), Tan et al. (2008), Tan et al.
(2009), Chioua et al. (2008), Peters et al. (2007), Zhang et al. (2002), Zhang and
Ordonez (2009) and Methekar et al. (2010). However, even in the most re-
cent publications, convex or, at least, smooth cost function (i.e., existence of a
steady-state where the cost function first derivative exists, is zero, and where
its second derivative is always negative or positive) is one of the most recurrent
assumptions. In this work, a fed-batch model based on a kinetic model com-
monly used in the literature (see Renard (2006), Rocha (2003), Sonnleitner and
Käppeli (1986)) and presenting a discontinuous derivative at the extremum, is
considered. The necessary condition of optimality (NCO) is then not fulfilled.
To our knowledge, this case is not examined in the literature, which makes
it original. Moreover, as suggested in the end of Titica et al. (2003a), varying
oxidative capacity of the cells (due to simple oxygen limitation or byproduct
inhibition) is also considered, forcing a kinetic change and, furthermore, a slow
displacement of the extremum.

4.2.1 Optimization criterion

Optimal operating conditions are situated at the boundary of the oxidative and
respiro-fermentative pathways (i.e., where the glucose concentration perfectly
matches with Scrit). In this particular case, the oxidation of glucose is the only
active reaction as no byproduct is produced nor consumed, inducing that r2

and r3 vanish. Moreover, when the glucose concentration reaches Scrit, r1 is
also maximized (see 4.3a). Maximizing the cells growth is therefore equivalent
to maximize the substrate consumption rate and to minimize the fermentation
rate (i.e., the simultaneous maximizations of the glucose consumption and the
respiratory capacity). This can be formulated as follows:

max
Ssp

Y = max
Ssp

(ϕ1 − ϕ2) (4.5)
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Figure 4.2: Critical substrate level (Scrit), separating the two regimes, as a
function of the respiratory capacity (rO)

where:

• Y is the assumed measurable cost function;

• ϕ1 and ϕ2 correspond to the reaction rates r1X and r2X, respectively.

In order to estimate the cost function Y online, we use a pseudo-steady state
assumption. Indeed, assuming that the variations of substrate, oxygen and
carbon dioxyde concentrations are equal to zero, we obtain from (2.6b), (2.6d)
and (2.6e):

D(Sin − S) = (kS1r1 + kS2r2)X (4.6a)

−DO + OTR = (kO1r1 + kO2r2 + kO3r3)X (4.6b)

DC + CTR = (kC1r1 + kC2r2 + kC3r3)X (4.6c)

Dilution terms can be considered as negligible in comparison with OTR, CTR
and DSin. Replacing the reaction rates riX by ϕi (i = 1, 2, 3), (4.6) can be writ-
ten:

DSin = kS1 ϕ1 + kS2 ϕ2 (4.7a)

OTR = kO1 ϕ1 + kO2 ϕ2 + kO3 ϕ3 (4.7b)

CTR = kC1 ϕ1 + kC2 ϕ2 + kC3 ϕ3 (4.7c)

From this on, after some basic mathematical manipulations, it is possible to
recover a measurable function y (see Fig. 4.3) of the yield coefficients, OTR,
CTR and DSin, proportional image of the assumed measurable cost function
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Figure 4.3: Extremum-seeking scheme integrated to the bioreactor plant

Y = ϕ1 − ϕ2. We decide to call DSin the "substrate intake rate" (SIR) and we
obtain:

Y = (ϕ1 − ϕ2) ∝ y (4.8a)

y = (kS1 + kS2) kC3 OTR − (kS1 + kS2) kO3 CTR + (kO3kC2 − kO1kC3 + kC1kO3 − kO2kC3)SIR
(4.8b)

This optimization criterion can thus be evaluated on the basis of 3 measure-
ments (OTR, CTR and SIR) coupled to a sufficiently good identification of
several yield coefficients (see Fig. 4.3). Fig. 4.4 shows the evolution of the re-
action rates and r1 − r2 (with a magnifying scaling factor) as a function of the
substrate concentration for a model of S. cerevisiae where the respiratory capac-
ity is assumed to be constant (no oxygen limitation and no respiratory capacity
inhibition by the byproduct). Indeed, the evolution of r1 − r2 is proportionnal
to the criterion ϕ1 − ϕ2 by a X factor. Consequently, it is preferable to represent
r1 − r2 at a fixed scale in order to study its main features. The optimum shown
in Fig. 4.4 appears to be unique and defined as a cusp, i.e. the criterion is dif-

ferentiable everywhere but at its optimum (
∂(r1−r2)(Scrit)

∂S does not exist) and the

convexity is switching before and after the optimum (
∂2(r1−r2)(S−

crit)

∂S2 < 0 and
∂2(r1−r2)(S+

crit)

∂S2 > 0).

4.3 Model-free extremum-seeking

4.3.1 Main principle

The objective of a general extremum-seeking strategy is to determine on-line
unknown parameters (which, in this case, are reduced to one parameter θ =
Ssp, image of the critical substrate level) of a system (represented by the biore-
actor in Fig. 4.3) by permanently estimating its gradient through the analysis
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Figure 4.4: Reaction rates and optimization criteria as a function of S

of the measurement Y = f (θ), following the injection of a periodical excita-
tion signal d (also called "dither signal", typically sinusoidal) in the controller

delivering a certain dilution rate D = Fin
V .

Two adaptive model-free extremum-seeking techniques are proposed in the
following.

4.3.2 Extremum-seeking through a bank of filters

The objective of the extremum-seeking strategy is to determine on-line the pa-
rameter θ̂ (which in this case represents the glucose concentration setpoint
Ssp ideally equal to Scrit). The main principle of the bank of filters (i.e., the
extremum-seeking scheme) technique is to isolate the information about the
gradient in ξ. To this aim, as shown in Fig. 4.5, the system is first excited by
a sinusoidal signal of the form Asin(ωt), disturbing its states and unknown
physical quantities (as, for instance, in our case, Scrit) in order to recover infor-
mation about their variations in y precisely at the frequency ω

2π . Nevertheless,
the assumed measurable signals composing y (i.e., OTR, CTR and SIR) may
present a large panel of different mid-frequencies covering or hiding the infor-
mation of interest at the frequency ω

2π .

A signal processing represented by the bank of filters is therefore needed in
order to recover the information of interest. The corresponding equations to
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Figure 4.5: Extremum-seeking scheme with a bank of filters (Ariyur and
Krstic (2003), Krstic and Wang (2000))

Figure 4.5 are (Ariyur and Krstic (2003), Krstic and Wang (2000)):

y = f (θ̂ + Asin(ωt)) (4.9a)

˙̂θ = kξ (4.9b)

ξ̇ = −ωlξ + ωl(y − η)Asin(ωt) (4.9c)

η̇ = −ωhη + ωhy (4.9d)

where:

• y = y(θ̂ + Asin(ωt)) is the measurable cost function;

• θ̂ is the estimation of the unknown parameter (in our case, θ̂ = Ŝsp);

• k is the gain of the integrator;

• ξ(= 1
k

dθ̂
dt ) can be seen as the gradient estimation;

• ωl is the cut-off frequency of the low-pass filter;

• ωh is the cut-off frequency of the high-pass filter;

• η is an intermediate variable explaining the absence of the low frequen-
cies rejected from y in y − η by the high-pass filter;

The overall feedback system of Fig. 4.5 has then three time scales:

• fast - the plant with the stabilizing controller;

• medium - the periodic perturbation;
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• slow - the filters (at least the high-pass filter as the low-pass filter is not
always necessary and its cut-off frequency has more or less the same or-
der as ω

2 π ) in the extremum-seeking scheme.

The following didactic example, assuming a model of a yeast fed-batch culture,
illustrates the operation from a frequential point of view:

• A first high-pass filter with a cut-off frequency ωh = 0, 1 ω is used in or-
der to reject the non-informative continuous component of y. To illustrate
this, the Discrete Fourier Transforms (DFT) of the input signal y and the
high-pass filter output signal y − η are respectively represented in Figs.
4.6 and 4.7. The absence of a significative continuous component can be
observed in 4.7 as its magnitude is now equivalent to the mid-frequencies
magnitudes (considered here as noise). Note that all the frequencies are
normalized with respect to the sampling frequency fS = 8 ω

2π .

• The output is then multiplied by the dither signal in order to be "demod-
ulated". There exist now another continuous component inside the re-
sult of this demodulation accompanied by another informative frequency
peak in 2 ω

2π = 0, 25 fS hidden in the disturbing mid-frequencies peaks.

Indeed, the demodulation acts as follows: asin(ωt)bsin(ωt) = ab
2 (1 −

cos(2ωt)), showing the presence of a constant ab
2 (continuous component)

and a component in 2ω.

• The second low-pass filter, which is not always necessary, is used in order
to better isolate this new continuous component containing the informa-
tion of interest and especially to attenuate the influence of the residual
mid-frequencies signals and the second component of the demodulation
in 2 ω. The DFT of the low-pass filter output signal is represented in Fig.
4.8. Note that the second component of the demodulation is still present
in 0, 25 fS.

• This signal ξ is then filtered one last time by an integrator in order to at-
tenuate the last "parasite" components and to recover the estimation of
the unknown parameter from the integration of the continuous compo-
nent appearing in Fig. 4.9.

Convergence of the bank of filters technique

As demonstrated in Krstic and Wang (2000), by choosing adequate values for
all the parameters of the optimizing loop, a nonlinear system should exponen-
tially converge to an O(ω + A)-neighborhood of the optimum value θ∗ (with
ω and A as small positive constants) if the following assumptions are fulfilled:

Assumption 4.1 There exists an input Fin(S, Ssp, t) that exponentially stabi-

lizes the system Ṡ = f (S(t), Fin(t), t) to the equilibrium produced by Ssp: Ṡ =
f (Ssp, Fin(t)) = 0.
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culture.
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Indeed, there exist many feed profiles Fin(t), each of them stabilizing system
(2.6b) to different S = Ssp, the ideal trajectory being the F∗

in(t) stabilizing (2.6b)
to the physical optimum S = θ∗ = Scrit.

The next assumption characterizes this optimum following the classical neces-
sary condition of optimality (NCO) for a maximum:

Assumption 4.2 There exists θ∗ = Scrit ∈ ℜ such that:

∂y
∂θ∗

= 0 (4.10a)

∂2y
∂θ∗ 2

< 0 (4.10b)

Looking at Fig. 4.4, it is obvious that Y (4.8a) has discontinuous derivatives
around the extremum appearing here as a cusp so that assumption 4.2 is not
verified. A rigorous proof of convergence is beyond the scope of this work,
and a more practical approach will be followed. To explain, however, the good
behaviour of the extremum-seeking scheme as depicted in Fig. 4.5, we propose
now to divide the domain of criteria (4.8) into 2 regions limited, on the left side,
by [0 S−

crit] and, on the right side, by [S+
crit + ∞], such that:

r1 − r2 =

{

r1 = µSS
S+KS

i f S ≤ S−
crit

r1max − r2 = 2rO
kOS

− µSS
S+KS

i f S ≥ S+
crit

(4.11)

Considering that the oxygenation is perfect and that the by-product concentra-
tion is sufficiently low so that the respiratory capacity rO is constant, we get:

(r1 − r2)
′ =







r′1 = µSKS
(S+KS)2 i f S ≤ S−

crit

(r1max − r2)
′ = − µSKS

(S+KS)2 i f S ≥ S+
crit

(4.12)

By linearizing (4.11) around the optimum value, we see that the derivatives
have opposite values. In the case of a cost function respecting the NCO, the
convergence is ensured (pushing the gradient ξ to zero in average) in a O(ω +
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Figure 4.10: Zoom on the optimum of Fig. 4.4. The arrows indicate the di-
rection of the algorithm displacement, following the sign of the
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system will oscillate if the parameter values are adequately se-
lected by trial and error.

A)-neighborhood of the optimum value, forcing ω and A to be chosen suffi-
ciently small in order to reduce this neighborhood as much as possible. In the
case of r1 − r2, the gradient is not pushed to zero (actually, (4.12) shows that it
remains more or less constant) but its sign changes at Scrit. If the algorithm per-
forms sufficiently small calculation steps, it will jump around the optimum and
remain in a small neighborhood as shown by Fig. 4.10. The system is not con-
verging in the sense of NCO but the correct direction towards the optimum, in-
dicated by the gradient, ensures neverending oscillations in the neighborhood
of the optimum (see Fig. 4.10). The only condition to obtain results comparable
to Krstic and Wang (2000) is still to force ω and A to be sufficiently small but
also to compromise k so as to ensure a fast convergence (which requires a large
value of k), and to ensure a convergence in an acceptable neighborhood of the
optimum (which requires a small k). Indeed, as the gradient is not converging
to zero, (4.9b) shows that θ variations are now conditioned by k.

4.3.3 Extremum-seeking through a RLS scheme

This second technique presents a scheme somewhat equivalent to the previ-
ous one where the bank of filters is actually replaced by a continuous recursive
least squares (RLS, Sastry and Bodson (1989), Aström and Wittenmark (1995))
scheme (see Figure 4.11). The following comments describe how it operates.

Considering Figs. 4.4 and 4.10, the cost function to the left and to the right of
Scrit is approximated by two straight lines with opposite slopes (according to
(4.12)). For the left part, any increase or decrease of S (S = Ssp as the controller
is assumed to be faster than the extremum-seeking scheme) corresponds to a
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Figure 4.11: Extremum-seeking scheme with RLS.

respective increase or decrease of Y. On the other hand, for the right part, any
increase or decrease of S = Ssp corresponds to a respective decrease or increase
of Y. Taking these last two remarks into account, the following relation holds:

Y ∝ y = ξ1 + ξ2Ssp (4.13)

where ξ1 and ξ2 are the a priori unknown (as long as the model is also con-
sidered as unknown) coefficients of the first order relation linking y and Ssp.
Finally, it appears clearly that the proportional coefficient ξ2 always indicates
the direction to follow in order to reach the optimum Ssp = Scrit. Therefore, ξ2

can be seen as a gradient which, once pushed to zero in average (as the dither
signal is still present), leads to the optimum. Rewriting relation (4.13) under a
classical regressive form, we obtain:

y = ξ̂ΦT (4.14)

where:

• y is still the result of the 3 measurements (OTR, CTR and SIR) and, so,
the vector of measurements;

• ξ̂ = [ξ̂1 ξ̂2] is the vector of estimated parameters;

• Φ = [1 Ssp] is the regressor.

Real values of the parameters ξ1 and ξ2 can be identified through the continu-
ous RLS scheme that follows:

e = y − ξ̂ΦT (4.15a)

˙̂ξ = KR−1ΦTe (4.15b)

Ṙ = K(ΦTΦ − λR) (4.15c)

where:
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• K is the strictly positive and constant adaptation gain;

• R is the inversed covariance matrix acting as a directional adaptation
gain;

• λ is a forgetting factor used in order to avoid a "covariance wind-up prob-
lem" due to the absence of bounds in R growth (if λ = 0, Ṙ ≥ 0 (Sastry
and Bodson (1989))).

ξ̂2 can be considered as the gradient estimation. This one is pushed to zero in
average using an integral control of the form:

˙̂Ssp = kiξ̂2 (4.16)

Convergence of the RLS strategy

According to the literature (see Aström and Wittenmark (1995)), in order to
converge towards the true sought value, that is, to converge to a true unique
solution,

R(t) =
∫ t

0
e−λ(t−τ)ΦT(τ)Φ(τ)dτ (4.17)

must always be invertible.

