
Empirical Software Engineering (2023) 28:52
https://doi.org/10.1007/s10664-022-10285-5

On the usage, co-usage andmigration of CI/CD tools:
A qualitative analysis

Pooya Rostami Mazrae1 ·TomMens1 ·Mehdi Golzadeh1 ·Alexandre Decan1

Accepted: 28 December 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Continuous integration, delivery and deployment (CI/CD) is used to support the collabora-
tive software development process. CI/CD tools automate a wide range of activities in the
development workflow such as testing, linting, updating dependencies, creating and deploy-
ing releases, and so on. Previous quantitative studies have revealed important changes in the
landscape of CI/CD usage, with the increasing popularity of cloud-based services, and many
software projects migrating to other CI/CD tools. In order to understand the reasons behind
these changes in CI/CD usage, this paper presents a qualitative study based on in-depth
interviews with 22 experienced software practitioners reporting on their usage, co-usage and
migration of 31 different CI/CD tools. Following an inductive and deductive coding process,
we analyse the interviews and found a high amount of competition between CI/CD tools. We
observe multiple reasons for co-using different CI/CD tools within the same project, and we
identify the main reasons and detractors for migrating to different alternatives. Among all
reported migrations, we observe a clear trend of migrations away from Travis and migrations
towards GitHub Actions and we identify the main reasons behind them.

Keywords CI/CD · Collaborative software development · Workflow automation ·
Qualitative analysis · Empirical software engineering

Communicated by: Alexander Serebrenik

Alexandre Decan (F.R.S.-FNRS Research Associate)

� Pooya Rostami Mazrae
pooya.rostami.m@gmail.com; pooya.rostamimazrae@umons.ac.be

Tom Mens
tom.mens@umons.ac.be

Mehdi Golzadeh
golzadeh.mehdi@gmail.com

Alexandre Decan
alexandre.decan@umons.ac.be

1 Software Engineering Lab, Université de Mons, Mons, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10285-5&domain=pdf
http://orcid.org/0000-0002-4859-1546
http://orcid.org/0000-0003-3636-5020
http://orcid.org/0000-0003-1041-439X
http://orcid.org/0000-0002-5824-5823
mailto: pooya.rostami.m@gmail.com
mailto: pooya.rostamimazrae@umons.ac.be
mailto: tom.mens@umons.ac.be
mailto: golzadeh.mehdi@gmail.com
mailto: alexandre.decan@umons.ac.be

 52 Page 2 of 45 Empir Software Eng (2023) 28:52

1 Introduction

Continuous integration and deployment (CI/CD) is considered a crucial practice to sup-
port collaborative software development (Duvall et al. 2007; Shahin et al. 2017). CI/CD
gained its popularity as a software engineering practice thanks to the eXtreme Program-
ming methodology introduced by Beck et al. (Beck 2000). CI/CD helps to automate a wide
range of activities during software production, including compilation, building, testing,
quality assurance, dependency and security management, creating releases, and many more
(Vasilescu et al. 2015; Hilton et al. 2016; Beller et al. 2017; Widder et al. 2018). As a result,
CI/CD helps to produce higher quality software releases at a faster pace and with less effort
(Savor et al. 2016). This has led CI/CD (that we will henceforth abbreviate to CI) to become
one of the most important collaborative software development practices for companies and
open source software (OSS) communities worldwide. Its use ensures integrity and control
over all changes made to the software project (Holmstrom et al. 2006; Soares et al. 2022).

There is a wide range of CI tools to help developers automate their development work-
flow. Popular examples of contemporary CI tools are GitHub Actions, GitLab CI/CD, Azure
DevOps, CircleCI, Jenkins, and Travis. Each of them has its own benefits to accommodate
the specific needs and constraints of individual software projects (Soares et al. 2022).

Recently, the landscape of CI tools has witnessed important changes due to the emer-
gence of new competing tools, support for more operating systems in existing CIs, changes
in billing policies, changes in the company or community structure of the CI tool provider,
reliability and performance of the CI services being provided, and many more (Soares et al.
2022). In particular, the introduction in November 2019 of GitHub Actions (that we will
henceforth abbreviate to GHA) as a fully integrated CI service on GitHub has led both new
and existing GitHub repositories to adapt or migrate to this service as their primary CI tool
(Golzadeh et al. 2022; Kinsman et al. 2021). At the same time, Travis has exhibited a pro-
gressive decrease in popularity these recent years, due to a combination of quality of service
problems and restrictions imposed on its free plan for OSS projects (Golzadeh et al. 2022).
In light of these important recent changes in the CI landscape, this article has two main
research goals:

G1: As the first goal, we aim to understand the rationale behind how and why experienced
developers in commercial and OSS projects rely on specific CI tools, and how this usage
has changed in comparison with previously reported research studies. This goal is broken
down in five specific research questions:

RQ1.1 Which CI tools are being used?
RQ1.2 What are the main reported reasons for using CI?
RQ1.3 Which activities are being automated by CI tools?
RQ1.4 What are the most valuable features of these CI tools?
RQ1.5 What are the reported shortcomings of these CI tools?

G2: As the second goal, we aim to understand the reasons for co-using different CI tools
simultaneously, as well as the reasons for migrating from one CI tool to another. This
goal is motivated by the recent changes in the CI landscape on GitHub, the most popular
software development hosting platform for OSS projects today. Less than 18 months after
its introduction (Golzadeh et al. 2022), GHA became the most widely used CI tool on
GitHub, taking over Travis that has been available and dominant for years on GitHub.

RQ2.1 Why are multiple CI tools co-used simultaneously?
RQ2.2 Why do software projects migrate to a different CI tool?
RQ2.3 What are the difficulties in carrying out a CI migration?

Empir Software Eng (2023) 28:52 Page 3 of 45 52

In order to achieve these goals and to provide answers to the eight research questions,
we carried out a qualitative analysis by conducting in-depth interviews with 22 experienced
software practitioners.

The remainder of this paper is organised as follows. Section 2 presents the related work
of earlier empirical studies related to CI usage. Section 3 introduces the design, setup, and
process of the qualitative study we conducted. Based on the insights obtained from the inter-
views, Section 4 answers the research questions for goal G1, while Section 5 focuses those
for goal G2. Section 6 discusses some additional insights related to our findings. Section 7
presents the threats to validity of the conducted study. Finally, Section 8 concludes.

2 RelatedWork

2.1 CI/CD Usage Practices

Probably the best entry point to CI/CD usage practices are the systematic literature reviews
(SLR) by Shahin et al. (2017) and Soares et al. (2022).

The SLR of Shahin et al. (2017) covered 69 scientific articles published up to 2016. Its
aim was to synthesize the reported approaches, tools, challenges, and practices for adopting
and implementing continuous practices. The included studies mostly show an increase in
adoption of continuous practices, and discuss the integration problems faced by projects
trying to use these practices. They also report that teams mostly use continuous practices
to reduce build and test time, increase the visibility and awareness on build and test results,
detect violations, flaws, and faults, and improve the deployment pipeline w.r.t. security,
scalability, dependability and reliability. While the authors identified 30 approaches and
associated tools, many of the CI tools in our own analysis (e.g., GHA, Travis, CircleCI,
Azure DevOps, AppVeyor) were not even mentioned by this SLR. One of the reasons for
this was that the SLR was considerably broader in scope than our study, including also tools
for version control, build systems, code quality analysis, testing, configuration, provisioning
and deployment.

The SLR by Soares et al. (2022) covers 101 scientific articles reporting on the use of
CI and published prior to 2019. The SLR aimed at identifying and interpreting empiri-
cal evidence regarding how CI impacts software development. CI usage was reported to
correlate with improved productivity, efficiency, and developer confidence. CI practices
were observed to benefit the software process by promoting faster iterations, more stabil-
ity, predictability, and transparency in the development process. CI also benefits pull-based
development by improving and accelerating the integration process. The SLR concluded
that most of the existing research highlighted the positive effects of CI usage, leaving room
to study the challenges and shortcomings of using CI tools. Since this SLR did not consider
any publications after 2019, it did not include any study reporting on the impact of GHA on
the CI landscape, given that GHA was only publicly introduced as a CI service in November
2019.

The aforementioned SLRs included many publications on how CI/CD practices have
been implemented in different environments in order to identify their potential benefits
(Chen 2015; Ståhl and Bosch 2013; Hilton et al. 2016; Bernardo et al. 2018; Elazhary et al.
2022), challenges and shortcomings (Beller et al. 2017; Chen 2017; Rausch et al. 2017).
This reflects the importance of CI/CD practices and their impact on software development
practices. In the following subsections we narrow down on case studies that explored the
use of CI/CD (Section 2.2), as well as the specific use of Travis (Section 2.3) and, more
recently, GHA (Section 2.4).

 52 Page 4 of 45 Empir Software Eng (2023) 28:52

2.2 Case Studies on CI/CD Usage

Chen (2015, 2017) reported on the benefits and adoption challenges of CD practices in
Paddy Power, a large company. Among the achieved benefits from CD adoption, he reports
an accelerated time to market, the ability to build the right product, an improved productivity
and efficiency, the increased reliability of releases, as well as an improved product quality
and customer satisfaction.

Betz and Walker (2013) studied the impact of adopting a CI tool to develop AMBER,
a molecular dynamics software package widely used in chemical industry. They report an
improved collaboration and communication between globally distributed developers. The
CI tool also enabled real-time reporting of failure and benchmark information, a task that
would be time-consuming for individual developers to achieve by themselves.

Lu et al. (2014) reported on a case study on D5000, a smart grid scheduling support
system. The results show that using continuous integration and automated testing resolves
quality and integration issues effectively and efficiently, without introducing considerable
overhead.

Kulas et al. (2014) reported on how CI practices helped to reduce the development time
of ARGOS (Advanced Rayleigh guided Ground layer adaptive Optics System), a software
designed to solve a specific problem with images produced by a telescope. Commissioning
time for an instrument at an observatory is costly, especially at night. Whenever astronomers
come up with a software feature request or point out a software defect, the software engi-
neers should find, implement and deploy a solution as fast as possible. Using Jenkins to
automate testing allowed the team to guarantee the correctness of the proposed changes
while respecting strict time constraints.

Gmeiner et al. (2015) carried out a case study on the usage of CI tools in an Austrian
online business company. They highlighted the complex technical and organizational chal-
lenges based on more than six years of practical experience in establishing and maintaining
an effective continuous delivery pipeline.

Savor et al. (2016) carried out a mixed-method study of CI/CD usage at Facebook and
OANDA. The study revealed that the CD part of the used tools could not be used to its full
potential. For example, OANDA’s policies prevented the company from fully embracing
continuous deployment, leading to delays in delivering new features to end-users.

Elazhary et al. (2022) conducted case studies with three software development orga-
nizations that implemented CI practices, in order to identify the benefits and challenges
related to them. Based on interviews with 18 employees (developers, managers, team leads,
and directors) they identified the following CI practices: maintaining a source repository,
automating the build, automating the tests for a build, making daily commits to the mainline,
ensuring that these commits build on an integration machine, having fast builds, testing in
a clone of the production environment, providing a Docker executable of the latest release,
ensuring visibility of the system state and changes, and automating the deployment. Based
on a trace-log analysis, the authors also studied the impact of implementing these practices.
Some observed good impacts were: minimizing merge conflicts, increasing consistency and
reproducibility of builds, more reliable bug detection, minimizing breaking changes, bet-
ter and faster developer and customer feedback, reducing build complexity and facilitating
onboarding. Some observed challenges were difficulties to test the UI, longer build times
due to automated tests, bottlenecks for committing due to PR reviews, scalability issues,
and increased maintenance effort. This reveals that CI practices have their merits, but also
bring along their own difficulties.

Empir Software Eng (2023) 28:52 Page 5 of 45 52

2.3 On the Use of Travis in GitHub Projects

There are many empirical studies that have studied the use of Travis, given it was the dom-
inant CI tool on GitHub. These studies cover various different aspects such as the practices
developers follow to use Travis (Zampetti et al. 2017), its benefits and shortcomings (Ghaleb
et al. 2019), or the observed antipatterns (Vassallo et al. 2019).

Vasilescu et al. (2015) conducted a quantitative analysis on 246 GitHub projects to
study the improvements that Travis can bring to the pull-based development process.
They observed a higher volume of pull requests being accepted, and more defects being
discovered thanks to Travis usage.

Hilton et al. (2016) studied 34,544 OSS projects on GitHub and surveyed 442 devel-
opers to understand how developers use CI. They found out that there are still many OSS
development teams that do not use a CI tool due to a lack of familiarity. However, among
those that used a CI tool, 90% of them used Travis. They reported that popular projects are
more likely to use CI and the median time for CI adoption is one year. They found that the
use of Travis helped developers to catch bugs earlier. They also found that projects using
Travis had more than twice as many releases and faster pull request integration time, while
avoiding acceptance of pull requests that would break the builds.

In an explorative analysis of Travis on GitHub, Beller et al. (2017) found that Travis
usage had increased a lot by 2017, being used in one-third of popular projects on GitHub.
Their analysis of 2.6M+ Travis builds for Java and Ruby projects revealed that Travis usage
was highly focused on testing-related tasks, primarily to enable developers to test their soft-
ware across different OS environments. However, the CI tool was not able to replace local
testing because of the high latency (often more than 20 minutes) between writing the code
and receiving feedback from the automated tests.

Gupta et al. (2017) studied how the introduction of Travis impacted developer attraction
and retention in 217 GitHub repositories. Contrary to their expectations, they found statisti-
cal evidence that developer attraction and retention in these projects was higher in the year
before adopting Travis than in the year after.

Widder et al. (2018) quantitatively studied 7,276 GitHub projects that had abandoned
Travis. They observed that projects with more pull requests are less likely to abandon Travis,
while projects with more commits are more likely to do so. They also observed that a
project’s dominant language is an important predictor for Travis abandonment. Finally, con-
trary to the intuition, they found that projects with more complex configurations tend to be
less likely to abandon Travis. In a follow-up study, Widder et al. (2019) identified the pain
points of Travis as a CI tool in software development projects on GitHub. They used a com-
bination of online surveys (132 respondents), interviews (12 respondents) and quantitative
analysis using logistic regression on a dataset of 6,239 GitHub projects to predict Travis
abandonment. Some of the identified pain points were unsupported technology, long build
times, infrequent changes, poor user experience, and build failures.

2.4 On the Use of GHA in GitHub Projects

Due to its recent introduction in November 2019, there is only a limited number of studies
that have focused on GHA despite its impact on the CI landscape on GitHub.

Golzadeh et al. (2022) presented a longitudinal quantitative study on the use of CI tools
in over 91K GitHub repositories of distributed npm packages. They observed that more and
more repositories are relying on a CI tool, reaching up more than 50% of the repositories
in May 2021. They found that GHA and Travis dominate the CI landscape and are used

 52 Page 6 of 45 Empir Software Eng (2023) 28:52

by 90% of the repositories with a CI tool. They also found that GHA took over Travis in
popularity in only 18 months after its introduction, a consequence of many repositories that
started to use GHA instead of Travis.

Kinsman et al. (2021) analysed the impact of adopting GHA in 3,190 repositories and
observed that the adoption of GHA increases the number of rejected pull requests and
decreases the number of commits in merged pull requests. Through a manual inspection
of 209 issues related to GHA, they observed that developers have an overall positive per-
ception of GHA. These observations were confirmed by Chen et al. (2021) in a replication
study on 6,246 repositories.

