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Abstract—The assessment of Obstructive Sleep Apneas and
hypopneas (OSAs) severity has known an increasing interest over
the last decade with the use of Apnea-Hypopnea Index (AHI)
being highly criticized by the majority of sleep scientists. To go
beyond the single AHI, alternative metrics such as hypoxic bur-
den, arousal intensity, odds ratio product, and cardiopulmonary
coupling have been investigated in the literature. However, no
consensus has currently been found for a common efficient met-
ric. In this paper, we propose a novel architecture of deep learning
model aiming at discovering an objective metric for OSAs severity
assessment. We demonstrate the efficiency of this method by
identifying features of interest in the Electroencephalographic
(EEG) signals while training the model based on biomarkers not
or indirectly derived from the EEG, i.e. the desaturation area, the
arousal events and the respiratory event duration. By inspecting
what the model looks for to make the different classifications, we
identified that EEG signals from posterior and medial regions
in low frequency bands (0-8 Hz) are highly affected by the
apnea-hypopnea severity. With this proof of concept, we pave
the way towards the use of Explainable Artificial Intelligence
(xAI) to make OSAs severity assessment more objective and find a
consensus metric adopted across the community of sleep scientists
as well as to boost EEG biomarkers discovery in multiple tasks.

Index Terms—EEG, obstructive sleep apnea, explainable AI,
semi-supervised learning, proof-of-concept

I. INTRODUCTION

Obstructive Sleep Apnea-hypopnea (OSA) is a common
sleep disorder associated with multiple medical conditions
from excessive daytime sleepiness to cognitive or cardiovascu-
lar disorders [1]. The assessment of how OSAs affect patients’
health, i.e. its severity, is currently stemmed from the number
of apnea and hypopnea events occurring overnight through the
Apnea-Hypopnea Index (AHI) [2]. However, the use of AHI
has been largely criticized over the last decade as it fails to
estimate the impact of OSAs on related medical conditions
[3]. This issue has triggered many works aiming to find
better metrics to characterize OSAs severity, such as hypoxic
burden, arousal intensity, duration of apneic events, odds ratio
product, heart rate variability and cardiopulmonary coupling
[4]. Despite all the efforts made in the direction of discovering

This research was funded by the “Fonds pour la Formation à la Recherche
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the most efficient metric for OSAs severity, no consensus
has been found across the sleep research community [4]. We
therefore propose a novel approach to pave the way towards
a common severity metric relying on Explainable Artificial
Intelligence (xAI). The purpose of this work is to demonstrate
the relevance of using explainable Deep Learning (DL) models
to identify the features of importance for OSAs severity
assessment task in order to get rid of the subjective biases the
metrics proposed by clinicians suffer from. This demonstration
is carried out by identifying Electroencephalographic (EEG)
biomarkers considered of high importance by our DL model
when performing a severity classification task defined by
Polysomnographic (PSG)-derived features not or indirectly
related to EEG signals. In fact, several research works have
shown that OSA events trigger specific EEG power variations
that differ between patients with severe OSA syndrome and
patients with moderate one [5].
To the best of the authors’ knowledge, xAI principles have
never been applied to OSAs severity assessment. Most of
the studies involving DL algorithms on sleep data aim at
either automatically detect sleep stages or apnea-hypopnea
events from PSG signals, distinguish OSAs from other sleep
conditions such as insomnia [6], estimate a specific underlying
symptom, e.g. excessive daytime sleepiness [7] or estimate
AHI from arbitrary chosen signals like the oxygen saturation
signal [8]. In this work, we rather propose to reduce the
subjectivity of the diagnosis by inspecting how a DL algorithm
makes its decisions.
xAI applied to medical data can be divided into two subtypes:
inherent and post-hoc explainability. Models with inherent
explainability relies on simple decision process, but struggle
to consider higher order information and post-hoc explain-
ability, often relying on saliency maps, suffers from the
human tendency of ascribing overly positive interpretation.
In this work, we introduce explainability in a human-centric
approach, which relies on similarity between items in their
entirety, instead of reducing it to statistics which rely on
averages of specific and often inhuman features.
In this paper, we propose a proof of concept for a novel xAI
approach applied to PSG data for OSAs severity assessment
task by identifying EEG biomarkers using our xVAEnet model,



a new DL architecture combining Convolutional Neural Net-
work (CNN) for feature extraction, Variational Auto-Encoder
(VAE) for dimension reduction, and Multilayer Perceptron
(MLP) for classification. All the open-source codes and sup-
plementary materials are available using the following link:
https://github.com/numediart/xVAEnet.

