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Abstract: Developing strategies for the green synthesis of novel materials, such as pigments for
protection from solar radiation, is a fundamental research subject in material science to mitigate the
heat island effect. Within this perspective, the current study reports on the synthesis of blue pigments
of ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) using recycled metallic aluminum (discarded can seal)
with reflective properties of Near-infrared radiation. The pigments were characterized by XRD, SEM,
XPS, UV-Vis, NIR diffuse reflectance spectroscopy, and CIE-1976 L*a*b* color measurements. The
wettability of the coatings containing the synthesized pigments was also evaluated. The structural
characterization showed that the pigments present the Gahnite crystalline phase. Colorimetric
measurements obtained by the CIEL*a*b* method show values correlated to blue pigments attributed
to Co2+ ions in tetrahedral sites. The pigments exhibit high near-infrared solar reflectance (with R%
≥ 60%), with an enhancement of nearly 20% for the pigment-containing neodymium when applied
in white paint, indicating that the prepared compounds have the potential to be energy-saving color
pigments for coatings.

Keywords: recycled metallic aluminum; near-infrared reflection; circular economy; neodymium; cobalt

1. Introduction

Current urban development is a global issue as it triggers the formation of heat islands
and increases CO2 pollution [1]. It has been reported that urban areas experience higher
temperatures due to the Urban Heat Island effect than rural areas [2,3]. Furthermore,
as the planet warms, electricity consumption has increased due to spending on cooling
equipment. A report on “Space cooling” published by the International Energy Agency
estimated that the number of air conditioners worldwide has doubled since 2000, reaching
over 2.2 billion units in 2021 [4]. In 2021, total cooling energy demand rose by more than
6.5% globally, with growth in Asia Pacific and Europe hovering around 8–9% [4]. As
temperatures rise, it is essential that buildings’ energy codes and local planning include
cooling-oriented design strategies, including passive and nature-based solutions, which
may reduce cooling needs and prevent heat islands in expanding urban areas. Cool coatings
have become superior passive cooling technologies for urban surfaces and areas [2,5,6],
developed with materials with high solar reflection in the NIR region [2,7–9], which can
reduce the energy consumption required for building cooling and improves the thermal
comfort of urban living [5].

Inorganic pigments are widely used as cooling materials for residential coatings,
which can be developed with high near-infrared reflectance properties for application in
cool coatings [10,11]. Since the reflectivity and absorption of pigments are independent,
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cool pigments may have any color [12]. The recent literature reports focus on developing
innovative NIR blue pigments [6,13–16], becoming a common concern for advancing novel
eco-friendly and high NIR reflective blue pigments. The Co2+ ion remains the traditional
source of blue color in ceramic pigments [17], whereas CoAl2O4, the cobalt (II) aluminate
spinel, is a conventional blue pigment due to its intensely bright blue color. However,
producing CoAl2O4, which contains 33% Co2+ by mass, is costly and environmentally
damaging [18].

Therefore, we aim to synthesize blue pigments by inserting a low amount of Co (II)
cations within a gahnite (ZnAl2O4) host lattice. The synthesis route for the blue pigment
was focused on improving the new pigment’s NIR reflectance value and blue hue by
inserting rare earth, the Nd ions, in the aluminate matrix. Rare earth-based NIR reflective
pigments have been proposed as viable alternatives to traditional toxic pigments due to
their low toxicity [19]. Thus, reducing the amount of Co, the developed pigment allows for
both cost-savings and environmental protection.

Herein, we report the synthesis and the influence of rare earth doping on the reflective
properties of the pigments based on the gahnite phase. First, acid digestion of can seals was
used to recycle aluminum, then as a pigment precursor. Second, the pigments were obtained
by the coprecipitation method, followed by calcination at 1000 ◦C, using starch as fuel. The
calcination reaction from recycled aluminum, water, starch, metal salts of zinc, and cobalt
was performed in the absence and presence of Nd. The phase structure, morphology, color,
and optical properties of powder pigments ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) were
systematically analyzed. Finally, the applicability of these pigments in waterborne acrylic
paint (commercial paint) was performed, and the coating’s NIR-reflective, wettability, and
color properties were also investigated.

