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Abstract. We present a new streaming algorithm to validate JSON doc-
uments against a set of constraints given as a JSON schema. Among the
possible values a JSON document can hold, objects are unordered col-
lections of key-value pairs while arrays are ordered collections of values.
We prove that there always exists a visibly pushdown automaton (VPA)
that accepts the same set of JSON documents as a JSON schema. Lever-
aging this result, our approach relies on learning a VPA for the provided
schema. As the learned VPA assumes a fixed order on the key-value pairs
of the objects, we abstract its transitions in a special kind of graph, and
propose an efficient streaming algorithm using the VPA and its graph
to decide whether a JSON document is valid for the schema. We evalu-
ate the implementation of our algorithm on a number of random JSON
documents, and compare it to the classical validation algorithm.

Keywords: Visibly pushdown automata · JSON · streaming validation

1 Introduction

JavaScript Object Notation (JSON) has overtaken XML as the de facto standard
data-exchange format, in particular for web applications. JSON documents are
easier to read for programmers and end users since they only have arrays and
objects as structured types. Moreover, in contrast to XML, they do not include
named open and end tags for all values, but open and end tags (braces actually)
for arrays and objects only. JSON schema [13] is a simple schema language that
allows users to impose constraints on the structure of JSON documents.

In this work, we are interested in the validation of streaming JSON docu-
ments against JSON schemas. Several previous results have been obtained about
the formalization of XML schemas and the use of formal methods to validate
XML documents (see, e.g., [5,15,16,18,24,25]). Recently, a standard to formal-
ize JSON schemas has been proposed and (hand-coded) validation tools for such
schemas can be found online [13]. Pezoa et al, in [19], observe that the standard
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of JSON documents is still evolving and that the formal semantics of JSON
schemas is also still changing. Furthermore, validation tools seem to make differ-
ent assumptions about both documents and schemas. The authors of [19] carry
out an initial formalization of JSON schemas into formal grammars from which
they are able to construct a batch validation tool from a given JSON schema.

In this paper, we rely on the formalization work of [19] and propose a stream-
ing algorithm for validating JSON documents against JSON schemas. To our
knowledge, this is the first JSON validation algorithm that is streaming. For
XML, works that study streaming document validation base such algorithms
on the construction of some automaton (see, e.g., [25], for XML). In [7], we
first experimented with one-counter automata for this purpose. We submit that
visibly-pushdown automata (VPAs) are a better fit for this task — this is in
line with [15], where the same was proposed for streaming XML documents. In
contrast to one-counter automata,3 we show that VPAs are expressive enough
to capture the language of JSON documents satisfying any JSON schema.

More importantly, we explain that active learning à la Angluin [4] is a good
alternative to the automatic construction of such a VPA from the formal seman-
tics of a given JSON schema. This is possible in the presence of labeled examples
or a computer program that can answer membership and (approximate) equiv-
alence queries about a set of JSON documents. This learning approach has two
advantages. First, we derive from the learned VPA a streaming validator for
JSON documents. Second, by automatically learning an automaton representa-
tion, we circumvent the need to write a schema and subsequently validate that
it represents the desired set of JSON documents. Indeed, it is well known that
one of the highest bars that users have to clear to make use of formal methods is
the effort required to write a formal specification, in this case, a JSON schema.

Contributions. We present a VPA active learning framework to achieve what was
mentioned above — though we fix an order on the keys appearing in objects.
The latter assumption helps our algorithm learn faster. Secondly, we show how to
bootstrap the learning algorithm by leveraging existing validation and document-
generation tools to implement approximate equivalence checks. Thirdly, we de-
scribe how to validate streaming documents using our fixed-order learned au-
tomata — that is, our algorithm accepts other permutations of keys, not just
the one encoded into the VPA. Finally, we present an empirical evaluation of
our learning and validation algorithms, implemented on top of LearnLib [17].

All contributions, while complementary, are valuable in their own right. First,
our learning algorithm for VPAs is a novel gray-box extension of TTT [9] that
leverages side information about the language of all JSON documents. Second,
our validation algorithm that uses a fixed-order VPA is novel and can be applied
regardless of whether the automaton is learned or constructed from a schema.
For the validation algorithm, we developed the concept of key graph, which allows
us to efficiently realize the validation no matter the key-value order in the docu-

3By nesting objects and arrays, we obtain a set of JSON documents encoding
{anbmcmdn | n,m ∈ N}, a context-free language that requires two counters.
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ment, and might be of independent interest for other JSON-analysis applications
using VPAs. Finally, we implemented our own batch validator to facilitate ap-
proximating equivalence queries as required by our learning algorithm. Both the
new validator and the equivalence oracle are efficient, open-source, and easy to
modify. We strongly believe the latter can be re-used in similar projects aiming
to learn automata representations of sets of JSON documents.

A long version of this work is on arXiv: https://arxiv.org/abs/2211.08891.

2 Visibly Pushdown Languages

First, we recall the definition VPAs [3] and state some of their properties. We
also recall how they can be actively learned following Angluin’s approach [4].

Visibly Pushdown Automata An alphabet Σ is a finite set whose elements
are called symbols. A word w over Σ is a finite sequence of symbols from Σ,
with the empty word denoted by ε. The length of w is denoted |w|; the set of
all words, Σ∗. Given two words v, w ∈ Σ∗, v is a prefix (resp. suffix ) of w if
there exists u ∈ Σ∗ such that w = vu (resp. w = uv), and v is a factor of w if
there exist u, u′ ∈ Σ∗ such that w = uvu′. Given L ⊆ Σ∗, called a language, we
denote by Pref(L) (resp. Suff(L)) the set of prefixes (resp. suffixes) of words of
L. Given a set Q, we write IQ for the identity relation {(q, q) | q ∈ Q} on Q.