Valenzuela-Toledo and Bergel (2022) investigated the use and maintenance of GHA
workflows in 10 popular GitHub repositories. They manually inspected 222 commits related
to workflow changes and determined 11 different types of workflow modifications. They
uncovered a number of deficiencies in GHA workflow production and maintenance, calling
for adequate tooling to support creating, editing, refactoring, and debugging workflow files.

Decan et al. (2022) analysed the use of GHA in nearly 70K GitHub repositories in order
the get a deeper insight into the GHA ecosystem. They found that 43.9% of the repositories
are using GHA workflows, and they characterized these repositories and their workflows, in
terms of which jobs, steps, and reusable Actions were used and how. They notably observed
that workflows are primarily used for development purposes, despite the fact that many
other kinds of activities could potentially be automated with GHA. They also observed
that nearly all workflows rely on Actions, which may be problematic since issues in these
Actions (e.g., bugs, security vulnerabilities, outdated or obsolete components) can propagate
to the workflows that use them, potentially affecting the entire GHA ecosystem. They call
for more in-depth empirical studies to provide a comprehensive understanding of the GHA
ecosystem.

3 Methodology

The two goals of this article were defined with this related work in mind. Goal G1 aims to
understand the rationale behind how and why experienced software developers use specific
CI tools, and how this usage has changed in comparison with previously reported stud-
ies. Goal G2 aims to understand how developers co-use CI tools and why they migrate to
different CI tools, especially in the light of the rapidly changing CI landscape due to the
introduction of GHA on GitHub. In order to achieve these goals, we carried out a qualitative
analysis by conducting semi-structured interviews with experienced software developers
around the globe. The remaining of this section is structured as follows: Section 3.1 explains
how we created our interview questionnaire, Section 3.2 how we selected the interview
participants, and Section 3.3 how the interviews were conducted, processed, and coded.

3.1 Interview Questionnaire

All co-authors of this paper jointly created an interview questionnaire aiming to capture
all the aspects we wanted to cover to reach research goals G1 and G2. To validate the
questionnaire, dry-runs were carried out with three distinct developers with experience in
CI/CD. The results of the interviews with these developers were not included in our analysis,
as they only served to further improve the questionnaire.

Empir Software Eng (2023) 28:52 Page 7 of 45 52

The final questionnaire is presented in Appendix A. It included about 30 questions, some
being conditional to the answers to previous questions. These questions were structured
along the following main themes:

1. General questions about the respondent
2. General questions about CI/CI usage
3. Questions about specific CI/CD tool usage
4. Questions about CI/CD migration
5. Questions about CI/CD tool co-usage
6. An open-ended closing question

The responses for themes 2 and 3 were used as a basis for research goal G1 (see Section 4),
while themes 4 and 5 served as a basis for research goal G2 (see Section 5).

3.2 Selection of Respondents

We targeted interview candidates with experience in software development in open source as
well as in commercial settings. Our main strategy to find interview candidates was through
the Twitter and LinkedIn channels of the authors, through e-mails and direct messages
to practitioners, and through referrals by colleagues as well as by some interviewees. To
increase diversity of interviewees and not being restricted by geographical constraints, we
decided to conduct our in-depth interviews online using video conferencing tools.

In order to be able to participate in the study, candidates needed to meet at least two out
of three inclusion criteria that we have defined beforehand:

(1) having actively contributed to, or having been responsible for a software project
relying on CI;

(2) having sufficient knowledge about the reasoning and decision-making process about
which CI tool is used in that software project and how;

(3) having been involved in setting up or maintaining the CI process of the project.

We stopped selecting and interviewing candidates when we reached a point of saturation
(Guest et al. 2006; Fusch and Ness 2015) where no new themes or codes emerged from
the additional data collected. We observed such saturation after the 20th respondent when,
except for the answers to the open-ended closing question and the specific work context of
the respondents, little additional relevant information was gathered on top of what previ-
ous respondents had already provided. We therefore stopped the interview process after the
22nd interview. While only 22 interviews might seem little, it is more than what has been
used in some previous qualitative studies in empirical software engineering (Foundjem et al.
2022; Kim et al. 2016; Meyer et al. 2019) that reported saturation after 16, 16 and 10 inter-
views, respectively. Nevertheless, we acknowledge that our inclusion criteria for selecting
interview candidates were such that we only considered experienced developers with prac-
tical expertise in CI usage. As a result, the opinions and findings reported in the paper do
not necessarily generalise to more inexperienced developers.

Table 1 summarises the demographics of the respondents. In the remainder of this arti-
cle, the respondents are identified by a unique number Rn or simply n when it is clear
from the context. The second and third columns of the table report on the number of years
of development and CI experience of each respondent. On average, the respondents can
be considered as very experienced software developers, with an average of 12 years and 4

 52 Page 8 of 45 Empir Software Eng (2023) 28:52

Table 1 Characteristics and demographics of respondents

ID Experience

Dev. CI Industry Open Source Continent

R1 7 – ✓ ✓ Europe

R2 11 – ✓ Europe

R3 6 – ✓ Europe

R4 19 – ✓ ✓ North America

R5 22 14 ✓ ✓ Europe

R6 19 – ✓ North America

R7 8 – ✓ Europe

R8 11 8 ✓ ✓ Europe

R9 6 4.5 ✓ Europe

R10 20 10 ✓ ✓ North America

R11 5 4 ✓ ✓ Europe

R12 8 6 ✓ ✓ Europe

R13 15 – ✓ Europe

R14 4.5 3 ✓ ✓ Asia

R15 10 3 ✓ Europe

R16 12 2 ✓ Asia

R17 15 – ✓ Europe

R18 10 – ✓ ✓ Europe

R19 24 – ✓ ✓ Europe

R20 15 4 ✓ ✓ Europe

R21 12 8 ✓ North America

R22 20 12 ✓ ✓ Europe

months of software development experience and 4.5 years of CI experience. Not all respon-
dents dissociated their years of CI experience from their years of development experience,
explaining the absence of the second number for some respondents.

Columns 4 and 5 of the table reveal that respondents were involved in a wide range of
software development projects, including personal, open source software (OSS) projects
and commercial projects. Most of the respondents (12 out of 22 respondents) had both
industrial and open source software experience, while seven respondents had only been
involved in commercial software, and three of them were only in OSS. Furthermore, some of
the respondents were or had been working on big open source projects like curl and Conda-
forge, or for big tech companies such as LinkedIn and Microsoft. The last column reveals
that most of the respondents lived and worked in Europe (16 respondents spread over 7
different Western European countries), while 4 respondents came from North America and
2 from Asia.

3.3 Conducting and Processing the Interviews

The process we followed for conducting and processing each interview is summarised in
Fig. 1. Prior to each interview, the selected interview candidate was required to sign a con-
sent form in order to meet the GDPR regulations and to allow us to use the interview results

Empir Software Eng (2023) 28:52 Page 9 of 45 52

Fig. 1 Schema of the interview process

for research purposes. After having received the consent form, a virtual meeting was fixed
to carry out the online interview through a video-conferencing tool the candidate was com-
fortable with. One author conducted the interview and made an audio recording, with the
explicit permission of the candidate. Each of the 22 interviews lasted roughly about 30
to 45 minutes, and the total set of interviews was spread over a four-month period, from
November 2021 to February 2022.

The author that conducted the interview resorted to an automatic transcription tool
to transcribe each interview. The resulting verbatim textual transcripts were cleaned and
anonymised to hide privacy-sensitive information such as names of persons, companies,
or specific software projects. This process was made by one author, and was checked and
further improved by a second one. A third author was involved in case of doubt.

To structure the information gained from the interview transcripts we followed a process
similar to Foundjem et al. (2022), using a combination of inductive and deductive coding
(Russel Bernard et al. 2016). In the first phase of inductive coding, the first author assigned

 52 Page 10 of 45 Empir Software Eng (2023) 28:52

labels to the transcribed text, without any predetermined theory, structure, or hypothesis.
After that, one author followed a top-down deductive coding process to create separate
codebooks for each interview, deriving codes based on the research questions and concepts
under study, and using these codes to group and structure the inductive labels that were
attached to the transcribed text during the inductive coding phase. A second author verified
each of these codebooks and, in case of disagreement, a third author was involved in the
discussion until we reach a consensus on the coding.

All anonymised transcripts except two have been made available as supplementary mate-
rial to this paper. We did not receive authorisation from the respondents of the two excluded
transcripts to make this information public, although we were authorised to use and process
the information from those transcripts in the context of this paper.

4 Goal G1: Why, How andWhich CI Tools are Being Used?

This section addresses our first research goal, aiming to understand the rationale behind
how and why developers rely on specific CI tools, and how this reported usage has changed
in comparison with the existing body of research presented in Section 2. We will do so by
providing answers to the following research questions:

RQ1.1 Which CI tools are being used?
RQ1.2 What are the main reported reasons for using CI?
RQ1.3 Which activities are being automated by CI tools?
RQ1.4 What are the most valuable features of these CI tools?
RQ1.5 What are the reported shortcomings of these CI tools?

These research questions will be addressed in the next five subsections.

4.1 RQ1.1 Which CI Tools are Being Used?

This preliminary research question aims to reveal the diversity of CI tools being used by
respondents, and to determine which CI tools have been used more frequently by respon-
dents. Overall, 31 different CI tools have been reported by respondents. The full list of
reported CI tools can be found in Appendix B. Throughout the article we use respondent
IDs whenever we cite relevant quotes from them. In order to put these quotes in the right
perspective, Appendix B also provides a mapping between these IDs and the CI tools they
reported having used.

Table 2 lists the 14 CI tools that were used by at least two different respondents at some
point in time, ordered in decreasing frequency of usage. One can observe the use of a large
variety of CIs, some of them being self-hosted (e.g., Hudson, Jenkins), others being offered
as a cloud service (e.g., GHA, Travis, Bitbucket Pipelines) or both (e.g., GitLab CI/CD). In
addition to the 14 CI tools listed in Table 2, another 14 CI tools were reported only once.
These were, in alphabetical order: AWS CI/CD, Buildbot, BuildKite, Cirrus CI, Codefresh,
Concourse, Heroku, Jacamar CI, Percy, Pulumi, Sauce Labs, Tekton, Vercel, and Zuul.
Three respondents additionally reported resorting to custom-built in-house CI solutions,
since no existing CI tool satisfied all of their needs. These solutions will not be considered
in this paper.

Table 2 also summarises which of the reported CI tools are still being used currently by
the respondents. In the light of the second research goal, we observe that GHA is the most
frequently reported CI tool one by far, with the large majority of respondents (18 out of

Empir Software Eng (2023) 28:52 Page 11 of 45 52

Table 2 CI tools having been or being used by at least 2 respondents

Cloud Self Open Release Number of Respondents

CI Tool Based Hosted Source Date All-Time Currently

GHA ✓ Nov 2019 18 18

Jenkins ✓ ✓ Feb 2011 16 9

Travis ✓ Nov 2011 15 1

GitLab CI/CD ✓ ✓ ✓ Nov 2012 14 12

CircleCI ✓ ✓ Sep 2011 12 8

Azure DevOps ✓ ✓ Oct 2018 11 9

AppVeyor ✓ Nov 2011 5 3

Hudson ✓ ✞ Feb 2005 5 0

TeamCity ✓ ✓ Oct 2016 3 3

Cruise Control ✓ ✝ Mar 2001 2 0

Drone ✓ ✓ ✓ 2014 2 2

Bitbucket Pipelines ✓ May 2016 2 2

Netlify ✓ ✓ ✓ Apr 2015 2 2

Bamboo ✓ Feb 2007 2 1

✝Cruise Control was not open source when it was being commercialised by ThoughtWorks. The tool became
open source after the company stopped maintaining it
✞Hudson was originally released as open source by Sun, but became commercial when Oracle acquired Sun

22) using it currently. The opposite can be observed for Travis: nearly all respondents that
were using it at some point in time are no longer using it, despite Travis being still actively
maintained. For instance, only 1 of the 15 respondents having used Travis is still using it
these days. This corroborates the results of Golzadeh et al. (2022) on the popularity of GHA
at the expense of Travis.

Jenkins falls in between GHA and Travis. It used to be a popular self-hosted CI since the
majority of respondents (16 out of 22) reported having used this CI at some point during
their software development experience. Yet, only 9 out of them are still using Jenkins. The
reasons why such changes occurred will be explored later in this article.

GitLab CI/CD, CircleCI and Azure DevOps are three other popular CI tools, having
been used by at least half of the respondents, and still be used by most of them. On the
other hand, none of the respondents are currently using Hudson nor Cruise Control, two
of the earliest commercial self-hosted CI tools. The reason is that both Hudson and Cruise
Control were discontinued by their respective companies and replaced by a new CI tool.
For instance, Thoughtworks, the company owning Cruise Control, replaced it with a new
commercial CI tool named Cruise in 2010. Since Cruise was not based on Cruise Control,
the company decided to make the source code of Cruise Control publicly available after
discontinuing its support. A few years later, Thoughtworks rebranded and renamed Cruise
as GoCD, which was ultimately released as an open source CI tool in 2014. Hudson, the
open source Java-based CI tool, used to belong to Sun Microsystems, until Oracle decided
to acquire this company and to commercialise Hudson. The open source community reacted
by creating Jenkins, an open source fork that became much more popular than its ancestor.

 52 Page 12 of 45 Empir Software Eng (2023) 28:52

Jenkins continued to grow and to increase its functionalities, while Hudson stagnated and
ultimately became discontinued in February 2017.

31 distinct CI tools have been reported by the respondents, of which 14

are used by at least 2 respondents. Some CI tools, such as GHA, Jenkins,

Travis, GitLab CI/CD, CircleCI and Azure DevOps were used by at least

half of the respondents at some point in time. Only GHA and GitLab

CI/CD are currently in this situation. While Travis and Jenkins were among

the most used CI tools, most respondents have stopped using Travis and,

to a lower extent, Jenkins.

