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1 Introduction and summary

In the path-integral approach to quantum gravity pioneered by Gibbons and Hawking [1],
it was clear early on that in some cases complex metrics should be allowed to contribute
to the ‘Euclidean’ path integral. For example, the thermodynamical properties of rotating
black holes follow from admitting a complex saddle point in the path integral.

On the other hand, integrating over all complex metrics in the path integral does not
lead to sensible results. Recently, Witten [2] proposed an admissibility criterion for complex
metrics. This proposal was inspired by the work of Kontsevich and Segal [3] investigating
the requirements for a well-defined path integral for p-form fields in a complex background
metric. See also the early work [4] and, for an alternative admissibility proposal, [5]. Since
its inception, Witten’s proposal has been investigated further in various contexts (see [6–12]
for a partial list of references related to the present work).

In order to test the proposal, it is important to compare its predictions to those ob-
tained using other methods where available. One such opportunity is provided by station-
ary metrics, which can be analytically continued to Euclidean signature by analytically
continuing both the time coordinate some physical parameters to imaginary values (such
as the angular momentum and angular potential in the case of rotating black holes). As
stressed in [2], it is not obvious that the partition function computed using admissible
complex saddles agrees with the one obtained from Euclidean saddles. The advantage of
the approach based on admissible complex metrics we consider in this paper is of course
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Figure 1. A summary of our analysis. The regular geometries (in green) comprise black holes
(region 1), overspinning (region 3) and pure AdS3 out of the conical geometries of region 2. Of
these, the admissibility criterion of [2] excludes region 3, leaving only black holes and AdS3. The
orange region spans additional states allowed by unitarity in a dual conformal field theory.

that it can be applied to more complicated time-dependent metrics which do not allow for
an Euclidean continuation.

Anti-de Sitter gravity in 2+1 dimensions provides a particularly rich setting to perform
such a test. One peculiarity is that, unlike in higher dimensions, the Lorentzian metrics
in the overspinning regime |J | > M , are not nakedly singular and can be described as
quotients of global AdS without fixed points1 [13]. Furthermore, conical defect solutions
and their spinning cousins exist below the BTZ black hole threshold. Holographic conformal
field theories may contain (sparse) states in both these regimes (see figure 1), making
the status of these geometries as admissible saddle points and their potential impact on
thermodynamics and the Hawking-Page transition [14] especially worth investigating.

Motivated by these considerations, in this note we will consider the family of complex
metrics which arise from analytically continuing the BTZ-type metrics [15] in the entire
(M,J) plane to imaginary time.2 We study which of these ‘quasi-Euclidean’ metrics qualify
as saddle points for the grand canonical path integral, in the sense they are both smooth
as well as obey Witten’s admissibility criterion. The result of this analysis is illustrated in
figure 1. Our main observation is that, while smoothness alone allows for the global AdS

1They do suffer causal pathologies such as closed timelike curves in the Lorentzian signature, but this is
not a reason to exclude their continuation to imaginary time [2].

2The geometry of the corresponding Lorentzian and Euclidean solutions was discussed in [16–19].
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and BTZ black hole saddles as well as the overspinning solutions, the latter are in fact not
admissible. Admissibility therefore successfully excises these metrics, in agreement with
the Euclidean approach, where overspinning geometries do not contribute to the partition
function.

2 BTZ class of metrics

The BTZ metric [15] is the most general stationary, axisymmetric solution of the (2 + 1)-
dimensional Einstein equations with negative cosmological constant, describing an object
of arbitrary massM and angular momentum J . We will work in the conventions of [16] and
in units where the AdS radius is set to one, lAdS = 1. It is useful to define a dimensionless
reduced mass and angular momentum

m = 8GNM, j = 8GNJ. (2.1)

The BTZ metric then takes the form

ds2 = −(r2 −m)dt2 + r2dr2

r4 −mr2 + j2

4
+ jdtdφ̃+ r2dφ̃2, (2.2)

where φ̃ has period 2π. Global AdS3 corresponds to m = −1, j = 0. We will consider the
class of metrics (2.2) for arbitrary real values of the parameters m and j.

