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Abstract
The envelope theory (ET) is a reliable and easy to implement method to solve
time independent Schrödinger-like equations (eigenvalues and eigenvectors).
It is particularly useful to solve many-body systems since the computational
cost is independent from the number of particles. The purpose of this paper is
twofold. First, we want to make known a method that is probably too little
used. Second, we also want to show that this method can be used as a ped-
agogical tool, thanks to its simplicity and the reliable results that can be
obtained. To reach these goals, the ET is applied to a simple problem in one
dimension, the soft-Coulomb potential- +k x d2 2 , characterised by a bias
distance d. Such interaction is used for the study of excitons, electron–hole
bound pairs where the two charges are kept separated in two different one-
dimensional regions (quantum wires). In addition to its physical interest, this
system has never been treated with the ET.

Keywords: envelope theory, excitons, teaching of quantum mechanics

(Some figures may appear in colour only in the online journal)

1. Introduction

Finding the eigenvalues and eigenvectors of Hamiltonians is a fundamental problem in
quantum mechanics. Various methods can be used as the variational one, the WKB
approximation or the perturbation theory, for instance [1, 2]. All these methods rely on the
construct of good approximations for the wavefunctions. The principle is different for the
envelope theory (ET) in which the Hamiltonian under study H is approximated by an
‘auxiliary Hamiltonian’ H̃ which depends on ‘auxiliary parameters’ and whose solutions are
exactly known [3–6]. These auxiliary parameters are determined by an extremisation pro-
cedure applied to the eigenvalues of the auxiliary Hamiltonian. The eigenvalues and
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eigenvectors of the optimised H̃ are then the approximate solutions of H. A practical choice
for H̃ is a harmonic oscillator Hamiltonian. Even if the accuracy is not great, the method is
reliable and analytical upper or lower bounds can be obtained in favourable situations. The
ET is mainly useful for many-body systems since the computational cost is independent from
the number of particles, but it can also be used as a pedagogical tool as it is very easy to
implement and allows the computation of the whole spectrum.

In this paper, the ET is applied to the study of the soft-Coulomb potential- +k x d2 2 in
one dimension, characterised by a bias distance d. This interaction is chosen for three reasons:
(i) it has a great physical interest since it is characteristic of excitons, electron–hole bound
pairs where the two charges are kept separated in two different one-dimensional regions.
These systems, named quantum wires, appear in solid state physics [7] and in various bio-
logical processes [8]; (ii) it is bounded from below and from above by two potentials for
which known exact solutions can be used as control lower and upper bounds; (iii) it is studied
in a recent paper by the variational method [9] which allows interesting comparisons.

The recipe to use the ET for a two-body system in one dimension is presented in section 2,
where some justifications about the relevance of the method are given. The ET is applied to
the one-dimensional soft-Coulomb potential - +k x d2 2 in section 3, where eigenvalues
and eigenvectors are computed and compared with results coming from accurate numerical
calculations and from a variational method. Concluding remarks are given in section 4 where
some suggestions for the use of the ET as a pedagogical tool are proposed.

2. The envelope theory

In this section, matters from several papers [5, 10, 11] are collected and summarised to
describe how to compute the approximate ET solutions for the generic one-dimensional
Hamiltonian given by

= +( ˆ) ( ) ( )H T p V x , 1

where x is a position variable, = -ˆ p xi d d the momentum conjugated with x, T the kinetic
term and V the potential. In the following, it is necessary to make the difference between the
momentum as an operator, denoted by p̂, and the momentum as a simple variable, denoted by
p. The domain of x can be + or . In this last case, V is an even function of x for physical
and practical reasons. T is always expected to be an even function of p [12]. The approximate
energy E for the nth level is given by an extremisation procedure of the corresponding
eigenvalue of the associated auxiliary Hamiltonian H̃ . But it can be shown that it is equivalent
to solve the following system for each value of the quantum number n

= +( ) ( ) ( )E T p V x , 20 0

= ( )x p Q , 3n0 0

¢ = ¢( ) ( ) ( )p T p x V x , 40 0 0 0

where ¢ =( )X z X zd d , x0> 0, p0> 0 and Qn is defined by

= + Î ( )Q n x
1

2
for , 5n 
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= + Î + ( )Q n x
1

2
for , 6n oo 

where n= 0, 1, 2, 3, K and no= 2n+ 1= 1, 3, 5, 7, K The restriction to odd numbers no
insures that the wave function vanishes at x= 0. The structure of Qn comes from the use of
the one-dimensional harmonic oscillator Hamiltonian as the auxiliary Hamiltonian H̃ .
Consequently, the corresponding approximate ET eigenstate is a harmonic oscillator one.
This state, denoted |n〉, is such that =˜ ∣ ⟩ ∣ ⟩H n E n . For Îx , it is written [2]

y
l
p

l l= = -⎜ ⎟
⎛
⎝

⎞
⎠

⟨ ∣ ⟩ ( )
!