Considering the definition of Φ in (4.14), (4.17) becomes:

R(t) =
∫ t

0
e−λ(t−τ)

[

1 Ssp(τ)
Ssp(τ) S2

sp(τ)

]

dτ

=

[

∫ t
0 e−λ(t−τ)dτ

∫ t
0 e−λ(t−τ)Ssp(τ)dτ

∫ t
0 e−λ(t−τ)Ssp(τ)dτ

∫ t
0 e−λ(t−τ)S2

sp(τ)dτ

]

(4.18)

And it is now clear that if d = 0, i.e. Ssp(τ) ≈ Ssp can be considered as constant,
(4.18) becomes:

R(t) = (1 − e−λt)

[

1 Ssp
Ssp S2

sp

]

(4.19)

and is not invertible, while if d = Asin(ωτ), i.e. Ssp(τ) ≈ Ssp + Asin(ωτ),
(4.18) becomes:

R(t) =

[

1 − e−λt 0

0 (1 − e−λt)(S2
sp +

A2

2 )

]

(4.20)

and is now invertible. The convergence of the RLS is thus ensured considering
a sinusoïdal dither signal as depicted in Fig. 4.11.
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4.3.4 Controller design

We derive adaptation and control laws from the consideration of a candidate
Lyapunov function ensuring system stability. First, equation (2.6b) can be
rewritten as follows:

dS
dt

= −νX − D(S − Sin) (4.21)

where ν = kS1r1 + kS2r2 is considered as an unknown kinetic parameter.

Defining:

ZS = Ŝsp + d − S (4.22)

the control error variable,

ν̃ = ν − ν̂ (4.23)

the estimation error on ν, we consider the following Lyapunov function:

V =
1

2
Z2

S +
1

2γ
ν̃2 (4.24)

where γ is a strictly positive tuning parameter.

A stabilizing controller is obtained if one can prove the strict negativity of the
Lyapunov function derivative. Differentiating V and considering Ŝsp constant
in order to decouple the control law from the extremum-seeking scheme (this
can be done assuming that the controller converges significantly faster than the
extremum-seeking scheme), we obtain:

V̇ = ZS[νX + D(S − Sin) + ḋ] + ν̃(−
˙̂ν

γ
) (4.25)

Replacing (4.22) and (4.23) in (4.24) and forcing V̇ to be negative as in:

V̇ = −kpZ2
S (4.26)

where kp is a strictly positive tuning parameter, we obtain:

−kpZS = ν̂X + D(S − Sin) + ḋ (4.27)

provided that:

˙̂ν = −γZSX (4.28)

Finally, the stabilizing control law is given by:

D =
[kpZS + ḋ + ν̂X]

Sin − S
(4.29)
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Figure 4.12: Biomass (X), substrate (S in blue and Ssp in red), and ethanol
(E) concentrations evolutions when no respiratory capacity inhi-
bition is considered

4.4 Simulation results

Coupling the controller (4.29) with the extremum-seeking schemes, we apply
the complete loop to a small-scale simulated yeasts culture (typically 20l biore-
actor) using model (4) with the kinetic relations (3). The initial and operating
conditions are:

X0 = 0, 4g/l, S0 = 0, 05g/l, E0 = 1g/l, O0 = Osat = 0, 035g/l, C0 = Csat =
1, 286g/l, V0 = 5l and Sin = 350g/l.

where E0 is the initial concentration of ethanol (the yeast by-product). For the
kinetic and yield parameter values, the reader is referred to Tables 2.1 and 2.2
in section 2.2.

4.4.1 Application of the bank of filters technique

The parameters of the extremum-seeking scheme and the controller (i.e., the
tuning parameters) are defined, by trial and error, as follows:

A = 0, 007, ω = 2π
0,2 h−1, ωh = 0, 05ω, ωl = 1, 5ω, k = 100 and kp = 100.

Fig. 4.12 and 4.13 show the results when no inhibition from ethanol accumu-
lation is considered in the reference model (that plays the role of real system).
This seems to be realistic as the ethanol concentration is below 4g/l.

However, inhibition is an important phenomenon that has to be taken into ac-
count. When included in our bioprocess model, the extremum-seeking results
are as shown in Fig. 4.14 and 4.15. It is obvious that the biomass level that
can be achieved is significantly affected by the presence of ethanol, despite the
set-point adaptation. Note that these results are very satisfactory in view of the



4.4. SIMULATION RESULTS 100

0.01 0.015 0.02 0.025 0.03 0.035
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S
sp

 [g/l]

y

Figure 4.13: Convergence of the optimization criterion y to the optimum
when no respiratory capacity inhibition is considered. The el-
lipse indicates the optimum-neighborhood

situation where a constant substrate concentration is regulated (see Fig. 4.1).
Indeed, a small error on Ssp with respect to Scrit would lead to a dramatic accu-
mulation or reconsumption of ethanol and biomass growth would probably be
affected beyond model prediction. Moreover, the convergence rate is accept-
able as Scrit is reached in both cases between 5 and 10h (to be compared with a
typical batch duration of 24h).

As it is explained in Ariyur and Krstic (2003) and Krstic and Wang (2000), the
output error of the extremum-seeking algorithm achieves a local exponential
convergence to an O(A + ω)-neighborhood of the origin if it is assumed that
we are operating around a point of zero slope. As observed in section 4.2.1
(and Fig. 4.4), the criterion doesn’t present a point of zero slope as the function
has discontinuous derivatives around the optimum. Despite this difficulty, we
see that the algorithm converges well. However, there is clearly a source of bias
in the set-point when oxygen limitations (for instance, due to a too small kLaO)
and respiratory inhibition by ethanol are considered (see Fig. 4.14). Indeed, in
this case, the optimum is decreasing with the respiratory capacity (as defined
by (4.2c) and illustrated by Fig. 4.15). As the ethanol concentration grows,
the respiratory capacity slightly decreases and, following (4.4), Scrit does so.
To conclude this comment on estimation error, Tables 4.1 and 4.2 show the
evolutions of the estimation mean errors with respect to the frequency ω when
A is fixed to 0, 007 (Table 4.1) and the amplitude A when ω is fixed to 2π

0,2 (Table
4.2).

It appears clearly from these last tables that the estimation error is decreasing
as ω and A increase. More accurate studies of the estimation error are not
developed in this work but are still the subject of further research.
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Figure 4.14: Biomass (X), substrate (S in blue and Ssp in red), and ethanol (E)
concentrations evolutions when inhibition is considered
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Figure 4.15: Convergence of the optimization criterion y to the optimum
when inhibition is considered. The last arrow indicates the ex-
tremum move due to the ethanol-inhibited respiratory capacity

Table 4.1: Variation of the estimation mean error with respect to the dither
signal frequency ω (inhibition effect included in the model)

ω Estimation mean error
∣

∣Ssp − Scrit
∣

∣

2π/0, 2 0,003
2π/0, 133 0,0018
2π/0, 089 0,0014
2π/0, 006 0,0011
2π/0, 004 0,0008
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Table 4.2: Variation of the estimation mean error with respect to the dither
signal amplitude A (inhibition effect included in the model)

A Estimation mean error
∣

∣Ssp − Scrit
∣

∣

0,002 0,0267
0,004 0,0165
0,008 0,0025
0,016 0,0019
0,032 0,0014
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Figure 4.16: Biomass (X), substrate (S in blue and Ssp in red), and ethanol (E)
concentrations evolutions with RLS when no inhibition is con-
sidered

4.4.2 Application of the RLS technique

The tuning parameters are defined as:

A = 0, 001, ω = 2π
0,2 , k = 100, λ = 0, 1, ki = 0, 01 and kp = 100.

The culture time is still fixed to 24h. Fig. 4.16 and 4.17 show the results when
no inhibition from ethanol accumulation is considered, and Fig. 4.18 and 4.19
when the inhibition term in (2.5b) is taken into account. In comparison with
the bank of filters technique, the main observations are: (i) the convergence is
clearly faster (smaller ethanol accumulation even with an initial condition on
substrate 10 times higher than previously). (ii) the estimation error is smaller.
When inhibition is considered as in Fig. 4.18, the expected set-point bias has
less consequence on the estimation error. Note also that, in this application, the
RLS algorithm is less computationally demanding, easier to tune than the bank
of filters strategy and the convergence is achieved within the time interval of
5-10h which is quite acceptable.

Tables 4.3 and 4.4 show the evolutions of the estimation mean errors with re-



4.4. SIMULATION RESULTS 103

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024
0.01

0.02

0.03

0.04

0.05

0.06

0.07

S
sp

 [g/l]

y

Figure 4.17: Convergence of the optimization criterion y to the optimum with
RLS when inhibition is not considered
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Figure 4.18: Biomass (X), substrate (S in blue and Ssp in red), and ethanol
(E) concentrations evolutions with RLS when inhibition is con-
sidered
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Figure 4.19: Convergence of the optimization criterion y with RLS when in-
hibition is considered

Table 4.3: Variation of the estimation mean error with respect to the dither
signal frequency ω (inhibition effect included in the model)

ω Estimation mean error
∣

∣Ssp − Scrit
∣

∣

2π/0, 2 0,0011
2π/0, 133 0,0012
2π/0, 089 0,0014
2π/0, 006 0,0018
2π/0, 004 0,0029

spect to the frequency ω when A is fixed to 0, 001 (Table 4.3) and the amplitude
A when ω is fixed to 2π

0,2 (Table 4.4).

The RLS algorithm seems to be more sensitive to dither signal amplitude vari-
ations while the frequency seems less influent. However, note that for both
techniques, A has to be kept sufficiently low for stability reasons (see section
4.3.2).

4.5 Sensitivity analysis

In this last section, a sensitivity analysis is performed first, with respect to pa-
rameter uncertainties and finally, with respect to possible noise disturbances
on the input signals.

Concerning the first analysis, a random Monte-Carlo approach is applied to
the ki coefficients in (4.8). 100 runs are computed, in which a normally dis-
tributed random uncertainty error with zero mean and 5% standard deviation
is applied. The results are presented, taking into account the productivity level



4.5. SENSITIVITY ANALYSIS 105

Table 4.4: Variation of the estimation mean error with respect to the dither
signal amplitude A (inhibition effect included in the model)

A Estimation mean error
∣

∣Ssp − Scrit
∣

∣

0,002 0,0007
0,004 0,0001
0,008 0,0002
0,016 0,0047
0,032 0,0084
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Figure 4.20: Histogram of the productivity levels provided by 100 runs us-
ing the bank of filters extremum-seeking strategy with a random
parameter uncertainty normally distributed with zero mean and
5% standard deviation

defined as:

PX =
1

t f

V(t f )X(t f )− V0X0

Sin(V(t f )− V0)
(4.30)

where the 0 index represents the initial conditions and the batch time t f is fixed
to 23h.

4.5.1 Sensitivity of the bank of filters strategy

Fig. 4.20 shows the histogram of the productivity levels provided by 100 runs
of the bank of filters strategy. These levels are expressed in percentage with
respect to the maximum level obtained with the true parameter values and
which is 0, 021 g of biomass/g of feeding/h.

Obviously, 86% of the runs provide productivity levels comparable to the max-
imum (i.e., above 95% of the maximum obtained with perfect model values)
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Figure 4.21: Biomass (X), substrate (S in blue and Ssp in red), ethanol (E)
and oxygen (O) concentrations evolutions when applying noise
on the input variables of the bank of filters strategy

leading to biomass concentrations included between 60 and 85g/l and ethanol
concentrations below 7g/l, which can be tolerated considering an inhibition
constant (KiE similar to KiP in (2.5b)) of 10g/l (see Pham (1999)). Unfortu-
nately, 6% of the runs provide a very bad level due to an unlucky error combi-
nation of the stoichiometric parameters.

Concerning the sensitivity with respect to noise on the inputs (OTR, CTR and
SIR), Fig. 4.21 and 4.22 respectively show the evolution of the main state vari-
ables and the convergence of the algorithm when a white noise of zero mean
and 10% standard deviation is applied. Excepted the small decrease of the final
biomass concentration, conclusions are equivalent to section 4.4. Nevertheless,
the noise magnitude becomes critical once getting over 15% standard deviation
and leads to dramatic ethanol concentrations which must be avoided.

4.5.2 Sensitivity of the RLS strategy

Based on the same initial and operating conditions, Fig. 4.23 shows that, re-
garding parameter uncertainties, the RLS strategy provides a more robust be-
haviour as 99% of the runs provide productivity levels comparable to the max-
imum (i.e., above 97% of the maximum productivity obtained with perfect
model values) leading to biomass concentrations included between 60 and
110g/l and ethanol concentrations below 2g/l. It also appears in Fig. 4.23 that
the remaining run (the last percent) still provides a productivity level equal to
80% of the maximum (which, using the RLS strategy, is equal to 0, 0222 g of
biomass/g of feeding/h).

Then, white noise with zero mean and 20% standard deviation (i.e., twice as
much as the noise standard deviation applied to the bank of filters strategy) is
applied to the input variables. From the obvious results shown in Fig. 4.24 and
4.25, it can be concluded that the RLS strategy definitely appears as not only
more efficient but also more robust than the bank of filters for the considered
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Figure 4.22: Convergence of the optimization criterion y to the optimum
when applying noise on the input variables of the bank of filters
strategy. The arrows and ellipses indicate the extremum move
due to the ethanol-inhibited respiratory capacity
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Figure 4.23: Histogram of the productivity levels provided by 100 runs using
the RLS extremum-seeking strategy with a random parameter
uncertainty normally distributed with zero mean and 5% stan-
dard deviation
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Figure 4.24: Biomass (X), substrate (S in blue and Ssp in red), ethanol (E)
and oxygen (O) concentrations evolutions when applying noise
on the input variables of the RLS strategy

application.

4.6 Model based vs model-free strategies

In this section, a model-based extremum-seeking strategy is presented. This
technique lies on Lyapunov stability arguments, as depicted in the literature
(see Titica et al. (2003a), Guay and Zhang (2003), Betancur et al. (2004), Mar-
cos et al. (2004)). First, an introductive review of the method is achieved and
illustrated by simulation results using a model of microbial growth as in Titica
et al. (2003a). Then, an application of the method to the yeast model (2.13) is
performed and ends this last section dedicated to extremum-seeking strategies.

4.6.1 An adaptive model-based extremum-seeking strategy

In the study of Titica et al. (2003a), the fed-batch microbial growth model pre-
senting a gazeous by-product, is depicted by the following mass-balances:

dX
dt

= µX − DX (4.31a)

dS
dt

= −k1µX + D(S − Sin) (4.31b)

φP = k2µX (4.31c)

dV
dt

= DV (4.31d)

where the states X (g/l) and S (g/l) are respectively the biomass and substrate

concentrations, µ (h−1) is the specific growth rate, D = F
V (h−1) dilution rate,
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Figure 4.25: Convergence of the optimization criterion y to the optimum
when applying noise on the input variables of the RLS strategy.
The arrows and ellipses indicate the extremum-zone move due
to the ethanol-inhibited respiratory capacity

φP(g/l/h) the by-product production rate, Sin the substrate concentration in
the feed medium, F(l/h) the inlet feed rate and V(l) the culture medium vol-
ume.

The specific growth rate is approximated by a continuous Haldane law of the
form:

µ =
µ0S

KS + S + S2

KI

(4.32)

where µ0 is a constant linked to the maximum value of the specific growth rate
µ∗, KS the saturation constant and KI the inhibition constant. Fig. 4.26 shows
this typical fed-batch culture kinetic law when the cells growth rate present
an inhibition on substrate. The maximum specific growth rate is reached if
S = Scrit =

√
KSKI . Beyond this value, the specific growth rate enters in an

inhibition zone and decreases as the substrate concentration increases.