For later reference, it is useful to introduce the roots r± of the polynomial x2 −mx+
j2/4:

r± = π (T+ ± sgn (m)T−) , (2.3)

where we defined3

T± = 1
2π
√
m± j. (2.4)

These generically complex parameters generalize the ‘left- and right-moving temperatures’
of the BTZ black hole. The sign in (2.3) was chosen such that

Re (r2
+) ≥ Re (r2

−) (2.5)

for all values of m and j.
We rewrite the metric (2.2) as

ds2 = −fdt2 + f−1dr2 + r2(dφ+Nφdt)2, (2.6)

f = r2 −m+ j2

4r2 = (r2 − r2
+)(r2 − r2

−)
r2 , (2.7)

Nφ = j

2r2 − Ω = r+r−
r2 − Ω. (2.8)

Here, we have also made an improper coordinate transformation φ̃ = φ − Ωt which intro-
duces an angular velocity at infinity,

ds2 → −r2dt2 + dr2

r2 + r2 (d(φ− Ωt))2 , (2.9)

3Here and in what follows, the symbol √ denotes the principal branch of the square root.
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and describes AdS3 in a rotating frame. Note that the Killing vector ∂t|φ,r is timelike at
infinity only if the angular velocity Ω satisfies

|Ω| < 1. (2.10)

It’s convenient to divide the m, j plane into 4 physically distinct regions, see figure 1:

1. Black hole regime, where m > 0, m > |j|. The parameters T± and r± are real and
positive, and r+ and r− are the locations of the inner and outer horizons respectively.

2. Defect/surplus regime, where m < 0, |m| > |j|. The parameters T± and r± are
purely imaginary. This class includes the global AdS metric (m = −1, j = 0), conical
defects describing backreacted point particles [20] (−1 < m < 0, j = 0) and metrics
with a conical surplus (m < −1, j = 0), as well as spinning generalizations thereof.

3. Overspinning regime, where |m| < |j|. One of the ‘temperatures’ T± is real and
the other is imaginary, while the r2

± are complex and each others conjugate.

4. Extremal regime, where m = ±j. These metrics lie on the boundaries separating
regions 1, 2 and 3 and include extremal spinning black holes for m > 0, the zero-mass
limit of the BTZ black hole for m = 0, and extremal spinning defects for m < 0.

The following table summarizes the values of the parameters in these regimes:

regime (m, j) (T+, T−) (r+, r−)
1 m > 0, m > |j| T± > 0 r+ > r− ≥ 0
2 m < 0, |m| > |j| T± ∈ iR r± ∈ iR, r2

− < r2
+ ≤ 0

3 |m| < |j| T± ∈ R, T∓ ∈ iR r± ∈ C, r2
+ = (r2

−)∗

4 m = ±j T∓ = 0, T± = 1
π

√
m
2 r2

+ = r2
− = m

2

It is relevant to point out that in holographic theories the unitarity bound reads

m− |j| ≥ −1. (2.11)

Therefore, unitary holographic CFTs may in principle contain states in all four of the above
regimes, as illustrated in figure 1.

3 Quasi-Euclidean continuation

In the path-integral approach to quantum gravity [1], the grand canonical partition function
at inverse temperature β and angular potential Ω, (with |Ω| < 1) is expressed as a path
integral over metrics,

Z(β,Ω) = tre−β(H+ΩJ) ∼
∫

[Dg]eiS[g], (3.1)

where the metrics should behave near infinity as

ds2 → r2dτ2 + dr2

r2 + r2 (dφ− iΩdτ)2 (3.2)
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with coordinates having the periods

(τ, φ) ∼ (τ + β, φ) ∼ (τ, φ+ 2π). (3.3)

The asymptotic condition shows that the metrics included in the measure should be allowed
to be complex. However, including all complex metrics4 does not lead to sensible results.
Witten’s admissibility criterion [2], which we review in section 5, is a proposal to restrict
to a subclass of physically sensible complex metrics.

