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Abstract. Optimal replacement of machining cutting tools is a major challenge in today's 
manufacturing industry. Due to the degradation of the tool during machining, late replacement of 
the tool leads to the risk of producing parts that do not meet technical specifications, while early 
replacement increases machine downtime and tool costs. To replace tools at the right time, it is 
necessary to monitor their degradation. Therefore, this paper compares the classification 
performance of different artificial intelligence approaches to classify the condition of cutting tools 
from cutting signals. Different approaches, namely: Artificial Neural Network (ANN), Support 
Vector Classifier (SVC), Random Forest (RF) and k-Nearest Neighbour (k-NN) are tested, and 
their performance is compared. It is highlighted that ANN and RF methods obtain better 
classification performances (88.8% and 86.4%, respectively) than the rest of the approaches 
(80%). Nevertheless, all approaches can monitor the degradation of cutting tools in a satisfactory 
manner (i.e., 80% accuracy). A comparison of training times highlights that training a neural 
network takes longer than the other approaches. However, with the computational power currently 
available, this is not an obstacle for their implementation in real applications as this training can 
still be achieved in a couple of minutes.   
Introduction 
The condition of a cutting tool is of critical importance to the machined surface and the associated 
machining tolerances. A worn tool or a tool in an unsatisfactory condition does not allow the 
creation of machined surfaces of sufficient quality, which in consequence increases the cost of 
production [1]. Different tool replacement policies exist [2], but often tool replacement 
maintenance policies attempt to address this problem by replacing the tool well before its end of 
life which creates waste. This results in higher tool costs and increased machine downtime, further 
increasing production costs. As tool wear is an extremely complex and non-stationary phenomenon 
[3], the determination of the tool condition can be complex. Monitoring the degradation of the tool 
is thus necessary.   

There are two types of monitoring: direct and indirect. The direct approach consists of 
measuring tool wear directly on the tool, but this requires the machining process to be stopped and 
results in increased machine downtime [4]. The indirect approach consists of measuring signals 
during the machining process to try to predict the state of the tool [5]. This has the advantage of 
allowing a continuous machining process with the least intrusive sensor installation possible. A 
review of the type of signals that can be recovered during machining is available in [6]. Several 
indirect monitoring methods exist, but lately, artificial intelligence methods are predominant as 
they can learn from machining data and adjust their prediction on a case-by-case basis. A 
systematic literature review describing all approaches present in the literature shows that there are 
mainly two approaches with AI: classification and regression [7]. Classification aims to monitor 
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the state of the tool via discrete values listing the state of the tool. Regression aims to follow the 
evolution of the tool by directly monitoring the wear. In some applications, it is not necessary to 
know exactly how the tool wear is evolving, so classification methods are used because of their 
ease of understanding.   

In the literature, there are only a few comparisons of performance between different 
classification approaches. These comparisons are often made to highlight the particularity of one 
model compared to another, but a more general comparison is almost never made. This paper, 
therefore, proposes to compare the performance of some common artificial intelligence methods, 
namely: Artificial Neural Network (ANN), Random Forest (RF), Support Vector Classifier (SVC) 
and k-Nearest Neighbour (k-NN) implemented on the same database. The choice of these 
approaches is based on their ease of implementation and their ability to perform a classification 
for this application. All approaches are optimised and tested on identical data that homogeneously 
represents the different degradation states of the tool. The comparison of the quality of the results 
and the efficiency of the approach is realised. 
Methodology 
To compare the performance of the different AI approaches, the database and the experimental 
conditions are described. Signals from the database correlated with tool wear are identified and 
used as input for the different AI approaches. The database is then divided into classes and a split 
between training and test data is made. Finally, all approaches, namely: ANN, RF, SVC and k-
NN, are presented and optimised, and their results are highlighted. A comparison of the results is 
then made. 
Experimental Setup and Database 
The database comes from experimental tests carried out on a CNC lathe (Weiler E35), which 
ensures a constant cutting speed throughout the machining process (Fig. 1). It is used to machine 
(longitudinal turning operation), C45 steel bars at variable cutting speeds with a CNMG120404-
MF3 TP40 tool from SECO. This tool is one of the lower-grade tools to limit the amount of 
material wasted during testing. Table 1 shows the different cutting conditions used during the tests, 
only variations in cutting speeds are considered. The machine is instrumented with a force sensor 
(Kistler 9257B) that collect the cutting forces (Fi) and torques (Mi) during the machining 
operation. The sensor is mounted at the base of the tool and in the machine frame of reference, Fx 
corresponds to the feed force, Fy is the radial force and Fz is the cutting force. This sensor is 
mounted for indirect monitoring, i.e., to be as minimally intrusive as possible. Wear and cutting 
forces are measured every 2.8 minutes (corresponding to one piece). Wear is assessed according 
to ISO 3685 [8], which defines wear as the value of Vb (Fig. 2) measured directly on the tool using 
a microscope (Byameyee EU-1000X 3). Vb is measured as the size of the wear in zone B. This B 
area is located between the corner radius on one side and 1/4 of the wear area (area C where is 
located the notch wear) on the other side (Fig. 2) 