II. DATASET

The dataset built for this research consists of PSG data
of 72 patients who had undergone in-lab PSG (≥ 8 hours)
in 2022. The recordings, realized in the Sleep Laboratory,
Centre Hospitalier Universitaire Saint-Pierre (CHU St-Pierre),
Brussels, Belgium, have been manually annotated by clinicians
to identify sleep stages, apnea and hypopnea events and
arousal events according to international guidelines. All the
selected patients exhibited excessive obstructive respiratory
events (apneas or hypopneas) during the night, with at least
AHI≥5. The sleep onset was determined when the first epoch
of sleep occurs. A preliminary sleep questionnaire was per-
formed and the protocol CE/22-03-03 was approved by the
local ethical comittee of the CHU St-Pierre on March 14th

2022. The PSG sensors are composed of 6 EEG electrodes, 2
Electrooculograph (EOG) electrodes (EOG1 under the left eye
and EOG2 above the right eye) , thoracic and abdominal belts
(VTH and VAB) to monitor respiratory motions, an Electro-
cardiogram (ECG) sensor, a pulse oxymetry sensor recording
the pulse rate (PR) and the oxygen saturation (SAO2), and a
pressure probe measuring the nasal airflow (NAF2P).
The raw signals were recorded at 200 Hz and downsampled
at 50Hz for storage requirements using Medatec Brainnet
Winrel 5.0 system. The data were then converted to Python-
friendly files using the MNE-Python package [9], which was
used to preprocess the signals. As our analysis focuses on
the differences between apneic events, the studied database
consists of OSA trials only, each of them corresponding to a 60
seconds segment extracted from the manually labeled signals
and starting 4 seconds before an OSA event. The selected EEG
signals were the 3 left-hand side electrodes, a frontal (FP1), a
central (C3) and an occipital (O1), with the reference electrode
being placed just above the nasion and the derivations being
performed with a right mastoid electrode. These signals were
divided into bands with a width of 2Hz, ranging from 0Hz to
10Hz. The 3 right-hand side electrodes were not analyzed for
clarity and simplicity of this proof-of-concept research. The
signals have been preprocessed, as described in the supple-
mentary materials, for artifacts removal, patients exclusion and
addition of Pulse Rate Variability (PRV) signal from the PR
signal and phase shift (Pshift) signal from the VAB and VTH
signals. The normalization has been performed by channel
independently as a z-score normalization with clamping in the
[-3; 3] range. After the preprocessing phase, the final dataset is
composed of 6992 OSA trials of 23 channels (15 filtered EEG
channels and 8 non-EEG PSG channels) and 3001 timestamps
from 60 patients divided into a training set of 4660 trials from
48 patients, namely the trainset, and a validation set of 2332
trials from the 12 remaining patients, namely the testset.

III. XVAENET ARCHITECTURE

The principle of the proposed approach is to make sense
of the feature space the classifier use to perform the desired
severity classification task. In fact, when going forward in an
artificial neural network, the input data undergoes different
transformations across the hidden layers, this phase is called
feature extraction. The purpose of these computed features is
to be maximally discriminative for the categories that have
to be classified. The last layer, the classifier, is often a fully-
connected layer that allocates specific weights to the extracted
features to make the best final classification.
In this work, the feature space is manipulated to acquire some
required properties: 1) reconstruction ability, 2) generative
ability, 3) Gaussian distribution.
The reconstruction ability ensures a direct relationship be-
tween the feature space and all the independent input channels,
allowing clinicians to evaluate the relevance of the proposed
classification. The generative ability ensures the model to be
usable for new patients by avoiding part of the space not
to be characterized. The Gaussian distribution allows a fair
comparison between OSA trials by performing a directional
study within the feature space, i.e. looking for the direction
responsible for severity encoding. As shown in Figure 1, the
aforementioned properties are added to the feature space by
sharing the encoder part of the model between three sub-
networks: a VAE, a Generative Adversarial Network (GAN)
and a classifier. In fact, the VAE is responsible for bringing
the reconstruction ability to the encoder latent space (Ze),
while the generative and the Gaussian distribution properties
are part of the decoder latent space (Zd). The GAN allows the
transfer of the latter properties from Zd to Ze, and the classifier
forces the separation of samples from different conditions in
the latent space of interest (Ze). The architecture details are
presented in the supplementary materials.