4.2 RQ1.2 What are theMain Reported Reasons for Using CI?

This research question aims to identify the reasons behind adopting CI in software devel-
opment projects. Based on a survey with several hundreds of developers, combined with
interviews with 16 developers from 14 different companies, Hilton et al. (2016, 2017)
studied, among other aspects, the developer’s motivations and benefits of using CIs. They
reported that developers use CI for 8 different reasons: to help catch bugs earlier; to avoid
breaking builds; to provide a common build environment; to deploy more often; to allow
faster iterations; to make integration easier; to enforce a specific workflow; and to allow
testing across multiple platforms. Many other qualitative studies have reported similar rea-
sons for using CIs (Fowler and Foemmel 2006; Duvall et al. 2007; Ståhl and Bosch 2013;
Leppänen et al. 2015; Vasilescu et al. 2015; Rahman et al. 2018; Bernardo et al. 2018). The
SLR (Soares et al. 2022) mentioned the following reasons: improved software quality, sta-
bility, predictability, and transparency; faster build, integration, and release cycles; improved
productivity, efficiency, and developer confidence; reduced workload; and faster detection
and resolution of defects. Our interview results align with these reasons since respondents
reported adopting CI to achieve the following goals:

– increased reliability: “the intent was to ensure that we had reliable outputs. Whenever
there’s a code change, we would know that it’s working.” R17 and “Basically there were
plenty of people contributing, so [for] each pull request [we] needed to make sure that
this pull request was not breaking the code and that the code was reaching production.”
R11

– increased quality (e.g., through better reproducibility of bugs, increased testing, and
performing quality checks): “The reason was quality, we wanted to use CI/CD to run
tests all the time and to deploy automatically to package automatically the software
without depending on one person to do it. So the goal was really to have a common
view on the build process of the tools and to improve the quality.” R13

– increased productivity: “We very much invested into it that, if people want to contribute,
they can really focus on the actual contribution, and there is very little overhead for
them or fellow maintainers to do. We try to automate as much as possible.” R10

– faster delivery: “The idea was to deliver value to the company in a quick time.” R11
– reduced cost and effort: “The human costs have been reduced over time because of all

the automation that arrived in those tools.” R13 and “[...] checked by the linting and
[...] the maintainer does not need to do that extra work.” R13

Empir Software Eng (2023) 28:52 Page 13 of 45 52

– rapid feedback: “[...] being able to have a quick feedback, it’s also why we work in
parallel. We work to reduce the time of the pipeline so we can get early feedback for
the people that contribute changes.” R13

– increased transparency of the build process: “When we publish a release, people can
check from which CI tool it is coming. They can see the logs of the build. They can see
that the build has not been tampered.” R13

While earlier research (Hilton et al. 2017) revealed that developers consider security as a
barrier for using CI, many of the respondents we interviewed actually mentioned increasing
security by reducing security vulnerabilities as an important goal for CI automation in their
projects. For example, R1 mentioned that “on a more recent project we start to use Snyk,
which is a tool for detecting vulnerabilities”. R2 referred to the importance of DevSecOps
which is an approach to automation and platform design that integrates security as a shared
responsibility throughout the entire development lifecycle: “something that’s taking off right
now is the addition of security in DevOps. It’s something called DevSecOps where in the
DevOps pipeline we had static code analysis, or even dynamic code analysis and that’s
one thing that is moving into DevOps area, which is how to integrate security operations
and development.” R14 and R15 highlight the importance of security testing/scanning: “in
my current organization we have automated security tests in our repo so when we want to
deploy something in the production [...] we configured that thing to automatically test our
application security and give us a report of what we need to fix and if the security tool fails”
R14, and “We also have some scanning tools which we facilitate as a security scan to check
the vulnerabilities or such things” R15.

R10 additionally reported that using a CI enabled their open source project to retain con-
tributors and attract new ones since CI usage allows to reduce the maintenance overhead:
“We invested a lot of thought and time into how to attract and retain contributors. [...] we
thought about how we can lower the barrier to contribute, but also remove as much over-
head as possible based on the assumptions that as an open source project you really have
to be fun, otherwise people will move on to other projects.” It is interesting to note that this
positive impact of CI usage on contributor attraction and retention was not confirmed in an
empirical study by Gupta et al. (2017) on 217 GitHub repositories using Travis. Surpris-
ingly, they statistically observed that developer attraction and retention of a project were
higher in the year before adopting Travis than in the year following Travis adoption. More
research would be needed to ascertain the relationship between CI usage and contributor
attraction and retention.

R8 reported the cloud-based nature as a reason for using Travis: it allowed the team to
reduce cost and hardware resources, since they were able to use the CI tools “as a service”
compared to many other competing CI tools at that time that mostly required self-hosting.

The main reported reasons for CI adoption are to increase reliability, pro-

ductivity and security, to improve speed of delivery, and to reduce cost and

human effort.

The reasons reported by interview respondents are in line with earlier findings in the
scientific literature. For instance, they were reported in the SLR by Soares et al. (2022)
and Elazhary et al. (2022). Savor et al. (2016) also reported that CI tools allow software
development companies to increase their team size by a factor of 20 and their code base by
a factor of 50 without decreasing developer productivity or software quality. These findings
are confirmed by our respondents who argued that CI usage increases reliability, quality, and

 52 Page 14 of 45 Empir Software Eng (2023) 28:52

productivity. On the other side of the coin, interview respondents highlighted that adopting
CI tools introduces an additional layer of complexity into the development environment
which needs to be carefully considered.

4.3 RQ1.3 Which Activities are Being Automated by CI Tools?

RQ1.2 revealed that CI automation is used for different reasons. As a consequence, one
may expect that CI tools are used for a variety of activities, such as building or testing
code, managing dependencies, etc. Vassallo and Palomba (2018) even suggested continuous
refactoring as an additional activity to automate by CI tools to control the complexity of
software changes.

Table 3 reports on the activities that respondents reported for automation as part of their
CI tool usage, distinguishing between the activities that were initially automated as part of
the CI process, and the ones that were automated later on. As can be seen from the second
column of Table 3, build automation is unsurprisingly the most popular activity (mentioned
by 9 respondents) that is initially part of a CI process. An equally popular activity (also men-
tioned by 9 respondents) is unit testing. Respondents also mentioned other testing-related
activities during the initial phase of CI usage, namely code coverage analysis (4 respon-
dents), integration testing (3 respondents), and end-to-end testing (2 respondents). As an
example of how respondents use CI tools for testing, R4 mentions: “we merged 600 pull
requests from 170 people and I’m not going to run the tests manually, there’s no way to scale
a project like that unless you have automation behind the testing”. Another 3 respondents
report automated code quality analysis as one of their initial reasons for using CI tools. For
instance, “I use a lot of other stuff like linting, automated code formatting, coverage” R10.
Other reasons for initially using CI tools were generating documentation, server provision-
ing, checking browser compatibility, and creating multiple builds (e.g., “we are also using
an environment variable on GitLab CI to use different configs for each project” R16). Fur-
thermore, R9 reports using CI tools to make sure open source contributions are not breaking
any previous functionality in the program. This respondent emphasises that “it is especially

Table 3 Activities being automated by CI tools

Activity Initially Added Later

build automation 9 12 13 14 15 16 17 18 19 –

unit testing 1 2 3 4 5 6 7 9 19 13

integration testing 1 6 8 5 11 18 19

end-to-end testing 3 6 18

code coverage analysis 1 4 5 10 17 19

code quality analysis 7 10 13 2 6 15 17 19 21 22

security analysis – 1 2 4 13 14 15 17 22

packaging and deployment (CD) – 6 9 11 13 14 18 21

checking non-code artifacts – 13 16 18 19 20 21 22

dependency management – 8 13 19 21 22

integrating with comm. channels – 16 21

license verification – 17 21 22

other 1 2 16 20 6 21

Empir Software Eng (2023) 28:52 Page 15 of 45 52

important to do that for cross-platform programs, because developers usually only work on
one system.”

Column three of Table 3 reports on those activities that had been added later on to the
CI automation process. The most popular of those activities was security analysis, being
reported by 8 respondents. The packaging and deployment phases of the CI/CD process also
tend to be added in a later phase (7 respondents). The same holds for code quality analysis,
mentioned by 7 respondents as being added later on to the CI automation (as opposed to 3
respondents that started automating it in the initial phase of using a CI tool). More advanced
testing activities (beyond unit testing) were also reported more frequently to be added later
on.

Other activities that were reported to be added later on to the CI automation were check-
ing non-code artifacts (7 respondents), dependency management (5 respondents), license
verification (3 respondents), and integration with communication channels (2 respondents).
For instance, R16 integrated the CI tool with a Slack communication channel: “I also
integrated our CI/CD with Slack. After the build is successful and the APK is generated
successfully, we upload the APK to different channel of Slack for our customer or testers”.
R21 uses this integration to learn about forced pushes: “We have one that notifies our Slack
channel when someone forced pushes”.

Related to checking non-code artifacts, R13 reports checking the format of commits to
be the same as the expected commit format. R16, R20, and R22 reported using linting tools
for checking non-code related artifacts. Additionally, R18 reported, “doing style checks,
formatting checks of the files, and also typing checks”. R19 indicated “in addition to these CI
services that run our particular jobs, there’s also these services that do, for example, code
analysis that may be not exactly CI services, but they are services that run and do things on
the code based on commits. Maybe they would qualify as CI services. [...] That’s sort of a
popular thing these days, for example, to do a static code analyzer service”.

The following activities were mentioned by only one respondent to be added later on to
software automation:

– software verification: “as a team grows to 10, 15, 20, 40 people, now, it becomes a
place to introduce constraints and system checks and verifications that go beyond what
you could do from tribal knowledge. So now it almost becomes a system where you
take the guidelines that you would write down in a document and you put them into
automation.” R6,

– labelling/closing pull requests: “We have a GitHub action that labels pull requests with
the appropriate labels” R21 and “Someone just added one in the last week that closes
stale pull requests” R21,

– detecting inactive contributors: “So I wrote a couple of scripts that are run via GitHub
action. [...] It finds anybody who hasn’t landed or reviewed a commit in the last 18
months and flag them as a collaborator that should probably be removed and opens a
pull request to remove them.”R21.

CI tools are initially used for basic CI/CD tasks like build automation, au-

tomated unit testing and code coverage analysis. More advanced activities

are added later on to the CI automation, such as more advanced testing ac-

tivities, security analysis, code quality analysis, dependency management,

packaging, and deployment.

 52 Page 16 of 45 Empir Software Eng (2023) 28:52

These insights align with the findings in the research literature. For example, Soares et al.
(2022) report that CI automates boring repetitive tasks such as basic automated building,
testing and deployment. Our findings also confirm the initial reasons for CI usage reported
by Savor et al. (2016) who studied the usage of CI tools in two different companies, as
well as the initial reasons reported by Elazhary et al. (2022) who studied the use of CI tools
in three different organisations. In addition, they report that more complicated automation
tasks tend to be added later on, such as testing in a clone of the production environment.
Specifically in the context of GHA, Kinsman et al. (2021) and Decan et al. (2022) report
that many of the reusable Actions support the basic CI activities of building, testing and
deploying.

4.4 RQ1.4 What are theMost Valuable Features of CI Tools?

Research goal G1 of this article aims to understand why project maintainers rely on specific
CI tools. In other words, we are interested in knowing the most valuable features offered
by the CI tools that have been used by respondents, as these features are likely to play an
important role in why these CI tools have been used in their projects. We therefore asked
each respondent what were the most valuable features of the CI tools they had used.

Table 2 already revealed a difference between self-hosted and cloud-based CI tools, and
between open source and commercial solutions. These differences may have played a role
in the choice of CI tools by some developers.

Table 4 summarises the most valuable features of each CI tool, as reported by the respon-
dents that use them. Only tools for which at least two valuable features had been reported
are listed. It is worth noting that these features have to be interpreted in their historical con-
text: they do not necessarily reflect what are the current valuable features offered by a CI
tool, but they reflect what were these features when the respondents used the CI tool. Due
to the qualitative nature of our analysis, the table is inevitably incomplete, since the absence
of a respondent mentioning a valuable feature does not imply that the feature is absent from
the CI tool. As a consequence of this, the valuable features of less popular CI tools are less
likely to be mentioned, simply because there were fewer respondents to report about them.
Below we report on the valuable features listed in Table 4.

Good integration with hosting platform. Many projects use a CI tool on top of a hosting
platform (such as GitHub, GitLab, BitBucket or Azure) that is used to store and manage
the project development history. In those cases, it is important for the CI tool to be well
integrated into the hosting platform in order to make it as easy as possible to configure and
use the CI tool. Table 4 shows that respondents appreciated the good integration of GitLab
CI/CD into GitLab, the good integration of Travis and GHA into GitHub, and the good
integration of Azure DevOps into Azure.

Ease of use. A good user experience makes the use of CI tools easier, smoother and more
enjoyable. As such, it was considered by many respondents as one of the most valuable
features of the CI tool they were using. They mentioned a variety of factors that affected the
ease of use of CI tools. One such factor was the simplicity of the user interface. In addition,
the presence of good documentation was also important, since it helps developers find and
use the available features to their full potential. Yet another one was the ease of configuring
the CI tool or the workflows or pipelines created with it, for example by providing the ability
to use default settings for configurations. The variety, clarity, and above all, the stability of
the available configuration options also affected the ease of use.

Empir Software Eng (2023) 28:52 Page 17 of 45 52

Table 4 Most valuable features of CI tools as reported by respondents

Support for specific architectures and/or operating systems. CI tools enable building
and deploying software in specific environments, and facilitate the deployment on multi-
ple environments. These environments typically include a particular operating system (e.g.,
Ubuntu or some other Linux variant, macOS, Windows, Solaris, FreeBSD) and a specific
hardware architecture or processor (e.g., Intel or ARM CPUs, and AMD GPUs). Since the
required environments may strongly vary from one project to another, and since not every
CI tool supports all possible environments, this may affect the choice of a CI tool. For exam-
ple, the ability to support Windows builds was the main reason for four respondents to use
AppVeyor at the time when most of the other CI tools did not provide any (or any decent)
Windows support. CircleCI was also particularly appreciated by respondents for its support
for a wide variety of different build environments.

Popularity and familiarity. Several respondents reported using specific CI tools in their
project out of familiarity. Often, developers just continue to use tools that have already been
in place in the project based on some earlier decisions by former project maintainers. A
related frequent reason to prefer some CI tool over another one is because of its popularity.
If some tool is more popular than another one, it becomes more likely that it will be found
or recommended by someone. Popularity was one of the main reasons raised by respondents
to choose Travis or Jenkins. Until GHA entered the landscape, Travis remained the default

 52 Page 18 of 45 Empir Software Eng (2023) 28:52

choice for software projects hosted on GitHub, while Jenkins used to be the default choice
for Java projects.

Good free tier. Most CI tools are commercial, requiring their customers to pay for the
services they offer. On the other hand, many CI tools also provide what is called a free tier
or free plan of their cloud-based service. This allows projects (mostly open source projects)
to use the cloud resources to run the CI for free. Depending on the CI tool, the free tier may
impose limitations on the number of supported users/projects, the number of minutes to
execute builds, the number of monthly builds, the computing resources, type of OS, and/or
the number of jobs that can be executed in parallel. Sometimes, the free tier also restricts the
available functionalities of the CI. Table 4 shows that respondents particularly appreciated
the free tier offered by Travis, GitLab CI/CD and GHA. As will be discussed later, the
restrictions imposed on the free tier may change over time and cause projects to migrate to
other CI (cf. RQ2.2).

Good plugin support. Many respondents found it valuable that several CI tools come
with the possibility to create and use reusable components for creating CI workflows or
pipelines. For example, GHA distributes a large set of Actions on the GitHub Marketplace,
CircleCI comes with a public registry of reusable Orbs, and Jenkins provides a large index
of community contributed plugins. The amount, quality and availability of these reusable
components determine to which extent a CI tool can be considered to feature good plugin
support.

Self-hosting ability. As can be seen from Table 2, some CI tools can be self-hosted and
be used “on premises” without needing to resort to any cloud-based service. Some com-
panies prefer to use a self-hosted CI solution because it offers increased security, since it
reduces the risk of company-sensitive information getting exposed or even compromised
through cloud-based solutions: “You can run self-hosted runners, which is a way for you to
run on your own machines, but then you need to implement a whole ecosystem of security
constraints because you can potentially be running arbitrary third-party code in your data
center, so you need to make sure that you’ll lock down that environment to make sure that
the environment itself is actually secure. That’s a significant investment.”

Useful features. Many respondents reported useful features related to their CI tool of
choice. For example, R5 reported being happy with GHA since it included many useful
features since its beginning, and more features are added regularly to continue making it a
better tool. R9 appreciated GHA’s artifact upload support: “they give you like 5 gigabytes
or something of storage. And your CI run can upload some files. And as an administrator
of that CI pipeline, you can access that file and download it like a compilation output or
something.” For the same reason, R9 appreciated Azure DevOps. R15 liked the access to
deployment history in Azure DevOps: “you had a facility when you wanted to go back in
time and just deploy one release that you had, for example, one year ago. You could go to the
history and just click on the history and redeploy that”. R11 appreciated Jenkins’ versatility:
“it’s really powerful, and you can do plenty of things.” R13 liked GitLab CI/CD’s ability
for each repository to have its own pipeline, combined with the concept of cross-project CI
with multi-project pipelines.