Thus, in order to maximize the productivity, the substrate concentration should
be controlled at the constant value Scrit. Unfortunately, KS and KI are gener-
ally unknown, so that an adaptive control algorithm based on an extremum-
seeking strategy is proposed in order to recover Scrit. The controlled variable
is, of course, still the dilution rate D. The following rewriting of the Haldane
parameters is now proposed:
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Figure 4.26: Haldane kinetic law

θµ =
µ0

KS
(4.33a)

θS =
1

KS
(4.33b)

θI =
1

KSKI
(4.33c)

Practically, φP can’t be measured but combining (4.31b) and (4.31c), an estima-
tor of φP can be built as follows:

dφ̂P

dt
= 1−θ̂I S2

S(1+θ̂SS+θ̂I S2)
[D(Si − S)− θkφP] φP

+
θ̂µSφP

1+θ̂S+θ̂IS2 − DφP + kφP eφP (4.34)

where kφP > 0, eφP = φP − φ̂P and θk =
k1
k2

(which is known).

Following the definition (4.33c) of θI , the desired set-point can be expressed

as Scrit = 1√
θ̂I

. As this last parameter is unknown, a periodic dither signal

d(t) is added to the input signal in order to fill a persistent excitation condition
(PE, see Titica et al. (2003a)) comparable to (4.17), ensuring that the adaptive
scheme converges to the true sought value of θ̂I leading, finally, to the optimal
biological value Scrit.
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A control error variable Zs comparable to (4.22) is now defined:

Zs = S − 1
√

θ̂I

− d(t) (4.35)

Reasoning as in (4.24) and (4.26), we obtain:

V =
Z2

s

2
+

1

2
(

θ̃2
µ

γµ
+

θ̃2
S

γS
+

θ̃2
I

γI
) +

e2
φP

2
(1 + θSS + θIS2) (4.36)

The control law estabished by Titica et al. (2003a). is then:

D =
1

(Sin − S)

[

−kzZs + θkφ̂P + a − kdd
]

(4.37)

where kz (kp in (4.26)) is the proportionnal error gain and kd a new tuning
parameter of d(t), defined as:

ḋ(t) = a(t) +
1

2
θ̂
− 3

2
I

dθ̂I

dt
− kdd(t) (4.38)

where a(t) is called the "closed-loop" dither signal, the part of (4.38) that is
designed by the user, while the remaining part corresponds to a mathematical
exploitation leading to an input of the form of (4.37). The convergence analysis
based on (4.36), using a judicious choice of the adaptive laws for θµ, θS and θI ,
are somewhat complex so that it is recommanded to consult Titica et al. (2003a)
for further details.

Simulation results are presented in Fig. 4.27 and 4.28 where the kinetic param-
eters true values are:

µ0 = 0.53h−1, KS = 1.2g/l, KI = 0.22g/l, k1 = 0.4 et k2 = 1.0.

Initial and operating conditions are:

S0 = 2.0g/l, X0 = 7.2g/l, V0 = 1.0l and Sin = 20g/l.

The chosen sampling period is 30min, which taking into account the slow sys-
tem dynamics, is acceptable. So is the convergence rate (within 5 and 10 h).

The main difference between this model and (2.13), excepted the continuous
form of its kinetics, is the assumption of a perfect cell oxygenation without
byproduct inhibition inducing the Scrit value, considered here as constant.

4.6.2 A particular model-based extremum-seeking design for
yeast fed-batch cultures

Borrowing the last extremum-seeking structure from Titica et al. (2003a), an-
other alternative than (4.8) to solve the problem of parameter uncertainties in
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Figure 4.27: Simulation results of the model-based extremum-seeking strat-
egy applied to microbial growth: biomass concentration, sub-
strate concentration, feed flow rate and specific growth rate evo-
lutions
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Figure 4.29: Linear approximation of Scrit = f (rO)

(4.4) is now proposed, considering a state-dependent Scrit (i.e., a critical sub-
strate concentration, function of the cells oxygenation as suggested in the per-
spectives of Titica et al. (2003a)). As the order of rO is clearly smaller than kosµS
(for instance, in yeast culture, rOmax = µO = O(10−1) and kosµS = O(100)), we
propose to approximate (4.4) by the following expression:

Scrit ≈
KS

kosµS
rO = αrO (4.39)

where α is a positive parameter which has to be adapted during the batch (as
a modelling exercise, a residual mean error of 0.2% is obtained after a linear
regression applied to (4.4) demonstrating the quality of a first-order approxi-
mation - see Fig. 4.29).

Redefining the control error variable as:

ZS = kp(S − Scrit) + ki

∫

(S − Scrit)dt − d (4.40)

where kp and ki are positive tuning parameters,

ν̃ = ν − ν̂ (4.41)

The estimation error on ν, and

α̃ = α − α̂ (4.42)

the estimation error on α, we consider the following new Lyapunov function:
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V =
1

2
Z2

S +
1

2γ
ν̃2 +

1

2γS
α̃2 (4.43)

where γ and γS are strictly positive tuning parameters.

A stabilizing controller is obtained following the same steps going from (4.36)
to (4.38), that is, forcing V̇ to be negative as in:

V̇ = −kzZ2
S (4.44)

where kz is a strictly positive tuning parameter. And so, provided that:

˙̂ν = −γkpZSX (4.45a)

˙̂α = −γSZS(kp ṙO + kirO) (4.45b)

Ŝcrit = α̂rO (4.45c)

Finally, the control law is given by:

D =

[

kzZS−a+kdd
kp

− ν̂X
]

S − Sin
(4.46)

with a dither signal chosen as:

ḋ = a + ki(S − α̂rO)− kpα̂ṙO − kdd (4.47)

where a is a closed-loop excitation signal and kd is a new strictly positive pa-
rameter.

Simulation results of the application of the model-based extremum-seeking
strategy to the yeast model

In this section, we apply the controller designed in section 4.6.2 to a simulated
case-study corresponding to classical small-scale (20 l bioreactor) culture con-
ditions. The initial and operational conditions are:

X0 = 0.4g/l, S0 = 0.5g/l, E0 = 3g/l, O0 = Osat = 0.007g/l, C0 = Csat =
1.286g/l, V0 = 6.8l, Sin = 350g/l

For the kinetic and yield parameter values, the reader is referred to section 2.2.

The selection of an appropriate dither signal is based on a persistent excita-
tion (PE) condition (Guay and Zhang (2003), Marcos et al. (2004), Adetola and
Guay (2006)) which, once fulfilled, ensures the asymptotic convergence of the
parameter estimates.

The excitation signal is here chosen as a simple sum of sinusoidal signals of the
form:
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Parameter Value Unit

γS 10 /

γ 10−7 /

kp 15 /

ki 0.004 /

kz 0.0015 X /

kd 0.01 /

ωi
2π i
4000 rad/s

Table 4.5: Tuning parameter values.

a =
5

∑
i=1

Aisin(ωi t) (4.48)

where Ai are normally distributed random numbers contained in [−5 10−4,
5 10−4] and ωi are the pulsations.

The initial substrate and ethanol concentrations are chosen at high values, so as
to challenge (in a difficult situation) the controller convergence speed. Figures
4.30, 4.31 and 4.32 present the simulation results. The substrate concentration
evolution (Figure 4.30) shows that the presence of ethanol at the beginning of
the batch causes a decrease of the critical substrate concentration level. An
adaptation of this critical substrate concentration is then needed so as to avoid
an increased production of ethanol (due to the excess of substrate) and a serious
inhibition of cell growth. At the end of the batch, ethanol is almost completely
consumed so that the system is driven close to the optimum (see Figure 4.32).
Figure 4.31 also shows the evolution of the feed rate Fin. ν̂ converges to its true
value, so as α̂ through a judicious choice of the value of γS (see Table 4.5) as
the convergence is generally very slow. The productivity is quite satisfactory
as more than 150g/l of biomass are obtained within less than 40 hours, despite
the high initial concentrations in substrate and ethanol.

The main drawback of this control strategy is the delicate choice of the tuning
parameters, depending on the initial and operating conditions. This problem
originates in the presence of the error control variable ZS as a factor in (4.45b).
If the substrate concentration quickly converges to its setpoint, i.e. the con-
troller works efficiently and ZS vanishes, the convergence of α is significantly
affected. In turn, if the critical substrate level is overestimated, the control ac-
tion can lead to the production of ethanol, and as a consequence, the inhibition
of the respiratory capacity and a further decrease of the critical substrate level.
With a bad choice of the tuning parameters, the biomass growth can therefore
be seriously inhibited.

A simple way round this problem is to systematically underestimate the critical
substrate level. This can be achieved by considering a lower linear approxima-
tion, i.e. a linear function below the real curve Scrit(rO) in the classical operat-
ing area (very low values of rO are never reached in a controlled process). For
instance, if we impose the point (µO, 0.02) to belong to this approximation (cfr
Figure 4.33), the adaptation law of α is now the following one:
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Figure 4.30: Substrate (S, Ssp and Scrit), biomass (X) and ethanol (E) concen-
trations evolutions
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Figure 4.33: Scrit as a function of rO (in green) and reduced approximation
(in blue).

S̄crit = ᾱrO (4.49)

where S̄crit and ᾱ are the lower values of Scrit and α. α is thus equal to 0.02
µO

.

Figure 4.34 shows simulation results using this modified strategy. The perfor-
mance is now much more robust to the initial and operating conditions. The
dither signal is simplified in a = Asin(ω t) since ν is now the only parameter
to be estimated (A = 0.0005 and ω = 2π

1000 ).

4.7 Conclusion

The high productivity of fed-batch cultures using genetically modified strains
exhibiting overflow metabolism relies on a double condition: an optimal feed-
ing strategy and the implied limitation of the inhibiting by-product forma-
tion. To this end, an adaptive controller using two different non-model based
extremum-seeking strategies is designed for a general case of overflow metab-
olized strain and is applied to the particular case of S. cerevisiae. The tracking of
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Figure 4.34: Biomass (X), Substrate (S, S̄crit and Scrit), and ethanol (E) con-
centrations evolutions

the critical substrate level, representing the optimum, is correctly performed by
both extremum-seeking techniques, limiting the ethanol accumulation despite
the considerations of an ethanol-inhibited respiratory capacity and discontin-
uous derivatives around the optimum. Moreover, the recursive least squares
strategy shows better performances and robustness facing parameter uncer-
tainties and noise disturbances.
A model-based extremum-seeking strategy is then designed. Based on Lya-
punov stability arguments, original adaptation laws are derived to estimate
on-line unknown kinetic parameters. Finally, a simplified strategy is proposed,
which provides a more robust estimation of the critical substrate level. Unfor-
tunately, even if the substrate critical level can be estimated through (4.4) with
the oxygen and byproduct measurements, the substrate concentration mea-
surement is a difficult task as the order of concentration levels (for instance,
O(10−2)toO(10−1)g/l for S. cerevisiae and E. coli) are below or, at least, some-
times judged too close to the resolution of currently available probes (O(10−1)).
Therefore, extremum-seeking strategies appear as a very helpful tool if the
practical conditions allow an accurate output measurement or observation,
which is not always the case. An alternative solution must then be elaborated
in the worst case of insufficient output measurement (or observation) accuracy.
This solution is part of this work and is the next chapter topic.



Chapter 5
A Practical Suboptimal
Strategy

5.1 Introduction

In this section, the attention is focused on the consequences of practical limita-
tions as explained in section (4.7). Indeed, expensive cost of hardware probes,
possible inaccuracy of those ones or even software probes (for instance, with re-
spect to the measurement order) or, simply, their inexistence (due to unfeasibil-
ity), may lead the practician to reconsider a bit lower the real process maximum
yield. Non-modeled or neglected biological phenomenons are also sometimes
acting in this direction. For instance, some genetically modified cells strains
may be less tolerant than others to metabolic switches which must therefore
be limited, making strategies like extremum-seeking dangerous for their well-
behave. However, in this particular case, a theoretically suboptimal but still
efficient strategy can be elaborated on the basis of a control structure taking
the following main observations into account:

• The most evident choice of a manipulated variable in a fed-batch system
is the feed flow rate Fin. Considering that we are looking for the simplest
way of modeling the bioreactor, we assume that Fin appears as the sole
input of the system.

• As explained in Valentinotti et al. (2003), the maximum of productivity
is obtained at the edge between the respirative and respiro-fermentative
regimes, where the quantity of byproduct is constant and equal to zero
(VP = 0, see Fig. 2.4). Unfortunately, evaluating accurately the volume is
a difficult task as it depends on the inlet and outlet flows including Fin but
also the added base quantity for pH control and several gas flow rates.
Moreover, maintaining the quantity of by-product constant in a fed-batch
process means that the by-product concentration has to decrease while
the volume increases. So, even if the volume is correctly measured, VP

119
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becomes unmeasurable once P reaches the sensitivity level of the by-
product probe. For those practical limitations, a sub-optimal strategy is
elaborated through the control of the by-product concentration around a
low value depending on the sensitivity of commercially available probes
(for instance, a general order for ethanol probe is 0.1g/l), and requiring
only an estimation of the volume by integration of the feed rate.

The basic principle of the controller is thus to regulate the by-product at a con-
stant low setpoint, leading to a self-optimizing control in the sense of Skoges-
tad (2004) and ensuring that the culture operates in the respiro-fermentative
regime, close to the biological optimum, i.e., close to the edge with the respira-
tive regime.

After those observations, the control framework must be chosen in accordance
with the process requirements in terms of adaptation and/or robustness. For
instance, linear control framework generally makes the design of robust con-
trollers easier than in a nonlinear framework.

Although the first part of the following section is devoted to a linearizing con-
trol strategy offering an original robust gain design using LMIs (Coutinho et al.
(2008)), the second part of this section is therefore devoted to the design of
an original robust linear RST controller (Valentinotti et al. (2004), Renard and
Wouwer (2008)) using the observer polynomial.

5.2 Linearizing control: a comparison of adaptive

and robust strategies

Even if its name does not suggest it, the linearizing control strategy is indeed
an adaptive nonlinear strategy which is widely applied to bioprocesses (Bastin
and Dochain (1990)). However, linearizing control requires the knowledge of
an accurate model, and on-line parametric adaptation is usually implemented
so as to ensure performance. Whereas parametric adaptation is a simple ap-
proach, it does not guarantee stability in the presence of unmodeled dynam-
ics. Chen et al. (1995) and Pomerleau (1990) demonstrated its usefulness in
an industrial application context of yeast fed-batch cultures. Their respective
algorithms are based on the alleviation of time-varying model uncertainties
(especially kinetic uncertainties) by the use of a few state measurements and
judicious parameter adaptation schemes related to Lyapunov stability theory.
In this study, another approach is also considered, which is based on nonlinear
robust control and the used of Linear Matrix Inequalities (LMIs) to design the
free linear dynamics so as to ensure robust stability and performance. A com-
parison of the adaptive and robust control approaches is provided in terms
of implementation, and simulation tests show the respective advantages and
limitations of both strategies.

The component-wise mass balances of reaction scheme (2.3) lead to the follow-
ing state-space representation

ẋ = Kr(x)X + Ax − ux + B(u) (5.1)
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Figure 5.1: Linearizing control scheme.

where x = [ X S P O C V ]′ is the state vector, r(x) = [ r1 r2 r3 ]′

is the vector of reaction rates, and u = D = Fin/V is the control input (the
dilution rate). The matrices K and A, and the vector function B(·) are given by:

K =

















kX1 kX2 kX3

−kS1 −kS2 0
0 kP2 −kP3

−kO1 −kO2 −kO3

kC1 kC2 kC3

0 0 0

















, B(u) =

















0
Sin u

0
kLaO Osat
kLaC Csat

0

















, (5.2)

A =





03×3 03×2 03×1

02×2 −[kLaO kLaC] I2×2 02×2

01×3 01×2 0



 ,

A feedback linearizing controller is illustrated in Figure 5.1. In a first step, this
controller is derived assuming a perfect process knowledge. The basic idea
is to derive a nonlinear controller, which allows a linearization of the process
behavior (Chen et al. (1995), Pomerleau (1990)).