In the semiclassical limit GN → 0, the path integral will be dominated by classical
saddle points. A large class of potential classical saddles satisfying (3.2) is obtained from
the metric (2.6) by continuing the time coordinate to the imaginary axis, t → iτ . The
resulting metric is said to be quasi-Euclidean (qE) and takes the form

ds2
qE = fdτ2 + f−1dr2 + r2

(
dφ+ iNφdτ

)2
. (3.4)

Note that, as emphasized in the Introduction, in this approach one does not continue the
parameters j and Ω to imaginary values, which would result in a real Euclidean metric.

The metrics (3.4) generically have coordinate singularities where the metric degen-
erates. As in (pseudo-)Riemannian geometry, these can be either an artifact of the co-
ordinate system (and disappear upon making a suitable coordinate change), or reflect a
genuine pathology. We will interpret the latter case as a sign that the classical gravity
approximation breaks down and we should not include the solution as a saddle.

Our strategy will be to first determine the qE metrics which are smooth and subse-
quently, in section 5, analyze which ones obey Witten’s admissibility criterion.

4 Smoothness

In order to analyze the smoothness of the quasi-Euclidean metrics, it is useful to make a
further coordinate redefinition. In the above coordinate system, the quasi-Euclidean (qE)
metric (3.4) degenerates at r = 0, where det g vanishes. Unless r+ or r− also vanishes, this
is a coordinate singularity which can be removed by defining the new coordinate

u = r2. (4.1)

The qE metric then becomes

ds2
qE = (u− r2

+)(u− r2
−)

u
dτ2 + du2

4(u− r2
+)(u− r2

−) + u

(
dφ+ i

(
r+r−
u
− Ω

)
dτ

)2
. (4.2)

Coordinate singularities still occur when u = r2
+ and u = r2

−, while det g is constant for all
values of u. This of course happens only if r2

+ and r2
− are real, i.e. in the regimes 1, 2 and

4, while the overspinning regime 3 is free of coordinate singularities. When r2
+ and r2

− are

4We define a complex metric to be a complex, invertible, symmetric (0,2) tensor.
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real it will be useful to divide the spacetime into subregions to the left (L), in the middle
(M) and to the right (R) of the coordinate singularities:5

L : u ≤ r2
−, (4.3)

M : r2
− <u < r2

+, (4.4)
R : r2

+ ≤u. (4.5)

We note that in the extremal regime 4 the middle (M) region is absent.
In the rest of this section we want to establish in which regions and for which values of

the parameters β,Ω the qE metrics (4.2) are invertible and smooth. In three-dimensional
gravity, all curvature invariants are locally constant and detecting singularities is more
subtle than in higher dimensions, requiring a careful description of the global manifold
structure. Extending the Lorentzian analysis [16, 21], we will use the fact that the ‘quasi-
Euclidean manifold’ on which the qE metric is defined can be obtained from the smooth
group manifold SL(2,C) by two operations: a quotient by a discrete group and a subse-
quent restriction to a three-dimensional real subspace. In sections 4.1 and 4.2 we establish
when these operations introduce singularities. A complementary approach, presented in
section 4.3, is to study the holonomy of the Chern-Simons connections, which for regular
solutions should be trivial when evaluated on smoothly contractible cycles. This will lead to
results consistent with the first approach, though is somewhat more crude since, as we shall
see, certain singularities in the manifold structure can still lead to trivial Chern-Simons
holonomy.

4.1 The quotient

The SL(2,C) group manifold can be viewed as a smooth hypersurface in C4,

detG = G11G22 −G12G21 = 1, (4.6)

with invariant metric

ds2 = −1
2 tr

(
dG−1dG

)
= −dG11dG22 + dG12dG21. (4.7)

When m > 0, the aforementioned quotient amounts to imposing the following two identi-
fications:

I1 : (G11, G22, G12, G21) ∼ (e2πr+G11, e
−2πr+G22, e

−2πr−G12, e
2πr−G21)