VPA [3] are particular pushdown automata that we recall in this section.
The pushdown alphabet, denoted Σ̃ = (Σc, Σr, Σi), is partitioned into pairwise
disjoint alphabets Σc, Σr, Σi such that Σc (resp. Σr, Σi) is the set of call sym-
bols (resp. return symbols, internal symbols). In this paper, we work with the
particular alphabet of return symbols Σr = {ā | a ∈ Σc}. For any such Σ̃, we
denote by Σ the alphabet Σc ∪Σr ∪Σi. Given a pushdown alphabet Σ̃, the set
WM(Σ̃) of well-matched words over Σ̃ is defined:

– ε ∈ WM(Σ̃), and a ∈ WM(Σ̃) for all a ∈ Σi,
– if w,w′ ∈ WM(Σ̃), then ww′ ∈ WM(Σ̃),
– if a ∈ Σc, w ∈ WM(Σ̃), then awā ∈ WM(Σ̃).

Also, the call/return balance function β : Σ∗ → Z is defined as β(ε) = 0 and
β(ua) = β(u) + x with x being 1, −1, or 0 if a is in Σc, Σr, or Σi respectively.
In particular, for all w ∈ WM(Σ̃), we have β(u) ≥ 0 for each prefix u of w
and β(u) ≤ 0 for each suffix u of w. Finally, the depth d(w) of a well-matched
word w is equal to max{β(u) | u ∈ Pref({w})}, that is, the maximum number
of unmatched call symbols among the prefixes of w.

Definition 1. A visibly pushdown automaton (VPA) over a pushdown alphabet
Σ̃ is a tuple (Q, Σ̃, Γ, δ,QI , QF ) where Q is a finite non-empty set of states,
QI ⊆ Q is a set of initial states, QF ⊆ Q is a set of final states, Γ is a stack
alphabet, and δ is a finite set of transitions of the form δ = δc ∪ δr ∪ δi where
δc ⊆ Q×Σc ×Q×Γ is the set of call transitions, δr ⊆ Q×Σr ×Γ ×Q is the
set of return transitions, and δi ⊆ Q×Σi ×Q is the set of internal transitions.
The size of A is denoted by |Q|, and its number of transitions by |δ|.

https://arxiv.org/abs/2211.08891
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Let us describe the transition system TA of a VPA A whose vertices are con-
figurations. A configuration is a pair ⟨q, σ⟩ where q ∈ Q is a state and σ ∈ Γ ∗ a
stack content. A configuration is initial (resp. final) if q ∈ QI (resp. q ∈ QF ) and

σ = ε. For a ∈ Σ, we write ⟨q, σ⟩ a−→ ⟨q′, σ′⟩ in TA if there is either a call tran-
sition (q, a, q′, γ) ∈ δc verifying σ′ = γσ,4 or a return transition (q, a, γ, q′) ∈ δr
verifying σ = γσ′, or an internal transition (q, a, q′) ∈ δi such that σ′ = σ.

The transition relation of TA is extended to words in the usual way. We say
that A accepts a word w ∈ Σ∗ if there exists a path in TA from an initial config-
uration to a final configuration that is labeled by w. The language of A, denoted
by L(A), is defined as L(A) = {w ∈ Σ∗ | ∃q ∈ QI , ∃q′ ∈ QF , ⟨q, ε⟩

w−→ ⟨q′, ε⟩},
i.e., the set of all words accepted by A. Any language accepted by some VPA
is a visibly pushdown language (VPL). Notice that such a language is composed
of well-matched words only.5 Given a VPA A over Σ̃, the reachability relation
ReachA of A is ReachA = {(q, q′) ∈ Q2 | ∃w ∈ WM(Σ̃), ⟨q, ε⟩ w−→ ⟨q′, ε⟩}.

Finally, we say that p ∈ Q is a bin state if there exists no path in TA of the

form ⟨q, ε⟩ w−→ ⟨p, σ⟩ w′

−→ ⟨q′, ε⟩ with q ∈ QI and q′ ∈ QF . If a VPA A has bin
states, those states can be removed from Q as well as the transitions containing
bin states without modifying the accepted language.

Minimal Deterministic VPAs Given a VPA A = (Q, Σ̃, Γ, δ,QI , QF ), we say
that it is deterministic (det-VPA) if |QI | = 1 and A does not have two distinct
transitions with the same left-hand side. By left-hand side, we mean (q, a) for a
call transition (q, a, q′, γ) ∈ δc or an internal transition (q, a, q′) ∈ δi, and (q, a, γ)
for a return transition (q, a, γ, q′) ∈ δr.

Theorem 1 ( [3,32]). For any VPA A over Σ̃, one can construct a det-VPA

B over Σ̃ such that L(A) = L(B). Moreover, the size of B is in O(2|Q|2) and the

size of its stack alphabet is in O(|Σc| · 2|Q|2).

Proof. Let us briefly recall this construction. Let A = (Q, Σ̃, Γ, δ,QI , QF ). The
states of B are subsets R of the reachability relation ReachA of A and the
stack symbols of B are of the form (R, a) with R ⊆ ReachA and a ∈ Σc. Let
w = u1a1u2a2 . . . unanun+1 be such that n ≥ 0 and ui ∈ WM(Σ̃), ai ∈ Σc

for all i. That is, we decompose w in terms of its unmatched call symbols.
Let Ri be equal to {(p, q) | ⟨p, ε⟩ ui−→ ⟨q, ε⟩} for all i. Then after reading w,
the det-VPA B has its current state equal to Rn+1 and its stack containing
(Rn, an) . . . (R2, a2)(R1, a1). Assume we are reading the symbol a after w, then
B performs the following transition from Rn+1: (1) if a ∈ Σc, then push (Rn+1, a)
on the stack and go to the state R = IQ (a new unmatched call symbol is read);
(2) if a ∈ Σi, then go to the state R = {(p, q) | ∃(p, p′) ∈ Rn+1, (p

