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Abstract: The grain boundaries and dislocations play an important role in understanding the defor-
mation behavior in polycrystalline materials. In this paper, the deformation mechanism of Cu, Ni,
and equimolar Cu-Ni alloy was investigated using molecular dynamic simulation. The interaction
between dislocations and grain boundary motion during the deformation was monitored using the
dislocation extraction algorithm. Moreover, the effect of stacking fault formation and atomic band
structure on the deformation behavior was discussed. Results indicate that dislocations nucleate
around the grain boundary in copper, the deformation in nickel changes from planar slip bands to
wavy bands, and high density of dislocation accumulation as well as numerous kink and jog forma-
tions were observed for the equimolar Cu-Ni alloy. The highest density of the Shockley dislocation
and stacking faults was formed in the equimolar Cu-Ni alloy which results in the appearance of a
huge gliding stage in the stress–strain curve. The grain boundaries act as a sinking source for vacancy
annihilation in Ni and Cu; however, this effect was not observed in an equimolar Cu-Ni alloy. Finally,
radial distribution function was used to evaluate atom segregation in grain boundaries.
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1. Introduction

The mechanical properties of polycrystalline metals depend on their microstructure
such as grain boundaries, dislocation interactions and cross slip behavior during plastic
deformation [1–3]. Conducting experiments at the nanometer scale to understand the
deformation behavior of polycrystals can be time-consuming, expensive, and requires
complex equipment. For this reason, the use of molecular dynamics simulations for better
understanding of the deformation mechanisms at the nanoscale is crucial.

Conventionally, on the study of the deformation behavior in alloys, it has been reported
based on the experimental results that the solute atoms do not dissolve perfectly into
the matrix and create short-range disorder structure. Presence of short-range disorder
atoms in alloys or metals makes the cross slip of dislocations difficult and results in
strain hardening [4,5]. However, performing various simulations on alloys, specifically
nanocrystalline ones, and investigating the mechanism of their deformation behavior, has
rejected this theory and offered a new perspective on the science of investigating the alloy
deformation mechanism. The results of these studies show that when the grain size is larger
than 15 nm, the plastic deformation is based on the traditional Fleischer theory known as
alloy pinning effect. However, when the grain size reduces below 15 nm, grain boundary
sliding and rotation as well as stacking fault formation become the main deformation
mechanisms [6,7].

Investigating the deformation behavior of the Cu-Pb alloy, researchers showed that
solute atoms quickly stiffen the lattice and yield strength of the alloy. In fact, having stiffer
lattice due to the presence of solute atoms makes it more difficult for two grains to deform
and rotate past each other [6]. On the other hand, molecular dynamics simulation of the
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Cu-Sb alloy shows that the formation of unstable stacking faults near the solute atoms leads
to the softening of the alloy [8,9]. It has also been reported that the addition of aluminum
as a solid solution in the copper structure makes the cross slip during the deformation
easier, which causes the work hardening to be dependent on the strain rate [10,11]. In the
study of copper alloy deformation, Szczerba et al. [12] emphasized the dual role of material
stacking fault energy on the activation of twinning and twinning stress of face-centered
cubic (FCC) materials.

Cu-Ni alloys are copper-based solid solutions that are widely used in many industries
including automobile, power generation, marine, jet engine compressors, and aerospace
industry [13]. In this alloy, both constituents—Cu and Ni—form an isomorphous system
without phase precipitation, where the stacking fault energy changes by a factor of three
between pure Cu and Ni [14]. The distribution of solute Ni atoms into the Cu matrix im-
pedes the motion of edge dislocations, researchers’ results have shown that the dislocation
velocity decreases with increasing Ni content [15]. In fact, with high short-range ordering
of Cu-Ni clusters in the Cu, the plastic deformation in the adjacent glide planes is restricted,
which prevents cross slip [16]. In the investigation of the effect of nanoindentation on the
deformation mechanism of Cu-Ni alloy, Vu et al. have reported that the dislocation motion
and rotation of grain boundaries play a significant role in the deformation behavior of
polycrystal alloy [17]. In fact, sliding and twisting of grain boundaries as well as the fusion
of grains results in preventing the spread of strain and stress which considerably increases
the alloy strength [18]. Shinde et al. in the study of the effect of indentation on dislocation
interaction of single crystal Cu-Ni alloy have reported that the equimolar Cu-Ni has a
43% higher hardness value than pure copper. Moreover, the total length of dislocations
for equimolar Cu-Ni is 5% less than that of copper [19]. The formation and interaction
of dislocations such as Perfect, Shockley, Hirth, and stair-rode is the main reason for the
improvement of the tensile stress in Cu-Ni alloy [20].