Customizability. Several respondents considered customizability as a valuable feature,
even if the interpretation of this concept varied a lot depending on the considered CI tool
and respondent. The customizability of GHA was mostly referred to as the ability to use
this tool for non-CI related stuff like updating the Slack channel based on the results of
the runs. Respondent R22 even claimed that GHA had “more options of customization”

Empir Software Eng (2023) 28:52 Page 19 of 45 52

in comparison with other CI tools. Two respondents reflected on the customizability of
Jenkins, appreciating its ability to customize the user interface with different themes.

Speed. Fast building and running times were mostly valued for GHA (three different
respondents). Respondent R13 particularly valued the speed of CircleCI due to its facility
for creating complex parallel pipelines. The ability to run multiple pipelines in parallel can
lead to significant speed improvements.

Security. Security aspects are of crucial importance for CI tools since the automation
task they support has the potential of being used by a large number of projects and devel-
opers worldwide. This huge attack surface might cause security issues to escalate very
quickly. As a valuable feature of GHA and CircleCI, R18 explained their ability to secure
user credentials from being accessible by other developers: “In CircleCI there is a way you
can build the artifacts to a staging area and then you can move the artifacts with the second
workflow to where you want to deliver it. That’s what we do with GitHub Actions too. We
build in one workflow and we have a second workflow which does the upload, shipping or
delivery with credentials.” The availability of a public registry of third-party plugins for the
CI tool also introduces an important potential risk (Decan et al. 2022), since there is little
control over the contents of these plugins. For this reason, R8 valued the way Travis avoids
this problem by only providing closed-sourced plugins that are verified by the company
itself, therefore reducing the risk of introducing malicious code.

In the following, we present this set of valuable features from the point of view of specific
CI tools. Such information will be useful in the context of later question RQ2.1 to under-
stand why developers decide to use multiple CI tools simultaneously (e.g., because they
have complementary valuable features) and RQ2.2 to understand why developers decide to
migrate to a different CI tool (e.g., to benefit from valuable features of this CI tool).

GHA. The most recent CI in the list seems to have attracted a lot of attention from respon-
dents for multiple reasons. Since it was developed by GitHub itself, it naturally has very
good integration into GitHub. The popularity of the GitHub platform itself among open
source developers was reported as a determining factor of choice by 5 respondents. Respon-
dent R6 decided to select GHA out of familiarity: “we made the decision at the time that we
better move to GitHub instead of Azure DevOps because of the developer familiarity with
GitHub over Azure DevOps as a system. So the trade-off there was developer familiarity.”
Moreover, GHA offers free runners, supports a wide range of operating systems (including
Linux, Windows, and macOS), and was praised for its ease of use (“GitHub Actions are so
easy to use for CI”R21), its good plugin support through a wide range of actions available
on the GitHub MarketPlace, its support for many different languages (including JavaScript,
Ruby, and Python), its reliable runners providing fast builds, its support for self-hosted
runners, as well as its security mechanisms to avoid exposing user credentials.

Travis. Respondents appreciated Travis’ good documentation and the availability of
many built-in features. Many respondents appreciated its good integration into GitHub.
Indeed, given that its integration with GitHub used to be better than the other available
alternatives, Travis used to be the default choice for GitHub repositories at the time. Nowa-
days, GHA has outperformed Travis in terms of integration with GitHub. Many respondents
also praised its good free tier support at the time they were using it (often many years
ago). R8 reported a clear and simple interface, easy configuration, and good default setting
for Ruby projects. R22 agreed that “[Travis] was extremely easy to set up with one single
configuration file at the root of the project”.

Jenkins. Some of the valuable features of Jenkins that were praised by respondents were
its ease of use, its customizability, the availability of many plugins, and it brings a good

 52 Page 20 of 45 Empir Software Eng (2023) 28:52

user experience, even for non-technical users. It also offers self-hosting ability, which is
attractive to companies that want to exert full control over the CI automation, notably in
order to comply with their service-level agreements related to downtime, service provider
response time, security, and turnaround time.

Azure DevOps. This CI tool was mostly reported by respondents working in compa-
nies that had a contract with Microsoft for their infrastructure. The valuable features of
Azure DevOps were its integration with other Azure tools (4 respondents), good standard
built-in features, good support for plug-ins, a better integration with GitHub compared to
CircleCI, good runners for Windows and macOS, easy step-by-step configuration, a history
of work items and deployments1, ease of defining multiple build environments, and good
separation between CI and CD configuration. With respect to the latter feature, R18 specifi-
cally appreciated Azure DevOps’ “Release pipelines”2 as a way to facilitate the deployment
automation.

GitLab CI/CD. Unsurprisingly, GitLab CI/CD was only mentioned by developers using
the GitLab social coding platform. Respondents appreciated its good free runners, a secure
debug process, its ease of use in comparison with Jenkins for using private resources, its sup-
port for Docker containers. They also appreciated its self-hosting ability which distinguishes
GitLab CI/CD from its competitor GHA.

CircleCI. Respondents specifically appreciated CircleCI’s support for Windows, macOS,
ARM, and Docker containers. They also valued its user interface with good visualisations,
its nice feedback loop with GitHub, its speed, its facility for creating complex parallel and
conditional pipelines, and the concept of workspaces.3

Drone. The reported valuable features for Drone were its support for ARM architectures,
its self-hosting ability and an intuitive interface.

Hudson. R22 reported having used Hudson for a long time for closed source projects and
private repositories, and appreciated the CI’s self-hosting ability. R15 appreciated the easy
setup and configuration because Hudson was developed in Java and the team had experience
working in Java environment.

TeamCity. Only one respondent reported on the valuable features of TeamCity, valuing
the user-friendliness of the tool, as well as its self-hosting capabilities.

AppVeyor. This CI tool was reported by four different respondents as the CI tool that
historically used to have the best support for Windows. Since no other valuable features
were reported for AppVeyor, this seems to be the main reason that caused developers to use
it.

Other CI tools. Considering the CI tools being mentioned by single respondents (and
hence not shown in Table 2), R5 valued Concourse because of its good visualisation and
ability to set personal triggers for pipeline activation. The ability to have completely inde-
pendent pipelines in Concourse also enables to connect multiple repositories or Docker
images to one pipeline and use user-defined or pre-defined triggers to start the pipeline.
Percy was praised by R8 as the only available CI tool with specific visual CI abilities: “It
basically would render your web page or you define a number of views that you want to
test, take a screenshot essentially and then in your branch that you’re working on it would
do the same and it would compare the screenshots between the branches [...]. If you’re
assuming when you deploy or when you make a change, if you’ve broken something, say in

1See https://docs.microsoft.com/en-us/azure/devops/boards/queries/history-and-auditing and https://learn.
microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
2https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops
3https://circleci.com/docs/2.0/workspaces

https://docs.microsoft.com/en-us/azure/devops/boards/queries/history-and-auditing
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/?view=azure-devops
https://circleci.com/docs/2.0/workspaces

Empir Software Eng (2023) 28:52 Page 21 of 45 52

your CSS, then you could have some visual bugs that wouldn’t show up in the automated
testing. So this is a good way of catching some of those more obscure CSS bugs”.

These results differ from earlier studies in that we provide a tool-specific analysis. We
also observe a clear shift of the CI landscape towards more cloud-based solutions, with a
free tier offer for open source projects, tight integration in the social coding platform, and a
registry of reusable components to facilitate creating CI workflows.

4.5 RQ1.5 What are the Reported Shortcomings of CI Tools?

We asked respondents about the shortcomings they experienced in the CI tools they had
used. Table 5 reports on these shortcomings, grouped into various categories that we
described hereafter. Some reported shortcomings were considered so severe by the respon-
dents that they caused the project to migrate to a different CI tool. Those migration reasons
will be discussed in more detail in RQ2.2. It is worth to mention that this list of shortcomings
is inevitably incomplete, since respondents may have forgotten to report some shortcomings
while focusing on the major ones they had experienced. Moreover, it may be the case that
some reported shortcomings are no longer relevant today, given that CI tools continued to
evolve and improve.

Hard to configure. Configuration difficulties were reported for several CI tools. The ini-
tial build configuration was reported to be difficult to create in TeamCity. GitLab CI/CD did
not have a simple workflow. GHA was reported by two respondents to be difficult to config-
ure because too many options are available, and because of the lack of an appropriate default
initial configuration. Jenkins was reported by five respondents as difficult to configure.

Too slow. Given that speed is considered as a valuable feature of CI tools (see Table 4), it
is not surprising that many respondents mentioned slow runners as a shortcoming of some
CI tools. This was the case for Hudson, GitLab CI/CD, Travis and Jenkins. One respondent
also mentioned that even GHA was too slow for their specific needs, even though three
other respondents explicitly acknowledged the speed of GHA as a valuable feature.

Unsatisfactory user experience. Different CI tools were reported to have an unsatisfac-
tory user experience for a wide variety of reasons. Jenkins was reported to have an outdated
user interface design. GitLab CI/CD was reported to have a cluttered user interface and no

 52 Page 22 of 45 Empir Software Eng (2023) 28:52

Table 5 Shortcomings of CI tools as reported by respondents

(CI tools that were used by only one respondent are not listed in the table)

web interface for defining workflows. For Travis, one respondent reported a bad user expe-
rience since most configuration tasks for integrating the CI tool into GitHub needed to be
done manually. For Azure DevOps, one respondent regretted the absence of YAML-based
configurations of workflows. For GHA, two respondents mentioned a too sparse user inter-
face for workflow configuration and four respondents reported no good visualisation of
workflows. Additionally, one respondent mentioned the difficulty to start using GHA due
to insufficient documentation (especially in the early days of GHA).

Restrictions of free tier. Respondents reported restrictions imposed by the free tiers of
CI tools on the build time, the amount of available memory, and the number of runners
that could be used in parallel. This was the case for Percy, CircleCI (which did not support
macOS under its free trier), GHA and Travis. Travis in particular was agreed upon by many
respondents to have imposed many restrictions on its free tier after the company’s decision
to change its policy towards support for open source projects. The reasons for these imposed
restrictions will be discussed in detail in Section 6.3. In a nutshell, Travis replaced its free
tier for OSS project builds, that used to offer a fixed number of minutes per month, with
a higher fixed number of minutes for life. At the same time, Travis restricted the set of
projects that they qualify as open source, as reported by R19: “because how they defined
open source, they wouldn’t even define [OUR PROJECT] as an open source project [...]
because according to their requirements, if someone was paid to work on the project like I

Empir Software Eng (2023) 28:52 Page 23 of 45 52

am, it wouldn’t qualify for the open source tier at Travis.” Given that OSS projects have a
very limited budget, R19 saw no other choice but to migrate to another CI tool.

Security issues. Several respondents mentioned security concerns related to CI usage.
They did so for Travis, GHA and Bamboo, but any other CI tool is likely to suffer from secu-
rity issues to some extent. Travis was reported by R13 to lack correct communication about
an important data breach “they had a security breach [. . .] and they did not communicate
properly about this”. GHA was reported by three respondents to have security issues related
to working with credentials and self-hosted runners. R6 explains that “if somebody already
developed a [GHA] Action, you can just plug it into your project and that works great for an
open source project because the software is open sourced. You’re not worried of the vulner-
ability and GitHub takes on the responsibility for all the security problems that you would
kind of encounter if you tried to run your own CI platform.” However, “you can’t do that
in enterprise. You basically don’t trust your software to run on anybody else’s machines, or
on virtual machines you don’t control.” In addition to this, the reliance on reusable compo-
nents (e.g., Actions) to automate development activities in software projects increases their
attack surface considerably.

Lack of scalability. Scalability refers to the ease of seamlessly and transparently increas-
ing the capacity of CI tools to accommodate for bigger builds, for example by offering
longer build times, more parallel runners, and more computing resources (processing power
and memory) for the CI process. Scalability issues were reported for three CI tools: Jenkins,
GitLab CI/CD and Travis that was reported by one respondent to have a memory bottleneck.
Respondent R6 acknowledged that scalability necessarily comes at a certain cost. Moreover,
it is more difficult to achieve in self-hosted solutions, compared to cloud-based CI tools:
“Often you evaluate for capability. Hey, is this system going to be able to do what we need
to do? You evaluate for its scalability, meaning yes, it can run one build, but can it run 1000
builds per day? And third is going to be cost, and that comes in two flavors. There’s the
actual out of pocket operational expenditure of running this system. And then there’s the
maintenance and continuous support for the system from the developer or maintainer per-
spective. Usually one of those evaluation criteria is not met by the target system for whatever
reason. Most frequently it’s a scalability one.” Respondent R9 reported another scalability
issue related to data bandwidth and the absence of automated caching of compiler outputs:
“If you run CI a lot of times, you download quite a lot of data from the Internet. Because
you have packages that you install during your CI run [...] and you basically use up a lot of
bandwidth and data. And, again, when you compile software, for example C++ projects, it
takes up a lot of time because it’s a computationally intensive process.”

Plugin problems. Problems with plugins were reported for multiple CI tools for different
reasons. Jenkins was reported to be too barebone, requiring the user to need many plugins
from the start. For Travis, plugins are only updated by the company itself, providing limited
freedom to the user. Azure DevOps was reported not to have the ability to write and cus-
tomize plugins (as is possible in GHA, for example). In case of GHA, R8 reported not being
fond of having community plugins and preferred those CI tools that only offer built-in plug-
ins: “Travis did provide [. . .] a good amount of things already installed on the CI machine.
So I didn’t need to use [. . .] all of the different plugins that you can use. [. . .] Most of the
GHA plugins are kind of community ran on open source repositories. That makes me very
nervous of using them.”

No support for specific architectures or operating systems. R19 regretted Travis’ lack of
support for the FreeBSD OS and ARM hardware architectures. R21 regretted GHA’s lack of
support for specific OS and hardware architectures, and R4 regretted the absence of support
for HPC binaries. Several respondents agreed that many CI tools have recently become
better in supporting the major operating systems (Linux, Windows, macOS). Still, most CI

 52 Page 24 of 45 Empir Software Eng (2023) 28:52

tools remain limited when it comes to less common operating systems (e.g., Solaris and
FreeBSD) and hardware architectures (e.g., specific GPU processors). Moroever, as pointed
out by R19, some projects require to build and deploy on such a wide diversity of OS that no
single CI tool is able to satisfy these needs: “[name of project] is a portable project. It runs
on so many architectures and operating systems that we don’t have nearly that coverage in
CI services”.

Feature stagnation. Four CI tools (Travis, Drone, AppVeyor, and Concourse) were
reported by respondents as suffering from a lack of new features being introduced, causing
projects to move away from them. For example, R5 reported that: “one of the drawbacks
of Concourse is that I don’t see a lot of active development anymore on the tool itself. [...]
It has been in development for a number of years, but now in the past year, it also became
stagnant.”

Lack of reliability. Travis was the only CI tool reported by many respondents to have
become less reliable for a variety of reasons. Two respondents reported a decrease in service
quality. Respondent R8 complained about the company changing its way to support web-
hooks “They stopped all of their webhooks that basically just stopped doing CI for almost
all of my projects on any builds.” R5 reported problems with the CI’s customer service,
since they took a long time to answer or not even answering about quality of service prob-
lems. Two respondents complained about the flakiness of Travis. For example, R4 stated
that he was “seeing a bunch of reliability problems in Travis where jobs would flake out
and we would have to rerun them.” Two other respondents mentioned unreliability of Travis
without pinpointing specific reasons.