2. Materials and Methods
2.1. Materials

For the synthesis of the new pigments of ZnAl2O4:M (M = Co2+ and Co2+/Nd3+),
aluminum was recycled from discarded can seal, ZnCl2•6H2O (Zinc chloride hexahydrate,
Dinâmica, reagent grade, 97%), CoCl2•6H2O (Cobalt (II) chloride hexahydrate, Dinâmica,
Gorizia, Italy, reagent grade, 98%), Nd(NO3)3•6H2O (Neodymium (III) nitrate hexahy-
drate, Sigma Aldrich, St. Louis, MI, USA, reagent grade, 99.9%) were used as precursors.
Deionized water was used as a solvent, HCl (Hydrochloric acid, NEON (São Paulo, Brazil),
reagent grade, 37.8%) was used for acid digestion of aluminum, NaOH (Sodium hydroxide,
NEON, reagent grade 99%) was used to correct the pH, and starch was used as fuel.

2.2. Acid Digestion of Metallic Aluminum

The aluminum recycling was performed through the acid digestion of can seals. To
obtain each pigment, 1 g of can seal was used, which was washed in water to remove dirt
accumulation, then 110 mL of HCl solution (1 mol L−1) was added and left reacting at
room temperature for 24 h, this being the time required to stabilize the reaction medium.

2.3. Synthesis of Gahnite Pigments

The Gahnite samples were prepared by the coprecipitation method, starting from
the matrix solution containing the Al3+ ions obtained (described in Section 2.2). In each
solution, 12.7% (mol%) of zinc (ZnCl2) was added to Solution A; therefore, 6.7% of cobalt
chloride (mol%) and 0.04% neodymium nitrate (mol%) were added related to aluminum
mass into Solution A. The pH of the solutions was corrected to 8 to obtain the boehmite
phase (γ-AlOOH) of aluminum oxide-hydroxide, due to its lamellar property, by dripping
with NaOH (2 mol L−1), then 10 g of starch was added to de solutions and stirred at RT
for 10 min. The suspensions were calcined at 1000 ◦C for 1 h in a 20 ◦C/ 5 min ramp and
pulverized. After calcination, the samples were washed with hot water to remove NaCl.
The pigments studied are ZnAl2O4 and ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) (Figure 1a).
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Figure 1. Photographs of the ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) synthesized pigments: (a) in
powder form and (b) dispersed in commercial white paint. The respective pigments were denoted:
as (I) ZnAl2O4; (II) Co-Gahnite; and (III) CoNd-Gahnite.

2.4. Preparation of Pigmented Coatings

The obtained gahnite pigments were dispersed into a white waterborne acrylic paint
with a solids content by weight of 50.5–52.5% and pH of 8–9 (Paracem® deco matt, prod.
Martin Mathys N. V., Zelem, Belgium). The mass % composition of the prepared paint was:
50.0 wt.% commercial white paint, 10.0 wt.% synthesized pigment, and 40.0 wt.% water.
The components were agitated for 20 min in mechanical stirring to ensure the complete
dispersion of the pigments in the white paint. The paints were coated on 25 × 25 mm
polycarbonate surfaces using a brush and dried at room temperature for over 24 h to obtain
the coatings (Figure 1b).