Various deformation mechanisms have been already reported for copper alloys using
molecular dynamic simulation. However, the literature shows there are limited studies
about dislocation interactions around the grain boundaries during deformation. Therefore,
in this work, the deformation behavior of the copper (Cu), nickel (Ni), and equimolar Cu-Ni
alloy (the most commonly used and easily accessible Cu-Ni alloy [19]) polycrystals con-
taining grains with different orientations have been investigated by developing LAMMPS
simulation code. The deformation mechanism of the polycrystals has been discussed by
tracking the motion of dislocations at the grain boundaries to assess the differences and
similarities of deformation behavior of equimolar Cu-Ni alloy with pure copper and nickel.
On the other hand, the formation of voids, stacking faults, and the structure of atom clusters
among the grain boundary atoms were further evaluated.

2. Simulation Method and Conditions
2.1. Building Polycrystals Structure

The polycrystalline structures of Cu, Ni, and equimolar Cu-Ni alloy were built in a
200 × 200 × 200 Å cells containing 20 grains with different sizes and orientations (Figure 1)
by Atomsk software using the Voronoi tesselation method (VTM) [21]. The first grain was
positioned at the origin (0,0,0) and oriented at X = [100], Y = [010], Z = [001] direction. For
creating the other grains with various orientation, all the grains were set to have [001] axis
aligned with the Z direction, and each grain was rotated randomly around the Z axis. The
grain boundaries were built by inserting 1/2 <110> perfect dislocation between each grain
with different orientations.
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Figure 1. 2D image of the polycrystal structure of (a) Cu, (b) Ni, and (c) equimolar Cu-Ni alloy (the 
copper atoms are shown by the red color and the nickel atoms are shown b blue color). 

The grains were elongated towards the x direction to be able to track the dislocation 
motions more easily when the shear stress was applied in this direction (Figure 2). Each 
polycrystals cell was divided into three parts from bottom to top: fixed atoms, thermal 
control atoms and Newtonian atoms. The fixed atoms consist of 2 layers of atoms, which 
are held in the perfect lattice positions to prevent the cells from moving during the defor-
mation process. The intermediate thermal control atoms consist of 6 layers of atoms, 
which are recalibrated every 5 timestep by the Berendsen thermostat to maintain the sys-
tem temperature within a constant temperature range. The other atoms which are mainly 
the atoms in the middle section of the cell are Newtonian atoms which are set thick enough 
to ensure that they could move easily during deformation. 

 
Figure 2. The polycrystalline structures built for the Cu, Ni, and equimolar Cu-Ni alloy. 

2.2. Simulation of the Deformation 
The molecular dynamic simulation of the deformation process was carried out using 

an open code Large scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [22] 
under NVT thermodynamic conditions for approximately 100 ps. The time step was set to 
1 fs and Leap Frog algorithms were used to determine the velocities at half-integer time 
steps to compute the new positions of atoms [23]. 

The atomic interactions were defined using embedded–atom–method (EAM) poten-
tial [24]. The simulation cell was divided into three sections; the atoms in the upper and 
lower sections were fixed while the atoms in the middle section of the cell could move 
easily during deformation. The energy of the system was minimized before the defor-
mation process. A deformation speed of 0.05 m/s was applied in the upper section as a 
shear stress along the Y axis. 

The dislocation extraction algorithm (DXA) and the common neighbor analysis 
(CNA) technique are adopted to track the motion of grain boundaries, dislocation inter-
action, dislocation length, and stacking faults (SFs) formation. The variations of structural 

Figure 1. 2D image of the polycrystal structure of (a) Cu, (b) Ni, and (c) equimolar Cu-Ni alloy (the
copper atoms are shown by the red color and the nickel atoms are shown b blue color).

The grains were elongated towards the x direction to be able to track the dislocation
motions more easily when the shear stress was applied in this direction (Figure 2). Each
polycrystals cell was divided into three parts from bottom to top: fixed atoms, thermal
control atoms and Newtonian atoms. The fixed atoms consist of 2 layers of atoms, which are
held in the perfect lattice positions to prevent the cells from moving during the deformation
process. The intermediate thermal control atoms consist of 6 layers of atoms, which
are recalibrated every 5 timestep by the Berendsen thermostat to maintain the system
temperature within a constant temperature range. The other atoms which are mainly the
atoms in the middle section of the cell are Newtonian atoms which are set thick enough to
ensure that they could move easily during deformation.
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Figure 2. The polycrystalline structures built for the Cu, Ni, and equimolar Cu-Ni alloy.