I2 : (G11, G22, G12, G21) ∼ (ei(r−−Ωr+)βG11, e
−i(r−−Ωr+)βG22,

e−i(r+−Ωr−)βG12, e
i(r+−Ωr−)βG21), (4.8)

while for m < 0, one has to interchange r+ and r− in these expressions. Note that these
identifications preserve the hypersurface (4.6). Their appropriateness will become manifest

5We note that the qE metric is invariant under the formal involution u→ −u, τ → ±iτ, φ→ ±iφ, r± →
±ir±, where the sign is fixed by requiring the inequality (2.5) to hold. This involution exchanges the regions
as follows: 1L ↔ 2R, 1M ↔ 2M, 1R ↔ 2L. Some of our results below can be seen as consequences of this
property.
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regime quotient regular for

1


Ω = r−

r+
, β = 2πr+

r2
+−r

2
−

Ω = r+
r−
, β = 2πr−

r2
+−r

2
−

Ω 6= { r−r+ ,
r+
r−
}

2

 r− = i, r+ = 0
Ω 6= { r−r+ ,

r+
r−
}

3 always

4

Ω = sgn m
j , β =∞,m > 0

Ω 6= sgn m
j ,m 6= 0

Table 1. Summary of smooth quotients.

in section 4.2, where we will recover the qE metric (4.2) by selecting a real slice of a
group element satisfying (4.8). We should also note that (4.8) breaks down in the limit of
extremal metrics, i.e. regime 4, the details of which are discussed in appendix A.

The quotient space is a smooth manifold only if the identifications act without fixed
points on the hypersurface (4.6), see e.g. [22]. Both identifications have a fixed point in
C4 at G11 = G22 = G12 = G21 = 0, which however does not lie on (4.6). From the form
of (4.8) we see that singularities can occur on two possible loci, namely

• at G12 = G21 = 0, G11G22 = 1. This is a fixed locus of I1 for r+ = 0 provided that
r− 6= i. The case r+ = 0, r− = i, is special, since I1 then becomes trivial. Similarly,
it is a fixed locus of I2 for Ω = r−

r+
provided that β 6= 2πr+

r2
+−r

2
−
, with the case Ω = r−

r+
,

β = 2πr+
r2
+−r

2
−

corresponding to I2 becoming trivial.

• at G11 = G22 = 0, G12G21 = −1. This is a fixed locus of I1 for r− = 0 and r+ 6= i,
and a fixed locus of I2 for Ω = r−

r+
and β 6= 2πr+

r2
+−r

2
−
.

As one would expect, these loci correspond to the coordinate singularities at u = r2
+ or u =

r2
− as we shall see shortly. Recalling the ranges of the parameters r± in the various regimes
and the fact that β and Ω are required to be real, the above analysis (and its extension to
region 4 in appendix A) can be summarized in table 1, listing the regular quotients.

A remark is in order concerning this table. In principle, we could have also allowed
the values of β in the first and second lines and of r− in the fourth line to be an integer
multiple of the displayed values, since the relevant identification would then still act triv-
ially. However, in doing so we would no longer describe a quotient of SL(2,C) but rather a
multi-sheeted covering space. Furthermore, the resulting manifold would not be a smooth
covering space (see e.g. [23]), since the sheets would meet at the loci described above, and
therefore we will not consider these spacetimes in this context.6

6Such singularities do have an interesting holographic interpretation as arising from insertions of degen-
erate primaries, see [24–27].
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4.2 The real slice

Now we turn to the second operation of restricting the above quotients to a real, three-
dimensional subspace. For this purpose we parametrize the group element as

G11 = z1w exp (r+φ+ i(r− − Ωr+)τ)
G22 = z1w

−1 exp [− (r+φ+ i(r− − Ωr+)τ)]
G12 = z2w

−1 exp [− (r−φ+ i(r+ − Ωr−)τ)]
G21 = z2w exp (r−φ+ i(r+ − Ωr−)τ) , (4.9)

where z1, z2 ∈ C, w ∈ C\{0} and φ, τ ∈ R. For instance, in regime 1 one checks that these
are good coordinates away from the locus where at least one of the Gij vanishes, as long
as r+ 6= r− and Ω 6= −1. The equation (4.6) becomes

z2
1 − z2

2 = 1, (4.10)

while the identifications (4.8) read

I1 : φ ∼ φ+ 2π, I2 : τ ∼ τ + β. (4.11)

Regime 1. Let us discuss the real slice in terms of these coordinates firstly in regime 1.
The qE geometry in the subregions 1R, 1M, and 1L arises from imposing:

• Region 1R: w = 1, arg z1 = arg z2 = 0.