A. VAE

As described by Kingma and Welling [10], a VAE model
is designed to learn a latent representation of the input data
with a desired probability distribution and generative ability.
In this paper, the VAE model used is inspired by the Stagernet
model proposed by Banville et al. to analyze long EEG
sequences of sleep recordings [11]. The encoder part of our
VAE is therefore a replica of the Stagernet CNN adapted to the
23x3001 format of our input data. The decoder is the mirrored
version of the encoder where the convolutions are replaced
by transposed convolutions and the max pooling layers by
max unpooling ones. Contrarily to classical VAE models,
the mean (µ) and standard deviation (σ) are not directly
derived from the last convolutional layer of the encoder, but an
intermediary latent vector is added to the encoder side (Ze).
In fact, as stated by Zhang et al., the latent representations
in VAEs are stochastically sampled from the prior distribution
instead of being directly rendered from the input data [12].
This property compromises the further classification of the
input data from their latent representation. The purpose of
adding Ze is therefore to make available a deterministic latent



ZdZe

Permute

Encoder

Real

Fake

μ

σ

Preprocessed  
PSG data

Reconstructed 
PSG data

Hypoxic burden
Arousal index
Event duration

Permute

Decoder

Classifier

Discriminator

Fig. 1. xVAEnet Architecture. The model is composed of 3 parts: a VAE, a GAN and a classifier, all of them making use of the convolutional encoder that
encodes the input data into an embedding, the encoder latent space (Ze). The VAE (center) first estimates the mean (µ) and the standard deviation (σ) of
the dataset distribution from Ze using dense layers to obtain the decoder latent space (Zd), then Zd is decoded to derive a reconstructed version of the input
data using a deconvolutional decoder. The GAN (top) exploits the encoder as a generator and discriminates Zd (real distribution) from Ze (fake distribution)
using an MLP discriminator. The Classifier (bottom) uses the features extracted by the encoder in Ze to classify the desaturation area, the arousal events and
the respiratory event duration with a unique single-layer perceptron.

representation of the input data for the classification task. The
decoder latent space (Zd) is obtained by the reparameterization
trick classically used in VAEs, i.e. Zd = µ+ σϵ where ϵ is a
random variable with Gaussian distribution. The loss function
used to train the VAE part of our model is a combination
of reconstruction loss and Kullback-Leibler divergence, as
described in Equation 1:

LV AE = 0.5 ·MSE(output, input) + (1)

0.5 · 1

bs

bs∑
i=1

−0.5 ·
∑

latent dim

(1 + log(σ)− µ2 − σ)

with bs the batch size and MSE the mean-squared error. As
only Zd acquires the generative ability and follows a Gaussian
distribution during the VAE training phase, another process
should transfer these properties to Ze that is the purpose of
the GAN module.