2.2. Simulation of the Deformation

The molecular dynamic simulation of the deformation process was carried out using
an open code Large scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [22]
under NVT thermodynamic conditions for approximately 100 ps. The time step was set to
1 fs and Leap Frog algorithms were used to determine the velocities at half-integer time
steps to compute the new positions of atoms [23].

The atomic interactions were defined using embedded–atom–method (EAM) poten-
tial [24]. The simulation cell was divided into three sections; the atoms in the upper and
lower sections were fixed while the atoms in the middle section of the cell could move easily
during deformation. The energy of the system was minimized before the deformation
process. A deformation speed of 0.05 m/s was applied in the upper section as a shear stress
along the Y axis.

The dislocation extraction algorithm (DXA) and the common neighbor analysis (CNA)
technique are adopted to track the motion of grain boundaries, dislocation interaction, dis-
location length, and stacking faults (SFs) formation. The variations of structural parameters
and atomic potential energy in the system were visualized by the Open Visualization Tool
(OVITO) [25,26]. The strain–stress curves were plotted during the simulation, the radial
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distribution function (RDF) was used to analyze the structure of atom clusters among the
grain boundary atoms, and finally the Wigner–Seitz analysis was used to evaluate the
formation of vacancies during the deformation.

3. Results and Discussion
3.1. Nucleation and Growth of Dislocations

Figure 3 shows the snapshot simulation images resulting from the interaction and
movement of dislocations due to the applied shear stress. The green lines show the
Shockley dislocations and the red and blue colors show the perfect dislocations. In all three
polycrystals, the dislocations nucleate from the grain boundaries. However, by increasing
the simulation time, the dislocations in copper almost accumulate and interweave around
the grain boundaries. In nickel, at shorter times, the dislocations are generated around the
grain boundaries with higher density than copper and more bowing effects of the Shockley
dislocations (shown by green color) are observed at upper times. This behavior implies the
fact that the planar slip bands have been formed at the earlier stages of deformation and
afterwards the deformation mechanism is followed by wavy slip bands. It is interesting to
note that in smaller-sized grains, dislocations nuclei can move more easily from the grain
boundary to the grain side. The stress for bowing the dislocation can be obtained from the
following equation [27]:

τc =
µb

2πL
ln
(

L
10b

)
, (1)

where µ is the elastic modulus, b the magnitude of the Burgers vector, L is the distance
between pinning points, and τ, c is the stress necessary for the dislocation to bow out.
Based on this formula, the main reason for observing intense dislocation bowing effect of
nickel compared to copper is nickel’s higher elastic modulus. In the equimolar Cu-Ni alloy
sample at the earlier time steps, unlike in the copper and nickel, the dislocations are not
accumulated around the grain boundaries. Rather, an irregular network of dislocations is
observed inside the grains.

The two main processes that are involved in the dislocation cross slips are as follows:
First, direct dislocation movement across the grain boundaries; second, spreading and
re-nucleation of the dislocations from the remaining dislocations at grain boundaries [28].
The high accumulation of dislocation density inside the grains in equimolar Cu-Ni alloy
occurs due to the formation of numerous shearing bands in different directions toward
the grains. Later in the simulation, when the dislocations cross slip towards the adjacent
grains, the new grain boundary acts as a barrier leading to a higher accumulation of the
dislocations. In all polycrystalline structures, larger grains allow pinned dislocations to
bend more easily than smaller grains, because the stress required for a dislocation pinned
at both ends to propagate is proportional to the inverse of the pinned distance.

In order to understand more clearly which factors accelerate the nucleation of dislo-
cations in equimolar Cu-Ni alloy, the image of the dislocation and atomic structure of the
alloys at the earlier stage of the simulation is shown in Figure 4. Interestingly, three areas
can be accounted for the main driving force of the dislocation nucleation. First are the
smaller-sized grains due to the fact that the stress accumulation is more severe in smaller
grains [29]. Second are triple junction points in grain boundaries (pointed by arrow 1). It
has been experimentally shown that these areas are centers of high hydrostatic compressive
stress which accelerates the dislocation nucleation rate [30]. Third are grain boundaries
with low misorientation (pointed by arrow 2). In Figure 4, two grain boundaries with
high and low crystallographic misorientation have been shown. When the misorientation
between the grains is too high, no dislocations are formed (pointed by arrow 3).