( ) ( ) ( )x n x
n

H x x
1

2
exp 2 , 7n n n

2 1 4
2 2

where Hn is an Hermite polynomial andl = Q xn 0. For Î +x  , y ( )xno must be multiplied
by 2 to keep the correct normalisation. It can be checked that the ET gives the exact
solutions for a harmonic oscillator Hamiltonian.

The way to obtain the system (2)–(4), that we call ‘compact equations of the ET’, is quite
long and tricky. In the next paragraph, we simply give the main ideas leading to the ET, but
the full demonstration can be found in [13] for nonrelativistic and semirelativistic kinematics.
The generalisation for arbitrary kinetic energy is presented in [5]. The special case of one-
dimensional systems is treated in [10] and the inclusion of a special type of many-body forces
is detailed in [14]. In this last reference, a summary of the calculations performed in [13]
gives the main steps for the construction of the ET. More recently, the compact equations for
two sets of different particles have also been computed [11].

The ET has been first developed by Hall in a series of papers (see for instance [3, 4]) and
rediscovered later under the name of ‘auxiliary field method’ by a completely different
approach than the one used by Hall [15]. Starting from a Hamiltonian H under study, it is
possible to build another Hamiltonian H* containing functions of the positions and the
momenta of particles, named ‘auxiliary fields’, in such a way that the elimination of these
functions from H* by a variational principle gives back H. So H* is as complicated as H to
solve. The idea is to replace in H* the functions by numbers, the auxiliary parameters, to build
the auxiliary Hamiltonian H̃ which can be solved exactly. The ET approximations are
obtained by demanding that the exact eigenenergies of H̃ be stationary with respect to these
auxiliary parameters. It is then possible to show that the extremisation equations can be
replaced by a compact set of equations easier to handle. Each level is associated with a
particular optimised H̃ (see (10) and (11) below). The ET approximations for the eigenenergy
and the eigenstate of the nth level of H are the nth eigenenergy and eigenstate of the
corresponding optimised H̃ .

It can be shown that

= =⟨ ∣ ∣ ⟩ ⟨ ∣ ˆ ∣ ⟩ ( )n x n x n p n pand . 82
0
2 2

0
2

So, p0 can be interpreted as the mean momentum and x0 as the mean characteristic distance
for the state. The mean value of an observable ˆ ( ˆ )A x p,2 2 , where the function A allows a
Taylor expansion, can then be approximated by

»⟨ ∣ ˆ ( ˆ )∣ ⟩ ( ) ( )n A x p n A x p, , . 92 2
0
2

0
2

The physical quantities x0 and p0 appear in the compact equations giving the definition of the
energy (2), the rule for the quantisation (3), and the equation of motion (4) as a transcendental
equation. This last equation is nothing else that the quantum virial theorem [16]. These three
relations allow to give a nice semi-classical interpretation of the ET [5, 14]. Nevertheless, the
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ET is a full quantum method giving eigenvectors and eigenvalues. In natural units, ÿ= 1
in (3).

The structure of T is usually simpler that the one of V. That is the reason why it is generally
more convenient to work in the configuration space. But the symmetry between the
momentum and the position in the system (2)–(4) indicates that computations can be per-
formed indifferently in the configuration space (x as the variable with = -ˆ p xi d d ) or in the
momentum space (p as the variable with =ˆ x i pd d ).

In the ET, for each level n, the kinetic part T(p) and the potential part V(x) are respectively
‘enveloped’ by the following tangent quadratic functions (see the example in section 3.3)

= +
¢

-˜( ) ( )
( )

( ) ( )T p T p
T p

p
p p

2
, 100

0

0

2
0
2

= +
¢

-˜( ) ( ) ( ) ( ) ( )V x V x
V x

x
x x

2
. 110

0

0

2
0
2

This is the origin of the name of the method [3, 4]. The enveloping functions are such that
+ =˜( ˆ) ˜ ( ) ˜T p V x H which is the optimised auxiliary Hamiltonian for the nth level (p0 and x0

depend on n by the set of equations (2)–(4)). It can be checked from (8), (10) and (11) that
= ⟨ ∣ ˜ ∣ ⟩E n H n . If T(p) (V(x)) is quadratic, =˜( ) ( )T p T p ( =˜ ( ) ( )V x V x ). It is also clear from