As the theoretical value of Scrit is very small (below 0.1 g/l) and assuming a
quasi-steady state of S (i.e. considering that there is no accumulation of glu-
cose when operating the bioreactor in the neighborhood of the optimal oper-
ating conditions), the small quantity of substrate VS is almost instantaneously

consumed by the cells (
d(VS)

dt ≈ 0 and S ≈ 0) and (2.6b) becomes:

r2X = − kS1r1X + Sinu
kS2

(5.3)

where r1 and r2 are nonlinear functions of S, P and O as given by (2.4a-2.4b).

Replacing r2X by (5.3) in the mass balance equation for P (2.6c), we obtain:

Ṗ = − kP2kS1

kS2
r1X − kP3r3X − u

(

P − kP2

kS2
Sin

)

(5.4)

A first-order linear reference model is imposed:

d(P∗ − P)
dt

= −λ(P∗ − P) , λ > 0 (5.5)
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and a constant setpoint is considered so that:

dP
dt

= λ(P∗ − P) , λ > 0 (5.6)

Equating (5.6) and (5.4), the following control law is obtained:

Fin = V
λ(P∗ − P) + ( kP2kS1

kS2
r1 + kP3r3)X

kP2
kS2

Sin − P
(5.7)

where kP2kS1
kS2

r1 and kP3r3, the kinetic expressions, contain several uncertain pa-
rameters.

5.2.1 A classical adaptive strategy

In Chen et al. (1995), the parameter uncertainties are handled using an on-line

estimation of the kinetic term kP2kS1
kS2

r1 + kP3r3 in the linearizing control law

(5.7). In this study, the biomass concentration X is supposed to be measured
using a probe (for instance an optical density probe or a conductance probe,
which are nowadays widely available but still expensive. However, note that
software sensors as described in chapters 2 and 3 could also be used), whereas
in Chen et al. (1995), an asymptotic observer is used to estimate this component
concentration. The following adaptive scheme is therefore a simplified version
of the original algorithm.

Fin = V
λ(P∗ − P) + ν̂X

kP2
kS2

Sin − P
(5.8)

A direct adaptive scheme as described in Bastin and Dochain (1990) is used.
Consider the following Lyapunov function candidate:

V(t) =
1

2

(

P̃2 +
ν̃2

γ

)

(5.9)

where P̃ = P∗ − P, ν̃ = ν − ν̂ and γ is a strictly positive scalar. The specific
growth rates r1 and r3 (and, of course, the pseudo-stoichiometric coefficients
kP2, kS1, kS2 and kP3) are assumed to be constant so that ν variations are negli-

gible ( dν
dt = 0).

Using the Lyapunov stability theory, the time derivative of the Lyapunov can-
didate function should be negative for the closed-loop system to be stable:

dV
dt

=
dP̃
dt

P̃ + ν̃
dν̃

dt
1

γ
(5.10)

Considering (5.6) and a possible parameter mismatch (ν̂ 6= ν):

dP̃
dt

= −λP̃ − ν̃X (5.11)
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so that (5.10) becomes:

dV
dt

= −λP̃2 − P̃ν̃X − ν̃
dν̂

dt
1

γ
(5.12)

Choosing the following ν adaptive law cancels the second and the third terms:

dν̂

dt
= γXP̃ (5.13)

5.2.2 A robust strategy

Structural and parametric uncertainties can be lumped into a global parametric
error:

δ = ν̄ − ν (5.14)

where δ is a nonlinear function of (S, P, O) representing possible inexact can-
celations of nonlinear terms due to model uncertainties and ν̄ represents the
hypothetical exact unknown value. Rewriting the kinetic term in (5.8) using
the new expression taken from (5.14), we obtain:

u = Fin = V
λ(P∗ − P) + ν̄X − δX

kP2
kS2

Sin − P
(5.15)

which corresponds to the perturbed reference system:

Ṗ = λ(P∗ − P)− δX (5.16)

Borrowing the ideas of the Quasi-LPV approach (Leith and Leithead (2000)),
we bound the time-varying parameter δ which is supposed to belong to a
known set ∆ := {δ : δ ≤ δ ≤ δ} with δ and δ respectively representing the
minimal and maximal admissible uncertainties.

The parameter λ is designed to ensure some robustness and tracking perfor-
mance to the overall closed-loop system, which is modeled as follows:

M :

{

Ṗ = −λz − δX
z = P∗ − P

(5.17)

where z = P∗ − P is the performance output.

Let w = [ P∗ X ]′ ⊂ L2,[0,T] be the disturbance input to the system M,

a(λ, δ) =
[

λ −δ
]

and c =
[

1 0
]

. The closed-loop system (5.17) can
be rewritten:

M :

{

Ṗ = −λP + a(λ, δ)w
z = − P + c w , δ ∈ ∆

(5.18)

Consider the finite horizon (for instance, between the instant 0 and the time
T) L2-gain of system M (Green and Limebeer (1994)), representing the worst-
case of the ratio of ‖z‖2,[0,T] (i.e., the finite horizon 2-norm of the tracking error)

and ‖w‖2,[0,T] (i.e., the finite horizon 2-norm of the disturbance input), which
is defined as:

‖Mwz‖∞,[0,T] = sup
δ∈∆,0 6=w⊂L2,[0,T]

‖z‖2,[0,T]

‖w‖2,[0,T]
(5.19)
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Thus, the parameter λ is designed based on the H∞ control theory (Green and
Limebeer (1994),Skogestad and Postlethwaite (2001)). Let α > 0 be an upper
limiting of ‖Mwz‖∞,[0,T]. Thus, the problem is to find α such that:

min
λ,δ∈∆

α : ‖Mwz‖∞,[0,T] ≤ α (5.20)

while ensuring the robust stability of system (5.18).

This optimization problem can be written in terms of linear matrix inequalities
(LMIs) and solved using readily available toolboxes, e.g., SeDuMi (Sturm et al.
(2006)) can be applied to solve the problem. These constraints can be easily
obtained via a quadratic Lyapunov function (Boyd et al. (1994)):

V(P) = P′QP = QP2 (5.21)

where Q is a striclty positive symetric matrix (i.e., Q = Q′ ≻ 0) and ” ′ ”
corresponds to the transposition matrix operation.

The minimization in (5.20) is then equivalent to:

min α : V(P) ≻ 0 , V̇(P) +
1

α
z′z − αw′w ≺ 0 (5.22)

where, using (5.18) and (5.21), the time derivative of V(P) is given by:

V̇(P) = Ṗ′QP + P′QṖ

= (−λP + aw)′QP + P′Q(−λP + aw)

= −λP′QP + (aw)′QP − λP′QP + P′Qaw

= −2λP′QP + a′w′QP + P′Qaw (5.23)

Using (5.23) in (5.22), the following expression is obtained:
[

P
w

]′ [ −2m Qa
a′Q −αInw

] [

P
w

]

− 1

α
zz′ ≺ 0 (5.24)

where m = λQ and Inw is the unity matrix of dimension nw × nw and nw is the
dimension of w.

Now, consider the following lemma (Schur Complement):

Lemma 1. The following matrix inequalities are equivalent

(i) T > 0, R − ST−1S′ ≻ 0

(ii) R > 0, T − S′R−1S ≻ 0

(iii)
[

R S
S′ T

]

≻ 0

Hence, using the expression of z, a and c in (5.18) and Lemma 1, the optimiza-
tion problem in (5.20) can be written as follows:

min
Q,m

α : α > 0 , Q = Q′
> 0 and









−2m m −δQ −1
m −α 0 1

−δQ 0 −α 0
−1 1 0 −α









≺ 0 (5.25)
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If there exists a feasible solution to the above optimization problem for all δ
evaluated at the vertices of ∆, then (5.20) is satisfied and λ = mQ−1.

Note that this method is likely to be conservative, as the parameter δ has to
bound the nonlinearities of the inexactly cancelation terms. Less conservative
results can be obtained by considering the approach of Coutinho et al. (2008)
to deal with the nonlinearities at the cost of a larger computational effort.

5.2.3 Numerical results

In this section, for comparing the adaptive and robust linearizing control strate-
gies, several numerical simulations considering small-scale bacteria and yeast
cultures (respectively in 5 and 20 l bioreactors) are performed. The first simu-
lation set is dedicated to yeast cultures with initial and operating conditions:
X0 = 0.4g/l, S0 = 0.5g/l, E0 = 0.8g/l, O0 = Osat = 0.007g/l, C0 = Csat =
1.286g/l, V0 = 6.8l, Sin = 350g/l. The second simulation set is dedicated
to bacteria cultures with initial and operating conditions: X0 = 0.4g/l, S0 =
0.05g/l, A0 = 0.8g/l, O0 = Osat = 0.007g/l, C0 = Csat = 1.286g/l, V0 = 3.5l,
Sin = 250g/l

The values of all model parameters are listed in Tables 2.1, 2.2, 2.3 and 2.4.
Note that, for yeast cultures, coefficients kos and kop are simply replaced by kO1

and kO3 while kO2 = 0, in accordance with the model of sonnleitner1986. For
the bacteria model, parameters values are taken from Rocha (2003) and slightly
modified to adapt the yield coefficient normalization to the proposed reaction
scheme (2.3) and kinetic model (with a slight difference in the formulation of
r3).

The state variables are assumed available (i.e., measured) online for feedback.
The adaptive and robust linearizing feedback controllers proposed in section 5.2
aim at tracking the byproduct set-point (E∗ and A∗ = 1 g/l) which is chosen
sufficiently low so as to stay in the neighborhood of the optimal trajectory but
also sufficiently high to avoid probe sensitivity limitations. In this setup, a
noisy byproduct measurement is considered.

To design the parameter λ in (5.16) via the optimization problem (5.20), the
parameters KS, KP, KO, KiP

and µS, µO are assumed to be respectively varying
of ±100% and ±15% from their nominal values (which are acceptable varia-
tions with respect to a realistic identification as performed in chapter 2). Sim-
ulating the operating conditions of the control strategy in (5.15), we may in-
fer that δ = 0 s−1 and δ = 0.5/3600 s−1 for yeast cultures, and δ = 0 s−1

and δ = 0.1/3600 s−1 for bacteria cultures (these values are chosen following
previous observations of the simulated model). In light of (5.18) and (5.20),
these constraints yield for yeasts and bacteria, respectively to λ = 0.0056 and
λ = 0.0046.

Concerning the adaptive control law, λ = 1 and γ = 0.05 for yeast cultures
while λ = 2 and γ = 0.25 for bacteria cultures. Note also that the sampling
period is chosen equal to 0.1 h.

Before discussing the results of the proposed methods, it is interesting to ob-
serve the performance of a plain linearizing controller, i.e. without adaptation
or robustification, applied to the yeast process in the presence of modeling er-
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Figure 5.2: Yeast cultures – ethanol concentration and feed rate when the con-
troller is designed using a plain linearizing control approach (no
adaptation and no robustification) in the presence of modeling er-
rors.

rors. For instance, consider the situation where the user selects a relatively high
gain λ = 1, and ν̂ is fixed to kP2/2. Figure 5.2 illustrates the consequences of
such choices. Even if the controller behaves correctly during the first hours, the
divergence of the ethanol signal during the last hours will impact the quality
of the culture.

Figure 5.3 shows now the closed-loop response of biomass X, ethanol E con-
centrations, and the inlet feed rate Fin, for five different values of the kinetic
parameters (which were randomly chosen) in yeast cultures under a robust
control strategy. In all simulation runs, a white noise is added to the ethanol
concentration measurement with a standard deviation of ±0.1 [g/l] and the
culture is considered as always evolving in the optimal operating conditions
in which r1 = rO

kos
and r3 = 0 so that the hypothetical parameter ν̄ in (5.15) is

taken as

ν̄ =
˜kP2kS1

kS2
r1 + ˜kP3r3 ≈

kP2kS1
kS2

rO

kos
(5.26)

Figure 5.3 shows that during the start-up phase, Fin saturates to 0, leading to
an ethanol overshoot (see Figure 5.3). The different curves are more or less
undistinguishable (the same noise signal is applied during the 5 runs) except
in the last hours where the consequences of model errors appear. Nevertheless,
these results are very satisfactory as model errors have a negligible influence.

Figures 5.4 and 5.5 show the results of a simulation performed with the same
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Figure 5.3: Yeast cultures – biomass and ethanol concentrations, and feed rate
– robust control strategy – results of 5 runs with random parame-
ter variations and a noise standard deviation of ±0.1 [g/l].

initial and operating conditions with the adaptive strategy, in the ideal case
where there is no measurement noise, whereas Figures 5.6 and 5.7 correspond
to a noise standard deviation of ±0.05 [g/l] added to the ethanol concentration
measurements. Due to sensitivity problems of the adaptive law, higher noise
levels usually lead to computational failures. When the parameter adaptation
performs well, the productivity of the adaptive and robust strategies is more or
less the same, i.e., a biomass concentration of approximately 80 g/l is obtained
within 24 hours.

Figure 5.8 shows the closed-loop response of biomass X, acetate A concentra-
tions, and inlet feed rate Fin, for five different values of the kinetic parameters
which are randomly chosen, in the bacteria cultures under a robust control
strategy. Figures 5.9 and 5.10 show similar simulation runs with the adaptive
strategy. The same comments concerning the noise sensitivity apply.

Note that the productivity is lower in the bacteria cultures (for biological and
operating reasons, bacteria strains lead to reaction rates and, therefore, growth
rates that are smaller than yeast reaction rates). However, from a control point
of view, results are sactisfactory in both cases.

5.2.4 Conclusion

Linearizing control is a powerful approach to the control of fed-batch biopro-
cesses. In most applications reported in the literature, on-line parameter adap-
tation is proposed in order to ensure the control performance despite model-
ing uncertainties. On-line parameter adaptation is however sensitive to mea-
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Figure 5.4: Yeast cultures – ν adaptation and biomass concentration – adap-
tive control strategy – no measurement noise.
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Figure 5.5: Yeast cultures – ethanol concentration and feed flow rate – adap-
tive control strategy – no measurement noise.
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Figure 5.6: Yeast cultures – ν adaptation and biomass concentration – adap-
tive control strategy – noise standard deviation of ±0.05 [g/l].
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Figure 5.7: Yeast cultures – ethanol concentration and feed flow rate – adap-
tive control strategy – noise standard deviation of ±0.05 [g/l].
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Figure 5.8: Bacteria cultures – biomass and acetate concentrations, and feed
rate – robust control strategy – results of 5 runs with random pa-
rameter variations and a noise standard deviation of ±0.1 [g/l].
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Figure 5.9: Bacteria cultures – ν adaptation and biomass concentration
– adaptive control strategy – noise standard deviation of
±0.05 [g/l].
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Figure 5.10: Bacteria cultures – acetate concentration and feed flow rate
– adaptive control strategy – noise standard deviation of
±0.05 [g/l].

surement noise, and requires some kind of tuning. On the other hand, robust
control provides an easy design procedure, based on well established compu-
tational procedures using the LMI formalism. Large parametric and structural
uncertainties, as well as measurement noise levels can be dealt with.

5.3 Linear robust control

5.3.1 Model linearization

Expressions (2.4) and (2.5) recall that model (2.6) is highly nonlinear in the
macroscopic key components. The linear controller design requires a lineariza-
tion along the proposed suboptimal trajectory (i.e., where Ere f = 1 g/l). As
proposed in Renard et al. (2006), two partial linear models representing each
regime, respectively, can be derived and have the interesting property that they
share the same structure.

The following linearization is first performed considering respiro-fermentative
culture conditions (S > Scrit, r3 = 0). Substrate consumption represents one of
the fastest dynamics of the system.