Alloys 2023, 2 81Alloys 2023, 3, FOR PEER REVIEW 5 
 

 

 
Figure 3. Molecular dynamics simulation snapshots from Dislocation extraction algorithm (DXA) 
for Cu at (a1) 0 ps, (a2) 20 ps, (a3) 60 ps, (a4) 100 ps, DXA for Ni at (b1) 0 ps, (b2) 20 ps, (b3) 60 ps, 
(b4) 100 ps, and DXA for equimolar Cu-Ni alloy at (c1) 0 ps, (c2) 20 ps, (c3) 60 ps, (c4) 100 ps. 

The two main processes that are involved in the dislocation cross slips are as follows: 
First, direct dislocation movement across the grain boundaries; second, spreading and re-
nucleation of the dislocations from the remaining dislocations at grain boundaries [28]. 
The high accumulation of dislocation density inside the grains in equimolar Cu-Ni alloy 
occurs due to the formation of numerous shearing bands in different directions toward 
the grains. Later in the simulation, when the dislocations cross slip towards the adjacent 
grains, the new grain boundary acts as a barrier leading to a higher accumulation of the 
dislocations. In all polycrystalline structures, larger grains allow pinned dislocations to 
bend more easily than smaller grains, because the stress required for a dislocation pinned 
at both ends to propagate is proportional to the inverse of the pinned distance. 

In order to understand more clearly which factors accelerate the nucleation of dislo-
cations in equimolar Cu-Ni alloy, the image of the dislocation and atomic structure of the 
alloys at the earlier stage of the simulation is shown in Figure 4. Interestingly, three areas 
can be accounted for the main driving force of the dislocation nucleation. First are the 
smaller-sized grains due to the fact that the stress accumulation is more severe in smaller 
grains [29]. Second are triple junction points in grain boundaries (pointed by arrow 1). It 
has been experimentally shown that these areas are centers of high hydrostatic compres-
sive stress which accelerates the dislocation nucleation rate [30]. Third are grain bounda-
ries with low misorientation (pointed by arrow 2). In Figure 4, two grain boundaries with 
high and low crystallographic misorientation have been shown. When the misorientation 
between the grains is too high, no dislocations are formed (pointed by arrow 3). 

Figure 3. Molecular dynamics simulation snapshots from Dislocation extraction algorithm (DXA)
for Cu at (a1) 0 ps, (a2) 20 ps, (a3) 60 ps, (a4) 100 ps, DXA for Ni at (b1) 0 ps, (b2) 20 ps, (b3) 60 ps,
(b4) 100 ps, and DXA for equimolar Cu-Ni alloy at (c1) 0 ps, (c2) 20 ps, (c3) 60 ps, (c4) 100 ps.

Alloys 2023, 3, FOR PEER REVIEW 6 
 

 

 
Figure 4. Dislocation extraction algorithm and atomic configuration of the equimolar Cu-Ni alloy at 
5 ps. 

3.2. Dislocation Length  
Figure 5 shows the dislocation length of the 1/6 <112> Shockley dislocations for Cu, 

Ni, and equimolar Cu-Ni alloy. The highest Shockley dislocation length was observed in 
equimolar Cu-Ni alloy, and the lowest Shockley dislocation length was observed in Cu. 
In the case of copper, the Shockley dislocation length increases gradually with increasing 
the strain and remains almost steady at strains above 0.3. In nickel, the Shockley disloca-
tion length increases rapidly and remains steady at lower strain compared to copper. The 
same trend was observed in the equimolar Cu-Ni alloy, but, after the rapid increase in the 
Shockley dislocation length at a lower strain, the dislocation length continues to slightly 
increase at higher strain; however, it does so with significantly lower rate.  

 
Figure 5. Shockley dislocation length as a function of strain. 

The existence of interstitial atoms in equimolar Cu-Ni alloy will provide barriers with 
various energies for the dislocation motion, therefore, as a result, dislocation does not 

Figure 4. Dislocation extraction algorithm and atomic configuration of the equimolar Cu-Ni alloy at
5 ps.