• Region 1M: w = 1, arg z1 = 0, arg z2 = π
2 .

• Region 1L: w = 1, arg z1 = arg z2 = π
2 .

In all cases, z1 and z2 can be expressed in terms of the real coordinate u as

z1 =
√
u− r2

−
r2

+ − r2
−
, z2 =

√
u− r2

+
r2

+ − r2
−
. (4.12)

One checks that the pullback of the invariant metric (4.7) is indeed (4.2).
Let us now discuss in which cases the pullback to the real slice of the smooth metric

on the regular quotient spaces listed in table 1 fails to be a smooth complex metric. For
Ω = r−

r+
and β = 2πr+

r2
+−r

2
−
, the locus u→ r2

+ has codimension 2 and is the φ-circle embedded
as G12 = G21 = 0, G11 = G−1

22 = er+φ. In other words, the τ -circle ‘pinches off’ there. From
the form of G12, G21 we see that it does so smoothly and that the spacetime locally looks
like R2 × S1. In this case the region 1R ends smoothly at u → r2

+. Similarly, for Ω = r+
r−

and β = 2πr−
r2
+−r

2
−

the region 1L forms a smooth submanifold.
For Ω 6= r−

r+
, the locus u = r2

+ has codimension 1: it is an S1 × S1 embedded as

G12 = G21 = 0, G11 = G−1
22 = er+φ+2πi(r−−Ωr+)τ . (4.13)
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(a)

1R

1M

(b)
Figure 2. Radial coordinate lines embedded in the G12 plane in (a) Region 1 for Ω 6= r−

r+
(b)

Region 3.

Neither the τ or φ-circles pinch off and one expects the spacetime to continue into region
1M. However, the regions 1R and 1M cannot be joined together smoothly7 as we shall now
argue in two complimentary ways: the first based on degeneracy of the pulled-back metric
and the second from the fact that the embedded real submanifold is not sufficiently smooth.

Firstly, one can argue that the coordinate singularity in u = r2
+ is not removable.

Indeed, from (4.13) we see that ∂φ and ∂τ provide linearly independent basis vectors of
the tangent space at each point. The metric on this locus is however always of rank one,
independent of the chosen coordinates on the real slice. Indeed, the metric (4.7) pulled
back to the u = r2

+ locus G12 = G21 = 0, G11 = G−1
22 is

ds2
hor = dG2

11
G11

. (4.14)

Since a nondegenerate metric should have maximal rank when pulled back to a proper
submanifold, we see that the quasi-Euclidean ‘metric’ is in this case degenerate.

A second argument comes from considering the smoothness of the 3D submanifold. It
is instructive to see how the radial coordinate lines of constant φ and τ are embedded in
the ambient space in the vicinity of u = r2

+. While they are embedded as straight lines in
the G11 and G22 planes, they are not embedded as differentiable curves in the G12 and G21
planes, where they have a rectangular ‘corner’ as shown in figure 2(a).

Therefore, the radial coordinate lines and the embedded 3D real manifold are at most
of class C0 (see [22]). However, in order to be able to reliably compute the curvature of the
pulled-back metric, one would need the embedding map to be at least of class C2. Similarly,
one argues that, for Ω 6= r+

r−
, the region 1L cannot be not smoothly joined to the region

1M at u = r2
−.

Regime 2. In region 2, the real slice in subregions 2R, 2M, and 2L is:

• Region 2R: w = 1, arg z1 = arg z2 = 0.

• Region 2M: w = 1, arg z1 = π
2 , arg z2 = 0.

• Region 2L: w = 1, arg z1 = arg z2 = π
2 .