′, a, q) ∈ δi}
(un+1 is extended to the well-matched word un+1a); (3) if a ∈ Σr, then pop
(Rn, an) from the stack if ān = a, and go to the state

R = {(p, q) | ∃(p, p′) ∈ Rn, (p
′, an, r

′, γ) ∈ δc, (r
′, r) ∈ Rn+1, (r, a, γ, q) ∈ δr}

4The stack symbol γ is pushed on the left of σ.
5The original definition of VPA [3] allows acceptance of ill-matched words.
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(the call symbol an is matched with the return symbol a = ān, leading to the
well-matched word unanun+1a). Finally the initial state of B is IQI

and its final
states are sets R containing some (p, q) with p ∈ QI and q ∈ QF . ⊓⊔

Though a VPL L in general does not have a unique minimal det-VPA A
accepting L, imposing the following subclass leads to a unique minimal acceptor.

Definition 2 ( [2, 9]). A 1-module single entry VPA6 (1-SEVPA) is a det-
VPA A = (Q, Σ̃, Γ, δ,QI = {q0}, QF ) such that its stack alphabet Γ is equal to
Q × Σc, and all its call transitions (q, a, q′, γ) ∈ δc are such that q′ = q0 and
γ = (q, a).

Theorem 2 ( [2]). For any VPL L, there exists a unique minimal (with regards
to the number of states) 1-SEVPA accepting L, up to a renaming of the states.7

Learning VPAs Let us recall the concept of learning a deterministic finite
automaton (DFA), as introduced in [4]. Let L be a regular language over an
alphabet Σ. The task of the learner is to construct a DFA H such that L(H) =
L by interacting with the teacher. The two possible types of interactions are
membership queries (does w ∈ Σ∗ belong to L?), and equivalence queries (does
the DFA H accept L?). For the latter type, if the answer is negative, the teacher
also provides a counterexample, i.e., a word w such that w ∈ L ⇔ w /∈ L(H). The
so-called L∗ algorithm of [4] learns at least one representative per equivalence
class of the Myhill-Nerode congruence of L [8] from which the minimal DFA
D accepting L is constructed. This learning process terminates and it uses a
polynomial number of membership and equivalence queries in the size of D, and
in the length of the longest counterexample returned by the teacher [4].

In [9], an extension of Angluin’s learning algorithm is given for VPLs. The
Myhill-Nerode congruence for regular languages is extended to VPLs as follows.
Given a pushdown alphabet Σ̃ and a VPL L over Σ̃, we consider the set of context
pairsCP(Σ̃) = {(u, v) ∈ (WM(Σ̃) ·Σc)

∗ × Suff(WM(Σ̃)) | β(u) = −β(v)},
and we define the equivalence relation ≃L⊆ WM(Σ̃) ×WM(Σ̃) [2, 9] such that
w ≃L w′ if and only if ∀(u, v) ∈ CP(Σ̃), uwv ∈ L ⇔ uw′v ∈ L. The minimal
1-SEVPA accepting L as described in Theorem 2 is constructed from ≃L such
that its states are the equivalence classes of ≃L.

Theorem 3 ( [9]). Let L be a VPL over Σ̃ and n be the index of ≃L. queries
and a number of membership queries polynomial in n, |Σ|, and log ℓ, where ℓ is
the length of the longest counterexample returned by the teacher.

The learning process designed in [9] extends to VPLs the Ttt algorithm pro-
posed in [10] for regular languages. Ttt improves the efficiency of the L∗ algo-
rithm by eliminating redundancies in counterexamples provided by the teacher.

6The definitions of 1-SEVPA in [2] and [9] differ slightly. We follow the one in [9].
7This 1-SEVPA may be exponentially bigger than the size of a VPA accepting L.
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3 JSON Format

In this section, we describe JSON documents [6] and JSON schemas [13] that
impose some constraints on the structure of JSON documents. We also present
the abstractions we make for the purpose of this paper.

JSON Documents We describe the structure of JSON documents. Our presen-
tation is inspired by [19], though some details are skipped for readability (see [14]
for a full description). The JSON format defines different types of JSON values :

– true, false, null are JSON values. Any decimal number (positive, negative)
is a JSON value, called a number. In particular any number that is an integer
is called an integer. Any finite sequence of characters starting and ending
with " is a string value. All those values are called primitive values.

– If v1, v2, . . . , vn are JSON values and k1, k2, . . . , kn are pairwise distinct
string values, then {k1 : v1, k2 : v2, . . . , kn : vn} is a JSON value, called an
object. Each ki :vi is called a key-value pair such that ki is the key. The
collection of these pairs is unordered.

– If v1, v2, . . . , vn are JSON values, then [v1, v2, . . . , vn] is a JSON value, called
an array. Each vi is an element and the collection thereof is ordered.

In this work, JSON documents are supposed to be objects.8 One can use JSON
pointers to navigate through a document, e.g., if J is an object and k is a key,
then J [k] is the value v such that the key-value pair k :v appears in J .

In this paper, we consider somewhat abstract JSON documents. We see JSON
documents as well-matched words over the pushdown alphabet Σ̃JSON that we
describe hereafter. We abstract all string values as s, and all numbers as n (as
i when they are integers). We denote by ΣpVal = {true, false, null, s, n, i}
the alphabet composed of the six primitive values. Concerning the key-value
pairs appearing in objects, each key together with the symbol “:” following the
key is abstracted as an alphabet symbol k. We assume knowledge of a finite
alphabet Σkey of keys. We define the pushdown alphabet Σ̃JSON = (Σc, Σr, Σi)
withΣi = Σkey∪ΣpVal∪{#}, where # is used in place of the comma; Σc = {≺,⊏},
where ≺ (resp. ⊏) is used in place of “{” (resp. “[”); and Σr = {≻,⊐}, with
≺ = ≻ and ⊏ = ⊐. We denote by ΣJSON the set Σc ∪Σr ∪Σi.