2.5. Characterization

The crystalline structure of the pigments was analyzed by recording the X-ray powder
diffraction (XRD) performed on a Bruker model D2 Phaser (Bruker, Karlsruhe, Germany)
with Cu Kα radiation (λ = 1.5418 Å). The morphology of the pigments was examined
with a High-Resolution scanning electron microscope HR-SEM Hitachi SU8020 (Hitachi,
Tokyo, Japan). The agglomerated particle size distribution histograms of the pigments were
performed using Image J (Version 1.53K) [20]. For the SEM analysis, the particulate samples
were deposited in carbon tape water. The oxidation state and chemical composition of
pigments were determined by X-ray photoelectron spectroscopy (XPS) (Versaprobe PHI
5000, from Physical Electronics, Chanhassen, MN, USA) equipped with a monochromatic Al
Kα X-ray source. The spectra were analyzed by CASA-XPS software (Version 2.3.17PR1.1);
the binding energies were calibrated using the C1s peak (284.6 eV) of carbon impurities as
a reference. Diffuse absorbance spectra after Kubelka–Munk transformation were recorded
with a step of 1 nm on a Perkin Elmer Lambda 950 UV-Vis NIR spectrophotometer using
an integration sphere at room temperature. Barium sulfate was used as a reference. The
colorimetric analyses of the pigment powders before and after they were applied to the
PC substrate were measured using a portable colorimeter (3nh, model NR60CP, Shenzhen,
China) with a D65 light source. In colorimetric (CIEL*a*b*) analyses, the L* parameter is
the brightness, ranging from 0 to 100. The parameter a* between red and green, where +a is
prone to red and−a* is prone to green. Meanwhile, the parameter b* indicates the variation
between blue and yellow; the +b* value denotes yellow, and the −b* value tends to be
blue [21]. Both a* and b* range from −128 to +128. The contact angle (CA) of the surfaces
painted with the synthesized pigments was measured by a contact angle meter (Attension
Theta, Biolin Scientific, Gothenburg, Sweden) using a water droplet with a volume of ~5 µL
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under ambient conditions (25 ◦C). The CA values are the averages of ten measuring points
on each surface.

The optical reflectance of the pigment powders and corresponding coatings was
measured using a UV-Vis-NIR spectrophotometer (Perkin Elmer Lambda 950, Waltham,
MA, USA). As a baseline standard, BaSO4 was used to measure the optical properties of
the samples between 300 and 2500 nm. The NIR solar reflectance (R*) of the pigments and
coating in the wavelength range of 750–2500 nm was obtained by the following Equation (1):

R∗ =

∫ 2500
750 r(λ)i(λ)dλ∫ 2500

750 i(λ)d(λ)
(1)

where r(λ) is the spectral reflectance obtained from the experimental, and i(λ) is the
spectral irradiance obtained from the standard of ASTM G173-03 reference spectra
(W·m−2·nm−1) [2,6,9].

3. Results and Discussion
3.1. Characterization of the Powder Pigments

Figure 2 shows the X-ray diffraction patterns (XRD) of the three pigments synthesized
ZnAl2O4, ZnAl2O4:Co, and ZnAl2O4:Co; Nd obtained after annealing in air at 1000 ◦C for
1 h. The synthesized pigments consist mainly of gahnite, ZnAl2O4 (ICDD card number
96-900-7024), with two prominent peaks appearing at 31.2◦ and 36.8◦, which are associated
with (220) and (311) the crystallographic planes. These are characteristics of a cubic crystal
structure belonging to the spinel compounds with the general formula AB2O4, where A and
B are predominantly zinc (Zn) and aluminum (Al), bi- and trivalent, respectively [22,23].
The diffraction peaks confirm that the calcination temperature of 1000 ◦C is suitable for
obtaining monophasic gahnite pigments, which the substitution occurred in the tetrahedral
sites occupied by Zn2+ ions; this process is favored by the similar ionic radii of IV-fold
coordinated Co2+ and Zn2+, 0.58 Å and 0.60 Å, respectively [24]. Furthermore, XRD results
showed that the amount of Nd ions inserted into the host lattice did not affect the gahnite
phase. The XRD results indicated that 1000 ◦C is an optimum synthesis temperature to
obtain a monophasic structure of ZnAl2O4 by the synthesis route proposed in this work.
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The microstructure analysis of the samples was carried out using high-resolution
scanning electron microscopy (SEM) to determine the grain size and surface morphol-
ogy. In Figure 3, SEM images display the pigments with a rough surface that tends to
agglomerate into small irregular shapes after annealing at 1000 ◦C for 1 h, suggesting
a microcrystalline nature of the pigments. The agglomerated particles are not uniform,
ranging in size from 0.6–8 µm, 0.8 to 14 µm, and 1–11 µm for ZnAl2O4, Co-Gahnite, and
CoNd-Gahnite, respectively.
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Figure 3. SEM images of ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) pigments: (a) ZnAl2O4, (b) Co-
Gahnite, and (c) CoNd-Gahnite. The corresponding images (a′), (b′), and (c′) are related to the
particle size aglomerates distribution histograms of the pigments.