Insufficient access to logs. For TeamCity, respondent R13 regretted not having access to
build logs and build results: “we did not have access to the build logs and the build results.
It was quite painful to not have that feedback loop, but still knowing it was running in the
background.” For GHA, respondent R15 reported the absence of a deployment history as
problematic: “GHA does not support the history. In Azure DevOps I remembered we had the
history. I mean that you had a facility when you wanted to go back in time and just deploy
one release that you had.” 4

Lack of GitHub integration. R19 reported a lack of integration with GitHub for Zuul:
“their integration with GitHub has some kind of flaw. In many cases when we run CI jobs on
Zuul they don’t show up like the other jobs do on GitHub.” Azure DevOps was also reported
by one of the respondents to lack proper integration with GitHub.

4Azure’s Deployment History feature enables to go back in time to allow to redeploy a release that was for
example available one year ago, just by selecting that deployment in the history. See https://learn.microsoft.
com/en-us/azure/azure-resource-manager/templates/deployment-history?tabs=azure-portal.

https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history?tabs=azure-portal
https://learn.microsoft.com/en-us/azure/azure-resource-manager/templates/deployment-history?tabs=azure-portal

Empir Software Eng (2023) 28:52 Page 25 of 45 52

These findings are in line with those of earlier studies. Without focusing on CI-tool-
specific shortcomings, Hilton et al. (2017) identified general shortcomings of CI usage, such
as configuration problems, slowness, security issues, and lack of good integration. They
identified some additional shortcomings that were not reported by our respondents such as
the difficulty of troubleshooting CI build failures. On top of this, Elazhary et al. (2022)
identified some other shortcomings such as lack of features for UI testing, bottlenecks for
committing due to PR reviews, and scalability issues due to resource restrictions. One of
the shortcomings that we did not observe in earlier studies were the plugin problems men-
tioned by several respondents. Specifically for Travis, our findings are in line with Widder
et al. (2019) who reported Travis being slow, having unsatisfactory user experience, not
supporting specific architecture or OS, and feature stagnation. Our respondents reported all
these shortcomings, as well as several others. Specifically for GHA, Kinsman et al. (2021)
reported discussions around problems and frustrations with broken builds, errors and other
problems. However, they did not discuss these shortcomings in depth, making it difficult to
compare them with our own findings.

5 Goal G2: Why and How are CI Tools Being Co-Used andWhat
are the Reasons for Migrating to Other CI Tools?

This section tackles research goal G2, aiming to understand the reasons for using different
CI tools together, as well as the reasons and difficulties for migrating to another CI tool. We
will do so by providing answers to the following research questions:

RQ2.1 Why are multiple CI tools co-used simultaneously?
RQ2.2 Why do software projects migrate to a different CI tool?
RQ2.3 What are the difficulties in carrying out a CI migration?

These research questions will be addressed in the next three subsections.

Fig. 2 Number of respondents co-using a pair of CI tools

 52 Page 26 of 45 Empir Software Eng (2023) 28:52

Table 6 CI tool co-usage reasons reported by respondents

Reason for CI Co-Usage Respondent IDs

Supporting multiple operating systems 4 9 13 19 22

Complementary functionality 8 10 13

Having a backup CI tool 1 18 19

Countering resource limitations 4 19 21

Supporting specific hardware architectures 4 13

Testing a CI for potential migration 1

5.1 RQ2.1 Why are Multiple CI Tools Co-Used Simultaneously?

In their quantitative study of CI usage in 92K GitHub repositories, Golzadeh et al. (2022)
found that co-using CI tools (i.e., making use of several CI tools at the same time) is com-
mon practice. This is surprising since one might intuitively expect all CI tools to provide
similar services. We are not aware of any published qualitative analysis aiming to under-
stand the reasons behind such co-usage. We therefore inquired the interview respondents
about the reasons behind this phenomenon. 13 out of 22 respondents confirmed that, in at
least one of the projects they were involved in, multiple CI tools were being used simul-
taneously. In this section, we explore all CI co-usages that have been mentioned by the
respondents in order to understand the need for such co-usage.

Figure 2 reports on the number of respondents making use of multiple CI tools simulta-
neously.5 We observe that the co-usage of CI tools is not restricted to the most popular ones.
The combination of (Travis, AppVeyor) was reported 4 times, and the combinations of (Cir-
cleCI, AppVeyor), (GHA, CircleCI), and (Azure DevOps, AppVeyor) were reported 3 times.
These findings corroborate the ones of Golzadeh et al. (2022) that already observed that
Travis and AppVeyor was the most frequent case of co-usage, and that Travis, AppVeyor,
GHA and CircleCI were involved in most (92.1%) co-usages.

Focusing on the need for co-using CI tools, Table 6 summarises all reported reasons for
co-usage of CI tools. We observe that supporting multiple operating systems is the most fre-
quently mentioned reason for co-usage (5 respondents). Most of the respondents mentioned
the need to build software products at least for Linux, macOS and Windows. Older ver-
sions of many CI tools had limited support for some of these OS. For many years, most CI
tools have only supported a single operating system (usually Linux, macOS or Windows),
and that is the reason why R9 reported to use AppVeyor for Windows builds, and Travis
for Linux and macOS. Nowadays, most CI tools support the three main operating systems.
As an example, GHA initially started with support for Linux only, and added support for
macOS and Windows later on. In the case of Travis, support for macOS was added since
April 20136 and support for Windows in October 20187. For GitLab CI/CD, Windows run-

5Whenever 3+ CI tools are used together, each pair of CI tools is reported individually.
6https://saucelabs.com/blog/announcing-travis-ci-for-mac-and-ios-powered-by-sauce-labs
7https://blog.travis-ci.com/2018-10-11-windows-early-release

https://saucelabs.com/blog/announcing-travis-ci-for-mac-and-ios-powered-by-sauce-labs
https://blog.travis-ci.com/2018-10-11-windows-early-release

Empir Software Eng (2023) 28:52 Page 27 of 45 52

ners were added in beta version in January 20208 and macOS support was added in August
2021.9

Additionally, some respondents required support for more specific operating systems.
For instance, while R13 used CircleCI for Linux builds, this respondent required BuildKite
for FreeBSD builds. Two respondents also mentioned the need to support specific hardware
architectures (e.g., specific CPU or GPU processors) such as ARM64 and specific AMD or
Intel processors. R9 reported using Drone for ARM 64 CPUs, and lately also Azure DevOps
to leverage better support for these targeted platforms. R4, who is involved in offering HPC
as a service, has to use many CI tools simultaneously in order to support the specific archi-
tectures required by their project: “We need GPU nodes. We need AMD GPUs which no
cloud has. We need Intel GPUs which no cloud has.”

The fact that CI tools tend to offer complementary functionalities is another reason for
co-using CI tools. This could be either because the CI tool put in place does not offer some
specific features required by the project, or because these features cannot be used in the way
the developers expect. As an example, R8 reported using Percy in complement of Travis and
CircleCI because Percy is one of the few CI tools that provides support for visual testing, a
technique that helps developers to ensure that a graphical user interface appears to the end-
user as originally intended. Another example reported by R10 and R13 concerns Netlify and
Vercel, two CI tools that are designed specifically for deployment of web applications. They
notably facilitate the dynamic scaling of the application based on the number of connected
users, or based on the number of database requests. R10 relies on both Netlify and Vercel
in complement of GHA: “If this is some kind of website or web app then we use Vercel or
Netlify for the deployment aspect of it.” R13 also co-uses Netlify alongside CircleCI and
GHA for a better overall CI experience: “we are very happy with the resources that we have
in CircleCI [...], but we are also happy with the integration that we have in GitHub, the
caching that we can have in GitHub Actions and we are also very happy with the specialised
nodeJS features that we get at Netlify”.

Another frequently reported reason for co-using CI tools is having a backup CI tool in the
case the main CI tool being used becomes out of order. R19 indicated relying on a custom-
built in-house CI tool “so we still have that too as a sort of additional backup way of testing
stuff ”. R18 reported they kept using Travis alongside CircleCI and Jenkins as a backup for
six months until the project team decided that it was no longer needed.

Some respondents mentioned the need for more (free) resources as the reason to co-use
CI tools. For example, R4 “realised that co-usage can help you to have more runners which
lets you increase the amount of jobs you are running”. R4 uses self-hosted CI tools side-
by-side with cloud-based solutions to counter the time limitations imposed by the free tiers
of CI tools: “we attach our own resources and we do it via GitLab CI/CD because the time
limit is greater than what GitHub Actions allows”. Similarly, R19 reported that “we added
more CI services, so we got more parallelism so that we would complete all jobs sooner.
That has been one of the primary reasons why we still use a lot of them because it makes
sure that we can run more jobs in parallel until they complete”. R21 co-used Sauce Labs
in complement to GHA because at that time GHA did not yet provide the ability to use
the Windows VM during development for free in open source projects. According to this
respondent, “[our project has to] work in all the browsers and [...] Sauce Labs gives free
stuff to open source projects [...] they let me run tests on Windows”

8https://about.gitlab.com/blog/2020/01/21/windows-shared-runner-beta
9https://about.gitlab.com/blog/2021/08/23/build-cloud-for-macos-beta

https://about.gitlab.com/blog/2020/01/21/windows-shared-runner-beta
https://about.gitlab.com/blog/2021/08/23/build-cloud-for-macos-beta

 52 Page 28 of 45 Empir Software Eng (2023) 28:52

A last reported reason for co-usage is to test a CI for potential migration. R1 reported
introducing TeamCity in complement to GHA since “it would allow us to migrate if
necessary”.

5.2 RQ2.2 Why do Software Projects Migrate to a Different CI Tool?

We observed in RQ1.1 that most respondents have used several CI tools through time.
We asked them explicitly whether they co-used these different CI tools (see RQ2.1), and
whether they migrated from one tool to another. Since developers may decide to migrate to
another CI tool for different reasons, we also asked the respondents to share their experience
on why they migrated.

Overall, respondents reported a total of 32 completed migrations in different projects
(some respondents reported multiple migrations), involving 12 different CI tools. Figure 3
shows the migration paths. We observe that the reported migrations originate from 7 distinct
CI tools and lead to 9 distinct CI tools. Most migrations originate from Travis (15 out of 32)

R7

R12
R18

Jenkins

BitBucket Pipelines &
Deployments TeamCity

AppVeyor

Travis

GHA

Azure DevOps

CircleCI

Hudson

R7

GitLab CI/CD

Concourse CI

Zuul R9, R22

R5

R15, R22

R19

R9, R12

R4, R5, R8, R10, R11
R13, R20, R21, R22

R12, R15

R8, R13, R18

R12

R18, R22

R2

R2, R13

Fig. 3 Reported completed migrations between CI tools

Empir Software Eng (2023) 28:52 Page 29 of 45 52

and lead to GHA (17 out of 32). The most frequently observed migration pattern is from
Travis to GHA (9 migrations), corroborating the findings of Golzadeh et al. (2022).

Overall, we observe a general tendency to move from self-hosted CI tools to cloud-based
solutions since most of the completed migrations are to cloud-based CIs (e.g. GHA) and at
least half of migrations from Jenkins (a well known self-hosted CI tool) are towards cloud-
based CI tools (namely GHA, Azure DevOps, and Bitbucket Pipelines). Free tier cloud
services have the advantage of not needing to configure and maintain a local CI server,
which can be quite costly for small teams and projects in terms of personnel and hardware
resources. R9 therefore prefers using the free tier of a cloud-based CI service, rather than
spending any budget on that resource: “since everything we’re doing is open source and
most of these CI providers have an offer for open source projects to provide them with free
hardware or CPU time we usually don’t spend any money on hardware”. Moreover, cloud-
based CI services are usually more scalable and adaptable to the actual resource needs of
the project, as mentioned by R5: “just to make sure, we run on cloud infrastructure, so if we
need to scale, we scale.”

We asked respondents to share the reasons why they migrated. Table 7 shows the 10
reported reasons to migrate, as well as the source and target of each migration. Some migra-
tions are reported more than once since there were multiple reasons that drove the decision
to migrate.

The most frequent reason that was reported to migrate is to have less restrictions on free
tier, mentioned by 8 different respondents for 10 different migration cases. All these cases
correspond to migrations away from Travis. As discussed in RQ1.5, the change in Travis’
free tier imposes so many restrictions on open source projects that it leads them to migrate
to another CI. For example R19 mentioned “I figured the project could use sponsored money
or donations to pay for it, but I felt it would be more responsible for our project to not
spend that money on Travis, but rather to save the money and just move to another free
service instead.” Half of the migrations away from Travis lead to GHA (5 out of 10 cases),
the remaining ones being to Azure DevOps, CircleCI and Zuul. Another reason to migrate
away from Travis is to “use a more reliable CI tool”, reported by 7 respondents. This is
a consequence of the many reliability issues identified in RQ1.5 for Travis. This had led
respondents to migrate away to more reliable CI tools such as GHA (5 reported cases) and
CircleCI (2 reported cases).

The second most frequent reason to migrate to another CI tool is to obtain a “better
integration with hosting platform” (8 cases). This reason refers to the integration of CI tools
within the social coding platform used by the respondent, typically GitHub, GitLab, Azure
or BitBucket. The target of these reported migrations is almost exclusively GHA, likely due
to its deep integration within GitHub, the most popular hosting platform.

The need for “better support of multiple platforms” also explains several migrations. For
5 out of 6 cases, GHA was the target of choice, as it supports the most common operating
systems such as Linux, Windows, and macOS. One respondent (R12) actually migrated from
CircleCI to Azure DevOps with the aim of a better integration with GitHub and a better
support for Windows, but this was before GHA existed. They migrated from Azure DevOps
to GHA a bit later.

Another reported reason to carry out migrations relates to the CI co-usage that we anal-
ysed as part of RQ2.1, namely to “decrease the amount of CI tool co-usage”. While the
results of RQ2.1 highlighted the need to co-use multiple CI tools for specific reasons, it
comes at a certain cost and increased effort: “Co-usage introduces at least two difficulties.
You need to maintain both, they have sometimes different syntax in the YAML files, so you

 52 Page 30 of 45 Empir Software Eng (2023) 28:52

Table 7 Reasons for completed migrations

Migration Reason Migration From Migration to Respondents

Having less restrictions Travis GHA 10 11 13 21 22

on the free tier Travis Azure DevOps 12 19

Travis CircleCI 8 13

Travis Zuul 19

Using a more reliable Travis GHA 4 8 13 20 21

CI tool Travis CircleCI 13 18

Better integration AppVeyor GHA 9 22

with hosting platform CircleCI GHA 18 22

CircleCI Azure DevOps 12

Azure DevOps GHA 12

Jenkins GHA 18

Travis GHA 22

Better support of AppVeyor GHA 9 22

multiple platforms CircleCI GHA 22

Jenkins GHA 18

Azure DevOps GHA 12

CircleCI Azure DevOps 12

Decreasing the amount CircleCI + Jenkins GHA 18

of CI tool co-usage Travis + AppVeyor Azure DevOps 9

Having better features Azure DevOps GHA 15

Jenkins Concourse 5

Moving to a successor Hudson Jenkins 15 22

CI tool

Making the project GitLab CI/CD GHA 2

open source

Moving to a GitLab CI/CD TeamCity 7

new ecosystem

Reducing the Jenkins Azure DevOps 12

maintenance burden

have to have more knowledge so it’s more work, that’s sort of the first issue. The second
issue I see is for example for code coverage. If you do code coverage on both platforms and
you want to merge your code coverage, it might be difficult, [...] whereas when you have
only one CI/CD provider, it’s much easier because there is only one workflow”R18. There-
fore, project maintainers keep track of the evolving functionalities of the available CI tools
in order to seize the opportunity to reduce the maintenance overhead caused by using mul-
tiple CI tools. For example, R18 replaced a combination of CircleCI and Jenkins by GHA,
while R9 replaced Travis and AppVeyor by Azure DevOps since they wanted “to unify our

Empir Software Eng (2023) 28:52 Page 31 of 45 52

pipelines and have everything in one place”. In both cases, the new CI tool supported all the
needs that were previously covered by the two CI tools being co-used.