Example 1. An example of a JSON document is given in Listing 1. We can see
that this document is an object containing three keys: "title", whose associated
value is a string value; "keywords", whose value is an array containing string
values; and "conf", whose value is an object. This inner object contains two keys:
"name", whose value is a string value; "year", whose value is an integer. The
pointer J[conf][name], where J is the root of the document, retrieves the value
"TACAS". The JSON document is abstracted as the word ≺k1s#k2⊏s#s#s⊐#
k3≺k4s#k5i≻≻ ∈ WM(Σ̃JSON) where Σkey contains the keys ki, i ∈ {1, . . . , 5}.

8In [6], a JSON document can be any JSON value and duplicated keys are allowed
inside objects. In this paper, we follow what is commonly used in practice: JSON
documents are objects, and keys are pairwise distinct inside objects.
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1 { "title": "Validating Streaming JSON Documents with Learned VPAs",

2 "keywords": ["VPA", "JSON documents", "streaming validation"],

3 "conf": { "name": "TACAS", "year": 2023 }
4 }

Listing 1: A JSON document.

1 { "type": "object",

2 "required": ["title", "conf"],

3 "properties": {
4 "title": { "type": "string" },
5 "keywords": { "type": "array", "items": { "type": "string" } },
6 "conf": {
7 "type": "object",

8 "required": ["name", "year"],

9 "properties":{ "name":{"type": "string"},"year":{"type": "integer"}}}}}

Listing 2: A JSON schema.

JSON Schemas A JSON schema can impose some constraints on JSON doc-
uments by specifying any of the types of JSON values that appear in those
documents. We say that a JSON document satisfies (or is valid for) the schema
if it verifies the constraints imposed by this schema. We denote by L(S) the set
of documents that are valid for S. In this section, we give a simplified presen-
tation of JSON schemas and refer to [13] for a complete description and to [19]
for a formalization (i.e. a formal grammar with its syntax and semantics).

A JSON schema is itself a JSON document that uses several keywords that
help shape and restrict the set of JSON documents that this schema specifies. As
we abstract JSON documents, JSON schemas we work on are also abstracted.
We do not consider the restrictions that can be imposed on string values and
numbers, for instance. We give here a few examples. See [13] for more details.

– Within object schemas, restrictions can be imposed on the key-value pairs
of the objects, e.g., the value associated with some key has itself to satisfy a
certain schema, or some particular keys must be present in the object.

– Within array schemas, it can be imposed that all elements of the array satisfy
a certain schema, or that the array has a minimum/maximum size.

– Schemas can be combined with Boolean operations, e.g., a JSON document
must satisfy a conjunction of several schemas.

– A schema can be defined as one referred to by a JSON pointer. This allows
a recursive structure for the JSON documents satisfying a certain schema.

Example 2. The schema from Listing 2 describes objects that can have three
keys: "title", whose associated value must be a string value; "keywords", an
array of strings; and "conf", an object. Among these, "title" and "conf" are
required. The JSON document of Example 1 satisfies this JSON schema.

Under these abstractions, we can always construct a VPA that accept the
same set of JSON documents than a schema S, as shown in the following the-
orem. We also extend this construction to the case where we fix an order <
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on Σkey and consider the set L<(S) of documents valid for S whose key order
inside objects respects this order <. The main idea of the proof is to define a
formalism of JSON schemas as extended context-free grammars, and show that
we can construct a VPA from such a grammar.

Theorem 4. Let S be a JSON schema. Then, there exists a VPA A such that
L(A) is the set L(S) of documents valid with regards to S. Moreover, for any
order < of Σkey, there exists a VPA B such that L(B) = L<(S).

Our proof does not give a construction of the grammar from the schema S.
The grammar depends on the formal semantics of JSON schemas which are
still changing and being debated. Thus, to be more robust to changes in the
semantics, we prefer to learn the minimal 1-SEVPA B accepting L<(S) given
a fixed order <, in the sense of Theorem 3.9 For learning, equivalence queries
require to generate a certain number of random JSON documents.10 If S and
the learner’s hypothesis H disagree on a document, we have a counterexample.
Otherwise, we say thatH is correct. In both membership and equivalence queries,
we only accept documents whose key order inside objects satisfy the order <. The
randomness used in the equivalence queries implies that the learned 1-SEVPA
may not exactly accept L<(S). Setting the number of generated documents to be
large would help reducing the probability that an incorrect 1-SEVPA is learned.

4 Validation of JSON Documents

For this section, let us fix a schema S, an order < on Σkey, and a 1-SEVPA A =

(Q, Σ̃JSON, Γ, δ, {q0}, QF ) accepting L<(S). We present a streaming algorithm to
decide if a document J is in L(S). By “streaming”, we mean an algorithm that
processes the document in a single pass, symbol by symbol. Our new approach is
as follows. We learn A such that L(A) = L<(S). As L<(S) ≠ L(S), we design an
algorithm that uses A in a clever way to allow arbitrary key orders in documents
to validate. To do this, we use a key graph defined in the sequel.

Key Graph In this section, w.l.o.g. we suppose that A has no bin states. Let
TA be the transition system of A. We explain how to associate to A its key graph
GA: an abstraction of the paths of TA labeled by the contents of the objects
appearing in words of L<(S). This graph is essential in our validation algorithm.

Definition 3. The key graph GA of A has:

– the vertices (p, k, p′) with p, p′ ∈ Q and k ∈ Σkey if there exists in TA a path

⟨p, ε⟩ kv−→ ⟨p′, ε⟩ with v ∈ ΣpVal ∪ {auā | a ∈ Σc, u ∈ WM(Σ̃JSON)},11

9We use this automaton in the next section for the validation of JSON documents.
We do not use a 1-SEVPA for L(S) as it could be exponentially larger.