To study the electronic structure of the major elements, near-surface region, the high
energy resolution photoelectron spectra of Zn 2p and Al 2p core levels are shown in
Figure 4; the spectra were calibrated based on the reference peak of C 1s at 284.6 eV from
carbon contamination. The Zn 2p3/2 XPS spectra were deconvoluted into two components,
appearing in the range 1020–1021 eV and 1022–1023, assigned to the tetrahedrally (Td) and
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octahedrally (Oh) coordinated zinc [23,25], indicating that the Zn2+ ions occupy the site in
an inverse spinel configuration in the ZnAl2O4 and Co-Gahnite pigments obtained. The
ratio of the areas under these components suggests a higher percentage of inversion in Zn2+

site occupancy for the Co-Gahnite sample, whereas, for the pigment CoNd-Gahnite the
Zn2+ ions are located in tetrahedral positions only (Figure 4a), denoting that the insertion
of Nd ions into Gahnite structure reduces the distortion in the crystalline structure towards
an inverse spinel. Similar results were observed by [23]. The XPS Al 2p core level spectra
were fitted by the two components of the 2p doublet for the ZnAl2O4 and CoNd-Gahnite
samples, indicating that the Al3+ ions occupy the inverted tetrahedral coordination site
(Figure 4b) while for the Co-Gahnite two doublets used to fit the Al 2p peak indicating that
Al3+ ions occupy more than one coordination site, i.e., the octahedral and the tetrahedral
coordination site.
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Figure 4. XPS analysis of ZnAl2O4, Co-Gahnite, and CoNd-Gahnite pigments. The experimental
solid line and fitted curves of high-resolution XPS spectra of (a)Zn 2p1/2; and (b) Al 2p.

The high energy resolution photoelectron spectra of O 1s are shown in Figure S1. The
O 1 s peak is fitted with two components (Figure S1). The component centered at 530.8 eV
was assigned to oxygen atoms participating in Zn-O and Al-O bonds in the ZnAl2O4 lattice.
The low-intensity component centered at 532.7 eV indicates an oxygen deficiency in the
ZnAl2O4 crystal lattice [26]. The fitting analysis of the Co 2p core level is shown in Figure
S2, which was performed to evaluate the oxidation state of cobalt in the Gahnite structure.
The XPS analysis indicated that the most prominent cobalt species present in the Gahnite
structure was Co3O4 [27], which confirmed the presence of cobalt in mixed oxidation states
of 2+ and 3+ at the surface of the agglomerates.