7Independently of this, we will see in section 5 that admissibility would discard these joined spacetimes.
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region regular if potential saddle?
1R β = 2πr+

r2
+−r

2
−
,Ω = r−

r+
×

1L r− 6= 0, β = 2πr−
r2
+−r

2
−
,Ω = r+

r−
-

2R r+ = 0, r− = i, β ∈ R, ×
3 β,Ω ∈ R ×
4L β →∞,Ω→ sgn j

m -
4R β →∞,Ω→ sgn j

m ×

Table 2. Summary of smooth qE metrics.

In all cases, z1 and z2 can be expressed in terms of the real coordinate u as

z1 =
√
u− r2

+
r2

+ − r2
−
, z2 =

√
u− r2

−
r2

+ − r2
−
. (4.15)

Similarly as in regime 1, one argues that for r− = i, r+ = 0, the region 2R is a smooth
submanifold which ends at u = 0, where the φ-circle pinches off smoothly. Also, as above
one shows that for r− = i, r+ = 0, the regions 2L and 2M cannot join smoothly. Similarly,
when Ω 6= r−

r+
, r+ 6= 0, the region 2R cannot be smoothly joined to the region 2M.

Regime 3. In the overspinning regime, the real slice is defined by setting

w = 1, z1 =
√
u− r2

−
r2

+ − r2
−
, z2 =

√
u− r2

+
r2

+ − r2
−
. (4.16)

As already mentioned, the metric is everywhere nondegenerate and one checks that (4.16)
defines a smooth submanifold; for example, the radial curves are now smooth curves in the
ambient C4 as illustrated in figure 2(b).

Regime 4. Using the embedding (A.5) in appendix A, one can similarly show that the
real slice defining the extremal metrics is not smooth for Ω 6= sgn m

j , m 6= 0. Smooth
extremal metrics can be thought of as j → ±m limits of the smooth metrics in region 1,
in the sense of requiring β →∞,Ω→ ±1 while keeping β(1− Ω2) = 4π

m fixed.
Combining the above results, we arrive at table 2, listing the smooth qE metrics. We

also indicate in the last column whether the spacetime is a potential saddle for the partition
function Z(β,Ω) in (3.1). For this it needs to contain the region u→∞ and satisfy |Ω| < 1.

4.3 Smoothness and holonomies

In order to complement the above discussion on regularity, one can study holonomies of
the Chern-Simons connections associated to the metric [21]. These quantities encode infor-
mation on the topology of spacetime, but they can still fail to detect certain singularities.
Despite these shortcomings, one can at least compute the relevant holonomies as a consis-
tency check.
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The flat SL(2,C) × SL(2,C) gauge potentials describing the quasi-Euclidean met-
rics (4.2) are of the form

A = g−1dg, Ã = g̃−1dg̃. (4.17)

The SL(2,C) group elements can be can be obtained from the group element G by writing
it as

G = gg̃−1, g = eπT−(φ−i(1+Ω)τ)σ3B(u), g̃ = e−πT+(φ+i(1−Ω)τ)σ3B(u)−1, (4.18)

where the specific form of the 2× 2 matrix B(u) is not needed, since we shall seek trivial
holonomies around curves with constant u0.

Using (4.18) one can easily compute the holonomies of A and Ã around closed curves
γ at constant radius u = u0. For an angular circle of period 2π at constant τ = τ0 one finds

Hγ = B(u0)−1e2π2T−σ3B(u0) (4.19)
H̃γ = B(u0)e−2π2T+σ3B(u0)−1 . (4.20)

These are trivial (meaning equal to 1 or −1, i.e. in the center of SL(2,C)) for r± ∈ iZ,
namely for

m = −p
2 + q2

2 , j = −p
2 − q2

2 , (4.21)

where p, q are nonzero integers. In the extremal case, when either of them vanishes, one
needs to use a different group element. We discuss this subtlety in appendix A. Except for
the pure AdS3 case p = q = 1, these represent a discrete family of conical surpluses and
their spinning generalizations. Such branched covering spaces are singular as manifolds as
we have explained at the end of section 4.1. In region 1 (black hole regime) the angular
circle is not contractible, so there is no issue.