10It is common to proceed this way in automata learning, as explained in [4, Sec. 4].
11Notice that each vertex (p, k, p′) of GA only stores the key k and not the word kv.
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q0

q1 q2 q3 q4

q5 q6 q7

q8q9q10q11

title

s # conf

name s #

year

i

≻
(q4,≺)

≻
(q0,≺)

Fig. 1: A 1-SEVPA for the schema from
Listing 2, without the key keywords.

q0, title, q2

q3, conf, q10

q0, name, q6

q7, year, q9

Fig. 2: The key graph for the 1-
SEVPA from Figure 1.

– the edges ((p1, k1, p
′
1), (p2, k2, p

′
2)) if there exists (p′1,#, p2) ∈ δi.

We have the following property.

Lemma 1. There exists a path ((p1, k1, p
′
1) . . . (pn, kn, p

′
n)) in GA with p1 = q0

if and only if there exist a factor u of a word in L<(S) such that u = k1v1# . . .#

knvn where each kivi is a key-value pair, and a path ⟨q0, ε⟩
u−→ ⟨p′n, ε⟩ in TA that

decomposes as ⟨pi, ε⟩
kivi−−→ ⟨p′i, ε⟩, ∀i ∈ {1, . . . , n} and ⟨p′i, ε⟩

#−→ ⟨pi+1, ε⟩, ∀i ∈
{1, . . . , n − 1}. Furthermore, there is no path ((p1, k1, p

′
1) . . . (pn, kn, p

′
n)) such

that ki = kj for some i ̸= j. That is, GA contains a finite number of paths.

Hence, paths in GA focus on contents of objects being part of JSON documents
in L<(S). Moreover, they abstract paths in TA in the sense that only keys ki
are stored and the subpaths labeled by the values vi are implicit.

Example 3. Consider the schema from Listing 2, without the key keywords. A
1-SEVPA A accepting L<(S) is given in Figure 1. For clarity, call transitions12

and the bin state are not represented. In Figure 2, we depict its corresponding

key graph GA. Since we have the path ⟨q0, ε⟩
title s−−−−→ ⟨q2, ε⟩ in TA, the triplet

(q0, title, q2) is a vertex of GA. Likewise, (q0, name, q6) and (q7, year, q9) are ver-

tices. As we have the path ⟨q4, ε⟩
≺−→ ⟨q0, (q4,≺)⟩ name s # year i−−−−−−−−−−→ ⟨q9, (q4,≺)⟩ ≻−→

⟨q10, ε⟩, (q3, conf, q10) is also a vertex of GA. Finally, as ⟨q2, ε⟩
#−→ ⟨q3, ε⟩, we

have an edge from (q0, title, q2) to (q3, conf, q10).

Computing the key graph can be done in polynomial time by first computing
the reachability relation ReachA. From this relation, the vertices can be easily
found. Since the edges require to check whether a transition reading # exists, it
is obvious that it can be done in polynomial time.

Validation Algorithm In this section, we provide a streaming algorithm that
validates JSON documents against a given JSON schema S.

Given a word w ∈ Σ∗
JSON \ {ε}, we want to check whether w ∈ L(S). The

main difficulty is that the key-value pairs inside an object are arbitrarily ordered
in w while a fixed key order < is encoded in the 1-SEVPA A (L(A) = L<(S)).

12Recall the form of call transitions for 1-SEVPAs, see Definition 2.
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Our validation algorithm is inspired by the algorithm computing a det-VPA
equivalent to some given VPA [3] (see Theorem 1 and its proof) and uses the
key graph GA to treat arbitrary orders of the key-value pairs inside objects.

During the reading of w ∈ Σ∗
JSON \ {ε}, in addition to checking whether

w ∈ WM(Σ̃JSON), the algorithm updates a subset R ⊆ ReachA and modifies the
content of a stack Stk (push, pop, modify the element on top of Stk).

First, let us explain the information stored in R. Assume that we have read
the prefix zau of w such that a ∈ Σc is the last unmatched call symbol (thus
za ∈ (WM(Σ̃JSON) ·Σc)

∗ and u ∈ WM(Σ̃JSON)).

– If a is the symbol ⊏, then we have R = {(p, q) | ⟨p, ε⟩ u−→ ⟨q, ε⟩}.
– If a is the symbol ≺, then we have u = k1v1 # k2v2 # . . . kn−1vn−1 # u′

such that u′ ∈ WM(Σ̃JSON) and u′ is prefix of knvn, where each kivi is a

key-value pair. Then R = {(p, q) | ⟨p, ε⟩ u′

−→ ⟨q, ε⟩}.

In the first case, by using R as defined previously, we adopt the same approach
as for the determinization of VPAs. In the second case, with u, we are currently
reading the key-value pairs of an object in some order, not necessarily the one
encoded in A. In this case the set R is focused on the currently read key-value
pair knvn, that is, on the word u′. After reading of the whole object ≺k1v1 #
k2v2 # . . .≻, we will use the key graph GA to update the current set R.

Second, an element stored in the stack Stk is either a pair (R,⊏), or a 5-tuple
(R,≺,K, k,Bad), where R is a set as described previously, K ⊆ Σkey is a subset
of keys, k ∈ Σkey is a key, and Bad is a set containing some vertices of GA.

13

We now detail our streaming validation algorithm.14 Before reading w, we
initialize R to the set I{q0} and Stk to the empty stack. Let us explain how to
update the current set R and the current content of the stack Stk while reading
the input word w. Suppose that we are reading the symbol a in w. In some cases
we will also peek the symbol b following a (lookahead of one symbol).