The K/S absorption spectra were recorded in the wavelength range of 300–800 nm to
study the optical properties of the pigments (Figure 5). The graphic shows the triplet d-d
band located at 548 (green region), 582 (yellow-orange region), and 622 nm (red region),
which gives rise to the blue coloration [28]; this triplet is assigned to the 4A2(4F)→ 4T1(4P)
transition of tetrahedrally coordinated Co2+ ions [17,25,29,30], attributed to a Jahn-Teller
distortion of the tetrahedral structure [28]. Thus, the pigments’ blue color is primarily
due to this strong d–d transition of tetrahedral Co2+ between 500 and 675 nm. The low-
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intensity peaks around 478 nm (indicated in the image by the symbol *) are related to
the spin-forbidden transition, which was attributed to transitions between octahedral and
tetrahedral sites [13]; this peak was identified for similar material, Co-doped ZnAl2O4
obtained at 1000 ◦C [25,29]. The pigment-containing neodymium showed no changes in
this spectrum region, with no significant decrease in the intensity of the absorption band
around 500–650 nm.
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Figure 5. K/S absorption spectra of ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) pigments, calcined
at 1000 ◦C.

Table 1 shows the measured CIEL*a*b* parameter for the pigments in powder form
calcined at 1000 ◦C. From the colorimetric point of view, both pigments containing cobalt
are in the red/blue quadrant (+a/−b), and with the insertion of Nd ions, the blue hue
enhanced, i.e., the b* coordinate value increased. The brightness (L*) of the ZnAl2O4
decreased with the cobalt insertion, and the pigment Nd-bearing is the lighter blue pigment
compared to the pigment bearing only with Co. The b* chromatic parameter also shifts
versus the composition of the pigments, in which the pigment CoNd-Gahnite showed a
higher b* contrast; in other words, the pigment with a higher blueish hue (b* from −34.39
to −36.89). It has been shown in these studies that a small amount of rare earth can alter
the hue of the pigments, which can be explored further for obtaining new colors.

Table 1. Color coordinates, NIR reflectance of the powdered pigments.

Sample
Color Coordinates

Color from Color Coordinates NIR Reflectance (R%)
L* a* b*

ZnAl2O4 79.63 5.15 12.45
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3.2. NIR Reflectance Properties of the Powder Pigments

To evaluate the effectiveness of the materials as cool pigments and, consequently,
alleviating the urban heat island effect, the NIR reflectance of the blue powder pigments
ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) was measured at 750–2500 nm (Figure 6). Ad-
ditionally, ZnAl2O4 has been analyzed to determine the NIR reflectance associated with
cobalt pigments (blue pigments). As shown in Figure 6a, it can be observed that the in-
sertion of the Co ions decreases the solar reflectance compared to the ZnAl2O4 reflectance
spectra; this is due to significant absorption in the 1200–1600 nm of d-d transitions for
tetrahedral Co2+ [31], giving a significant absorption in the NIR region. The NIR solar
reflectance curves of the powder pigment samples were calculated by ASTM standard
G173-03 (Figure 6b). The average solar reflectance of the CoNd-Gahnite pigment had a
slight improvement in the NIR reflectance compared to Co-Gahnite (Table 1); these re-
sults may be due to the low Nd amount present in the matrix. However, both pigments’
average NIR solar reflectance did not fall below 60%. This shows its ability to serve as
a cool pigment with improved thermal insulation performance in practical applications.
A comparison of synthetic pigment samples with other blue compounds is presented in
Table 2. The results show that pigments containing rare earth are potential candidates for
cool pigments, which alter the pigments’ hue and improve the final pigment’s NIR solar
reflectance properties.
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Figure 6. (a) Diffuse reflectance spectra of the synthesized pigments in powder form, and (b) NIR
solar reflectance spectrum of the powder pigments adjusted to the standard solar spectrum.

Several factors can affect the reflectivity of materials, including particle size, morphol-
ogy, and uniformity of particle size distribution [1,32]. According to the Kubelka–Munk
theory, particles’ amount of infrared radiation scattered increases with decreasing particle
size [1]. It can be seen from Figure 3 that the particle size of the CoNd-Gahnite sample
decreases compared to Co-Gahnite, which is favorable for light scattering.