B. GAN

By considering Zd as the real latent representation and
Ze as the fake one, the training of the GAN module will
force the encoder to directly generate a latent vector Ze that
mimics the properties of Zd, as inspired by Zhang et al. [12].
Adversarial networks requires a generator that generates fake
data as close as possible to real data and a discriminator
that differentiates between real and fake data. In the proposed
xVAEnet architecture, the generator is the encoder shared with
the VAE part and the discriminator consists of a 3-layer MLP
each of them using leaky ReLU activation function with a

negative slope of 0.2 and batch normalization. The output
activation function is a sigmoid function. The loss function of
the generator is a weighted sum of the VAE loss and the mean
of correct predictions by the discriminator within a batch:
Lgen = 0.2 · LV AE + 0.8 · 1

bs

∑bs
i=1(1− fakei) with fake the

output of the discriminator when the fake latent representation
(Ze) is given as input, which should be equal to 1 for an
ideal generator. The loss function of the discriminator is the
difference between the mean fake predictions and the mean
real predictions: Ldiscrim = 1

bs

∑bs
i=1 fakei −

1
bs

∑bs
i=1 reali

with real the output of the discriminator when the real latent
representation (Zd) is given as input. For an ideal discrimi-
nator, real = 1 and fake = 0. The combination of both loss
functions is described in Section IV.

C. Classifier

The classifier module forces the encoder to output a la-
tent vector where trials presenting a low level of severity
are maximally distant from trials exhibiting a high level of
severity. In this work, the level of severity is characterized by
the Desaturation Area (DA) (i.e., the area over the curve of
the SAO2 signal [13]), the arousal events (i.e., the presence
or not of an arousal occurring just after the OSA) and the
duration of the respiratory event. For clarity and simplicity of
this proof-of-concept research, we simply defined two severity
levels (low or high). Except for the arousal events that are
binary by definition, we computed the median values of each
severity features across trials and considering trials below the
median value as low severity level trials and trials above the



median values as high severity level trials. Finally, we obtain
four levels of severity: 1) Very Low (low severity level on all
3 features), 2) Low (high level on 1 feature), 3) High (high
level on 2 features), 4) Very High (high level on all 3 features).
The classifier block consists of a single-layer perceptron that
performs a linear combination of the 128 latent vector values,
outputting a probability for the sample to belong to each class
via a softmax activation function, allowing the encoder to
perform the majority of the classification task. As described
in Section IV, the training process is done separately for each
severity feature with the loss function being a binary cross-
entropy loss: Lclassif = BCE(predicted, target).

IV. EXPERIMENTS

A. Training

The training process of the proposed model consists in a
semi-supervised curriculum learning framework. In fact, every
block of the architecture described in Section III is trained
separately, and the initialisation of the following block’s
training process is done using the updated weights obtained
at the end of the previous stage. The VAE and the GAN
blocks are trained with non-supervised learning, while the
classifier is trained in a supervised manner, making the whole
model training semi-supervised. The training parameters are
detailed in the supplementary materials. The VAE module has
been trained using a random initialization until convergence.
Then, the GAN module has been trained by initializing the
generator with the best weights of the encoder obtained
during the VAE training phase and the discriminator has
been randomly initialized. At each batch, the discriminator
is first trained by freezing the generator and using the loss
function of the discriminator described in Section III, then
the generator is trained by freezing the discriminator and
using the corresponding loss function. Every 15 epochs, the
updated network is used in inference to compute a new
Zd vector given as real input for the 15 following epochs
in order to avoid the deterioration of the “real” space to
be responsible for the increase of the GAN performance.
Finally, the classifier module is initialized with the weights
of the best generator previously obtained and the single-
layer perceptron is randomly initialized. In the philosophy of
curriculum learning, the classifier is trained on each severity
feature sequentially, starting with the low vs. high severity
classification on the DA, then on the arousal events and finally
on the event duration. The learning rates were 10−3, 5 · 10−4,
and 2 ·10−4 for the first, second, and third stages, respectively.
For each classification stage, a global loss, calculated every
5 epochs, combines the VAE, GAN, and classifier losses:
Lglobal =

1
3LV AE + 1

3
1
bs

∑bs
i=1(1 − fakei) +

1
3Lclassif . On

the first stage, DA was classified without considering the other
severity features. On the second stage, the classification has
been performed on both the DA and the arousal events every
2 epochs: Lclassif2 = 1

2 · LDA + 1
2 · Larousal. On the third

stage, the classification has been performed on all the severity
features twice every 3 epochs: Lclassif3 = 1

3 · LDA + 1
3 ·

Larousal +
1
3 · Lduration.