Case (1) Suppose that a is the symbol ⊏, i.e., we start an array. Hence (R,⊏)
is pushed on Stk and R is updated to RUpd = I{q0}. We thus proceed as in the
proof of Theorem 1 (with I{q0} instead of IQ, since A is a 1-SEVPA12).

Case (2) Suppose that a ∈ Σi and⊏ appears on top of Stk. We are thus reading
the elements of an array. Hence R is updated to RUpd = {(p, q) | ∃(p, q′) ∈
R, (q′, a, q) ∈ δi}. Again we proceed as in the proof of Theorem 1.

Case (3) Suppose that a is the symbol ⊐. This means that we finished reading
an array. If the stack is empty or its top element contains ≺, then w ̸∈ L(S) and
we stop the algorithm. Otherwise (R′,⊏) is popped from Stk and R is updated
to RUpd = {(p, q) | ∃(p, p′) ∈ R′, (p′,⊏, q0, γ) ∈ δc, (q0, r) ∈ R, (r,⊐, γ, q) ∈ δr},
as in the proof of Theorem 1.

Case (4) Suppose that a is the symbol ≺.

13In the particular case of the object ≺≻, the 5-tuple (R,≺,K, k,Bad) is replaced
by (R,≺). This situation will be clarified during the presentation of our algorithm.

14Note that the algorithm assumes we have a 1-SEVPA.
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– Let us first consider the particular case where the symbol b following ≺ is
equal to ≻, meaning that we will read the object ≺≻. In this case, (R,≺) is
pushed on Stk and R is updated to RUpd = I{q0} as in Case (1).

– Otherwise, if b belongs to Σkey, we begin to read a (non-empty) object whose
treatment is different from that of an array as its key-value pairs can be read in
any order. Then, R is updated to RUpd = IPb

where Pb = {p ∈ Q | ∃(p, b, p′) ∈
GA}, and (R,≺,K, b,Bad) is pushed on Stk such that K is the singleton {b} and
Bad is the empty set. The 5-tuple pushed on Stk indicates that the key-value
pair that will be read next begins with key b; moreover K = {b} because this
is the first pair of the object. The meaning of Bad will be clarified later. The
updated set RUpd is equal to the identity relation on Pb since after reading ≺,
we will start reading a key-value pair whose abstracted state in GA can be any
state from Pb. Later while reading the object whose reading is here started, we
will update the 5-tuple on top of Stk as explained below.

– Finally, it remains to consider the case where b ̸∈ Σkey ∪ {≻}. In this final
case, we have that w ̸∈ L(S) and we stop the algorithm.

Case (5) Suppose that a ∈ Σi \ {#} and ≺ appears on top of Stk. Therefore,
we are currently reading a key-value pair of an object. Then R is updated to
RUpd = {(p, q) | ∃(p, q′) ∈ R, (q′, a, q) ∈ δi}.
Case (6) Suppose that a is the symbol # and ≺ appears on top of Stk. This
means that we just finished reading a key-value pair whose key k is stored in the
5-tuple (R′,≺,K, k,Bad) on top of Stk, and that another key-value pair will be
read after symbol #. The set K in (R′,≺,K, k,Bad) stores all the keys of the
key-values pairs already read including k.

– If the symbol b following # does not belong to Σkey, then w ̸∈ L(S) and we
stop the algorithm.

– Otherwise, if b belongs to K, this means that the object contains twice the
same key, that is, w ̸∈ L(S), and we also stop the algorithm.

– Otherwise, the set R is updated to RUpd = IPb
(as we begin the reading of

a new key-value pair whose key is b) and the 5-tuple (R′,≺,K, k,Bad) on top
of Stk is updated such that (i) K is replaced by K ∪ {b}, (ii) k is replaced by
b, and (iii) all vertices (p, k, p′) of GA such that (p, p′) ̸∈ R are added to the set

Bad . Recall that the vertex (p, k, p′) of GA is a witness of a path ⟨p, ε⟩ kv−→ ⟨p′, ε⟩
in TA for some key-value pair kv. Hence by adding this vertex (p, k, p′) to Bad ,
we mean that the pair that has just been read does not use such a path.

Case (7) Suppose that a is the symbol ≻. Therefore we end the reading of
an object. If the stack is empty or its top element contains ⊏, then w ̸∈ L(S)
and we stop the algorithm. Otherwise the top of Stk contains either (R′,≺) or
(R′,≺,K, k,Bad) that we pop from Stk.

– If (R′,≺) is popped, then we are ending the reading of the object ≺≻.
Hence, we proceed as in Case (3): R is updated to RUpd = {(p, q) | ∃(p, p′) ∈
R′, (p′,≺, q0, γ) ∈ δc, (q0,≻, γ, q) ∈ δr}.15

15Notice that R does not appear in RUpd as R = I{q0}.
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– If (R′,≺,K, k,Bad) is popped, we are ending an object whose last seen key
is k. As in Case (6), we add to Bad all vertices (p, k, p′) such that (p, p′) /∈ R.
Let Valid(K,Bad) be the set of pairs of states (q0, r

′) such that there exists a
path ((p1, k1, p

′
1) . . . (pn, kn, p

′
n)) in GA with p1 = q0, p

′
n = r′, (pi, ki, p

′
i) ̸∈ Bad

for all i ∈ {1, . . . , n}, and K = {k1, . . . , kn}. Then R is updated to RUpd =
{(p, q) | ∃(p, p′) ∈ R′, (p′,≺, q0, γ) ∈ δc, (q0, r) ∈ Valid(K,Bad), (r,≻, γ, q) ∈ δr}.
We thus proceed as in Case (3) except that condition (r′, r) ∈ R is replaced by
(r′, r) ∈ Valid(K,Bad). That way, we check that the key-value pairs that have
been read as composing an object of w label some path in TA, once ordered by
<. That is, the corresponding abstract path appears in GA.