Starting from the simplification in (2.6b), (5.3) and (2.6c), related to the byprod-
uct mass balance, are combined to give:

dP
dt

=
Fin

V
(

kP2

kS2
Sin − P)− kP2kS1

kS2
r1X (5.27)
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This equation can be linearized along a nominal trajectory defined by P∗(t),
F∗

in(t), V∗(t), X∗(t) and O∗(t). As long as the process is operated in the neigh-
borhood of this trajectory, P∗(t) can be considered as a constant variable Pre f ,

the control set point (or reference), while F∗
in(t) and V∗(t), respectively corre-

sponding to the necessary feed-rate and the related volume (
dV∗(t)

dt = F∗
in(t) ,

see (6f)) to maintain P at Pre f , are linked by the following relation:

F∗
in =

V∗
kP2
kS2

Sin − P∗
kP2kS1

kS2
r∗1 X∗ (5.28)

Setting:

P = P∗ + δP
Fin = F∗

in + δFin
V = V∗ + δV
X = X∗ + δX
O = O∗ + δO

(5.29)

where δ denotes a very small variation, a first-order Taylor series development
can be achieved:

dδP
dt

=
kP2
kS2

Sin−P∗

V∗ δFin −
F∗

in
V∗ δP − F∗

in
V∗

kP2
kS2

Sin−P∗

V∗ δV − kP2kS1
kS2

X∗ ∂r∗1
∂O δO

− kP2kS1
kS2

r∗1 δX (5.30)

Along the nominal trajectory, it is assumed that the process is operated not
far from the optimal conditions (i.e., close to the edge of the two regimes) so
that r∗1 ≈ rO

kos
. Moreover, when the oxygenation is not limiting and the ethanol

quantity is not sufficient to significatively inhibit the respiratory capacity (i.e.,
(2.5b) with KO << O and KiP >> P), the following simplification holds:

r∗1 ≈ rOmax

kos
=

µO

kos
→ ∂r∗1

∂O
≈ 0 (5.31)

Now, considering (5.28) and 5.31, (5.30) can be written as follows:

dδP
dt

=
kP2
kS2

Sin−P∗

V∗ δFin − X∗
kP2
kS2

Sin−P∗
kP2kS1

kS2
r∗1 δP − X∗

V∗
kP2kS1

kS2
r∗1 δV

− kP2kS1
kS2

r∗1 δX (5.32)

From the contributions brought by δFin, δP, δV and δX, using constant values
of P∗ and r∗1 , different values of V∗ and X∗ going from the start to the end of,
for instance, a 20 − l yeast culture (note that this assumption is still correct for
bacteria cultures) and considering realistic operating parameters, the order of
magnitude of the "δFin term" is always significantly larger than the others as
shown in Table 5.1.
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Table 5.1: Order evaluation of each term of (5.30)

Culture start Culture end
kP2
kS2

Sin−P∗

V∗ O(101) O(101)
X∗ kP2kS1

kS2
r∗1

kP2
kS2

Sin−P∗
O(10−3) O(10−1)

X∗ kP2kS1
kS2

r∗1
V∗ O(10−2) O(100)

kP2kS1
kS2

r∗1 O(10−1) O(10−1)

From this on, it is legitimate to neglect these latter contributions and to consider
the following model in variations:

dδP
dt

=

kP2
kS2

Sin − P∗

V∗ δFin (5.33)

Moreover, defining the biomass specific growth rate kX1r1 + kX2r2 + kX3r3 as
µ, (2.6a) is written:

d(VX)

dt
= µVX (5.34)

By integrating (5.34) over the culture period, we obtain the evolution of the
biomass quantity along the nominal trajectory (where, from (5.31), µ∗ ≈ kX1r∗1
can also be considered as constant):

V∗X∗ = V0X0exp(µ∗t) (5.35)

Replacing δP and δFin respectively by P − P∗ and Fin − F∗
in in (5.33) and taking

into account (5.28) and (5.35), the linear model between the measured state P
and the input Fin is obtained:

dP
dt

=

kP2
kS2

Sin − P∗

V∗ (Fin − dX) (5.36)

where:

dX =

kP2kS1
kS2

r∗1
kP2
kS2

Sin − P∗
V0X0exp(µ∗t) (5.37)

Finally, a discrete-time transfer function linking the ethanol concentration to
the feed rate can be obtained for the respiro-fermentative regime on the basis
of (5.37) and, using similar developments, also for the respirative regime. A
general discrete-time model representing both regimes can be described by:
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Table 5.2: Parameters of the linear discrete-time model (5.38)

Parameter RF regime R regime

b TS

kP2
kS2

Sin−P

V TS

kos
kop

Sin−P

V

c
kP2kS1

kS2
r1

kP2
kS2

Sin−P
V0X0

rOmax
kop

kos
kop

Sin−P
V0X0

γ exp(µTS) exp(µTS)

P(k) =
bq−1

1 − q−1
(Fin(k)− dX(k)) (5.38a)

dX(k) =
c

1 − γq−1
δ(k) (5.38b)

where q−1 is the backward shift operator (x(k − 1) = q−1x(k)), the parameters
b and c are functions of the operating regime and dX is seen as the perturbation
representing the cells growth (γ is an image of the cells growth rate). All the
parameter expressions are listed in Table 5.2 where TS represents the sampling
period.

5.3.2 Controller design

For the sake of clarity, we call B the polynomial bq−1, A the polynomial 1− q−1,
C the polynomial c and DX the polynomial 1 − γq−1.

Potentialities of application of conventional PID controllers are unfortunately
limited since the biomass grows exponentially. Indeed, (5.38) shows that the
unstable disturbance, which is an image of the biomass growth, needs to be
rejected. In Axelsson (1989), Axelsson et al. (1988) and Axelsson (1988), the
tuning of a PID controller regulating the ethanol concentration is investigated.
Despite the integral part of the controller, an exponentially growing error is
observed, showing that this type of controllers is inappropriate. Moreover,
the derivative action, which usually improves the stability margin, has bad
robustness with respect to the process parameters (Axelsson (1988)).

Consequently, an adaptive RST controller based on the internal model prin-
ciple in order to reject the unstable disturbance is chosen. A great advantage
of this kind of controllers is presented in the following design method using
a pole placement procedure which allows to easily impose the tracking be-
haviour independently of the robustness performance.

The two-degree-of-freedom RST controller, applied to the linearized model of
the bioreactor (see Fig. 5.11), is designed to control the ethanol concentration
at Ere f and reject the disturbance dX .

The control law can be written as:

R(q−1)Fin(k) = −S(q−1)P(k) + T(q−1)Pre f (5.39)
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Figure 5.11: Closed-loop control of the bioreactor model. B, A, R, S and T are
polynomials in backward-shift operator q−1

and, omitting the backward-shift operator, the closed-loop equation takes the
form

P(k) =
BT

AR + BS
Pre f +

BR
AR + BS

dX(k) (5.40)

The RST controller polynomials are then computed using a pole-placement
procedure (Astrom and Wittenmark (1997), Landau (1998)), in which the refer-
ence model is given by:

Hm(q−1) =
B(q−1)Am(1)

B(1)Am(q−1)
(5.41)

where Am is chosen to tune the tracking performance and, Am(1) and B(1) are
respectively the static gains of the polynomials Am and B. R and S are found
by solving a diophantine equation of the form:

AR + BS = AO Am (5.42)

where AO is the observer polynomial, which can be selected independently of
Am so as to confer some robustness to the controller.

Following the internal model principle (Francis and Wonham (1975)), the un-
stable pole γ of the disturbance dX should be included into the R polynomial
(i.e, DX is a factor of R). This disturbance will be canceled out if a correct esti-
mation of the parameter γ is available, for instance through a Recursive Least
Squares algorithm (Astrom and Wittenmark (1997)). Indeed, after the initial
time, (5.38b) can be written as:

dX(k)− γdX(k − 1) = 0 (5.43)

By replacing the closed-loop transfer function denominator and R by their new
expressions and the disturbance dX by (5.38b), we obtain:

P(k) =
BT

AO Am
Pre f (k) +

BDXR′

AO Am

c
DX

δ(k) (5.44)
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It appears that the disturbance is compensated and T is only chosen to ensure
the setpoint tracking:

T = AO
Am(1)

B(1)
(5.45)

5.4 Simulation results: application of the RST con-

troller

5.4.1 Controller performance

The first simulation run illustrates the byproduct regulation based on the lin-
earized model (5.38), theoretical parameter values taken from Sonnleitner’s
yeast kinetic model (Sonnleitner and Käppeli (1986)) and the RST controller
defined in (5.39) and applied in closed-loop as in (5.40). An initial ethanol con-
centration of 0.8 g/l is chosen so that the process has to operate in the respiro-
fermentative regime (this point will be detailed in section 5.5), and the only
yield coefficients whose knowledge is a priori required, are kS1, kS2 and kP2

(see (2.6) and Table 5.2). Initial and operating conditions are chosen as follows:
kLaO = kLaC = 300h−1 (note that these values only aim at representing a case
where the oxygenation is not limited. In practical conditions, kLaO and kLaC
have different values); Sin = 350g/l; X0 = 0.4g/l; S0 = 0.012g/l; E0 = 0.8g/l;
O0 = 100% = 0.007 g/l; TS = 6min. The biological reactions occur on such
a time scale that a sampling period of 6min is acceptable. A first-order track-
ing behavior with a time constant of 1h can be selected, which corresponds to
Am = 1 − 0.9q−1.

The tuning of the observer polynomial A0 is generally achieved by loopshaping,
i.e., by modifying the shape of the corrected open-loop transfer function in a
Black-Nichols diagram (Fig. 5.12).

Following the general Nyquist theorem transposed to this diagram, the stabil-
ity of the closed-loop system is verified if the corrected open-loop curve sur-
rounds the point (0,−180) by the right side (i.e, the curve cuts the phase axis on
the right side of (0,−180)). Three margins are defined (see Fig. 5.12) : an upper
gain margin (OB), a lower gain margin (OC) and a phase margin (OD). Stabil-
ity robustness can then be analyzed through these criterions, defining an ellip-
soïd area that the curve should not enter. Actually, an equivalent mathematical
expression can be stated through the moduli of the direct and complementary
sensitivity functions. Ensuring a modulus lower than 6dB for the direct sen-

sitivity function (σd = AR
AR+BS ) and lower than 3 dB for the complementary

sensitivity function (σc = BS
AR+BS) provides a good stability robustness. This

analysis (Renard and Wouwer (2008)) leads to the conclusion that while those
last criteria are not respected without robustification (AO = 1), a first order
observer polynomial (AO = 1 − a1q−1) is indeed sufficient to ensure a good
robustification. The value a1 = 0.7 is obtained by trial and error and ensures
a comfortable gain margin at high frequencies, corresponding to the frequency
range of the neglected glucose dynamics (2.6b).



5.4. SIMULATION RESULTS: APPLICATION OF THE RST CONTROLLER 137

Figure 5.12: Robust behavior analysis of the proposed controller in the Black-
Nichols diagram. Upper and lower gain margins are represented
by the OB and OC arrows and the phase margin by the OD ar-
row.

The tracking performance is tested in Fig. 5.13 where the reference, initially
set to 1g/l is changed to 2g/l. As E reaches the previous set-point within 4h
from the start, the new set-point is also reached after 4h. This last observation
is expected as Am is chosen in order to impose a time constant of 1h.

5.4.2 Controller improvements considering a delayed output
and probe dynamics

Experimentally, it is sometimes observed that the ethanol signal does not re-
spond instantaneously to feed variations so that a latency phase, estimated
between 6 and 12min, has to be taken into account in model (5.38a). Chosing a
sampling period of 6min, this latency phase correspond then to 1 or 2 sampling
periods.

A second test considers the performance of the same controller of Fig. 5.13
when facing a process model incorporating a delay of 12min. In this case, the
regulation is not designed taking this delay into account and it can be observed
on Fig. 5.14 that the tracking performance is affected by oscillations. Note that
initial and operating conditions remain unchanged.

Taking the time delay into account, the discrete model becomes:

P(k) =
bq−3

1 − q−1
(Fin(k)− dX(k)) (5.46)

necessitating the use of a second order observer polynomial
AO = (1− 0.85q−1)(1− 0.15q−1), following the same analysis as the one shown
by Fig. 5.12 (see Fig. 5.15).
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Figure 5.13: Simulation results with the RST controller defined in (5.39),
(5.40), (5.42), (5.44) and (5.45). Evolution of the ethanol concen-
tration and the feed flow rate.
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Figure 5.14: Simulation results with the RST controller defined in (5.39),
(5.40), (5.42), (5.44) and (5.45), when presented with a process
incorporating a non-modeled delay of 12min. Evolution of the
ethanol concentration and the feed flow rate.
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Figure 5.15: Robust behavior analysis of the improved controller in the Black-
Nichols diagram.

Note that with a relatively large sampling time, the probe dynamics can gen-
erally be neglected. However, reducing the sampling period can be interesting
to improve the performance of the recursive least squares algorithm and, in
turn, the disturbance rejection. Modeling the ethanol probe dynamics can be
achieved by a first-order transfer function with a time constant Tmes (generally
in a range from 1 to 3 min). Including this second refinement in (5.46), the
discrete model becomes:

P(k) =
bq−3((TS + Tmes(ν − 1)) + (Tmes − ν(TS + Tmes))q−1)

(1 − q−1)(1 − νq−1)
(Fin(k)− dX(k))

(5.47)

where ν = exp( TS
Tmes

)

Nevertheless, these performance improvements, inducing a reduction of the
sampling period, can be detrimental to the system in terms of stability robust-
ness as the delay, estimated in sampling periods, dramatically increases. Con-
sequently, (5.46) will be prefered to (5.47) and only a 2-sampling-period delay
is taken into account. The sampling period must then be carefully chosen to
estimate correctly the delay in a minimum of sampling periods. Still using
the same initial and operating conditions as in Fig. 5.13, we obtain the results
shown in Fig. 5.16 where the oscillations vanish and the tracking performance
is better.

5.4.3 Robustness against measurement noise and model un-
certainties

In the first hours of culture, when the biomass concentration is very low, the
cells are likely to alternatively switch between the two metabolic pathways,
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Figure 5.16: Simulation results with the RST controller defined in (5.39),
(5.40), (5.42), (5.44) and (5.45), when presented with a process in-
corporating a modeled delay of 12min. Evolution of the ethanol
concentration and the feed flow rate.
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Figure 5.17: Influence of the noise on the measured ethanol concentration
with a non-robust RST controller AO = 1.

leading to hard sollicitations and saturations (to 0 when the controller calcu-
lates negative feed rates) of the input actuator (i.e., the feed pump). Indeed,
the quasi-steady state assumption of the substrate concentration (5.3) is gen-
erally verified during the cells exponential growth in the neighborhood of the
optimal operating conditions but not in the starting transient period. The best
way to illustrate this idea is to challenge the controller in the presence of mea-
surement noise as achieved in section 5.2.3, amplifying the saturation effect.

Fig. 5.17 shows a new simulation where a white noise (σ2 = 0.005g2/l2) is
added to the ethanol concentration measurements and where no robustifica-
tion by the observer polynomial is considered (AO = 1). Starting with the
same initial conditions as in Fig. 5.13, 5.14 and 5.16, the set-point is now kept
at 1g/l during 20h in order to observe the large divergence that occurs during
the first 10h, consequence of the multiple actuator saturations generated by the
noise.

On the other hand, Fig. 5.18 shows the same simulation with the robustified
controller of Fig. 5.13 (AO = 1− 0.7q−1). It appears clearly that the noise on the
input Fin is attenuated, limiting the actuator saturations and the divergence of
the ethanol concentration overshoot. The same observations can be made with
the robustified controller of Fig. 5.16 in the presence of delay.