(11) that =˜ ( ) ( )V x V x0 0 and ¢ = ¢˜ ( ) ( )V x V x0 0 . This means that Ṽ and V are tangent at the
point x= x0. If there is only one contact point, Ṽ is either totally above or totally below V.
Thanks to (10), the situation is similar for T̃ and T. If T and V are both bounded from above
(below) by T̃ and Ṽ , the ET approximations for eigenenergies are upper (lower) bounds,
according to the comparison theorem [17]. A simple criterion for this has been found in [3, 4].
By defining the two functions bT(p

2)= T(p) and bV(x
2)= V(x), it can be shown that E is an

upper (lower) bound of the genuine eigenvalue if bT and bV are both concave (convex)
functions. If the second derivative is vanishing for one of these functions, the variational
character is solely ruled by the convexity of the other one. It is easy to check that the situation
bT″= bV″= 0 corresponds to the harmonic oscillator Hamiltonian for which the system (2)–
(4) gives the exact solution. In other cases, the variational character of the solution cannot be
guaranteed. Let us note that E has an analytical form for a large variety of Hamiltonians for
arbitrary values of the dimension [10, 13, 18].

3. The exciton Hamiltonian

The Hamiltonian Heh for the electron–hole pair, where the two charges are kept separated in
two different one-dimensional regions by a bias distance d, is given by

= -
+

ˆ ( )H
p

m

k

r d2
, 12eh

2

2 2

where r (Î) is the relative position between the electron and the hole, p̂ the conjugate
momentum, m the reduced mass of the pair and k= e2/(4πò0òr), with e the elementary electric
charge, ò0 the dielectric permittivity in vacuum and òr the relative dielectric permittivity of the
material. As the potential in (12) is vanishing for |r|→∞, the eigenvalues of Heh are the
binding energies of the electron–hole pair for the different levels. The purpose of this paper is
not to investigate in detail exciton physics, but it is worth mentioning that the computation of
the threshold for photon absorption requires in addition the knowledge of the bulk
semiconductor’s band gap [19]. This is out of the scope of this work.

Eur. J. Phys. 44 (2023) 035401 C Semay and M Balcaen

4



3.1. Dimensional analysis

It is always interesting to work with dimensionless variables in order to make apparent what
are the relevant physical quantities and to simplify the formulation of the problem. By using
the effective Bohr radius aB= 4πò0òrÿ

2/(me2) and the effective Rydberg constant
p= =( ) ( )  me k aR 32 2ry

4 2
0
2 2 2

B , a dimensionless Hamiltonian H=Heh/(2Ry) can be
defined in terms of a dimensionless bias parameter D= d/aB and a dimensionless position
x= r/aB

= - -
+

( )H
d

x x D

1

2 d

1
, 13

2

2 2 2

whose dimensionless eigenvalues (binding energies) will be designed by E. Only
dimensionless quantities will be used in the following. To recover physical quantities, x
must be multiplied by aB and E by 2Ry. Both aB and Ry are pertinent units for contexts in
which excitons appear. For instance, aB= 16.34 nm and Ry= 3.416 meV for GaAs [9]. The
standard range of d in typical GaAs-based devices is varied from 10 to 20 nm. So D is around
unity for these semiconductors.

3.2. Bounding potentials

The soft-Coulomb potential- +x D1 2 2 is bounded from below by the Coulomb potential
−1/|x| for Îx  (see figure 1). So, according to the comparison theorem, the eigenvalues of

= - -
∣ ∣

( )H
d

x x

1

2 d

1
14C

2

2

are lower bounds of the eigenvalues of H. The spectrum of HC is analytical [20]

= -
+( )

( )E
n

1

2 1
, 15C 2

with n= 0, 1, 2, 3, K associated with wavefunctions vanishing at x= 0 and with 2n nodes at
finite x values on . To correspond to our numbering scheme (5)–(6), (15) must be rewritten

Figure 1. The soft-Coulomb potential for D= 2 (solid black) with the Coulomb
potential (dashed gray) and the quadratic potential with D= 2 (dot-dashed gray). All
quantities are dimensionless.
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= -
+( )

( )E
n

2

1
. 16C

o
2

For large values of no, the eigenfunctions of H and HC are characterised by a large extension,
that is to say, a significant part in regions where both potentials are very similar. So it is
expected that E and EC will be very close in these situations.