“Having better features” was reported as a migration reason twice. R5 reported moving
from Jenkins to Concourse because “I really want a good visualization from the whole flow.
Concourse gives me that, and not only per single repository. That’s the critique I have to
most tools. Pipelines are linked to single git repos. Concourse not. Pipelines are completely
independent from your all of your code basis”. R15 reported a migration from Azure DevOps
to GHA because “[they] knew some news that Microsoft was going to invest on GitHub
Actions and not investing lots of effort on Azure DevOps. The features that GitHub Actions
provides for writing and customizing plugins [...] encouraged our team to decide to have a
migration.”

Other noteworthy reported migration reasons were:

– “To move to the successor CI tool”. This reason was mentioned by two respondents
that migrated from Hudson to its next generation open source successor Jenkins.

– “Making the project open source” was the reason that caused R2 to migrate from GitLab
CI/CD to GHA: “we wanted to have something that we can show the open source code
for the DevOPS pipeline. Since GitHub provides a free runner, and the open source
code of the application is on GitHub, we went there.”

– R7 reported “moving to new ecosystem” as the reason to migrate from GitLab CI/CD to
TeamCity since they wanted to make use of the full JetBrains tool suite.

– R12 reported “reducing the maintenance burden” as the main reason to migrate from
Jenkins to Azure DevOps: “So what drove a migration from Jenkins to Azure DevOps
was the maintenance burden of Jenkins. I think we almost had one person full time, just
maintaining Jenkins.”

5.3 RQ2.3 What are the Difficulties in Carrying out a CI Migration?

In RQ2.2 we observed that many respondents migrated from one CI tool to another one.
Because the different CI tools have different philosophies, approaches and configuration
files, it might be difficult to migrate to another CI tool. We therefore explicitly asked the
respondents to report on their experience.

Many respondents (R8, R10, R13, R21) reported having faced no real problems in moving
from one CI tool to another one. For instance, R2 reported “I think it was around 3 days.
And the reason it was short is because the DevOps pipeline was very simple so we just
installed”. Similarly, R5 described their migration was not a hard process. Given that the
destination CI tool was already being used by their company, so they had a basis on which to
build specific pipelines for their project: “we have to create pipelines for ourselves for our
code [...] but there is already quite some investment in a number of standardized pipelines,

 52 Page 32 of 45 Empir Software Eng (2023) 28:52

it’s not really that we have to start from zero. We can start by duplicating a pipeline and
adapting here and there for some tooling that we are running.”R5.

The remaining 18 respondents did mention having faced difficulties during CI migration,
but the reported reasons were very diverse. One recurrent reason had to do with the learning
curve to master the syntax of the new CI tool. Many contemporary CI tools use a YAML-
based syntax to describe their workflows or pipelines (e.g., GHA and Travis), while others
may use a totally different way to specify CI pipelines, and the differences in syntax and
semantics were reported to cause migration difficulties by several respondents:

R13: “There is no standard way to publish libraries because you want to still reuse
pipelines between jobs, between software. In CircleCI it’s called orbs, in GitHub Actions
this is the Action libraries, in Jenkins it’s another one, so there is always a learning
curve, even if you know the command to type in the CI. You need to learn the CI tool [...]
that really takes a lot of time”.

R9: “Sometimes for example environment variables are differently set in the CI systems
or some other minor differences between the providers.”

R18: “Something interesting you might want to look at are the commits of somebody doing
a migration. You will see that you do a lot of typos and try to run the CI/CD 20 times
until it works once. You copy-paste some examples from the Internet, you adapt it, but
you forget to like there’s a lot of details. It’s often YAML files that are really prone to
mistakes. So you make [lots of] commits until you get to the result you want to have. And
there’s no way to pre-test it on your local machine. So you just commit, push, wait for
the build to run, and then look at the results. So that’s why a migration might take some
time”.

Solutions are being proposed to reduce this learning curve. For instance, dagger.io pro-
vides a way to unify workflow specifications across different CI tools, by offering
cross-language instrumentation through dedicated APIs. For example, developers may use
the Go SDK to develop all of their CI/CD pipelines using the Go programming lan-
guage, or the CUE SDK to use the CUE configuration language. In both cases, it avoids
needing to know and learn the specific YAML (or other) variants being used by CI
tools.

R10 reported on the lack of an easy way to ensure the correct execution and behaviour of
pipelines within the CI migration target: “Difficulties when you migrate a CI/CD tool is just
the time it takes to verify that it works. Because usually [...] you have to do changes to your
repository, and then you have to wait until the CI/CD tools pick up the changes, run the
script and tell you back. So the feedback cycle is just slow. Or when I move the automated
releases script, semantic release, from Travis to GitHub Actions, I actually *had to* do a
release to test, to verify that it works. So that took time.”

R12 experienced migration difficulties due to completely different architecture and
security models: “The worst migration that I’ve done is from Travis to Azure DevOps.
That was so difficult because they are completely different systems with different secu-
rity models and different architectures and that took a whole team working for a week to
migrate.”

Three respondents actually considered migrating to a new CI but, in the end, decided
not to for various reasons. R6 considered Azure DevOps as a replacement of a proprietary
in-house CI tool used in a big commercial company. The “lack of developer familiarity
with the new CI” and the “lack of scalability of Azure DevOps” were the main reasons
holding the company back from migrating. Azure DevOps’ capabilities did not match the

Empir Software Eng (2023) 28:52 Page 33 of 45 52

company’s needs for handling a high number of builds per day and having enough flexibility
and scalability. R19 explained that their company was using Azure DevOps, GHA and a
custom-built CI tool at the same time. They were considering a definitive migration towards
GHA to reduce the number of co-used CI tools but eventually decided against the migration,
in order to keep the benefit of running multiple builds in different CI tools in parallel.
Similarly, R18 decided not to perform a migration from Azure DevOps to GHA because
the latter missed an important feature for continuous delivery and deployment: “we pay the
Microsoft service [for Azure DevOps] because it’s a company [and] so you get the support
and everything. If we would go to GitHub Actions, we would switch to the professional paid
plan [...] but there is something in Azure DevOps which GitHub Actions does not have. It’s
the Release Pipelines, which is much more evolved”.

6 Discussion

This section discusses important additional insights about CI usage that we have been able
to gain from the interviews. Some of these insights did not align with specific interview
questions, and others emerged as side-remarks that we consider nevertheless important to
discuss here, since they provide additional insights into why developers use specific CI tools
or why they decide to migrate to other CI tools.

Section 6.1 starts by discussing the many aspects surrounding GHA that have caused it
to become one of the dominant CI tools today. Section 6.2 explains how the open source
nature of projects or the CI tools used by them can play an important role in the CI tool being
used. Section 6.3 discusses why some CI tools have been subject to restrictions on their
free tier. Section 6.4 presents some potential future directions for CI tools, as suggested by
interview respondents. Finally, Section 6.5 reflects on the need to have a sufficiently diverse
CI landscape in order to satisfy the varying needs of CI tool users, as well as to reduce the
risk of certain CI tools taking a monopoly position.

6.1 On the use of GitHub Actions

Research goal G2 aimed to understand how and why developers have migrated to different
CI tools and, in particular, why GitHub Actions has become the dominant CI tool in the
current CI landscape. The CI tool usage reported in Table 2 and the migration cases reported
in Fig. 3 signal the increasing popularity of GHA. This corroborates the quantitative study
by Golzadeh et al. (2022) who observed that only 18 months after its introduction, GHA
has become the dominant CI on GitHub.

Anticipating the popularity of GHA among respondents, the interview questionnaire
included a question about valuable features of GHA that were appreciated by respondents,
and that caused some of them to migrate to GHA as their CI of choice. Respondents men-
tioned a variety of reasons for doing this migration: the excellent integration of GHA into

 52 Page 34 of 45 Empir Software Eng (2023) 28:52

GitHub; the fact that it provides a generous free tier for open source projects; its support of a
wide range of operating systems and hardware architectures; the availability of a large mar-
ketplace of reusable actions; and the availability of better features than some competing CI
tools. Each of these valuable features have contributed to GHA’s popularity. Another driver
for this popularity was the increasing dissatisfaction with Travis (as reported in RQ1.5).

Among many other reasons, the company behind Travis failed to correctly communicate
about important security issues. Some of those issues can be very dangerous and impactful,
such as the exposure of customer-specific secret environment data such as signing keys,
access credentials, and API tokens for a duration of 8 days in 2021.10 Using GHA instead of
Travis is of course no guarantee that security concerns will not arise. For instance, in RQ1.5
we reported some potential problems and examples of important security issues related to
GHA as well.

We also conjectured that the acquisition of GitHub by Microsoft in June 2018 may have
played are role in GHA popularity. Given that GitHub is the most popular hosting platform
for OSS projects, its acquisition by a big tech company is likely to have at least some impact
on the use of its integrated CI service GHA that was publicly released in November 2019.
We asked the interview respondents whether the acquisition by Microsoft was perceived as
positive or negative. While 14 out of 22 respondents answered that GitHub’s acquisition
did not have any impact on their CI choice, 8 respondents did say that it somehow played a
role, raising both arguments in favour or against this acquisition. On the negative side, some
respondents raised concerns against the acquisition. For instance, R15 prefers using GitLab
for his personal projects because of that: “Personally, I’m using GitLab for my own project.
I don’t like the Microsoft concept and owning the company or something like that.” On
the positive side, Microsoft’s attitude toward OSS has improved recently. R22 reported that
“These last years, Microsoft is really doing huge changes internally to make their reputation
change about open source. I think Microsoft is changing its point of view on open source and
I think it’s for the greater good of open-source developers”. In a similar vein, R5 reported
“For me there are two versions of Microsoft, before and after Satya Nadella became the
CEO. With Satya Nadella as CEO that’s for me, the V2 of Microsoft as it became much
more open source friendly. [...] So when I heard the news that Microsoft bought GitHub I
wasn’t really too afraid. I would have been more concerned of that acquisition if it would
still have been the V1 Microsoft with Steve Ballmer and all that.” Another positive aspect of
the acquisition is that it has enabled GHA to grow rapidly in functionality and performance.
R11 appreciated the fact that “every month GitHub is releasing something new: the code
Explorer, GitHub Actions, [. . .] So at least the switch to Microsoft was good to get a bit
more into the business.” R13 confirms this: “Now we actually have GitHub Actions. We have
a lot more performance things in GitHub that we had in the past, so for me that change was
kind of fine.” This vision is shared by R9: “I think the impact of Microsoft buying GitHub
so far has been pretty positive, and it has only made GitHub more useful.”

Next to GHA, Microsoft is offering Azure DevOps as a competing CI product that is
part of the Azure cloud-based ecosystem, and many respondents reported having used it.
One could wonder how sustainable it is for a company to continue supporting two compet-
ing CI solutions with similar functionalities. We observed two cases of respondents having
migrated from Azure DevOps to GHA (see Fig. 3). Respondents that used Azure DevOps
valued its tight integration in the Azure ecosystem and the technical support offered by
Microsoft. For example, R14 reported: “In my current company we are using whatever tool

10https://nvd.nist.gov/vuln/detail/CVE-2021-41077

https://nvd.nist.gov/vuln/detail/CVE-2021-41077

Empir Software Eng (2023) 28:52 Page 35 of 45 52

Microsoft is providing. One reason is that we are using Azure Portal, Azure DevOps, Azure
anything. So we consider that it’s better to build our pipeline using Azure [...] In Azure,
there are more plugins and more options for using it in the Microsoft world. Because we are
using Azure DevOps, all the repositories are in the same place as pipelines and also all the
Scrum boards are in there”.

6.2 Open Source Nature of CI Tools

The open source nature of the software project and/or the CI tool was reported by multi-
ple respondents as playing an important role in the choice of CI tool. Some OSS projects
specifically select or impose the use of open source CI tools, as it matches the nature and
mindset of their open source policy. For instance, R3 mentioned that “for some practical
reason, but also maybe ideological, we like to use open source solutions and have to control
on our software that we use.” Similarly, respondent R10 argued “Philosophically, we don’t
like the company that bought Travis. They just have different values then we have in our
open source projects.”

OSS projects may also select specific CI tools for more pragmatic reasons. For example,
R2 chose GitHub as a platform to demonstrate their open source code, not because GitHub
itself is open source (it is not), but because it is the most popular platform for hosting
OSS projects: “The reason is that we wanted to have something that we can demonstrate,
like show the open source code for the DevOps pipeline. And since GitHub provides a free
runner, and the open source code of the application is on GitHub we went there.”

R5 also argued that the choice of a CI tool depends on whether the project using it
is open source or commercial: “The requirements for an open source project are usually
quite different from a commercial project. [... If it is] only a CI for an open source project
and you need to build a package that you want to have published in registries, then for
example GitHub CI would be completely satisfying. Because GitHub Actions gives me all
the building blocks which I need at that moment. But if I want to build a product with all the
testing, all the quality gates validation in a number of environments before going to have a
real live environment then I would still search for something which gives me the full flow
and have more ability to model that full flow.”

The interviews revealed that 8 respondents involved in OSS projects preferred using
the free tier solution of a commercial CI tool (mostly GHA, Travis and GitLab CI/CD)
since OSS projects often have very limited financial resources to develop and maintain their
software. R19 explained the decision-making process for choosing another CI tool due to
restrictions imposed on the free tier of Travis: “I had the choice to either pay for it or not
remain on Travis. And then I figured out I had a lot of other options. We could use sponsored
money or donations to pay for it, but I felt it would be more responsible for our project to
not spend that money on Travis, but rather save the money and just move over to another
free service instead”. R11 also “decided to change to go to GitHub Actions that was free”.
This shows that changes in the pricing policy or restrictions imposed on the free tier of the
CI tool may incite or even force OSS projects to migrate to other CI tools.

On the other hand, commercial projects tend to prefer using paid, commercial CI tools
because they offer a better service-level agreement and technical support in case of reliabil-
ity problems. R14 who used Azure DevOps in a company said “The problem with Microsoft
Azure is money. You need to spend a lot of money, but the tools that you are getting from
Microsoft [...] are more powerful than the others. [...] If I had money, I’d migrate [my
projects] to Azure.”

 52 Page 36 of 45 Empir Software Eng (2023) 28:52

Some respondents were not satisfied with any of the existing open source or commercial
CI tools. As a consequence, they rely on custom-built CI tools in their companies. These
CIs were created to support the specific needs of the company. For example, R6 mentions
that their company “built its own proprietary CI/CD pipeline which now operates to deploy
thousands of deployments per day. It was loosely based on Jenkins for a while.” More specif-
ically, “it started as a kind of deployment of Jenkins that evolved over time into an actually
proprietary system that’s built from scratch”.