B. Explainability

To explain how our xVAEnet model makes its decisions,
we rely on a human-centric approach consisting in highlighting
the similarities and differences between samples from different
parts of the encoded latent space. In fact, the latent vector
encoded by the encoder (Ze) can be considered as a projection
of the input data into a 128-dimensional space. This space
being non-sparse owing to the Gaussian and generative prop-
erties, we can navigate through it in any direction to explore
the specificity of each region. As the feature of interest of
this work is the severity of the OSAs a patient undergoes,
we have looked for the principal direction where the severity
is encoded by performing a Linear Discriminant Analysis
(LDA) on Ze that maximizes the discrimination between the 4
classes of severity. The result of this process is a vector giving
the direction of the severity encoding, namely the severity
direction. By comparing input samples along the severity
direction, we can highlight the channels that vary the most
as well as the time windows that are the most affected by
the OSAs severity. By analyzing non-EEG channels, we can
validate that the model actually looks at the important features
for severity scoring. By analyzing EEG channels, we can
identify the best biomarkers of OSA in the EEG signals.

V. RESULTS

The results of this research, essentially qualitative, can be
divided in two parts: 1) the severity scoring efficiency and
2) the EEG biomarkers identification. All the quantitative
results are detailed in the supplementary materials. In Figure 2,
we can observe the evolution of the latent space distribution
across the different training phases, allowing the qualitative
evaluation of how Ze acquires the required properties. For
illustration purpose, the 128-dimensional latent space has been
projected to a 2D space using the t-distributed stochastic
neighbor embedding (t-SNE) transform. As shown in Figure
2A, the training process of the VAE module leads to a sparse
encoder latent space (Ze). The training process of the GAN
module leads to a non-sparse Ze getting closer to a Gaussian
distribution, but with the samples of different severity scores
randomly distributed (Figure 2B). The training process of
the classifier module leads to a non-sparse, quasi-Gaussian
Ze where the samples of similar severity level tend to be
gathered together and separated from samples of different
severity levels, as illustrated in Figure 2C. From this well-
designed latent space, we have performed an LDA aiming at
classifying the 4 severity levels. With the classifier module
trained, this LDA reaches a mean accuracy of 54.0% (trainset)
and 48.8% (testset), and a mean F1-score of 56.5% (trainset)
and 48.4% (testset). The direction of highest severity score
variance, namely the severity direction, is represented with
an arrow in Figure 2C and is responsible for 78.14% of
the explained variance. This ability to estimate the severity
score from a trial representation in Ze is the first proof of
the relevance of the proposed framework in severity scoring
task. By navigating along the severity direction, we can sort
the OSA trials by severity score to generate a severity scale
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Fig. 2. 2D representations of the encoder latent space (Ze) using t-SNE.
Each sample represents one of the 6992 OSA trials. (A) Ze with the training
phase of the VAE module completed. (B) Ze with the training phase of the
GAN module completed. (C) Ze with the training phase of the classifier
module completed on every severity feature. The arrow represents the severity
direction obtained using LDA. In the legend, each letter of “had” represents
a severity feature: “hypoxic burden”, “arousal event”, and “duration of the
respiratory event”. The “L” means “Low-level severity”, the “H” means “High-
level severity”

and compare the trials depending on their position on this
scale. Figure 3A provides a summary of the influence of the
severity score on each PSG channels based on their power
signal. This comparison is performed by computing the mean
power difference of each channel separately as described in
Equation 2:

Pdiffc[i] dist[j] =
1

N − j

N−j∑
k=0

Pc[i] t[k+j] − Pc[i] t[k]