The only a priori knowledge on the system is the yield coefficient values kS1,

kS2 and kP2 in the RF regime and the ratio kos
kop

in the R regime (see Table

5.2). Considering that the order of the products kP2
kS2

Sin and kos
kop

Sin are generally

higher than E (i.e., P), uncertainties on these last products have a proportionnal
influence on the gain b. Finally, simulations presenting absolute errors going

from 50% to 100% of the theoretical values of kP2
kS2

Sin and kos
kop

Sin produce similar

results to Fig. 5.13, 5.16 and 5.18 (where the controller is robustified) which are
not reproduced. In summary, once the controller is robustified by the observer
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Figure 5.18: Influence of the noise on the measured ethanol concentration
with a robust RST controller AO = 1 − 0.7q−1.

polynomial, very large intervals of model uncertainties are tolerated thanks to
the increased stability margin (see Fig. 5.12 and 5.15).

5.5 Experimental validations of the RST controller

at different scales

Experimental investigation of the RST control scheme to fed-batch cultures of
S. cerevisiae is performed with laboratory-scale and industrial-scale bioreactors.
For all these experimental tests, only a 2-sampling-period delay is taken into
account. Indeed, a sampling period of 6 min appears sufficient to ensure good
control performance so that the ethanol probe dynamics is neglected. Conse-
quently, model (5.46) is used in the following.

5.5.1 Control interface

The on-line ethanol concentration measured by a Frings probe is acquired
through the Ethernet network and transfered into a LabVIEWTM (National In-
struments, USA) virtual instrument (.vi) where the controller is implemented
in a block diagram and supervised through the corresponding front control
panel. Every six minutes (which correspond to the sampling period), the feed-
rate is updated by the controller on the basis of the process value (the ethanol
measurement), and converted into the corresponding percentage of the maxi-
mum speed of an ISMATEC peristaltic pump.
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Figure 5.19: Experimental results of the ethanol regulation applied to
laboratory-scale fed-batch cultures of S. cerevisiae. Evolution of
the ethanol probe measurement E around Ere f = 1 g/l, the feed
flow rate Fin expressed in % of the maximal pump speed and the
parameter γ, image of the cells growth rate.

5.5.2 Laboratory-scale results

Fig. 5.19 shows a typical run with a regulation of the ethanol at 1 g/l.

Fig. 5.20 shows the biomass, substrate (glucose) and ethanol off-line concen-
trations (circles)and a spline interpolation of these measurements (stars, sam-
pled every hour) providing an image of the evolution of these key components
when no off-line measurement is available (typically during the evening and
the night). Note also that a slight off-set between the off-line measurements
obtained by HPLC and the online ethanol probe measurements (delivered ev-
ery 2 seconds and so, almost appearing as a continuous blue line) is increasing
with time but does not really affect the controller performance as both concen-
trations are approximately constant.

In Fig. 5.21, the measured cell growth rate µ and the corresponding γ are cal-
culated using a discrete approximation of the form:

µ ≈ X(k + 1)− X(k)
X(k)TSext

(5.48)

γ ≈ exp
(

X(k + 1)− X(k)
X(k)TSext

TS

)

(5.49)

where TS is the controller sampling period and TSext is the resampling period
after interpolation of the experimental data.

The least squares estimate (sampled every 5 minutes) needs 10 hours to con-
verge to the real value of γ and is almost perfectly maintained during the 15
following hours until the "culture end phase", characterized by an important
decrease of γ, starts.
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Figure 5.20: Experimental results of the ethanol regulation applied to
laboratory-scale fed-batch cultures of S. cerevisiae. Evolution of
the biomass, glucose and ethanol concentrations (off-line mea-
surements are represented by circles and the spline interpola-
tion by stars). The continuous line represents the ethanol probe
measurement and the dashed line the ethanol concentration set-
point.
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Figure 5.21: Experimental results of the ethanol regulation applied to
laboratory-scale fed-batch cultures of S. cerevisiae. Evolution of
the growth rate µ and the parameter γ (stars), both based on the
spline interpolation of the off-line biomass measurements, and
estimated γ (continuous line).
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Figure 5.22: Experimental results of the ethanol regulation applied to
laboratory-scale fed-batch cultures of S. cerevisiae. Evolution of
the dissolved oxygen (circles) and the stirrer speed (squares) re-
spectively in percents of the phase saturation concentration and
the maximum speed.

Consequently, the ethanol concentration stays around the reference value of
1 g/l during the first 10 hours and, when the estimate of the cells growth rate
converges, the regulation becomes more accurate (as the disturbance, which
represents the substrate demand for cell growth, can be almost exactly com-
pensated). This demonstrates the efficiency of the controller, which is able to
reject an unstable time-varying exponential disturbance. After 20 h, the ethanol
concentration deviates slightly from the setpoint. This can be explained by an
apparent decrease of the cell growth as reflected by the estimated value of γ.
This limitation phenomenon can be due to a lack of oxygenation (see Fig. 5.22)
in the last hours, resulting from an unsufficient air flow following a saturation
of the stirrer speed to its maximum value.

Nevertheless, the encountered metabolic changes are robustly limited by the
controller which prevents the sudden ethanol increase. Note that the culture
was stopped before the controller manages to reset more accurately the ethanol
concentration at 1 g/l. Anyway, other results presented in the next figures
better illustrate this missing part.

Initial process conditions play an important role in terms of productivity. As
the controller only regulates the ethanol concentration around the setpoint Ere f
(which is chosen by the user), and as the initial ethanol concentration in the
culture medium (E0) depends on the residual concentration at the end of the
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preculture (which is a priori unknown), the initial difference between the set
point and the initial concentration can be crucial for the culture time.

Moreover, the ethanol concentration in the feed medium (Ein) plays also a
determinant biological role. Indeed, it is possible to force the cells to evolve
through a preselected pathway by adjusting the ethanol concentration (Ein) in
the feed medium (note that in this work, Ein is always equal to zero). When
Ein < Ere f , the controller constrains the cells to evolve in the respiro-fermenta-
tive pathway (as ethanol is always produced to cancel the dilution effects and
maintain the concentration around Ere f ) while when Ein > Ere f , the cells are
constrained to evolve in the respirative pathway (as ethanol is never produced
and only consumed).

If the ethanol set point is chosen so that Ere f > E0, the cells are evolving
through the respiro-fermentative pathway during the first hours (as the con-
troller constrains the cells to produce ethanol in order to reach the set point),
which is beneficial as the cells are driven through the same pathway in the
future growth conditions (indeed, Ein < Ere f ). On the other hand, if Ere f is
chosen so that Ere f < E0, the cells are evolving through the respirative path-
way during the first hours as ethanol has to be consumed until E reaches Ere f
(note that at this moment, Fin = 0).

The bad resulting consequences are (1) a waste of time induced by the growth
on ethanol which is very slow in comparison with the growth on glucose and
(2) a latency which is experimentally observed when the cells are switching
from the respirative to the respiro-fermentative pathway (this is actually the
case here, as Ein < Ere f ). In Fig. 5.23, the waste of time can be estimated to
about 10 to 15 hours as the final batch time is 50 hours (instead of 35 hours, re-
sulting in a decreased productivity). Note that the oxygen limitation discussed
in Fig. 5.22 is still present (see the small deviation between 30 and 40 hours on
Fig. 5.23).

5.5.3 Industrial-scale results

Industrial-scale fermentation is generally so costly that biotechnological indus-
tries establish some very strict security norms that should never be overrid-
den. An open-loop protocol is generally defined. The same feeding profile
optimized through previous runs (their number and so, the efficiency of the
method, being limited by the financial provisions) is imposed, as a recipe based
on heuristics, for each run of the production campaign. For confidentiality rea-
sons, the operating conditions of these experiments cannot be detailed.

Fig. 5.24 shows two different experiments realized in open-loop (the principal
constraints being the security norms and a limited accumulation of ethanol)
and with closed-loop control on ethanol. The aim of each run is to reach a
fixed biomass concentration (represented in % for confidentiality reasons). Ob-
viously, 30 hours are spared in the second case, leading to a productivity im-
provement estimated to 40%.

On-line results obtained with the controller are presented in Fig. 5.25. The
only scaling parameter that has been adapted from the laboratory-scale control
settings is the initial volume (remember that V is used to adapt the gain in the
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Figure 5.23: Experimental results of the ethanol regulation applied to
laboratory-scale fed-batch cultures of S. cerevisiae. Evolution of
the ethanol probe measurement E around Ere f = 1 g/l (when
E0 > Ere f ), the feed flow rate Fin expressed in % of the maximal
pump speed and the parameter γ, image of the cells growth rate.
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Figure 5.24: Experimental runs of industrial-scale fed-batch cultures of S.
cerevisiae. Stars: experimental realization of a recipe based on
heuristics. Circles: experimental application of the ethanol con-
troller to the same process. Evolution of the feed rate and
biomass, glucose and ethanol concentrations.
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Figure 5.25: Experimental results of the ethanol regulation applied to
industrial-scale fed-batch cultures of S. cerevisiae. Evolution of
the ethanol concentration E around Ere f = 1 g/l, the feed flow
rate Fin expressed in % of the maximal pump speed and the pa-
rameter γ, image of the cells growth rate.

expression of b, see Table 5.2). The observations are very similar to those made
at laboratory-scale except for a more important noise magnitude observed on
the ethanol signal. An explanation to this phenomenon is that whereas the
probe, and particularly its size, remain unchanged, the noise disturbances due
to the stirring increase with the scale.

5.6 Conclusion

Based on quasi-steady state assumptions and model linearization, a RST con-
troller is designed to regulate the ethanol concentration at an imposed setpoint.
This design is based on a pole placement procedure (for setpoint tracking) and
the selection of an observer polynomial (for loop robustification), which can
be achieved very easily and independently. The controller requires the online
adaptation of the varying cells growth rate, considered as an unstable expo-
nential disturbance to be rejected, justifying the non-applicability of controllers
such as PID. The estimation of the unstable pole is achieved through a simple
recursive least squares algorithm. The influence of latency phases and sensor
dynamics can also be taken into account. Robustness against measurement
noise and model uncertainties can also be easily handled. In all the experimen-
tal validations, the controller performed well independently of the bioreactor
scale, demonstrating its reliability under various conditions. As compared to
conventional open-loop operation in industrial productions and previous ex-
perimental results using closed-loop PID-like control, the application of the
presented particular closed-loop control can ensure a robust ongoing control
all along the culture and leads to very significant productivity gain.
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Chapter 6
Monitoring and Control of a
Bacteria Fed-batch Pilot Plant

In this chapter, an experimental setup is described, which will serve as a plat-
form for elaborating and testing dynamic models, monitoring and control al-
gorithms. Starting from a Biostat B+ bioreactor from Sartorius-Stedim, a wild-
type strain of E. coli is cultivated first in batch operating conditions in order
to identify a macroscopic model of this particular bioprocess and then in fed-
batch conditions in order to develop and apply several monitoring and control
tools. The real-time control systems aim at optimizing the biomass productiv-
ity (i.e., maximizing the biomass concentration within an acceptable and op-
timal culture time) using different instrumentation going from original hard-
ware probe assemblies to software sensors as well as control techniques already
presented in Part III.

6.1 Materials and methods

6.1.1 Bioreactor setup

Fermentations of a wild-type strain (B) of E. coli (B-11303, ATCC) are per-
formed in a 5 l compact laboratory scale bioreactor (Biostat B+ - Sartorius, see
Fig. 1.3) with a configuration comparable to Fig. 1.5. pH is regulated at 7
thanks to a PI controller (directly incorporated into the basic monitoring unit
called Digital Fermenter Control or DFC, delivered with the vessel) injecting
NaOH 2 M (base) and H3PO4 0.5 M (acid). Oxygenation conditions are reg-
ulated through dissolved oxygen control by a 2-stage cascade controller (also
provided in the DFC) acting first on the stirrer speed (from 200 to 1500 RPM)
and, in case of stirrer saturation, on the aeration system supplying air flow
(from 0.3 to 20 l/min). The temperature is controlled by the DFC at 37oC using
a heating water jacket.

151
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Figure 6.1: Calibration of the biomass concentration based on cell dry weight.

6.1.2 Media preparation and composition

The preculture, culture and feeding media are prepared in accordance with the
recipes of Rocha (2003). The general culture medium used in all of the follow-
ing experimental results is of the following composition: 1 to 5 g/l of glucose
(depending on the application), 6 g/l of Na2HPO4, 3 g/l of KH2PO4, 1 g/l of
NH4Cl, 0.5 g/l of NaCl, 0.12 g/l of MgSO4.7H2O and 0.34 g/l of thiamin. Note
that the culture medium used in Rocha (2003) is completed with CaCl2.2H2O,
kanamicin, trace metals solution and vitamin solution but these are not con-
sidered as necessary in the following experiments. The preculture is realized
in 2 erlenmeyers, each of them containing 500 ml of medium inoculated after
24 h in the bioreactor already filled with 2 l of medium so that a starting batch
phase is always performed in a volume of 3 l before any addition of feeding.
The feeding medium is composed of 200 g/l of glucose, 10 g/l of NH4Cl and
4 g/l of MgSO4.7H2O.

6.1.3 Biomass measurement

Off-line biomass measurement is performed thanks to a Shimadzu UV −VIS mini spectrophotometer
measuring the optical density (OD) at 560 nm. A calibration of the biomass con-
centration from the optical density using the cell dry weight was determined so
that one OD unit is equal to 0.38 g/l of biomass (see Fig. 6.1). On-line biomass
measurement is also available through the use of the turbidity measurement
system Fundalux I I (also from Sartorius) also delivering an OD measurement.
Another on-line measurement can be performed using a FOGALE biomass
probe detecting only living biomass through a conductance measurement. For
illustration purpose, a comparison of punctual biomass measurements is pro-
vided in Fig. 6.2. Obviously, the optical density goes on increasing after 3 h
while the living biomass is maintained constant before decreasing (i.e., before
dying). This third method offers thus a practical way to detect biomass death
(i.e., a misfunctioning culture).
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Figure 6.2: Biomass measurements. In blue: biomass concentration based on
OD measurements. In red: living biomass concentration.

6.1.4 Glucose measurement

Off-line glucose measurements are performed by a Process Trace enzymatic
system. Note that on-line measurements can also be achieved through the
same system using a dialysis probe or a microfiltration probe. However, the
highest sensitivity of available measurement kits is 0.01 g/l. Unfortunately,
the level of the critical glucose concentration is, of course, a priori unknown
but is in the range of this highest sensitivity. This measurement is then very
useful in batch operating conditions where glucose concentrations are suffi-
ciently high but more delicate to use in fed-batch conditions where the glucose
concentration is too small to allow an accurate measurement.

6.1.5 Off-line acetate measurement

Off-line acetate measurements can be achieved by an Alliance HPLC (Waters,
USA) using a 3 µm Atlantis C18 column (4, 6x150 mm, Waters, USA) at 30oC
and a UV detector 486 (Waters, USA) set at 210 nm in isocratic mode with a
NaH2PO4 20 mM solution as mobile phase (using a flow rate of 0, 5 ml/min).
To ensure reproducibility and stability of the measurement, the samples are
buffered in the mobile phase prior to injection. For comparison purposes, an
acetic acid kit purchased from Megazyme (Ireland) is also used.

6.1.6 On-line acetate measurement

An in-house experimental setup has been designed to measure on-line the ac-
etate concentration (see Fig. 6.3). A Process Trace microfiltration probe is first
used to get the supernatant of the filtration of the culture broth. The filtration
rate is set at 35 ml/h by a peristaltic Ismatec pump (this rate is voluntarily
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Figure 6.3: Acetate measurement assembly based on conductivity.

chosen at a low level as the whole quantity of the supernatant is not reinte-
grated in the culture medium and goes to waste). This supernatant is mixed
with sulfuric acid (100 g/l), generating acetic acid (in order to allow a perfect
acidification, the pipe driver makes several nodes before entering the next part
of the assembly). A gas diffusion cell built from a modified A − Sep (Applitek)
cell is traversed by counter-current streams (as represented in Figs. 6.3 and
6.4) along a Teflon membrane through which acetic acid gaz diffuses from the
supernatant to a demineralized water flow. Fig. 6.4 shows a description of the
A − sep cell and particularly of the inner part composed of slopes allowing a
sufficiently long transit time to enhance a good gas diffusion through the teflon
membrane. A conductimeter probe provided by Consort (Belgium) allows then
the data recording of the conductivity variation, function of the acetic acid (and
so, acetate) concentration in the outlet flow, on a computer through a RS − 232
acquisition Visual Basic software.