Case (8) Suppose that a ∈ Σi and Stk is empty, then w ̸∈ L(S) and we stop
the algorithm. Indeed an internal symbol appears either in an array or in an
object (see Cases (2), (5), and (6) above).

Finally, when the input word w is completely read, we check whether the
stack Stk is empty and the computed set R contains a pair (q0, q) with q ∈ QF .

The complexity of our algorithm is given in the following proposition.

Proposition 1. Let S be a schema and A be a 1-SEVPA such that L(A) =
L<(S). Deciding if a document J is valid is in time O(|J | · (|Q|4 + |Q||Σkey| ·
|Σkey||Σkey|+1)), and uses O(|δ|+ |Q|2 · |Σkey|+ d(J) · (|Q|2 + |Σkey|)) memory.

5 Implementation and Experiments

We present here our Java implementation of the learning process and the val-
idation algorithm. First, we present classical validation algorithms and explain
how to generate documents from a schema. We then explain how the required
membership and equivalence queries are implemented. Finally, we present the
schemas we evaluated, and the results for the learning, computation of the key
graph, and validation experiments. The reader is referred to the code documen-
tation for more details about our implementation [27–31].

In the remaining of this section, let us assume we have a JSON schema S0.

Classical Validation Algorithm and Documents Generation Let us ex-
plain briefly the classical algorithm used in many implementations for validating
a JSON document J0 against S0 [13]. It is a recursive algorithm that follows the
constraints of S0.

16 For instance, if the current value J is an object, we iterate
over each key-value pair in J and its corresponding sub-schema in the current
schema S. Then, J satisfies S if and only if the values in the key-value pairs
all satisfy their corresponding sub-schema. As long as S0 does not contain any
Boolean operations, this algorithm is straightforward and linear in the size of
both the initial document J0 and schema S0. However, if S0 contains Boolean
operations, then the current value J may be processed multiple times.

16Such a recursive algorithm is briefly presented in [19].
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In order to match the abstractions we defined (see Section 3) and to have op-
tions to tune the learning process, we implemented our own classical validator.
Alongside the validator, we implemented a tool to generate JSON documents
whose structure is dictated by S0. Due to the Boolean operations S0 can con-
tain, it may happen that choices must be made during the generation process.
We have two generators: a random generator that makes a choice at random, and
an exhaustive generator that exhaustively explores every choice, thus producing
every valid document one by one. Moreover, we implemented modifications of
these generators to allow the creation of invalid documents, by allowing devia-
tions.17 For instance, if the current schema describes an integer, we can instead
decide to generate a string. To ensure we eventually produce a document, we
can fix a maximal depth (i.e., the maximal number of nested objects or arrays).
This is useful for recursive schemas, or when generating invalid documents.

Learning Algorithm Let us now focus on the learning algorithm itself, and
in particular on the membership and equivalence queries. We recall that the
equivalence queries are performed by generating a certain number of (valid and
invalid) JSON documents and by verifying that the learned VPA H and the given
schema S0 agree on the documents’ validity. As said in Section 2, we use the
TTT algorithm [9] to learn a 1-SEVPA from S0, relying on its implementation
in the well-known Java libraries LearnLib and AutomataLib [11].

We use the random and exhaustive generators of valid and invalid documents
as explained above and we fix two constants C and D depending on the schema
to be learned.18 For a membership query over a word w ∈ Σ∗

JSON, the teacher
runs the classical validator on w and S0. For an equivalence query over a learned
1-SEVPA H, the teacher uses a generator to produce documents on which H is
tested. If that generator is random, at each query, C documents are generated
for each document depth between 0 and D. If none of the documents leads to a
counterexample, the teacher checks whether GH does not satisfy Lemma 1, i.e.,
whether there is path ((p1, k1, p

′
1) . . . (pn, kn, p

′
n)) with p1 = q0 such that ki = kj

for some i ≠ j. In that case, we can create a counterexample.

Evaluated Schemas For the experimental evaluation of our algorithms, we
consider the following schemas, sorted in increasing size: (1) A schema that
accepts documents defined recursively. Each object contains a string and can
contain an array whose single element satisfies the whole schema, i.e., this is
a recursive list. (2) A schema that accepts documents containing each type of
values, i.e., an object, an array, a string, a number, an integer, and a Boolean.
(3) A schema that defines how snippets must be described in Visual Studio
Code [23]. (4) A recursive schema that defines how the metadata files for VIM
plugins must be written [22]. (5) A schema that defines how Azure Functions
Proxies files must look like [20]. (6) A schema that defines the configuration file

17This is similar to mutation testing [1, 12].
18The values of C and D are given below.
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for a code coverage tool called codecov [21]. Hence, we consider two schemas
written by ourselves to test our framework, and four schemas that are used in
real world cases. The last four schemas were modified to make all object keys
mandatory and to remove unsupported keywords. All used schemas and scripts
can be consulted on our repository [30]. In the rest of this section, the schemas
are referred to by their order in the previous enumeration.

We present three types of experimental results: (1) the time and number
of membership and equivalence queries to learn a 1-SEVPA A from a JSON
schema, (2) the time and memory to compute the reachability relation ReachA
and the key graph GA, and (3) the time and memory to validate a document
using both classical and new algorithms. The server used for the benchmarks ran
OpenJDK version 11.0.12 on Debian 10 over Linux 5.4.73-1-pve with a 4-core
Intel® Xeon® Silver 4214R Processor with 16.5M cache, and 64GB of RAM.

Learning VPAs First, we learn a 1-SEVPA from a schema. We use an exhaus-
tive generator for the first three schemas (accepting a small set of documents),
and a random generator19 for the remaining three for which we fix C = 10000.
For both generators, we set D = depth(S) + 1, where depth(S) is the maximal
number of nested objects and arrays in the schema S, except for the recursive
list where D = 10, and for the recursive VIM plugin schema where D = 7.