Pdiffc[i] =
1

N

N∑
j=0

Pdiffc[i] dist[j] (2)

with trials being sorted based on their severity score, N the
number of trials, t the trial number, c the channel and dist
being the distance on the severity scale. The second operation
allowing the evaluation of the severity scoring efficiency
consists in identifying PSG channels and time windows that
vary the most with the severity score. The non-EEG PSG are
used to evaluate the consistency between clinical studies and
the proposed framework, while the EEG channels allow the
biomarkers discovery. In Figures 3A and B, the high positive
power difference on the SAO2 signal suggests deeper and/or
longer desaturations of severe OSA trials, as stated by Kulkas
et al. [13]. The high negative power difference on the EOG
signal is consistent with the works of Eiseman et al. who

showed the dependence of apnea severity on REM vs. non-
REM sleep stage (that highly affects the eye movement) [14].
Furthermore, Figure 3C shows that the SAO2 effect mainly
appears during the respiratory events (beginning of the trial)
with a spurious peak effect around 50 seconds after the start
of the event (note that OSA event starts after 4s as described
in Section II). The aforementioned results provide the desired
second proof that the proposed framework actually extracts
severity information.
The EEG biomarkers identification task is based on the
information provided by Figures 3D and E where we can
observe that the central electrode (C3) is the most affected
by the severity of the respiratory event in the 2-8Hz frequency
range, this effect being maximal in the 5-25s trial time window
(corresponding to the mean respiratory event duration). The
occipital electrode (O1) also varies with the severity score in
the 2-8Hz frequency range, but the frontal one (FP1) seems
not to be influenced by the OSA severity. The findings indicate
a decrease in EEG power in parieto-occipital regions as the
severity score increases. Further investigation, utilizing high-
density EEG studies, may support the interpretation of this
decrease as a reduction in brain activity during severe OSA
events.

VI. DISCUSSION

This research is a proof-of-concept work aiming at demon-
strating the ability of xAI to identify EEG biomarkers related
to a specific task. The studied experimental task is the severity
scoring of Obstructive Sleep Apneas-Hypopneas (OSAs) from
PSG signals. The proposed framework relies on a human-
centric explainability approach based on the comparison be-
tween samples to maximize the interpretability of the results.
Our xVAEnet model is composed of 3 modules (VAE, GAN
and classifier) trained sequentially using a semi-supervised
curriculum learning process with the objective of encoding
the input data into a latent feature space maximizing the
discriminability between samples of different OSA severity
levels. This framework provides a latent space that: 1) contains
the majority of the input signals information, 2) is usable with
new patients, 3) allows a fair comparison between OSA trials
through directional study. The identified “severity direction” in
this encoded space is responsible for 78% of the severity score
explained variance, demonstrating the ability of the model
to generate a well-suited distribution for the studied task.
The EEG features that have been identified as OSA severity
biomarkers are the central and occipital electrodes in the 2-
8Hz frequency range, which is consistent with Jones et al. who
have shown a decreased EEG power in the parietal region, es-
pecially in slow-wave activity (1-4.5Hz) and θ band (4.5-8Hz)
[15]. In this proof-of-concept study, we mainly focused on
qualitative results rather than quantitative ones as the purpose
of this research is to demonstrate the relevance of the proposed
xAI approach for biomarkers discovery, rather than obtaining
the best performing model for the studied task. In the future
works, we will seek for more detailed EEG biomarkers by
considering: 1) time-frequency EEG representations (Fourier
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Fig. 3. Biomarkers identification performed by comparing the power signal, by channel, of the OSA trials sorted by severity score (∈ [0,1]) along the severity
direction obtained using LDA. (A) Mean power difference across OSA trials obtained by subtracting, for each channel separately, the power signal of each
trial from the power signal of trials of higher severity scores. (B) Channel-by-channel mean power difference of PSG channels excluding EEG channels. The
x axis represents the distance, along the severity direction, between the trials being compared. A distance of 0 means a trial is compared to itself, a distance
of 1 means the comparison between the trial of lowest severity score and the trial of highest severity score. (C) Time window-by-time window mean power
difference of the SAO2 channel (channel of highest absolute mean power difference). (D) Channel-by-channel mean power difference of EEG channels. (E)
Time window-by-time window mean power difference of the C3 channel on the 4-6Hz frequency band (channel of highest absolute mean power difference).

and Wavelet transforms), 2) all the available electrodes, 3)
more precise severity definition by using regression and adding
other severity features such as AHI. We will also improve the
scoring efficiency by exploring other encoder architectures and
hyperparameters (latent space dimension, batch size, dropout,
weight decay, etc.).
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