Conductimeter calibration and validations

Determination of the conductivity-concentration relation is performed using
sodium acetate solutions as standards in water and culture medium. This rela-
tion is determined in a 0 − 2, 5 g/l range as this should approximately be the
level of acetate concentrations during a fed-batch culture. Moreover, higher
ranges of acetate concentrations are a priori not of our concern as the cell res-
piratory capacity would be too inhibited and lead to poor productivity. Con-
sidering a second order relation, the calibration leads to the following results:

A = 0.001x2 + 0.0014x − 0.0068 (6.1)

where:

• x is the conductivity [µS/cm] (S is here used for Siemens)
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Figure 6.4: A-sep gas diffusion cell.

• A is the acetate concentration [g/l]

This regression is represented in Fig. 6.5.

The correlation coefficient R is 0.9995 for a second degree polynomial regres-
sion. A cross-validation of this calibration curve is achieved for assessing re-
producibility and robustness of the set-up. Some parameters can indeed cause
variability, as for instance the medium composition, the temperature, the acid-
ity, the presence of CO2, etc. Table 6.1 shows the root-mean-square error of
prediction (RMSEP, which is a common tool for estimating the efficiency of a
calibration) on the estimation for a cross-validation in culture medium, follow-
ing two previous calibrations in water. RMSEP is defined as:

RMSEP =

√

√

√

√

1

N

N

∑
i=1

(yi − ŷi)2 (6.2)

where N is the number of samples in the cross-validation set and ŷi the estimate
of yi by the calibration law.

As shown in Table 6.1, the disturbance effect (coming from the probe sensitiv-
ity, the temperature, the acidity or the presence of CO2) on the measurements is
clearly present but limited as the general RMSEP is 0, 24 g/l, which allows this
method to be acceptable for a robust acetate concentration control. These cross-
validation results are also represented in Fig. 6.5. Note that demineralized
water and medium conductivities have the same value around 2, 75 µS/cm,
demonstrating the negligible influence of the medium components on the con-
ductivity measurement.
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Figure 6.5: Calibration of the acetate measurements using conductimetry.

Table 6.1: Cross-validation results of the second order regression law for the
estimation of acetate concentration by conductivity.

Concentration[g/l] Conductivity[µS/cm] Estimation[g/l] RMSEP[g/l]
0, 75 22, 5 0, 523 0, 227
1, 75 36, 4 1, 355 0, 395
0, 75 24 0, 594 0, 156
1, 75 38, 2 1, 491 0, 259
1, 6 33, 9 1, 177 0, 423
1, 4 35 1, 254 0, 146
0, 9 28, 7 0, 846 0, 054
0, 75 17 0, 3 0, 45
1, 8 34, 9 1, 247 0, 553
1, 6 40, 7 1, 691 0, 091
2, 5 47, 9 2, 336 0, 164
2, 4 45, 7 2, 128 0, 272
2 48, 2 2, 365 0, 365



6.1. MATERIALS AND METHODS 157

Time constant determination

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000 12000

Time [s]

C
o

n
d

u
ct

iv
it

y
[µ

S
/

cm
]

Conductivity [µS/cm]

Figure 6.6: Determination of the measurement system time constant.

Estimation of the acetate measurement system time constant

In order to estimate the whole measurement system time constant, different
steps in acetate concentration are achieved to challenge the conductimeter re-
sponse (see Fig. 6.6).

Considering that the conductimeter probe is converging like a first order linear
time-invariant system (LTI), the mean response time Tc (i.e., for LTI systems,
5 Tc is the time needed to reach 99% of the steady-state value) is estimated to
3 min. Moreover, the sampling time for acetate concentration measurement is
fixed to 6 s.

The main drawback of this method is the variation of the reactor volume due
to the continuous supernatant sampling. The pump flow rate is set between
10 ml/h and 20 ml/h to compromise a sufficiently fast communication of ac-
etate concentration variations and a sufficiently low bioreactor volume varia-
tion (the length of the fed-batch culture being the main decision criteria for the
applied flow rate).

Validation in real culture conditions: results and discussion

The system is now used to follow in real-time the acetate level during a real
bacteria fermentation. Samples are taken every 30 min and off-line measure-
ments are performed using HPLC and enzymatic kit analysis. Fig. 6.7 shows
the evolution of the conductivity-based, HPLC and enzymatic measurements
during 6h of fermentation conducted on E. coli.

The experience is performed in three steps (neglecting the preculture phase).

• First, a batch phase is operated in a culture medium with a sufficiently
large initial glucose concentration to allow the acetate concentration to
increase to a significant concentration level.

• Then, when glucose is exhausted, the cells oxidize the remaining acetate
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Figure 6.7: Validation of the acetate concentration estimation by conductime-
try in real operating conditions; red squares: HPLC measure-
ments; green triangles: conductivity-based measurements (at off-
line measurements times); purple crosses: enzymatic measure-
ments.

(i.e., the last carbon source) so that, between 17 h and 21 h, the acetate con-
centration is in the range of the conductimeter calibration (0 − 2, 5 g/l).

• Finally, between 21 h and 24 h, a short fed-batch phase where the feeding
rate is provided by adjusting manually the pump speed, is performed.
Cells switch then in the respiro-fermentative regime and acetate is pro-
duced.

In conclusion, the conductivity-based measurement of the acetate concentra-
tion shows good accordance with the HPLC and enzymatic measurements.
Note that these 6 hours are chosen as the acetate concentration is varying in
the range in which the conductimeter calibration is performed (i.e., decreasing
and increasing between 0 and 2, 5 g/l).

6.1.7 On-line gas measurement

Molar fractions of O2 and CO2 in the outlet gas are available thanks to gas anal-
ysis using a DUET − gas analyser from System − C − Industry. As explained
in Rocha (2003), OTR and CTR can be measured from the knowledge of molar
fractions of O2, CO2 and N2 in the outlet gas, the volume and the inlet air flow.
Indeed, using the ideal gas law, assuming that temperature and pressure are
the same for the inlet and outlet gas, that no nitrogen is consumed and a quasi
steady-state of oxygen in the gas phase (i.e., no dramatic change in oxygen),
the following relation holds (Rocha (2003)):

OTR =
Airin MO2

V
(O2in − O2out) (6.3)
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where:

• Airin is the volumetric air inflow rate;

• MO2
is the molar mass of oxygen;

• V is the medium volume;

• O2in is the molar fraction of O2 in the inlet gas;

• O2out is the molar fraction of O2 in the outlet gas (measured by the gas
analyser).

Similarly, the CTR can be estimated by the following expression:

CTR =
Airin MCO2

V
(CO2in − CO2out) (6.4)

where:

• MCO2
is the molar mass of carbon dioxide;

• CO2in is the molar fraction of CO2 in the inlet gas;

• CO2out is the molar fraction of CO2 in the outlet gas (measured by the gas
analyser).

In the next experimental applications, the inlet air flow is chosen equal to
1 l/min and O2in and CO2in are measured in the outlet gas before starting the
culture.

6.2 Identification of a partial respiro-fermentative

model

6.2.1 Model simplifications

In order to gain a priori knowledge about this particular bioprocess, before
applying any observation or control technique (indeed, strategies presented
in Part III generally require a minimum of a priori knowledge about the pro-
cess), a simple experimental model identification exercise is performed. Start-
ing from the general model presented in chapter 2, a simplified reaction scheme
taking only the respiro-fermentative pathway into account (i.e., oxidation and
fermentation of glucose) and considering that oxygen conditions are not limit-
ing the cells growth is imagined as follows:

Substrate oxidation : kS1S + kO1O
r1X→ kX1 X (6.5a)

Substrate fermentation : kS2S + kO2O
r2X→ kX2 X + kP2 P (6.5b)
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The specific growth rates are:

r1 =
min

(

rS, rScrit

)

kS1
(6.6)

r2 =
max

(

0, rS − rScrit

)

kS2
(6.7)

In the proposed situation, as the oxygen is assumed not to be limiting, KO

is also neglected in (2.5b) and, finally, rScrit
= µO

kos
O

O+KO

KiP
KiP+P ≈ µO

kos

KiP
KiP+P . The

kinetic terms associated with the substrate consumption rS and the critical sub-
strate consumption rScrit

are:

rS = µS
S

S + KS
(6.8a)

rScrit
=

rO

kos
≈ µO

kos

KiP

KiP + P
(6.8b)

Therefore, assuming the existence of the fermentation reaction and taking (6.8)
into account, the specific growth rates take the following forms:

r1 =
rScrit

kS1
(6.9)

r2 =
rS − rScrit

kS2
(6.10)

Finally, normalizing the yield coefficients with respect to the substrate (kS1 =
kS2 = 1), the simplified reaction scheme gives the following component-wise
mass balances differential equation system:

dX
dt

= (kX1rScrit
+ kX2(rS − rScrit

))X − DX (6.11a)

dS
dt

= −rSX − D(S − Sin) (6.11b)

dA
dt

= kP2(rS − rScrit
)X − DA (6.11c)

dO
dt

= −kO1
µO

kos
− kO2(µS −

µO

kos
)X − DO +OTR (6.11d)

6.2.2 Experimental scheme

Three semi fed-batch (a batch phase followed by a fed-batch phase) experi-
ments are performed. For each run, biomass, glucose and acetate are measured



6.2. IDENTIFICATION OF A PARTIAL RESPIRO-FERMENTATIVE MODEL 161

off-line. The biomass concentration is obtained through the OD measurement,
the glucose through the Process TRACE enzymatic measurement and acetate
through HPLC measurement. As shown in Figs. 6.8, 6.9 and 6.10, and Tables
6.2, 6.3 and 6.4, the initial concentrations are not necessarily identical from one
experiment to another.

The identification is achieved through the following steps:

• Using two biomass, substrate and acetate data sets:

– The identification of kX1, kX2, kP2, µS and
µO
kos

is achieved on the

basis of the batch phases only (KS and KiP can therefore be ne-
glected as, in batch mode, the glucose concentration is assumed
to be much larger than the saturation constant KS of (2.5a) so that

µS
S

S+KS
≈ µS and, moreover, assuming that the byproduct concen-

tration is smaller than KiP, rScrit
≈ µO

kos
).

– Using the corresponding fed-batch phases, a new identification of
the previously determined parameters coupled to KS and KiP is per-
formed (using the previous values as starting point so as to alleviate
local minima).

• Using the remaining biomass, substrate and acetate data set, a cross vali-
dation is performed.

• Using one oxygen data set (for the 3 experiments, only 2 oxygen data sets
are available), kO1 and kO2 are obtained on the basis of the previously
identified parameters.

• Using the second oxygen data set, a cross-validation of these last two pa-
rameters is performed.
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Table 6.2: Off-line measurements of the first experiment.

Time (h) Biomass (OD) Biomass (g/l) Glucose (g/l) Acetate (g/l)

0 0,24 0,093 3,8 0,16
1,5 0,829 0,321 3,784 0,29
2 1,05 0,406 3,724 0,4183
3 2 0,774 3,523 0,985
4 2,335 0,904 3,212 1,99
5 3,103 1,201 2,793 2,855

5,66 3,438 1,33 2,489 3,427
22,5 8,772 3,395 0,423 0,446
24 8,37 3,239 0,227 0,421
26 9,15 3,541 0,109 0,508

PO2(%) OTR (g/l/h) CTR (g/l/h) Added base (ml)

84 0 0 0
33 0,0952 0,0357 4
28 0,143 0,064 7

29,2 0,19 0,186 14
30,2 0,238 0,257 23
29,7 0,238 0,279 30
29,7 0,238 0,279 35
30,5 0,143 0,329 148
29,6 0,19 0,329 164
30,4 0,238 0,486 189
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Figure 6.8: First semi fed-batch experiment. The fed-batch phase is started
after 6 h. Bubbles: off-line measurements. Solid line: imposed
feeding profile.
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Table 6.3: Off-line measurements of the second experiment.
Time (h) Biomass (OD) Biomass (g/l) Glucose (g/l) Acetate (g/l)

0 0,504 0,195 3,541 1,075
3,4 2,52 0,975 2,089 3,75
4,4 3,44 1,331 0,754 3,629
5,4 3,68 1,424 0,112 4,101
6,4 4,5 1,741 0,161 4,192

21,75 9,219 3,568 0,107 7,597
22,75 10,766 4,166 0,108 7,914

24 11,5 4,45 0,104 12,626
25,75 10,896 4,217 0,108 12,784
27,5 13,38 5,178 0,108 11,852
28,5 13,277 5,138 0,114 12,225

PO2(%) OTR (g/l/h) CTR (g/l/h) Added base (ml)

72 0 0 0
29,6 0,381 0,5 27
29,2 0,238 0,4 33
29,5 0,286 0,457 40
29,1 0,286 0,407 45
29,4 0,429 0,564 157
29,5 0,429 0,557 169
29,5 0,524 0,643 186
29,5 0,476 0,6 208
29,5 0,524 0,629 238
30 0,524 0,629 258
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Figure 6.9: Second semi fed-batch experiment. The fed-batch phase is started
after 6 h. Bubbles: off-line measurements. Solid line: imposed
feeding profile.
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Table 6.4: Off-line measurements of the third experiment.

Time (h) Biomass (OD) Biomass (g/l) Glucose (g/l) Acetate (g/l)

0 0,556 0,215 4 0,643
1,75 1,2 0,464 3,647 0,76
3,75 1,842 0,713 2,82 1,218
4,75 2,292 0,887 2,505 1,452
5,75 2,72 1,053 2,166 1,657
6,5 3,264 1,263 1,426 1,757
21,5 7,635 2,955 2,766 3,53

23,25 7,806 3,021 2,783 3,8

PO2(%) Added base (ml)

73 0
29,7 6
31,6 22
29,4 27
30,4 31
30,2 35
29,5 117
29,5 131
29,6 140
29,6 157
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Figure 6.10: Third semi fed-batch experiment. The fed-batch phase is started
after 7 h. Bubbles: off-line measurements. Solid line: imposed
feeding profile.
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For the identification procedure using only biomass, substrate and acetate, a
simplex method (Nelder-Mead algorithm used in the MATLABTM function
"fminsearch") minimizing, in the Gauss-Markov sense, the following cost func-
tion, is used:

Fc =
N

∑
i=1

(ξsim(i)− ξ(i))′Q−1(ξsim(i)− ξ(i)) (6.12)

where

• ξ =
[

X S A
]

is the measured state vector;

• ξsim =
[

Xsim Ssim Asim
]

is the state vector generated by the model;

• N is the number of measurements;

• Q is the measurement error covariance (assuming a gaussian measure-

ment noise) of the following form: Q =





σ2
X 0 0
0 σ2

S 0
0 0 σ2

A



 where σ2
X ,

σ2
S and σ2

A are respectively the variances of the biomass, substrate and
acetate measurement errors. In the following identification procedure,
these variances are fixed to 10 % of the relative X, S or A value.