For a time circle with period β at constant φ = φ0, the holonomies read

Hγ = B(u0)−1e−iπT−(1+Ω)βσ3B(u0) , (4.22)
H̃γ = B(u0)e−iπT+(1−Ω)βσ3B(u0)−1 , (4.23)

which are in the center only for

β = π
p(r+ + r−) + q(r+ − r−)

r2
+ − r2

−
, (4.24)

Ω = p(r+ + r−)− q(r+ − r−)
p(r+ + r−) + q(r+ − r−) (4.25)

with p , q ∈ Z. However, most of these solutions again describe singular branched covering
spaces. The inequivalent “minimal” choices are (representable by) p = q = 1 and p =
−q = 1. In region 1 the former is consistent with the regularity conditions of the black
hole geometry (region 1R), while the latter gives region 1L which is not a potential saddle
for the partition function.

In region 2, these solutions would lead to imaginary β which gives a singular geometry.
A similar argument excludes region 3. All in all, the regular geometries that we have
determined do have trivial Chern-Simons holonomies along contractible curves, as expected,
but this condition by itself is not sufficient.
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5 Admissibility

In this section we investigate in which regions the qE metrics (4.2) obey Witten’s admissi-
bility criterion. As discussed in [2, 3], defining a well-behaved (semiclassical) path integral
on a manifold requires that large field fluctuations be suppressed by the (exponential of
the) Euclidean action. For complex metrics coupled to p-form fields, the real part of the
action ought to be positive definite, or more generally bounded from below. Extending this
criterion to fields of different type is more subtle, due to the difficulties in coupling them
consistently to gravity.

In 3 dimensions, the admissibility conditions reduce to [2]

Re (√g) > 0, Re (√gλ−1
i ) > 0, (5.1)

where λi, i = 1, 2, 3 are the eigenvalues of the metric. Applying to (4.2), the first condition
is satisfied since √g = 1

2 . The remaining conditions reduce to the requirement that guu > 0
and that the eigenvalues of the 2D τ, φ submatrix have positive real parts. As shown in [2],
this latter condition is equivalent to gττ > 0. Using (4.2), the admissibility criteria guu > 0,
gττ > 0 then reduce to8

I : (u− r2
+)(u− r2

−) > 0, (5.2)
II : (1− Ω2)u− (r2

+ + r2
−) + 2r+r−Ω > 0. (5.3)

The second condition, which is linear in u, is always satisfied on a half-infinite line in the
u coordinate and can be rephrased as

II :


u > u0 for |Ω| < 1
(r+ ∓ r−)2 < 0 for Ω = ±1
u < u0 for |Ω| > 1

, (5.4)

where u0 is the zero of gττ , namely

u0 = r2
+ + r2

− − 2r+r−Ω
1− Ω2 . (5.5)

We now investigate in which of the regions described above, i.e. (1L, 1M, 1R; 2L,
2M, 2R; 3; 4L, 4R), the conditions I and II are satisfied, possibly upon imposing some
restriction on the angular velocity Ω. In regions 1M, 2M the condition I is violated. In
region 1L one finds that I and II hold simultaneously only if u0 = r2

− and |Ω| < 1, while in
region 1R they hold if u0 = r2

+ and |Ω| > 1. In region 2L, conditions I and II both hold for
any |Ω| > 1, while in region 2R they hold for |Ω| < 1. In region 3, condition II is always
violated in some range of u (namely u < u0 when |Ω| < 1 and u > u0 when |Ω| > 1). In
region 4, taking m = j for definiteness, condition I is obeyed (except at u = m/2). When
Ω < 1, condition II is violated in region 4R for m

2 < u < m
Ω+1 , while for Ω > 1, it is violated

in region 4L for m
Ω+1 < u < m

2 . Thefore both 4L and 4R become admissible in the limit
Ω→ 1. These conclusions are summarized in the following table:

8We note that, for positive u, the second inequality implies the first.
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region admissible if
1L Ω = r+

r−

1M never
1R Ω = r−

r+

2L |Ω| > 1
2M never
2R |Ω| < 1
3 never
4L Ω→ sgn j

m

4R Ω→ sgn j
m

Table 3. Summary of admissible qE metrics.