A total of 30 tools are used to create the database, with the degradation of each tool being 
measured 6.4 times on average during its lifetime. The database therefore consists of 192 data 
points evenly distributed over the tool degradation. The measured cutting force corresponds to a 
20 s signal sampled at 10 kHz and is processed to recover statistical and frequency values. The 
statistical analysis corresponds to the calculation of the average, the RMS value and the frequency 
analysis identifies the frequency and the maximum amplitude of the power spectral density. 

To identify the relationships between the signals measured during machining and tool 
degradation, a Spearman correlation analysis is used on all signals. This correlation analysis is 
adapted to the size and non-normality of the data. The correlation analysis shows that the features 
most correlated with wear are the following: Mz RMS (correlation indicator: 0.89), Fx RMS 
(0.87), machining duration (0.84), chip length (total length machined) (0.84) and Fz RMS (0.79). 
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As cutting forces are strongly correlated with tool wear, they will be used in the following as inputs 
for the AI methods. It should be noted that the machining time and the chip length have the same 
correlation score as they are both dependent. The chip length is also dependent on the cutting 
speed. In this case, since only variations in the machining speed are taken into account, this 
indicator allows the method to indicate the change in cutting conditions. 
 

 

 

Fig. 1. Experimental turning setup, the tool is 
mounted into the cutting force and torque 

sensor. 

Fig. 2. Flank wear degradation Vb on the 
flank face. 

 
Table 1. Experimental Cutting Condition. 

Tool n° Feed [mm/rev] Cutting Speed [m/min] Depth of cut [mm] 
1 to 10  0.2 260 1 
11 to 15 0.2 250 1 
16 0.2 240 1 
17 to 20 0.2 265 1 
21 to 30 0.2 Variable: 240 to 260 (for each tool) 1 

 
Features Preparation for Tool Wear Classification 
In a classification problem, it is necessary to define classes whose purpose is to define the different 
possible states of the tool. The degradation of a cutting tool is divided into 3 successive phases 
(Fig. 3): the first phase corresponds to the beginning of the tool's life, it shows little wear but 
degrades rapidly. This phase is generally short in relation to the life of the tool. The second phase 
is the longest and consists of a quasi-linear degradation of the tool, it is a regime phase in which 
the tool will spend most of the time. Finally, the third phase is the end of the tool's life, which can 
last more or less time depending on the cutting conditions.  

Based on the ISO 3685 standard, it is often accepted that the end-of-life criterion for a cutting 
tool is when the size of the flank wear reaches 300 µm [8]. This flank wear is called Vb and is 
presented in Fig. 2. It is therefore proposed that class 1 corresponds to wear between 0 and 150 
µm, class 2 corresponds to a wear between 150 and 300 µm and class 3 corresponds to the end of 
the tool's life with wear exceeding 300 µm. These values (150 and 300 microns) were chosen as 
they are generally used in the literature as end-of-life criteria. 

The database is not uniform across all these classes, indeed, there are significantly more points 
in class 1 than in class 3 for example. To increase the number of points in each class, data 
augmentation is performed. This data augmentation consists of linearly interpolating 2 points of 
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the tool degradation and calculating an intermediate measurement point. This simple type of 
interpolation is sufficient given the number of measurements points in a complete trajectory; the 
interpolation error is low. This increases the number of possible points for training the AI but does 
not change the distribution of points in the different classes (73 % in class 1, 19% in class 2 and 
8% in class 3). Nevertheless, with more data points, there will be more points to propose for 
training AI methods, which generally allows for faster convergence [9]. 

Artificial intelligence methods need training data to learn the relationships between the data and 
test data to verify that the model has learned correctly. It was chosen to select 15 points randomly 
per class to create the test database. For class 3, 15 data points correspond to 40% of the data in 
this class. This value is quite high (usually 25% of the data is used in testing) but this value does 
not impact the results presented in the following. By ensuring that each class contains the same 
number of data points, this ensures that an error in one class has the same overall importance 
regardless of the class. 

 

 

Fig. 3. Typical tool degradation for a given 
cutting condition. 

Fig. 4. Testing data randomly selected and 
their repartition in different classes. 