3.2. Dislocation Length

Figure 5 shows the dislocation length of the 1/6 <112> Shockley dislocations for Cu,
Ni, and equimolar Cu-Ni alloy. The highest Shockley dislocation length was observed in
equimolar Cu-Ni alloy, and the lowest Shockley dislocation length was observed in Cu. In
the case of copper, the Shockley dislocation length increases gradually with increasing the
strain and remains almost steady at strains above 0.3. In nickel, the Shockley dislocation
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length increases rapidly and remains steady at lower strain compared to copper. The
same trend was observed in the equimolar Cu-Ni alloy, but, after the rapid increase in the
Shockley dislocation length at a lower strain, the dislocation length continues to slightly
increase at higher strain; however, it does so with significantly lower rate.
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The existence of interstitial atoms in equimolar Cu-Ni alloy will provide barriers with
various energies for the dislocation motion, therefore, as a result, dislocation does not move
in one direction and spreads throughout the grains, which finally results in increasing
dislocation length.

Figure 6 shows the variation on the 1/6 <110> stair-rod dislocation length which was
formed in the Cu, Ni, and equimolar Cu-Ni alloy. The trend is very similar to that of the
Shockley dislocation length. It means that the nucleation of the Shockley dislocation plays
an important role for the formation of the stair-rod dislocation. It is worth to mention that
the stair-rod is a Lomer–Cotrell dislocation at the tip of two stacking fault ribbons bordered
on the other side by Shockley partials which requires a higher amount of energy for
movement. It is believed that the presence of atoms of different atomic radius in equimolar
Cu-Ni alloy creates lattice distortion, which can act as an obstacle for dislocations cross slip
and leads to creation of more Lomer–Cotrell dislocation.
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Figure 7 shows the inside view of the dislocation interactions at 100 ps for the equimo-
lar Cu-Ni alloy. When dislocations with different slip systems are mutually parallel, they
react at the intersections of slip planes belonging to different slip systems, which results in
the formation of various junctions. Two main junctions are formed in the structure: Lomer
lock with a Burgers vector of <110> (shown in pink) and Hirth lock with a Burgers vector
of <110> (shown in yellow). The probability of Lomer lock formation is higher than that of
Hirth lock. The results show that the formation of Lomer lock is more pronounced when
the density of Shockley partial dislocations is higher in the structure. On the other hand,
dislocation bowing also increases the possibility for formation of any kind of junctions in
the structure. The junctions in the equimolar Cu-Ni alloy tie together two or more disloca-
tions. The plastic deformation will be more difficult when a higher number of dislocations
are tied together.
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3.3. Stress–Stain Curve

The stress–strain curves of the Ni, Cu, and equimolar Cu-Ni alloy are shown in
Figure 8. In polycrystalline copper, the shear stress increases gradually with increasing
strain. The absence of steady sheer stress at high strain rates implies the fact that the
dislocation density is very low and is not saturated in the structure. In polycrystalline
nickel, however, after 0.2 strain, a sudden increase in the shear stress is observed before
a steady state, and at 0.4 strain, the sheer stress increases gradually with a higher slope.
The shear stress in the equimolar Cu-Ni alloy was higher than in both copper and nickel
at higher strains. The sudden increase in the shear stress at 0.23 strain in this alloy is due
to the dislocation gliding effect. It is believed that a higher number of junctions in the
equimolar Cu-Ni alloy is the main reason for this behavior. On the other hand, in the
equimolar Cu-Ni alloy, the shear stress increases at the strain above 0.45. Based on Figure 3
(C1–C4), the intense bowing effect of dislocation and saturation of dislocation inside the
grains at final time step of the deformation process deactivate the movement of slip plane
which results in high stress at the strain above the 0.45 value.

Surprisingly, despite the fact that stair-rod dislocations form at the lower strain
(Figure 6), the shear stress increases at higher strain, which indicates the fact that the
formation of stair rode dislocations does not immediately affect the shear stress.

Based on the results of the stress–strain curve, it can be said that the hardening
mechanism of the nickel and copper polycrystals is based on the Taylor hardening theory,
which declares that shear stress increases gradually by strain rate [31,32] and there is a
direct relation between the dislocations density and shear stress. However, the deformation
behavior of the equimolar Cu-Ni alloy does not follow this theory.
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3.4. Stacking Faults