One aspect in favour of open source CI tools would be the ability to contribute changes
back to the OSS project. However, R6 argued that it not always easy to do so, due to the com-
munity’s latency of accepting changes: “Contributing back to the community is not always
possible because volunteer-based projects face the challenge that you have of contributing
back to popular open source projects. Not everybody’s contributions are going to be able to
be accepted. So I think a latency is introduced by this.”

6.3 Restrictions on the Free Tier of CI Tools

Among the main shortcomings that were identified in RQ1.5, the restrictions imposed on
the free tier of CI tools were frequently reported by the respondents. These restrictions
cause many projects to select an alternative CI tool offering more computation resources or
more build time. Travis was frequently reported by the respondents as being too restrictive
on its free tier. Its decision to impose more restrictions on its free tier in 2020 was even
one of the main reported reasons for OSS projects to migrate to another CI. We investigated
the rationale behind imposing such restrictions, and we found that the decision was mostly
driven by abusive cryptominers.

Li et al. (2022) studied the phenomenon of CI-jacking which, in other words, correspond
to the abuse of CI tool resources for mining cryptocurrencies. Through an empirical analysis
of GitHub repositories and log files on CI platforms, they found 1,974 instances of CI-
jacking, with an estimated revenue of over $20, 000 per month using the computational
resources of the CI tools’ free tier. This abuse has led CI providers to impose stronger
limitations on their free tiers.11

For example, Travis motivated its decision to change its pricing model as follows (Mendy
et al. 2020): “[. . .] we have encountered significant abuse [. . .] (increased activity of cryp-
tocurrency miners, TOR nodes operators etc.). Abusers have been tying up our build queues
and causing performance reductions for everyone.” Similarly, in February 2021, the Direc-
tor of Product Management of GitHub publicly announced strong restrictions on the free
tier of Azure DevOps due to “a high percentage of new public projects in Azure DevOps
being used for crypto mining and other activities we classify as abusive” (Machiraju 2021).

Two interview respondents confirmed this abuse by cryptominers, and the harm it is
causing to OSS projects whose functioning often depends on the ability to benefit from the
resources offered by the free tiers of cloud-based CI tools: “in recent years people have
been abusing a CI/CD solution for mining bitcoins. This is annoying for the open source
community because we rely on those tools. Those tools are really critical for the open
source communities to continue to build and secure the toolchain”R13. In addition to this,
R21 explained that cryptominers not only affect computational resources, but also impact
human resources that need to check for the presence of cryptominers: “a human has to

11https://dev.to/lyncozy/crypto-miners-are-killing-free-ci-4pii

https://dev.to/lyncozy/crypto-miners-are-killing-free-ci-4pii

Empir Software Eng (2023) 28:52 Page 37 of 45 52

review the code [of new contributions] and make sure that someone is not trying to install a
cryptocurrency miner on our Jenkins installation.”

6.4 Future of CI Tools

Since their inception, CI tools have come a long way, continuously adding new automa-
tion facilities to support an increasing range of software development activities. It is beyond
doubt that CI tools are widely adopted and play an important role in both OSS and
commercial software development (Golzadeh et al. 2022; Soares et al. 2022).

As part of the open-ended closing question of each interview, respondents were asked to
share important remarks related to CI tools. Some respondents used this opportunity to share
their opinion on the expected future of CI tools and how these tools will become integrated
with other software development components.

R10 expressed the idea of having a whole physically independent infrastructure that can
use the full existing features of a social coding platform, including a software development
environment, version control system, issue tracking system, online coding environment, and
a GHA-like CI: “[companies and developers] want someone like GitHub to host a version
of GitHub for them. That means that you would get your own thing hosted on GitHub’s own
hardware, but it will be physically separated but still integrated with the github.com plat-
form. The main benefit of that is that you don’t need to think about your custom actions
runner and things like Codespaces.12 Development in the cloud will become very relevant in
future. And when you want to keep self-hosting, it’s not only about hosting the git platform.
It will be more and more about also hosting all these other things like the CI/CD environ-
ment, which is GitHub Actions for GitHub, and the cloud development platform, which is
Codespaces. It’s going to get harder and harder to self-host [while] a service hosted version
will become much more attractive.” Other companies, such as gitpod.io have also started pro-
viding similar cloud development environments, that can be integrated with one’s preferred
social coding platform (e.g., GitHub, GitLab or BitBucket).

R6 suggests considering CI in the full software development lifecycle: “CI/CD is part
of a broader system of continuous delivery of software. Looking at it in isolation is like
looking at just a portion of a full pipeline. Delivering software begins at this ideation phase
and ends when a user interacts with it. And CI/CD has this role to play, but it is not the
entire spectrum. So CI/CD needs to be looked at in the context of the rest of the engineering
system being used to deliver software in a particular place, whether it be OSS or in different
proprietary setups.” R5 shared this point of view: “If I want to build a product with all the
testing, all the quality gates validation in a number of environments before going to have a
real live environment, then I would still search for something which gives me the full flow
[...]”.

R9 also considered there is room for improvement, notably to address the amount of data
that needs to be downloaded each time a CI process is executed: “there would be automated
ways to reduce the amount of data that’s downloaded from the providers. Some sort of
automatic caching. And the other thing is to also have some automatic caching of compiler
outputs. But both things are probably not so easy to do in a generic fashion”. Indeed, CI
tools are known to incur a high cost, because of the computational resources they require,
combined with the frequency of running builds. Minimizing execution time of CI workflows
is crucial, as it enables timely feedback to developers, avoiding them to switch to other tasks

12https://visualstudio.microsoft.com/services/github-codespaces/

https://visualstudio.microsoft.com/services/github-codespaces/

 52 Page 38 of 45 Empir Software Eng (2023) 28:52

while waiting for the CI workflows to complete, which is known to be a costly operation
for knowledge workers.

Existing CI tools could benefit from integrating recent research advances that have been
made along these lines. For example, CloudBuild, a proprietary CI tool with caching capa-
bilities, was proposed by Microsoft to speed up building and testing software products
(Esfahani et al. 2016). Similarly, Gallaba et al. (2022) proposed an approach to accelerate CI
builds by caching the build environment and skipping unaffected build steps. Abdalkareem
et al. (2019) proposed another way to speed up build time by skipping commits that should
not trigger builds. For this purpose, they developed a machine learning technique that auto-
matically identifies which commits can be safely skipped (Abdalkareem et al. 2020). In the
same vein, Jin and Servant (2020) introduced SmartBuildSkip, an approach to reduce CI cost
by running fewer builds while running as many failing builds as early as possible. Based
on an empirical comparison of 10 CI-improving techniques (Jin and Servant 2021) they
proposed PreciseBuildSkip (Jin and Servant 2022) as an improvement over SmartBuildSkip.

6.5 On the Diversity of the CI Landscape

RQ1.1 revealed a wide diversity of CI solutions having been used by respondents. RQ1.4
further revealed that, even if the most popular CI solutions covered most of the desirable
features, there were still valid reasons for using less popular CI tools because they were
offering specific valuable features that could not be found in the more popular CI tools.
This was confirmed in RQ2.2 where respondents identified many reasons for co-using CI
tools, such as the need to support specific hardware platforms or operating systems, access
to specific features, and the ability to use more computing resources by running multiple
CI tools in parallel. This shows the importance of maintaining a wide diversity of CI tools,
each having their own set of features, advantages and shortcomings. R5 even goes one step
further by claiming that there still is plenty of room for new contenders in the CI landscape:
“a lot of people think that tools regarding CI/CD is already a well-equipped market. But
personally I think there is still a lot of room for improvement. If there would be a contender
really thinking out of the box [...] I think he would still make a fair chance of getting a
decent market share”.

Nevertheless, in response to RQ2.3 as well as in Table 2 we observed a general tendency
to migrate towards the more popular cloud-based CI tools (such as GHA, Azure DevOps
and GitLab CI/CD). The ever stronger integration of these CI tools in their social coding
platform, compounded by the fact that workflows and pipelines are increasingly relying
on reusable building blocks (such as Actions, Orbs and plugins) makes it more difficult to
migrate away from them. This leads to an increased risk of vendor lock-in, that may lead to
a monopoly position of some CI providers, ultimately resulting in a lack of innovation due
to absence of competition.

GitHub, the de facto solution for open source projects nowadays, is a good example of
potential vendor lock-in by a private company owning the dominant platform for distribut-
ing open source software. R9 was concerned about this risk: “The only kind of concerns,
obviously, to have the vendor lock-in and kind of monopoly situation.” R11 shared this view-
point: “From an ethical point of view it’s a pity that GitHub and Microsoft joined together.”
At some point in the future, Microsoft might change its strategy to try to profit from its
monopoly: “There are intangible benefits that Microsoft gets and we’ll see if changes hap-
pen in the next few years, to where GitHub makes changes to be more profitable and that
don’t necessarily serve the free software folks. [...] I have mixed feelings about it, on the one

Empir Software Eng (2023) 28:52 Page 39 of 45 52

hand, it really is convenient having everything integrated at one place. On the other hand,
how much do we really want to invest all of open source in a single company?”R21

Nevertheless, it seems like respondents are aware of this risk and still willing to use
GitHub, while keeping their options open to move to other CI alternatives: “so far I think,
for us, it’s been a positive experience. But we are aware of these dangers and we would
be ready to move to another platform if we have to”R9. Similarly, R1 reported to “have
alternatives in case there is something that changes in the GitHub CI user conditions. For
instance, If GitHub Actions becomes irrelevant or not practical given the conditions of the
project, then we know that there is a simple way to just use TeamCity instead of GitHub
Actions.”

7 Threats to Validity

Here we discuss the threats to the validity of our work.
Internal validity relates to whether an experimental treatment or condition makes a dif-

ference or not (Ampatzoglou et al. 2019). Given that our analysis is based on subjective
interviews, the main threat pertains to which questions we asked, how, and in which order. A
different set of questions, different order, or even different phrasings could have led to dif-
ferent responses. We reduced this threat by carefully verifying the interview protocol, and
carrying out dry-runs on three different persons, before actually starting the study. More-
over, the open-ended nature of the interviews provided ample opportunities for respondents
to provide additional contextual information that was not necessarily directly related to the
questions being asked.

External validity is concerned with the generalisability of the approach and the repre-
sentativeness of the results (Ampatzoglou et al. 2019). We strove to have a good balance
in respondent profiles covering both open source developers and industrial practitioners.
While we strove to have a balanced selection of respondents in terms of geographical distri-
bution, we acknowledge that Eastern Europe as well as the Australasian and African regions
are underrepresented in our population. The inclusion criteria that have been used for select-
ing interview candidates also introduced a deliberate selection bias towards developers with
proven practical experience with CI. As a result we cannot claim that the results generalise
to less experienced developers.

Construct validity concerns the relation between the theory behind the experiment and
the observed findings (Ralph and Tempero 2018). Given the qualitative nature of our study,
the mean threat pertains to how we have interpreted the responses obtained from the inter-
views. To mitigate this risk, we have relied on the well-established process of deductive
and inductive coding, which involved multiple authors in order to further lower the risk of
making incorrect interpretations.

Conclusion validity deals with the degree to which reasonable conclusions have been
reached from the collected data (Maxwell 1992). One might argue that having more respon-
dents could have increased the support of our findings. Since we continued interviewing
respondents until we reached saturation in the responses, we believe that the conclusions
made are reasonable, especially given the qualitative nature of this paper, as we do not aim
to show any statistical significance of our observations. Moreover, some of the qualitative
findings have been triangulated with quantitative results reported in earlier work. Geopo-
litical reasons may have implicitly affected some of the received responses. For example,
European respondents are subject to other privacy regulations (GDPR) than non-European

 52 Page 40 of 45 Empir Software Eng (2023) 28:52

ones, which could have influenced their preference toward CI tools maintained in Europe.
As another example, the acquisition of GitHub by Microsoft, an American company, could
have influenced some respondents in favour or against the use of GHA as a CI tool. Also,
two respondents reported not having been able to use some popular commercial CI tools
since a ban was imposed on certain countries (such as Iran). This is not a problem per se,
since the conclusions drawn from the interviews are actually supposed to reflect and capture
this diversity in decisions.

8 Conclusion

This article presented the results of a qualitative analysis aiming to understand the reasons
behind CI tool usage, co-usage and migration. The analysis is based on online interviews
with 22 experienced software practitioners with proven expertise in CI tools. The interview
respondents were involved in OSS as well as in commercial projects, and reported on the
use of 31 different CI tools, of which 14 were used by at least two respondents.

The large number of CI tools used by the respondents, the reasons to use them, and the
wide range of activities to automate highlight how diverse the landscape of CI solutions is.
The main reasons for CI usage were to increase reliability, productivity, security, and speed
while reducing cost and effort. The main supported activities were build automation, unit
testing, security and quality analysis, dependency management, release management and
automated deployment. While the valuable features and shortcomings of CI tools have not
fundamentally changed in comparison to previous studies, we observed a clear technologi-
cal shift towards more cloud-based solutions integrated in social coding platforms (such as
GHA, GitLab CI/CD, Azure DevOps).

We observed that it is common practice to use multiple CI tools in parallel in order to
support a wider range of hardware architectures or operating systems, as well as to bene-
fit from complementary features offered by the different CI tools and to counter resource
limitations. We also observed a migration away from Travis, due to lack of reliability, fea-
ture stagnation and restrictions imposed on its free tier. At the same time we observed a
migration towards GHA due to its deep integration into the popular GitHub social coding
platform, its generous free tier, its build support for the major operating systems, and its
support for reusable Actions. The main reported migration difficulties had to do with the
learning curve because of the differences between the source and target CI tools.

Our analysis provided qualitative insights into the reasons behind the important changes
in the CI landscape that were quantitatively reported in Golzadeh et al. (2022). This chang-
ing landscape has opened up a wide range of research opportunities, such as more empirical
research on the impact of reusable workflow components (such as GitHub’s Actions and
CircleCI’s orbs), an in-depth analysis of the risks of vendor lock-in, and technical solutions
to further speed-up CI execution.

Appendix A: Interview Questionnaire

The interview questions were structured in 6 categories. Some questions were conditional
to the responses received on previous questions:

1. General questions about the respondent:

Empir Software Eng (2023) 28:52 Page 41 of 45 52

a) Please briefly introduce yourself.
b) Report on your past and current experience in collaborative software development,

and on the kinds of projects you are or have been actively involved in, for which
CI/CD tools have been used.

c) What is or was your involvement in those projects?
d) How many years of experience do you have with CI/CD?

2. General questions about CI/CD usage:

a) When did you first start to use a CI/CD tool in those projects and what was the
reason at that time?

b) What are currently the main reasons for using CI/CD in those projects?

3. Questions about specific CI/CD tool usage:

a) Which different CI/CD tools have you used in the past, or are you currently using?
b) Why did you or the project maintainers decide to use that particular CI/CD tool?
c) What are the resources (in terms of budget, hardware, personnel, etc.) and effort

that are or were available and required for creating, hosting and maintaining the
CI/CD infrastructure for your projects?

d) [If one of the reported CI/CD tools was Travis:]

– Was Travis a kind of default choice, or was it a deliberate choice?
– Are you aware of Travis’ changes in its free plan for public repositories? Has

your project been affected by these changes?

e) [If none of the reported CI/CD tools was Travis or GitHub Actions:]
Why haven’t you ever used Travis or GitHub Actions?

f) What were the main reasons for using these CI/CD tools, and what were/are the
advantages and shortcomings of each of them according to your experience?