3.3. Coating Studies

The color properties of the pigments applied in a commercial white paint were in-
vestigated further by colorimetry. As shown in Table 3, white paint played a critical role
in the color properties of the pigments. Table 3 shows that the brightness (L*) increased
significantly with the pigments dispersed in the paint, as long as decrease the chromatic
parameter (a* and b*), due to the white matrix of the commercial paint being TiO2, which
tends to lighten the blue hue of the dispersed pigments.
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Table 2. Color Coordinates and NIR Reflectivity of Co-Gahnite, CoNd-Gahnite, and other blue
pigments with the synthesis method employed.

Sample Synthetic Method
Color Coordinates Color from Color

Coordinates
NIR Reflectance

(R%) Reference
L* a* b*

CoAl2O4 Commercial product 44.8 2.1 −32.7
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Sample
Color Coordinates

Color from Color Coordinates NIR Reflectance (R%)
L* a* b*

ZnAl2O4 89.69 1.13 9.22
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The Near Infrared spectra were also obtained for the pigments applied in waterborne
acrylic paint to evaluate the performance of the pigments in a coating (Figure 7). The
commercial paint used in this study contains the white pigment titanium dioxide, as
observed in our previous work [35], which can influence the NIR reflectance of the surface
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coatings due to its high solar reflectivity [5]. The NIR solar reflectance curves of the coatings
were calculated by ASTM standard G173-03 (Figure 7b). As indicated in Table 3, there
is a significant increase in R% for the pigment-containing Nd dispersed in paint, which
produced a blue-colored pigment with almost 20% enhancement in NIR reflectance; this
may be due to the CoNd-Gahnite pigment having a better dispersion of the particles
compared to Co-Gahnite in acrylic-based paint, thus reducing the degree of agglomeration.
The results indicate that synthetic pigments containing rare earth elements are promising
for applying cool coatings.
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Self-cleaning infrared-reflective surfaces are required to prevent dust from adhering
to the film coating and reducing infrared reflectivity [36–38]. A solid surface’s coating
properties can be measured simply by dropping water on the surface. Figure 8 shows the
CA of the pigments coated in white commercial paint. Water wettability measurements
results showed that the CAs of the coatings containing the synthesized pigments are
all larger than 100◦; the ZnAl2O4 coating surface had a CA of 100.2◦ ± 3.0◦, while the
commercial white paint showed a CA of 94.7◦ ± 2.2◦. The surfaces containing the blue
pigments increased the CA value, indicating a CA of 104.8◦ ± 2.4◦ and 105.5◦ ± 2.9◦ for
Co-Gahnite and CoNd-Gahnite, respectively, showing that the insertion of rare earth in the
composition can also improve the hydrophobic properties of the infrared-reflective surface.
These preliminary results show that the coatings developed in this study, containing the
synthesized blue pigments, exhibit a hydrophobic property. This enables them to keep the
surface clean and maintain its reflective properties.
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4. Conclusions

Blue pigments ZnAl2O4:M (M = Co2+ and Co2+/Nd3+) were successfully obtained
using recycled aluminum from seals as a precursor to obtaining the Gahnite crystalline
phase. In this work, starch was used as a fuel during the calcination step; this natural
additive makes the synthesis more environmentally friendly. In conjunction with recyclable
aluminum, the use of starch for preparing materials to save energy and the environment
matches the circular economy concept. The pigments presented high crystallinity, ho-
mogeneity, and single crystalline phase from calcination at 1000 ◦C. They present the
Gahnite-type structure, even with the insertion of Co and Nd ions into the ZnAl2O4 ma-
trix. The synthesized pigments had good dispersion with acrylic-based paint, coloring the
white paint and enhancing the Near reflectance properties. Therefore, the blue synthesized
pigments are sustainable candidates to substitute the expensive commercial cobalt blue
pigments and have the potential to be used as cool coatings for energy saving.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16041696/s1. XPS analysis of ZnAl2O4, Co-Gahnite, and
CoNd-Gahnite pigments.
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