The number of stacking faults formed in polycrystalline Cu, Ni, and equimolar Cu-Ni
alloy is shown in Figure 9. The HCP (shown in red) and amorphous structure (shown in
white) are formed more significantly in the equimolar Cu-Ni alloy around the grain bound-
aries. The formation of high-density amorphous structure near to the grain boundaries
in equimolar Cu-Ni alloy indicates that the alloy is resistant to plastic deformation. The
significant width of the stacking faults in the equimolar Cu-Ni alloy is due to the easy
movement of Shockley dislocations which were formed around the grain boundaries and
moved towards the grains at the early stages of the [33,34]. The formation of the stacking
faults also plays a major role for deformation behavior of the alloy because different stack-
ing faults orientations intersect each other and form an obstacle that hinders the movement
of new dislocations. Finally, the number of stacking fault intersections increases until there
is no place left for the movement of dislocations. This is the main reason for the huge
gliding stage that was observed in the strain–stress curve of the equimolar Cu-Ni alloy,
since the dislocation movements were hindered by the stacking faults.
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Figure 9. The microstructure evolution simulation at 100 ps for (a) Cu, (b) Ni, and (c) equimolar
Cu-Ni alloy. The green atoms show FCC structure, the red atoms show HCP structure, and the white
atoms show amorphous structure.

3.5. Vacancy Formation

The number of vacancies formed in Cu, Ni, and equimolar Cu-Ni alloy polycrystals
during the deformation is shown in Figure 10. In the copper at low strain, the number of
vacancies formed in polycrystals increases, and reduces between 0.15–0.3 strain followed
by another increase at higher strain. A similar trend was observed for nickel polycrystals
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with the difference that in the lower strain range (0.04–0.1), a reduction in the number of
vacancies occurs. This is actually due to the fact in these polycrystals, the slip planes are
more active around the grain boundaries (which was already observed by supersaturation
of the dislocation around the grain boundaries) and therefore lead the grain boundaries
to act as an ideal source for the sinking of vacancies. Interestingly, at higher strain, the
number of vacancies formed in each polycrystal structure reaches an almost constant value.
The increment in the number of vacancies in alloy will facilitate the dislocation climbing
process, and as a result, the dislocation length increases, and gliding planes continue their
movement in various directions which leads to the formation of an irregular network
of dislocations.
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3.6. Radial Distribution Function

To clearly understand the ways in which the deformation affects segregation of atoms,
the Radial Distribution Function (RDF) of the Cu-Cu and Ni-Ni atoms pair on polycrystals
was evaluated in grain boundaries network before and after the deformation. Before the
simulation process, the existence of sharp peaks in each polycrystal indicates the crystal
structure. However, increased reduction in the intensity of peaks and broadening effect
indicate atom segregation around the grain boundaries. Similar results have been obtained
by Picard et al. in an investigation of the nickel polycrystal deformation mechanism by ana-
lyzing the radial distribution function in grain boundary network of nickel polycrystals [35].
By comparing the RDF results of the copper and nickel polycrystals, it can be seen that
atom segregation is more pronounced in copper (Figure 11a,b). Interestingly, comparing the
RDF results of the Cu-Cu and Ni-Ni atoms pair in equimolar Cu-Ni alloy shows that Ni-Ni
solute interaction is more intense than that of Cu-Cu inside grain boundaries and Ni solute
atoms have an amorphous arrangement (Figure 11c,d). On the other hand, due to the lesser
reduction in the peak intensity for Cu-Cu and presence of some peaks at higher distance
after the deformation, it can be said that nanoclusters of copper crystal are dispersed inside
the amorphous phase of nickel clusters.
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4. Conclusions

In summary, molecular dynamics simulation was carried out to understand the de-
formation mechanism in Cu, Ni, and equimolar Cu-Ni polycrystalline alloys by tracking
the motion of dislocations around the grain boundaries. The results showed that in the
Cu and Ni polycrystals, the dislocations accumulate near the grain boundaries. However,
high density accumulation of dislocations inside the grains in equimolar Cu-Ni alloy was
observed due to the formation of numerous shearing bands in different directions.

The dislocations begin to nucleate between the grains with almost the same orientation,
the smallest grains, and the points that connect more than two grains. In the nickel
and copper polycrystals, the hardening mechanism is based on the Taylor hardening
theory, which declares that shear stress increases gradually with strain rate. However, the
deformation behavior of the equimolar Cu-Ni alloy does not follow this theory.

Grain boundaries act as an ideal source for sinking of vacancies in copper and nickel
polycrystals, but the number of vacancies formed in the structure raises constantly in the
equimolar Cu-Ni alloy.

The radial distribution function results of the Cu-Cu and Ni-Ni atom pairs in equimolar
Cu-Ni alloy show that nickel atoms segregate more intensely than copper, which shows
that nanoclusters of copper crystal are dispersed inside the amorphous phase of nickel
clusters after the deformation.
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