6 Discussion

Combining the results from the smoothness (table 2) and admissibility (table 3) analy-
ses, we conclude that the smooth, admissible quasi-Euclidean saddles contributing to the
partition function (3.1) are

region smooth & admissible for
1R β = 2πr+

r2
+−r

2
−
,Ω = r−

r+

2R r+ = 0, r− = i, β ∈ R, |Ω| < 1,

In other words, the contributing saddles are the black holes with the standard relations be-
tween β,Ω and m, j, and rotating thermal AdS. Therefore the admissible complex saddles
agree9 with those considered in the more standard approach of going to Euclidean signa-
ture10 by continuing also the angular momentum and the angular potential to imaginary
values [29]. For this agreement it was crucial that admissibility discards the overspinning
metrics. These would be hard to interpret thermodynamically as they are wormhole-like
geometries connecting two asymptotic regions, and do not contribute in the Euclidean ap-
proach. We see it as an encouraging sign that the method passes this nontrivial consistency
check.

The computation of the contribution of these saddles to the partition function (3.1)
proceeds in the standard manner using holographic renormalization [30, 31]. The regular-
ized on-shell action is

Sreg = 1
4πGN

[∫
u≤L2

d3x
√
−g − 1

2

∫
u=L2

d2x
√
−γ(K − 1)

]
, (6.1)

9Similar conclusions were reached, from a quite different approach, in [28].
10In this approach, one finds an additional SL(2,Z) family of Euclidean instantons, which reproduce

the modular properties of a dual Euclidean CFT. However, upon continuing back the angular potential
ΩEucl → iΩ, these would have complex action, making their relevance for real-time thermodynamics unclear.
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where L is a large radius cutoff, to be taken to infinity in the end. Evaluating on a solution,
the divergent terms of order L2 are cancelled and taking L to infinity the result is

iSren = c

12β(2u0 −m). (6.2)

Here, c = 3
2GN and u0 is the starting point of the radial interval u0 ≤ u ≤ L2. For both

saddles, the starting point is at u0 = r2
+, leading to

Z(β,Ω) = eiSren,1R + eiSren,2R = e
c
3

π2
β(1−Ω2) + e

c
12β . (6.3)

The Hawking-Page transition [14] arises from exchange of dominance between these saddles
in (β,Ω) space (see also [32]).
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A Details of the extremal case

Now let us consider the extremal metrics where m = ±j. Without loss of generality (by
making a parity transformation if necessary), we can assume that

m = j (A.1)

so that
T− = 0, T+ = r+

π
= 1
π

√
m

2 . (A.2)

In this case, it turns out that the identifications act on the complex 2×2 group element
G as follows:

I1 : G ∼ e
√

2πσ+Ge
√

2π(σ−+mσ+), (A.3)

I2 : G ∼ e
− i√

2
(1+Ω)βσ+Ge

i√
2

(1−Ω)β(σ−+mσ+)
, (A.4)

where σ± = 1
2(σ1 ± iσ2). Aside from G = 0, these have the following fixed points. I1 has

fixed points only when m = 0, namely at G21 = −G12, G22 = 0. The identification I2 has
fixed loci for Ω = 1, namely at G21 = G22 = 0 and for m = 0 at G21 = 1+Ω

1−ΩG21. This leads
to the smooth quotient spaces given in table 1.

The real slice is in this case defined by taking the group element to be of the form

G = exp (φ− i(1 + Ω)τ)σ+√
2

 1√
a

0
0
√
a

 exp (φ+ i(1− Ω)τ) (σ− +mσ+)√
2

, (A.5)
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where
a = 2u−m = 2(u− r2

+). (A.6)

One sees from (A.5) that in this case the horizon u→ r2
+ corresponds points at infinity in

SL(2,C):
G11 →∞, G22 → 0, G12 →∞, G21 → 0. (A.7)
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