For the first five schemas, we do not set a time limit and repeat the learning
process ten times. For the last schema, we set a time limit of one week and,
for time constraints, only perform the learning process once. After that, we
stop the computation and retrieve the learned 1-SEVPA at that point. The
retrieved automaton is therefore an approximation of this schema. Its key graph
has repeated keys along some of its paths, a situation that cannot occur if the
1-SEVPA was correctly learned, see Lemma 1. Results are given in Table 1.

Comparing Validation Algorithms The second part of the preprocessing
step is to construct the key graph of the learned 1-SEVPA. For each evaluated
schema, we select the learned automaton with the largest set of states, in order
to report a worst-case measure. Results after a single experiment are given in
Table 2. We can see that the storage of the key graph does not consume more
than one megabyte, except for codecov schema. That is, even for non-trivial
schemas, the key graph is relatively lightweight.

Finally, we compare both classical and new streaming validation algorithms.
For the latter, we use the 1-SEVPA (and its key graph) selected as described
above. We first generate 5000 valid and 5000 invalid JSON documents using a
random generator, with a maximal depth equal to D = 20. We then measure the
time and memory required by both validation algorithms on these documents.20

19With the random generator, the learned 1-SEVPAS may differ each experiment.
20Since obtaining a close approximation of the consumed memory requires Java to

stop the execution and destroy all unused objects, we execute each algorithm twice:
once to measure time, and a second time to measure memory.
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Time (s) Membership Equivalence |Q| |Σ| |δc| |δr| |δi| Diameter

2.2 2055.0 5.0 7.0 15.0 14.0 3.0 5.0 3.0
4.5 69514.0 3.0 24.0 20.0 48.0 3.0 26.0 12.0
9.0 21943.0 5.0 16.0 17.0 32.0 7.0 18.0 13.0

9590.3 4246085.0 36.4 150.0 27.0 300.0 2946.5 760.3 9.0
35008.2 4063971.7 30.5 121.0 35.0 242.0 2123.0 752.5 13.3
Timeout 633049534.0 192.0 884.0 77.0 1768.0 89695.0 8557.0 28.0

Table 1: Learning results. For the first five schemas, values are averaged out of
ten experiments. For the last schema, a single experiment was conducted.

ReachA GA

Time (s) Memory (kB) Size Time (s) Computation (kB) Storage (kB) Size

34 492 31 100 2231 65 3
67 1152 213 234 2623 69 9
67 737 125 118 2223 69 10

1756 10316 5832 1715 11827 419 418
2208 13978 4420 2839 17968 667 541

377141 212970 270886 187659 120398 16335 6397

Table 2: Results for the computation of ReachA and GA. The Computation (resp.
Storage) column gives the memory required to compute GA (resp. to store GA).
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Fig. 3: Results of validation benchmarks.
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On all considered documents, both algorithms return the same classification
output, even for the partially learned 1-SEVPA.

For our algorithm, we only measure the memory required to execute the
algorithm, as we do not need to store the whole document to be able to process
it. We also do not count the memory to store the 1-SEVPA and its key graph. As
the classical algorithm must have the complete document stored in memory, we
sum the RAM consumption for the document and for the algorithm itself. This
is coherent to what happens in actual web-service handling: Whenever a new
validation request is received, we would spawn a new subprocess that handles
a specific document. Since the 1-SEVPA and its key graph are the same for all
subprocesses, they would be loaded in a memory space shared by all processes.

Experimental results indicate that our algorithm exhibits good performance.
Results for the three smaller schemas are not presented here to save space,
while they are given in Figure 3 for VIM plugins, Azure Functions Proxies, and
codecov. The blue (resp. red) crosses (resp. circles) give the values for our (resp.
the classical) algorithm. The x-axis gives the size of each (abstracted) document.

For both VIM plugins and Azure Functions Proxies, our algorithm consumes
less memory than the classical one. For these benchmarks, memory and time
usage seemingly trade off as we see that our algorithm usually requires more
time to validate a document — a majority of that time is spent computing the
set Valid(K,Bad). This tradeoff, however, does not hold in general: There are
schemas for which our algorithm performs better than the classical one, both
in terms of time and memory, as it does not have to backtrack to validate a
document, which reduces the time and memory space required.

For the codecov schema, we recall that the learning process was not com-
pleted, leading to an approximated 1-SEVPA with repeated keys in its key graph.
This means that the computation of Valid(K,Bad) explores some invalid paths,
increasing the memory and time consumed by our algorithm. Thus, it appears
that, while a not completely learned 1-SEVPA can still be used in our algorithm,
stopping the learning process early may increase the time and space required.

6 Future Work

As future work, one could focus on constructing the VPA directly from the
schema, without going through a learning algorithm. While this task is easy
if the schema does not contain Boolean operations, it is not yet clear how to
proceed in the general case. Second, it could be worthwhile to compare our
algorithm against an implementation of a classical algorithm used in the industry.
This would require either to modify the industrial implementations to support
abstractions, or to modify our algorithm to work on unabstracted JSON schemas.
Third, in our validation approach, we decided to use a VPA accepting the JSON
documents satisfying a fixed key order — thus requiring to use the key graph and
its costly computation of the set Valid(K,Bad). It could be interesting to make
additional experiments to compare this approach with one where we instead use
a VPA accepting the JSON documents and all their key permutations — in this
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case, reasoning on the key graph would no longer be needed. Finally, motivated
by obtaining efficient querying algorithms on XML trees, the authors of [26] have
introduced the concept of mixed automata in a way to accept subsets of unranked
trees where some nodes have ordered sons and some other have unordered sons.
It would be interesting to adapt our validation algorithm to different formalisms
of documents, such as the one of mixed automata.

Data-Availability Statement. The source code and experimental results that
support the findings of this study are available in Zenodo with the identifier
https://doi.org/10.5281/zenodo.7309690 [31].
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