 
Artificial Neural Network 
Neural networks are certainly the most popular intelligence method. Inspired by the way the brain 
works, this AI can represent highly non-linear relationships between input and output and is 
extensively represented in the literature [10]. There are multiple hyperparameters that influence 
the quality of the results, the most common are: the network architecture, the activation function 
used in each layer, the batch size, and the number of epochs. The most important hyperparameter 
is the network architecture which will create the relationship between the input and output of the 
network and is often chosen by trial and error. Table 2 shows the different hyperparameters used 
to obtain the best classification results. These and all other parameters presented in this paper are 
optimised by testing the influence of each parameter individually. In this case, for example, 
different architectures have been tested but the one chosen is the one that gives the best results. 
The network architecture is presented in Fig. 5. 

The results are presented Fig. 6, the overall accuracy is 88.88%. Class 1 is always correctly 
classified but classes 2 and 3 present an accuracy of 86.7% and 80% respectively.  
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Table 2. Optimized hyperparameters for ANN. 

Hyperparameter Value 
Algorithm TensorFlow (Python) [11] 
Architecture 2 hidden layers each containing 8 neurons  
Activation function  1st layer: Tanh, 2nd layer: Relu, output: Softmax 
Batch size 5 
Epoch 1000 
  
 

 

Fig. 5. Best Artificial Neural Network 
architecture. 

Fig. 6. ANN Confusion matrix – Overall 
accuracy : 88.8 %. 

 
Random Forest 
The random forest classifier is a combination of classical tree classifiers. The Random Forest 
classifier consists at producing a set of tree classifiers (i.e., Number of estimator) to create an 
ensemble of classifiers, called forest [12]. To classify a state, each tree of the forest is interrogated, 
and the most given class is the predicted class (Fig. 7). Combining the results has the advantage of 
being more accurate than if each tree were taken individually, as the probability of a tree being 
wrong is higher than the probability of most trees being wrong. 

Table 3 shows the different hyperparameters used to create the classifier. The number of 
estimators corresponds to the number of trees in the forest. The variation of this value can change 
the accuracy of the approach. The number of 500 is chosen as more estimators do not improve the 
overall accuracy. The maximum complexity of the trees is controlled by the “maximum depth”, 
the variation of this parameter slightly improves the results, a value too low leads to bad accuracy 
while a high value does not improve the results. To measure the quality of a split, the Gini impurity 
criteria is used [13]. 

The results obtained with the combination of hyperparameters previously identified are 
presented Fig. 8. The overall accuracy of the approach is 86.6%. Performance is consistent across 
all classes 2 and 3 with 80% accuracy. 
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Table 3. Optimized hyperparameters for RF. 

Hyperparameter Value 
Algorithm Sci kit Learn (Python) [13] 
Number of estimators 500 
Maximum depth 6 
Criterion Gini 

 

  

Fig. 7. Random Forest principle. Fig. 8. Random Forest Confusion Matrix – 
Overall accuracy: 86.8%. 

Support Vector Classifier 
Support vector machines, and more specifically the support vector classifiers, aim at finding an 
optimal hyperplane to separate different classes of data [14] (Fig. 9). In this application the kernel 
function that defines the different classes is the Radial Basis Function (RBF). This approach uses 
mainly 2 parameters: gamma and C.  Gamma controls the curvature of the data separation and so 
controls the influence of samples selected by the model to be support vectors. The parameter C 
control the error rate by compromising between the correct classification against the maximization 
of the decision function. A compromise between these two parameters allows an efficient 
classification by controlling the shape of the classification area and the influence of outliers. 
Different combinations of parameters were tested but the combination of parameters that gives the 
best results is listed Table 4. 

Fig. 10 shows the results obtained by the approach described above. The overall accuracy is 
80%. Class 1 has no error, class 2 has the highest error rate with an accuracy of 66.7%, and class 
3 has a performance of 73.3%. 

 
Table 4. Optimized hyperparameters for SVC. 

Hyperparameter Value 
Algorithm Sci Kit Learn (Python) [13] 
C 2 
Gamma 1 
Kernel Radial Basis Function 
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Fig. 9. SVC approach, under Creative 
Commons Attribution License [7]. 

Fig. 10. SVC confusion matrix – Overall 
accuracy : 80%. 

k-Nearest Neighbour 
K-Nearest Neighbour in classification uses the k nearest neighbour in the dataset reference of the 
input to determine the class of a new input [15]. The weight of each neighbour generally depends 
on the distance to the new inputs. Fig. 11 shows the example of the classification of a new element 
with a k value of 5. The 5 nearest data items and their distances are used to determine the class of 
the new item. Table 5 shows the most important parameters for this approach: the number of 
neighbour and the weight of the connection. In this approach, the best results were obtained with 
a number of neighbours of 8 and weight depending on the distance.   