4. Questions about CI/CD migration: [These questions should be answered for every
project that was reported by the respondent.]

a) Did the project migrate from some CI/CD tool to another one during its lifetime?
b) [In case of negative answer to 4.a:]

Even if the project did not migrate its CI/CD tool, did you ever consider migrating
to another CI/CD tool? If yes, why didn’t you carry out the migration?

c) [In case of positive answer to 4.a:]

– When did the project perform the migration?
– From which CI/CD tool to which other CI/CD tool?
– What drove the decision to migrate, and on which replacement CI/CD tool

to adopt? (Was the migration because you disliked something in the existing
CI/CD tool? Or because you liked something better in the replacement CI/CD
tool?)

– How much effort and time did it take to do the CI/CD migration and why?
– What were the main difficulties (if any) in doing the migration?
– How satisfied were you with the replacement CI/CD tool?

d) [In case the respondent did not mention GitHub Actions as a CI/CD migration
target:]

 52 Page 42 of 45 Empir Software Eng (2023) 28:52

– Are you aware of GitHub Actions and its increasing popularity? Why do you
think this is the case?

– Did you ever consider using GitHub Actions for doing CI/CD?
– If not, why not? What is missing in GitHub Actions in order for the project to

migrate to it?

e) To what extent has the acquisition of GitHub by Microsoft in June 2018 affected
you? Did it trigger you to migrate from one platform to another, for example from
Github to GitLab or vice versa?

5. Questions about CI/CD tool co-usage:

a) Did or does the same project use multiple different CI/CD tools simultaneously?
Which ones?

b) When and for how long have they been used together?
c) What is or was the reason for using multiple CI/CD tools within the same project?

What is or was the purpose of each CI/CD tool?

6. Closing open-ended question:

a) Do you have any other important remarks related to CI/CD tool usage that you
would like to share with us?

Appendix B: Mapping Between Respondents and CI/CD Tools

Throughout the article we have used respondent IDs whenever we cited relevant quotes from
the interviews conducted with them. In order to put these quotes in the right perspective, the
table below provides a mapping between the respondent IDs and the CI/CD tools that these
respondents mentioned to have used somewhere during their career.

Table 8 Mapping between CI/CD tools and respondents having reported to use them

CI Tool Respondent IDs

GHA 1 2 4 5 6 8 9 10 12 13 14 15 17 18 19 20 21 22

Jenkins 1 2 4 5 7 8 11 12 13 14 15 16 17 18 21 22

Travis 2 4 5 8 9 10 11 12 13 16 18 19 20 21 22

GitLab CI/CD 1 2 3 4 5 7 8 11 12 13 14 15 16 22

CircleCI 2 4 6 8 9 10 12 13 18 19 20 22

Azure DevOps 2 4 5 9 12 14 15 17 18 19 20

AppVeyor 9 13 18 19 22

Hudson 4 5 6 15 22

TeamCity 1 7 13

Bamboo 2 4

Bitbucket Pipelines 7 20

Cruise Control 4 6

Drone 9 22

Netlify 10 14

AWS CI/CD 5

Buildbot 18

Empir Software Eng (2023) 28:52 Page 43 of 45 52

Table 8 (continued)

CI Tool Respondent IDs

BuildKite 13

Cirrus CI 19

Codefresh 5

Concourse 5

Heroku 8

Jacamar CI 4

Percy 8

Pulumi 5

Sauce Labs 21

Tekton 4

Vercel 10

Zuul 19

custom-built in-house solution 6, 12, 18

Acknowledgements This work is supported by the ARC-21/25 UMONS3 Action de Recherche Concertée
financée par le Ministère de la Communauté française – Direction générale de l’Enseignement non obliga-
toire et de la Recherche scientifique, as well as by the Fonds de la Recherche Scientifique - FNRS under
grant numbers O.0157.18F-RG43, T.0149.22 and F.4515.23.

Data Availability All data generated or analysed during this study are included in this published article
(and its supplementary information files). Except for two interview transcripts, the extracted information is
available in the article content but the interview transcripts themselves are not accessible to the public due to
the interviewees’ request.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

References

Abdalkareem R, Mujahid S, Shihab E (2020) A machine learning approach to improve the detection of CI
skip commits. IEEE Trans Softw Eng

Abdalkareem R, Mujahid S, Shihab E, Rilling J (2019) Which commits can be CI skipped? IEEE Trans
Softw Eng 47(3):448–463

Ampatzoglou A, Bibi S, Avgeriou P, Verbeek M, Chatzigeorgiou A (2019) Identifying, categorizing and
mitigating threats to validity in software engineering secondary studies. Inf Softw Technol 106:201–230

Beck K (2000) Extreme programming explained: embrace change. Addison-Wesley Professional
Beller M, Gousios G, Zaidman A (2017) Oops, my tests broke the build an explorative analysis of Travis CI

with GitHub. In: International conference on mining software repositories (MSR), pp 356–367
Bernardo JH, da Costa DA, Kulesza U (2018) Studying the impact of adopting continuous integration on

the delivery time of pull requests. In: International conference on mining software repositories (MSR),
pp 131–141. IEEE

Betz RM, Walker RC (2013) Implementing continuous integration software in an established computational
chemistry software package. In: International workshop on software engineering for computational
science and engineering (SE-CSE), pp 68–74. IEEE

Chen L (2015) Continuous delivery: Huge benefits, but challengs too. IEEE Software - Special Issue on
Release Engineering 32(2):50–54

Chen L (2017) Continuous delivery: overcoming adoption challenges. J Syst Softw 128:72–86

 52 Page 44 of 45 Empir Software Eng (2023) 28:52

Chen T, Zhang Y, Chen S, Wang T (2021) Let’s supercharge the workflows: an empirical study of GitHub
actions. In: International conference on software quality, reliability and security companion (QRS-C),
pp 01–10. IEEE

Decan A, Mens T, Mazrae PR, Golzadeh M (2022) On the use of GitHub actions in software development
repositories. In: International conference on software maintenance and evolution (ICSME)

Duvall PM, Matyas S, Glover A (2007) Continuous integration: improving software quality and reducing
risk. Addison-Wesley Professional

Elazhary O, Werner C, Li ZS, Lowlind D, Ernst NA, Storey M-A (2022) Uncovering the benefits and
challenges of continuous integration practices. IEEE Trans Softw Eng 48(7):2570–2583

Esfahani H, Fietz J, Ke Q, Kolomiets A, Lan E, Mavrinac E, Schulte W, Sanches N, Kandula S (2016)
CloudBuild: Microsoft’s distributed and caching build service. In: International conference on software
engineering (ICSE), pp 11–20

Foundjem A, Constantinou E, Mens T, Adams B (2022) A mixed-methods analysis of micro-collaborative
coding practices in OpenStack. Empir Softw Eng 27(5):120

Fowler M, Foemmel M (2006) Continuous integration
Fusch PI, Ness LR (2015) Are we there yet? Data saturation in qualitative research. The Qualitative Report,

vol 20(9)
Gallaba K, Junqueira Y, Ewart J, Mcintosh S (2022) Accelerating continuous integration by caching

environments and inferring dependencies. IEEE Trans Softw Eng 48(6):2040–2052
Ghaleb TA, Da Costa DA, Zou Y (2019) An empirical study of the long duration of continuous integration

builds. Empir Softw Eng 24(4):2102–2139
Gmeiner J, Ramler R, Haslinger J (2015) Automated testing in the continuous delivery pipeline: a case

study of an online company. In: International conference on software testing, verification and validation
workshops (ICSTW), pp 1–6. IEEE

Golzadeh M, Decan A, Mens T (2022) On the rise and fall of CI services in GitHub. In: International
conference on software analysis, evolution and Reengineering (SANER)

Guest G, Bunce A, Johnson L (2006) How many interviews are enough? An experiment with data saturation
and variability. Field Methods 18(1):59–82

Gupta Y, Khan Y, Gallaba K, McIntosh S (2017) The impact of the adoption of continuous integration on
developer attraction and retention. In: International Conference on Mining Software Repositories (MSR),
pages 491–494. IEEE

Hilton M, Nelson N, Tunnell T, Marinov D, Dig D (2017) Trade-offs in continuous integration: assurance,
security, and flexibility. In: Joint meeting on foundations of software engineering (FSE), pp 197–207

Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration
in open-source projects. In: International conference on automated software engineering (ASE), pp 426–
437. IEEE

Holmstrom H, Conchúir EÓ, Agerfalk J, Fitzgerald B (2006) Global software development challenges: A
case study on temporal, geographical and socio-cultural distance. In: International conference on global
software engineering (ICGSE), pp 3–11. IEEE

Jin X, Servant F (2020) A cost-efficient approach to building in continuous integration. In: International
conference on software engineering (ICSE), pp 13–25. IEEE

Jin X, Servant F (2021) What helped, and what did not? An evaluation of the strategies to improve continuous
integration. In: International conference on software engineering (ICSE), pp 213–225. IEEE

Jin X, Servant F (2022) Which builds are really safe to skip? Maximizing failure observation for build
selection in continuous integration. J Syst Softw 188:111292

Kim M, Zimmermann T, DeLine R, Begel A (2016) The emerging role of data scientists on software
development teams. In: International conference on software engineering (ICSE), pp 96–107. IEEE

Kinsman T, Wessel M, Gerosa MA, Treude C (2021) How do software developers use GitHub actions to
automate their workflows? In: International conference on mining software repositories (MSR)

Kulas M, Borelli JL, Gässler W, Peter D, Rabien S, de Xivry GO, Busoni L, Bonaglia M, Mazzoni T, Rahmer
G (2014) Practical experience with test-driven development during commissioning of the multi-star AO
system ARGOS. In: Software and Cyberinfrastructure for Astronomy III, vol 9152, pp 110–119. SPIE

Leppänen M, Mäkinen S, Pagels M, Eloranta V-P, Itkonen J, Mäntylä MV, Männistö T (2015) The highways
and country roads to continuous deployment. IEEE Softw 32(2):64–72

Li Z, Liu W, Chen H, Wang X, Liao X, Xing L, Zha M, Jin H, Zou D (2022) Robbery on: DevOps understand-
ing and mitigating illicit cryptomining on continuous integration service platforms. In: IEEE symposium
on security and privacy (SP), pp 2397–2412. IEEE

Lu J, Yang Z, Qian J (2014) Implementation of continuous integration and automated testing in software
development of smart grid scheduling support system. In: International conference on power system
technology, pp 2441–2446. IEEE

Empir Software Eng (2023) 28:52 Page 45 of 45 52

Machiraju V (2021) Change in Azure pipelines grant for public projects. https://devblogs.microsoft.com/
devops/change-in-azure-pipelines-grant-for-public-projects/. Accessed Oct 14 2022

Maxwell J (1992) Understanding and validity in qualitative research. Harvard educational review 62(3):279–
301

Mendy M, Rios N, Rybinski M (2020) The new pricing model for travis-ci.com. https://blog.travis-ci.com/
2020-11-02-travis-ci-new-billing. Accessed Oct 14 2022

Meyer AN, Barr ET, Bird C, Zimmermann T (2019) Today was a good day: the daily life of software
developers. IEEE Trans Softw Eng 47(5):863–880

Rahman A, Agrawal A, Krishna R, Sobran A (2018) Characterizing the influence of continuous integration:
empirical results from 250+ open source and proprietary projects. In: ACM SIGSOFT international
workshop on software Analytics, pp 8–14

Ralph P, Tempero E (2018) Construct validity in software engineering research and software metrics. In:
International conference on evaluation and assessment in software engineering, pp 13–23

Rausch T, Hummer W, Leitner P, Schulte S (2017) An empirical analysis of build failures in the continu-
ous integration workflows of Java-based open-source software. In: International conference on mining
software repositories (MSR), pp 345–355. IEEE

Russel Bernard H, Wutich A, Gery WR (2016) Analyzing qualitative data: systematic approaches. SAGE
Publications 2nd edn.

Savor T, Douglas M, Gentili M, Williams L, Beck K, Stumm M (2016) Continuous deployment at Facebook
and OANDA. In: International conference on software engineering (ICSE), pp 21–30. IEEE

Shahin A, Babar MA, Zhu L (2017) Continuous integration, delivery and deployment: a systematic review
on approaches, tools, challenges and practices. IEEE Access 5:3909–3943

Soares E, Sizilio G, Santos J, da Costa DA, Kulesza U (2022) The effects of continuous integration on
software development: a systematic literature review. Empir Softw Eng 27(3):1–61

Ståhl D, Bosch J (2013) Experienced benefits of continuous integration in industry software product
development: a case study. In: IASTED international conference on software engineering, pp 736–743

Valenzuela-Toledo P, Bergel A (2022) Evolution of GitHub Action workflows. In: International conference
on software analysis, evolution and Reengineering (SANER). IEEE

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in GitHub. In: Joint meeting on foundations of software engineering (FSE),
pp 805–816

Vassallo C, Palomba F (2018) Continuous refactoring in CI: a preliminary study on the perceived advantages
and barriers. In: International conference on software maintenance and evolution (ICSME), pp 564–568.
IEEE

Vassallo C, Proksch S, Gall HC, Di Penta M (2019) Automated reporting of anti-patterns and decay in
continuous integration. In: International conference on software engineering (ICSE), pp 105–115. IEEE

Widder DG, Hilton M, Kästner C, Vasilescu B (2019) A conceptual replication of continuous integration
pain points in the context of Travis CI. In: Joint meeting on european software engineering conference
and symposium on the foundations of software engineering (ESEC/FSE), pp 647–658

Widder D, Vasilescu B, Hilton Ml, Kästner C (2018) I’m leaving you, Travis: a continuous integration
breakup story. In: International conference on mining software repositories (MSR), pp 165–169. IEEE

Zampetti F, Scalabrino S, Oliveto R, Canfora G, Di Penta M (2017) How open source projects use static
code analysis tools in continuous integration pipelines. In: International conference on mining software
repositories (MSR), pp 334–344. IEEE

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-for-public-projects/
https://devblogs.microsoft.com/devops/change-in-azure-pipelines-grant-for-public-projects/
https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing
https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing

	On the usage, co-usage and migration of CI/CD tools: A qualitative analysis
	Abstract
	Introduction
	Related Work
	CI/CD Usage Practices
	Case Studies on CI/CD Usage
	On the Use of Travis in GitHub Projects
	On the Use of GHA in GitHub Projects

	Methodology
	Interview Questionnaire
	Selection of Respondents
	Conducting and Processing the Interviews

	Goal G1: Why, How and Which CI Tools are Being Used?
	RQ1.1 Which CI Tools are Being Used?
	RQ1.2 What are the Main Reported Reasons for Using CI?
	RQ1.3 Which Activities are Being Automated by CI Tools?
	RQ1.4 What are the Most Valuable Features of CI Tools?
	RQ1.5 What are the Reported Shortcomings of CI Tools?

	Goal G2: Why and How are CI Tools Being Co-Used and What are the Reasons for Migrating to Other CI Tools?
	RQ2.1 Why are Multiple CI Tools Co-Used Simultaneously?
	RQ2.2 Why do Software Projects Migrate to a Different CI Tool?
	RQ2.3 What are the Difficulties in Carrying out a CI Migration?

	Discussion
	On the use of GitHub Actions
	Open Source Nature of CI Tools
	Restrictions on the Free Tier of CI Tools
	Future of CI Tools
	On the Diversity of the CI Landscape

	Threats to Validity
	Conclusion
	Appendix A A: Interview Questionnaire
	 B: Mapping Between Respondents and CI/CD Tools
	Appendix B B: Mapping Between Respondents and CI/CD Tools
	Declarations
	References