The first identification using 2 batch data sets only, leads to the following pa-
rameter vector:

θ1 =
[

kX1 kX2 kP2 µS
µO
kos

]

=
[

1, 451 0, 3813 1, 495 0, 775 0, 12
]

(6.13)

The second identification is performed using θ1 as initial conditions and con-
siders KS and KiP (respectively initialized at 0.1 and 5). The following param-
eter values are obtained:

θ2 =
[

kX1 kX2 kP2 µS
µO
kos

KS KiP

]

=
[

1, 742 0, 305 1, 196 0, 72 0, 096 0, 05 4
]

(6.14)

Direct validations of the identified set of parameters θ2 using the complete
first two semi fed-batch experiments are presented in Figs. 6.11 and 6.12.
The results of the cross-validation using the third data set are presented in
Fig. 6.13. As a first visual and qualitative assessment, it can be observed
that biomass and acetate are correctly reproduced while the end of the cross-
validation misses the last two glucose measurements. However, at this mo-
ment, the biomass growth is slowing down, suggesting that the biomass mor-
tality is increased (recall that biomass mortality is not modelled) and the glu-
cose consumption is therefore abnormally limited. These results are also quan-
titatively assessed by a simple RMSEP cost function comparable to (6.2),
amounting to 1, 312 g/l, 1, 505 g/l and 1, 38 g/l respectively for the first and
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Figure 6.11: First direct validation of model (6.11). Bubbles: off-line measure-
ments. Solid lines: predicted values.

second direct validations and the cross-validation. From these qualitative and
quantitative assessments, it can be concluded that this identification is satisfac-
tory.

The last two parameters, kO1 and kO2, are identified on the basis of the previ-
ously identified parameters (6.14). A quasi-steady state assumption is made on

the dissolved oxygen concentration ( dO
dt ≈ 0). This assumption is always veri-

fied (except during a very small and negligible transient period after inocula-
tion) during the main part of the culture as the dissolved oxygen is controlled
around 30 % by the stirrer speed. After trivial mathematical manipulations and
using this assumption, equation (6.11d) can be rewritten as:

OTR = (kO1r1 + kO2r2)X − DO (6.15)

Considering that the dilution term DO is negligible in comparison with the
kinetic term (kO1r1 + kO2r2)X, the following relation holds:

OTR = (kO1r1 + kO2r2)X (6.16)

As a result of the identification, r1 and r2 can be considered as perfectly known
while OTR and X are measured (note that OTR is only measured in the first
two data sets). A linear regression can therefore be performed to recover kO1

and kO2 values from the following problem:

OTR = ϕθ3 (6.17)

where ϕ =
[

r1X r2X
]

and θ3 =
[

kO1 kO2

]′
.
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Figure 6.12: Second direct validation of model (6.11). Bubbles: off-line mea-
surements. Solid lines: predicted values.
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Figure 6.13: Cross-validation of model (6.11). Bubbles: off-line measure-
ments. Solid lines: predicted values.
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Table 6.5: Identified parameter values of model 6.11.

kX1 1, 742
kX2 0, 305
kP2 1, 196
kO1 0, 974
kO2 0, 197
µS 0, 72
KS 0, 05
µO
kos

0, 096

KiP 4

The results of this linear regression are obtained using the second data set and
are cross-validated using the first one. Fig. 6.14 shows these two validations
and, to conclude this section, Table 6.5 summarizes the values of the identified
model (6.11).

6.3 Culture optimization

An optimizing regulation comparable to section 5.3 is now considered, where
the acetate concentration, measured on-line, following the description of sec-
tion 6.1.6, is chosen as measured variable. A measurement delay must there-
fore be considered, taking into account:

• The probe (i.e., the conductimeter) time constant (3 min).

• The biological latency preceding the acetate formation.

• The circulation time of the sample in the measurement system (estimated
to 12 min).

From these last observations, a linearization of the respiro-fermentative model
(6.11), comparable to section 5.3, is achieved, considering a measurement delay
estimated to 25 min. In terms of sampling period Ts, chosen equal to 6 min, this
delay represents approximately 4 Ts. The discrete time model of the bioreactor
is therefore:

P(k) =
bq−5

1 − q−1
(Fin(k)− dX(k)) (6.18a)

dX(k) =
c

1 − γq−1
δ(k) (6.18b)

where parameters b and c are defined as:
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Figure 6.14: Validation of model (6.16). Upper graph: direct validation.
Lower graph: cross-validation. Bubbles: off-line OTR measure-
ments. Dashed lines: simulated OTR values.

b = Ts
kP2Sin − P

V
(6.19a)

c =
kP2r1

kP2Sin − P
V0X0 (6.19b)

where V, the medium volume, is estimated by integrating the input Fin.

6.3.1 Simulation results

First, a simulation of the RST controller applied to the discrete model (6.18)
obtained from (6.11) and using parameter values identified in (6.14), is per-
formed. For coherence purpose, operating conditions are chosen so that the
simulation is evolving in the respiro-fermentative regime (indeed, as shown
by Fig. 6.15, acetate is always produced) and the oxygenation is not limiting.
The results of this simulation are shown in Figs. 6.15 and 6.16. In this case, an
observer polynomial of the first order (A0 = 1 − 0.7q−1) is sufficient to ensure
good robustness conditions as shown by the corrected open-loop function rep-
resented in the Black-Nichols diagram in Fig. 6.17. Indeed, the curve is not
entering the dashed ellipses representing the direct and complementary sensi-
tivity functions defined in section 5.4.1.

Following these first encouraging results, an experimental investigation on the
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Figure 6.15: Simulation of the RST controller applied to E.coli model (6.11)
with a large measurement delay (4 Ts). Evolution of the acetate
concentration, the feed rate and γ.
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Figure 6.16: Simulation of the RST controller applied to E.coli model identi-
fied in (6.11) with a large measurement delay (4 Ts). Evolution of
the biomass, glucose and acetate concentrations.
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Figure 6.17: Simulation of the RST controller applied to E.coli model (6.11)
with a large measurement delay (4 Ts). Evolution of the corrected
open-loop function in the Black-Nichols diagram.

Table 6.6: Initial and operating conditions of the three experiments.

Experiment Biomass (g/l) Glucose (g/l) Acetate set-point (g/l)

1 0,325 1 2
2 0,478 0,6 3
3 0,277 0,763 2

real pilot plant is presented in the next section.

6.3.2 Experimental results

Three experiments using the previously designed RST controller are performed
on the E.coli pilot plant. Results of these experimental applications are pre-
sented in Figs. 6.18, 6.19 and 6.20. Initial and operating conditions of each
experiment are represented in Table 6.6.

For the first experiment (Fig. 6.18), the acetate signal is correctly controlled
during the first 6 hours. Then, the probe is influenced by a sudden distur-
bance appearing as a down step. The controller is consequently increasing the
feed rate in order to bring the acetate signal back to the neighborhood of its
set-point. However, an abnormal accumulation of glucose is observed in an
off-line measurement 3 hours later so that the experiment has to be stopped.
At this time, the biomass concentration is around 2 g/l. In comparison with
the previous simulated results, this value shows that the optimization scheme
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Figure 6.18: Experimental results of the RST controller applied to the E.coli
pilot plant. First experiment: evolution of the acetate concentra-
tion, the feed rate and γ.

has been correctly working until the occurence of this disturbance. Moreover,
at the same time, gaz bubbles appeared in the tubes of the assembly measuring
on-line acetate, which could possibly influence the conductivity measurement.
The apparition of these gaz bubbles could be due to a failure of the microfil-
tration probe following a too high concentration of biomass accumulating on
the membrane and, therefore, partially blocking the broth and only allowing
gaz diffusion. Anyway, before drawing too early conclusions, two other exper-
iments are performed for comparison purpose.

In the second experiment, the initial acetate concentration is around 3 g/l and
the acetate set-point is increased in order to avoid a switch to the respirative
regime and a long reconsumption of acetate (already shown in Fig. 5.23 in
section 5.5.2). After a long initial transient period of 10 h (see Fig. 6.19), the feed
rate trajectory becomes exponential between 10 and 18 h before the occurence
of a new sudden step disturbance (once again, accompanied by gaz bubbles)
leading to the same consequences as in the first experiment. At this stage, a
biomass concentration equal to 4, 257 g/l is obtained before the probe failure,
showing that the controller performs again satisfactorily.

A last experiment is then performed where the probe shows the same be-
haviour (see Fig. 6.20). The disturbances appear in 6 and 11 h. Note that the
second disturbance has less consequences than the first as the step disappears
more or less immediately. The final biomass concentration is 1, 6 g/l before the
first disturbance.

The next chapter draws the conclusions of these experiments performed on the
E.coli pilot plant and proposes solutions in view of control improvement.
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Figure 6.19: Experimental results of the RST controller applied to the E.coli
pilot plant. Second experiment: evolution of the acetate concen-
tration, the feed rate and γ.
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Figure 6.20: Experimental results of the RST controller applied to the E.coli
pilot plant. Third experiment: evolution of the acetate concen-
tration, the feed rate and γ.



Chapter 7
Perspectives and General
Conclusions

7.1 Conclusions

All along this thesis, monitoring and control of bioprocesses is investigated.
Starting from primary biological knowledge of the cell catabolism, culture con-
ditions and a brief description of the main physiological feature, called over-
flow metabolism, is provided. A generic mechanistic model that would, in
principle, allow the representation of the culture of different strains presenting
an overflow metabolism, is then presented. A key feature of mechanistic mod-
els allowing the estimation of unmeasured states from measured ones, called
observation, is also defined and studied for the considered kinetic structure.
An illustrative comparison of two different state estimation strategies either
based on mechanistic models or data-driven techniques is presented through
simulated and experimental applications.

At this stage of the work, the main concern is to answer the questions:

• What is the plant optimum?

The optimal growth corresponds to the edge between the respirative and respiro-
fermentative regimes. A critical substrate level Scrit corresponds to this bound-
ary and is influenced by the respiratory capacity of the microorganism. The
latter appears to be in turn influenced by several factors including influence of
inhibitory byproduct.

• Which state variables should be controlled?

The optimization problem can be stated as a regulation problem either on
the substrate concentration at Scrit or of the inhibitory byproduct concentra-
tion at a as small as possible level. For the substrate regulation, a model-free

174
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extremum-seeking strategy is proposed based on 3 measurements. Unfortu-
nately, this method requires also the availability of on-line substrate measure-
ment, which raises the next questions:

• Are the controlled variables measurable?

• If not, is there a way to correctly estimate or observe them?

Substrate concentration measurement around Scrit is a difficult task as the con-
centration level is small and close to the probe sensitivity. However, the sub-
strate estimation using a software sensor could be an alternative.

• Is a suboptimal solution more practical?

• Should the controller have a certain complexity degree? Is the complexity
degree a source of limitation?

To alleviate the problem of measuring or estimating the substrate concentra-
tion, a suboptimal strategy based on the regulation of the byproduct concen-
tration is proposed. In this context, a comparison of a classical adaptive lin-
earizing control with a novel robust controller using the LMIs framework is
achieved. At the experimental level, a RST control structure including robusti-
fication and adaptation mechanisms is applied at the laboratory and industrial
scales.

To conclude this work, design, monitoring and control of an Escherichia coli
laboratory pilot plant are achieved. Encouraging simulated and experimental
results are finally discussed, highlighting the gradually deteriorating robust-
ness of the current acetate concentration measurement assembly as biomass
concentration increases.

7.2 Perspectives

7.2.1 Sensors

Hardware Sensor

Improvements can still be brought to the on-line acetate measurement assem-
bly. As the measurement deterioration occurs immediately after the emergence
of gaz bubbles in the assembly tubes, it is legitimate to expect these two phe-
nomenons to be related. From this on, a first degasification cell could be in-
stalled upstream of the A-sep cell, despite a possible increase of the measure-
ment delay (which, in this case, is still easier to handle than large random step
variations).

Software Sensors

As an alternative solution to the acetate hardware sensor, estimators could be
build on the basis of available tools presented in chapter 2. Simultaneous sub-
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Figure 7.1: Off-line experimental results of the ANN applied to the E.coli pi-
lot plant data. First direct validation: evolution of the scores and
the acetate concentration. Bubbles: off-line measurements. Dotted
red line: ANN estimation.

strate and acetate observations from biomass and oxygen measurements us-
ing Continuous-Discrete Extended Kalman Filter are in the scope of on-going
work following this thesis. Moreover, acetate estimation using black-box RBF-
ANN structures is already being studied. First results are shown from Figs.
7.1 to 7.5. While direct validations of the estimator seem very satisfactory (see
Figs. 7.1 to 7.3), cross-validations are still offering poor qualitative results (ap-
parition of abnormal acetate peaks). Nevertheless, qualitative observations in-
dicate more encouraging values as, for instance, an average error of 0, 45 g/l
for direct validations and 0, 65 g/l for cross-validations.

7.2.2 Control

Experimental validations

Extremum-seeking and robust linearizing control are powerful tools that should
soon be implemented for their first experimental validations. However, while
the first strategy requires substrate concentration measurement which remains
below the sensitivity of current available probes, the other one is dependent of
the acetate hardware sensor features (particularly the delay and the untimely
step variations). Future experimental applications of these two techniques are
henceforth linked to the evolution of substrate and acetate software sensor de-
sign.
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Figure 7.2: Off-line experimental results of the ANN applied to the E.coli pi-
lot plant data. Second direct validation: evolution of the scores
and the acetate concentration. Bubbles: off-line measurements.
Dotted red line: ANN estimation.
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Figure 7.3: Off-line experimental results of the ANN applied to the E.coli pi-
lot plant data. Third direct validation: evolution of the scores and
the acetate concentration. Bubbles: off-line measurements. Dotted
red line: ANN estimation.
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Figure 7.4: Off-line experimental results of the ANN applied to the E.coli pi-
lot plant data. First cross-validation: evolution of the scores and
the acetate concentration. Bubbles: off-line measurements. Dotted
red line: ANN estimation.
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Figure 7.5: Off-line experimental results of the ANN applied to the E.coli pi-
lot plant data. Second cross-validation: evolution of the scores
and the acetate concentration. Bubbles: off-line measurements.
Dotted red line: ANN estimation.
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New methods

Closed-loop control of fed-batch cultures of microorganisms exhibiting over-
flow metabolism is of course not limited to the different strategies presented
all along this thesis. Model predictive control (MPC) is a particularly inter-
esting technique initially applied in its nonlinear form (NMPC) to E. coli cul-
tures by Hafidi (2008) and recently updated in Santos et al. (2010). Its principle
is based on the recurrent optimization of a cost function to be maximized (or
minimized) over a certain horizon, taking the control objectives and constraints
into account as in:

max
u

J(ξ) (7.1)

s.t. ξ̇ = f (ξ, u) (7.2)

h(ξ) ≤ 0 (7.3)

g(ξ) = 0 (7.4)

where ξ is the state vector, u is the system input, J is the cost function to be
optimized and h and g functions are the constraints.

In the work of Hafidi (2008), an objective cost is considered in order to track the
metabolite byproduct (acetate) concentration at a small reference value while
constraining the input profile to remain in the neighborhood of the optimal so-
lution. NMPC is a very versatile technique which allows the consideration of
various cost functions. On-going work Santos et al. (2010) for instance consid-
ers the use of the optimality criterion defined in the RTO section of this thesis
(see section 4.2.1). This strategy uses 3 measurements (OTR, CTR and SIR)
to evaluate the optimality criterion. In order to test this conceptual approach
maximizing the biomass productivity over a predicted horizon, the following
cost function is proposed to be maximized over a finite horizon:

J =
p

∑
i=1

(ϕ1,k+i − ϕ2,k+i)− β
m

∑
i=1

(Fin,k+i−1 − Fre f
in,k+i−1)

2 (7.5)

where p is the predicted horizon, m ≤ p is the input (in this case, the manip-

ulation variable is the feed rate Fin and Fre f
in is its reference) predicted horizon,

and β is a strictly positive control penalty constant. First simulation tests have
shown very encouraging results. Nevertheless, NMPC is based on the full
nonlinear model of the process and a study of the robustness is an important
issue which is also the subject of on-going workusing a min-max formulation
of the optimization problem. In addition, NMPC requires the full state mea-
surements for feed-back purpose which implies in turn the design of software
sensors.

This last section ends by citing the original sliding mode control of fed-batch
cultures that has also been investigated in Pico-Marco et al. (2005).
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