An easy way to solve approximately a Schrödinger equation around an equilibrium point is
to use a harmonic approximation of the potential. Expanding the soft-Coulomb potential in
power of x around 0, H reduces to the harmonic oscillator Hamiltonian

= - + - ( )H
d

x

x

D D

1

2 d 2

1
17HO

2

2

2

3

at the lowest order. The corresponding eigenvalues are given by [2]

= + -⎛
⎝

⎞
⎠

( )E n
D D

1

2

1 1
. 18HO 3 2

It is easy to show that the quadratic potential in HHO is always larger that the potential in H
(see figure 1). So, according to the comparison theorem, EHO are upper bounds of E.
Moreover, both potentials are very similar for small values of x. It is then expected that E and
EHO will be very close for values of n close to 0, corresponding to eigenfunctions
characterised by a small extension.

3.3. ET approximations

The ET solutions for H are computed by solving first (4), taking into account (3), with ÿ= 1
for nonrelativistic kinematics and the soft-Coulomb potential. With T(p)= p2/2 and

= - + -( ) ( )V x x D2 2 1 2, we have ¢ =( )T p p and ¢ = + -( ) ( )V x x x D2 2 3 2. Injecting these
results in (4), the equation for x0 is then

= +( ) ( )x Q x D . 19n0
4 2

0
2 2 3 2

For given values of D and Qn, analytical solution for x0 can be written in terms of the
solutions of a quartic equation, but the expression is so complicated that it is not usable in
practice. Graphically, it is easy to check that (19) has only one positive solution for x0

2. It is
then very easy to compute it by a numerical procedure [21] or a software like Mathematica®.
Once x0 is computed, the ET approximation for the energy can be computed with (2) and (3).
We have bT(p

2)= p2/2 and = - + -( ) ( )b x x DV
2 2 2 1 2. The ET approximations EET for the

energies are upper bounds since bT″(z)= 0 and = - + -( ) ( )b z z DV
2 1 2 is a concave

function. Finally, the ET upper bounds are given by

= -
+

= +( ) ( )E
Q

x x D
x Q x D

2

1
with . 20n

nET

2

0
2

0
2 2

0
4 2

0
2 2 3 2

As presented in section 3.2, the solutions for H must be close to the solutions for HC and
HHO under certain conditions. Let us check this from (20). Provided D is not too large, it is
expected from (19) that »x Q xn0

4 2
0
3, that is to say, »x Qn0

2, when n? 1. In this case, the
parameter D disappears in the dominant term and (20) reduces to

» -
+( )

( )E
n

2

2 1
. 21ET 2

This last formula can be compared with EC for odd values of n: (21) is clearly an upper bound
of (16).
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If n is a small integer and D is not too small, an approximate solution for (19) is
»x Q Dn0

4 2 3, that is to say, »x Q Dn0
2 3 2. In this case, at the lowest order in n, (20) reduces to

» + -⎛
⎝

⎞
⎠

( )E n
D D

1

2

1 1
, 22ET 3 2

which is identical to EHO. This is not surprising since the ET gives the exact solutions for a
harmonic oscillator Hamiltonian.

Accurate numerical eigenvalues and eigenvectors of H are computed with the Fourier Grid
Hamiltonian (FGH) method [22, 23] which is very powerful and very easy to use for one-
dimensional time-independent Schrödinger-like equations. In figure 2, these energies are
compared with EET and the other bounds EHO and EC, for D= 2 and the lowest values of n.
The ET approximations are good for all values of n. The lower bound EC which is only
defined for odd numbers n improves with increasing n, as expected. On the contrary, the
upper bound EHO degrades rapidly with increasing n, as expected also. It is worth drawing
attention that the upper bounds EHO are computed with a unique quadratic potential in (17)
(see figure 1). The upper bounds EET are computed with a different envelope potential ˜ ( )V x
for each value of n (see figure 3). Wavefunctions for the ground state and the first excited
state, computed with the FGH method and the ET, are compared in figure 4 for three values of
D. The agreement is good but the ET approximations decrease faster with x. This is due to the
harmonic oscillator nature of the approximate wavefunctions which decrease as Gaussian
functions while the exact solutions decrease as exponential functions.