Fig. 12 presents the results. The overall accuracy is 80%. Only class 1 is correctly classified, 
class 2 and 3 have 66.7% and 73.3% accuracy respectively. 

 
Table 5. Optimized hyperparameters for k-NN. 

Hyperparameter Value 
Algorithm Sci Kit Learn (Python) [13] 
Number of neighbours 8 
Weight Distance 
Algorithm Auto 

 

 

Fig. 11. k-NN approach with k = 5. Fig. 12. k-NN confusion matrix – Overall 
accuracy: 80% 
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Discussion  
Table 6 compares the results obtained by the different approaches and the one with the highest 
overall score is the ANN method. It can be noted, however, that all approaches score well, with an 
average accuracy above 80%. Each method has its advantages and disadvantages, and the simple 
comparison of results does not allow to highlight them. For example, approaches such as k-Nearest 
Neighbour does not give good results if the dataset is not complete for all cutting conditions. On 
the other hand, approaches such as Neural Networks generally allow for a generalisation of the 
results when faced with never seen before cutting conditions.   

 
Table 6. Comparison of the overall accuracy, training and inference time for different AI 

approach. 

Approach Overall accuracy Training Time Inference Time 
ANN 88.8%

  
84.870s 0.080s 

RF 86.6% 0.650s 0.050s 
SVC 80% <0.008s <0.001s 
k-NN 80% <0.008s <0.001s 
 
An important point when using these approaches is also the computational time and resources 

required to obtain the results. All results presented in this paper are obtained on a single core of an 
Intel I7-9750H @ 2.6 GHz CPU. The different computational times, including training and 
validation are presented in Table 6. The training time considers the approach initialisation and 
computing time to fit the dataset. The inference time refers to the time needed by the approach to 
predict the classes presented in this paper. It is observed that the ANN approach has the longest 
training time compared to the other approaches. This is due to its training scheme. These 
considerations must be considered in relation to the available computational resources. However, 
it is important to note that the training only must be done once. With current computational 
resources, this is not a limitation as even ANN only takes less than 2 minutes to converge. It should 
also be noted that this interpretation is only valid for the amount of data in this database. For larger 
databases, the inference time of methods other than ANNs can increases considerably. In general, 
ANN methods have a longer training time but a relatively short inference time, which is not the 
case for other methods. Since training only needs to be done once, it is preferable to use methods 
with a constant low inference time such as ANN. 

The position of the misclassification is also important. If the state of a tool is misclassified at 
the transition between two classes, this misinterpretation is less critical than if the tool is 
misclassified at middle of the class interval. Indeed, the misclassification reflects an error of some 
µm which does not significantly impact the quality of the machined surface.  
Fig. 13 shows the different positions of the wear incorrectly classified for each approach presented 
in this paper. From the figure, it appears that there are some data that are often misclassified in the 
middle of class 2. On this aspect, ANN has the lowest error than any other approaches. For each 
approach, the transition from class 2 to 3 leads to misclassification of the wear. As stated 
previously, this misclassification is not critical as this is only an error of less than 25 µm in the 
estimation of Vb. SVC is the only approach that misclassified a very worn tool.  
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Fig. 13. Misclassified wear class for different techniques. 

Summary 
Tool condition classification is an effective approach when the tool condition needs to be 
monitored. artificial intelligence methods are suitable for this purpose, but their performance can 
vary depending on the approach used. In this paper, a turning database from which cutting signals 
highly correlated with the wear are used with the following AI classification methods: ANN, RF, 
SVC, and k-NN. The tool condition is divided into 3 classes, each representing a phase of the tool 
life. The classes are defined based on the flank wear degradation of the tool (Vb). Each AI 
approach is optimised to obtain the best achievable results and to be able to compare their relative 
performances. From the results, it appears that the ANN approach has the best accuracy with an 
overall accuracy of 88.8%. The second-best approach that achieves similar results is the RF with 
an accuracy of 86.6%. The other approaches have an average accuracy of 80%. Despite having the 
best accuracy, neural networks have by far the longest learning time (85s) compared to less than 1 
s for all the other approaches. This learning time must be considered as with a larger and more 
complete database, the learning and inference time can greatly grow. Nonetheless, with the actual 
computing power, these considerations should not represent any obstacle to real applications as 
the training can be realised off-line. The results presented in this paper are limited to an ideal case 
to compare the performance of the different approaches presented. In industrial practice, it is 
necessary to consider the changes in cutting conditions as well as other variables that can influence 
the process. Nevertheless, the results of this paper allow a comparison of the approaches presented. 
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