3.4. Comparison with a variational method

The ground and first excited states of H have been computed in a recent paper by a variational
method using the ground and first excited states of the harmonic oscillator Hamiltonian as
trial states [9]. The results from this paper are compared with the ET results in figure 5 as a
function of D. Let us mention that the dimensionless numbers obtained with the formulas in
[9] must be divided by 2 to be compared with our results because the energies are given in
unit of Ry, while they are given in unit of 2Ry in this paper (see (13)). It is clear that the

Figure 2. Lowest dimensionless energies for H with D= 2: accurate values obtained
with the FGH method (black triangle) and upper bounds from the ET (gray diamond).
The exact energies for HC (gray circle) and HHO with D= 2 (gray square) are also
indicated.
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Figure 3. Four first envelopes Ṽ (dashed gray) for n= {0, 1, 2, 3} of the soft-Coulomb
potential (solid black) for D= 2. All quantities are dimensionless.

Figure 4. Ground (black) and first excited (gray) states of H for three values of D:
accurate wavefunctions computed with the FGH method (dashed), and approximate
wavefunctions computed with the ET (solid). All quantities are dimensionless.

Figure 5. Dimensionless energies of the ground (3 curves below) and first excited (3
curves above) states of H as un function of D: accurate values obtained with the FGH
method (solid black), upper bounds from the variational method in [9] (dashed gray),
upper bounds from the ET (solid gray).
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variational upper bounds are better that the upper bounds given by the ET. Nevertheless, the
ET can give the whole spectra with a unique formula. This is not the case in [9], where
different integrations must be performed to compute ground and first excited states. More-
over, the variational principle states that the expectation value of a Hamiltonian for an
arbitrary trial state always gives an upper bound of the ground state. But an upper bound of an
excited state can be reliably computed with a trial state if it is orthogonal to all exact states
below this excited state [2]. So, for a one-dimensional system, an upper bound of the ground
state can be computed with an even trial wave function and an upper bound of the first excited
state with an odd trial wave function. The computation of the other excited states is much
more complicated and requires the expansion of trial states on an (orthonormal) basis [24].

4. Conclusions

The envelope theory (ET) is useful to treat problems with a large number of particles when
great accuracy is not required [25–27]. It can also be used to produce test calculations for
numerical methods more accurate but more difficult to implement [28, 29]. Nevertheless, it
can also be used in a pedagogical context to study solutions of time-independent Schrödinger-
like equations, for the following reasons:

• The ET is very simple to implement since the solutions are obtained by solving a
transcendental equation. Though the example presented here is a one-dimensional
problem, the generalisation for many-body systems of identical particles in several
dimensions is trivial [5].

• The eigenvalues can be computed for the whole spectrum with the same computational
cost. Approximations for eigenvectors and mean values of observables are also easily
computable.

• In the most favourable situations, analytical upper or lower bounds can be computed. This
makes the study of quantum systems easier. Several examples are presented in
[10, 13, 18].

My (CS) teaching of quantum mechanics relies mainly on [2]. Though the ET is not
mentioned as a method to solve the time-independent Schrödinger equation during my
lectures, I often propose to use it in projects for undergraduate students. This technique is
rapidly mastered by the students to investigate various problems of quantum mechanics, for
instance: the study of eigenvalues and eigenvectors for realistic Hamiltonians, comparisons of
spectra between different potentials, variations of observables as a function of parameters of
the Hamiltonian, properties of a system as a function of the number of particles, etc. Papers
[6] and [10] have been written starting from two master thesis, while this paper comes from
the third year student project of one of the authors (MB).

A lot of different problems can be examined. Here are two possible ones. The calculations
performed above for the one-dimensional soft-Coulomb potential can be repeated for a lot of
different interactions and/or for semirelativistic kinematics. An interesting case is the Hulthén
potential on + ,- -( ( ) )k axexp 1 , which is bounded from above by- -( )k axexp and from
below by −k/(ax). Analytical solutions are known for these three interactions in a one-
dimensional Schrödinger equation [1]. Another problem that can be examined is the transition
between a nonrelativistic regime and an ultrarelativistic one by solving for instance the
semirelativistic harmonic oscillator, = + +H p c m c kx2 2 2 4 2, and by examining the
behaviour of the eigenvalues with m. Let us note that to solve transcendental equations based
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on 3rd and 4th degree polynomials, it can be useful to consider the functions F± and G±

defined in [13].
The results of the ET in dimensions greater than one can be improved by combining it with

the dominantly orbital state method [6, 30]. The idea is to modify the equivalent of the
quantum number Qn appearing in these contexts. Such improvement could be possible in one
dimension also by replacing n+ 1/2 by n+ γ(n) in Qn, in the same spirit as the modification
of the WKB method proposed in [31]. The function γ(n) could be fitted on accurate numerical
results to produce better upper bounds. Similar calculations are already performed in [32].
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